TWI804358B - The method of real-time adjustment of gait training parameters - Google Patents

The method of real-time adjustment of gait training parameters Download PDF

Info

Publication number
TWI804358B
TWI804358B TW111123298A TW111123298A TWI804358B TW I804358 B TWI804358 B TW I804358B TW 111123298 A TW111123298 A TW 111123298A TW 111123298 A TW111123298 A TW 111123298A TW I804358 B TWI804358 B TW I804358B
Authority
TW
Taiwan
Prior art keywords
user
training
gait
state
model
Prior art date
Application number
TW111123298A
Other languages
Chinese (zh)
Other versions
TW202400272A (en
Inventor
劉致佳
葉子寧
許家銘
Original Assignee
上銀科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上銀科技股份有限公司 filed Critical 上銀科技股份有限公司
Priority to TW111123298A priority Critical patent/TWI804358B/en
Application granted granted Critical
Publication of TWI804358B publication Critical patent/TWI804358B/en
Publication of TW202400272A publication Critical patent/TW202400272A/en

Links

Images

Abstract

一種即時調整步態訓練參數之方法,其包含步驟:(a)蒐集第一使用者肌肉放鬆狀態下的肌肉放鬆步態數據,以及第一使用者主動出力狀態下的主動出力步態數據,藉由第一使用者主動出力步態數據與第一使用者肌肉放鬆步態數據之比值,建立標準運動模型;(b)取得第二使用者的運動模型,包含第二使用者肌肉放鬆狀態下的第二使用者肌肉放鬆步態數據,藉由第二使用者肌肉放鬆步態數據結合標準運動模型,推估個人化訓練模型;(c)判斷第二使用者實際訓練是否符合個人化訓練模型之標準,進而調整個人化訓練模型,並提供輔助訓練模型。A method for adjusting gait training parameters in real time, comprising the steps of: (a) collecting the muscle-relaxed gait data of the first user in the muscle-relaxed state, and the active-effort gait data of the first user in the active-effort state, by Based on the ratio of the first user's active effort gait data to the first user's muscle relaxation gait data, a standard motion model is established; (b) obtain the second user's motion model, including the muscle relaxation state of the second user The muscle relaxation gait data of the second user, by combining the muscle relaxation gait data of the second user with the standard motion model, estimates the personalized training model; (c) judging whether the actual training of the second user conforms to the personalized training model Standards, and then adjust the personalized training model, and provide auxiliary training models.

Description

即時調整步態訓練參數之方法The method of real-time adjustment of gait training parameters

本發明係與步態訓練技術有關,特別是指一種即時調整步態訓練參數之方法。 The present invention relates to gait training technology, in particular to a method for real-time adjustment of gait training parameters.

一般於步態訓練的過程中,通常會藉由步態訓練設備來輔助使用者進行步態訓練。 Generally, in the process of gait training, a gait training device is usually used to assist the user in gait training.

請參閱如美國第US 8147436號專利所提供之一種動力矯型器,如所述專利中圖7所示,其主要是蒐集6位正常人主動出力的步行數據,作為步態軌跡的理想模型,並於步態軌跡外圍規劃隧道型態的容許誤差空間,藉此提供使用者於步態訓練中,達到接近理想模型的訓練效果。 Please refer to a kind of dynamic orthosis provided by U.S. Patent No. US 8147436, as shown in Figure 7 of the said patent, which mainly collects the walking data of 6 normal people who actively exert force, as an ideal model of gait trajectory, And the allowable error space of the tunnel type is planned on the periphery of the gait trajectory, so as to provide the user with a training effect close to the ideal model in the gait training.

但是,如上述美國第US 8147436號專利中,將理想模型套用至所有使用者進行訓練的技術,並沒有考量到使用者個體化差異來規劃運動模型,因此,該專利中規劃出的理想模型較難以適合不同使用者。 However, as in the above-mentioned U.S. Patent No. US 8147436, the technology of applying the ideal model to all users for training does not take into account the individual differences of users to plan the exercise model. Therefore, the ideal model planned in this patent is relatively Difficult to adapt to different users.

另外,請參閱如中國第CN 113244084A號專利所提供之一種可適應性主動訓練系統,如所述專利中圖6所示,其主要包含感測模塊、控制模塊及運動模塊,通過記錄用戶肌力放鬆被外骨骼帶動時的各區段生理訊號,計算各區段的生理訊號閾值,並於訓練中依據用戶的生理狀態信號,即時調整訓練難度。 In addition, please refer to the adaptive active training system provided by the Chinese patent No. CN 113244084A, as shown in Figure 6 of the said patent, which mainly includes a sensing module, a control module and a motion module, by recording the user's muscle strength Relax the physiological signals of each section when being driven by the exoskeleton, calculate the physiological signal threshold of each section, and adjust the training difficulty in real time according to the user's physiological state signal during training.

不過,如上述中國第CN 113244084A號專利中,僅針對用戶本身的步態數據做為參考,並未參考正常人或其他用戶的步態數據,因此,該專利中所規劃出的訓練模型,無法達到最佳化的步態訓練效果。 However, as in the above-mentioned Chinese Patent No. CN 113244084A, only the gait data of the user itself is used as a reference, and no reference is made to the gait data of normal people or other users. Therefore, the training model planned in this patent cannot Achieve optimal gait training effect.

本發明之主要目的乃在於提供一種即時調整步態訓練參數之方法,能夠依據不同使用者的狀態,而規劃出個人化運動模型,且於訓練中能依使用者配合出力的數據,推薦適合的訓練難度,達到依照訓練時實際表現,即時調整訓練難度的效果。 The main purpose of the present invention is to provide a method for real-time adjustment of gait training parameters, which can plan a personalized exercise model according to the state of different users, and can recommend suitable ones according to the data of the user's cooperation and output during training. Training difficulty, to achieve the effect of real-time adjustment of training difficulty according to the actual performance during training.

為了達成上述之目的,本發明提供之一種即時調整步態訓練參數之方法,適用於一步態訓練設備,該步態訓練設備包含一感測單元、一訓練單元及一控制單元,該控制單元與該感測單元及該訓練單元電性連接,並控制該訓練單元作動,該即時調整步態訓練參數之方法包含步驟: In order to achieve the above-mentioned purpose, the present invention provides a method for adjusting gait training parameters in real time, which is suitable for one-step training equipment. The gait training equipment includes a sensing unit, a training unit and a control unit. The control unit and The sensing unit is electrically connected to the training unit, and controls the training unit to act. The method for adjusting gait training parameters in real time includes steps:

步驟(a)該感測單元蒐集至少一第一使用者於肌肉放鬆狀態下在一步態訓練所測得的一第一使用者肌肉放鬆步態數據,以及該至少一第一使用者於主動出力狀態下於該步態訓練所測得的一第一使用者主動出力步態數據,該控制單元藉由該第一使用者主動出力步態數據與該第一使用者肌肉放鬆步態數據之比值,建立一標準運動模型。 Step (a) The sensing unit collects muscle relaxation gait data of at least one first user measured during gait training in a muscle relaxation state, and the at least one first user actively exerts force The control unit uses the ratio of the first user’s active effort gait data to the muscle relaxation gait data of the first user measured during the gait training , to establish a standard motion model.

步驟(b)該控制單元取得一第二使用者的運動模型,包含該第二使用者於肌肉放鬆狀態下在該步態訓練所測得的一第二使用者肌肉放鬆步態數據,藉由該第二使用者肌肉放鬆步態數據結合該標準運動模型,推估至少一個人化訓練模型。 Step (b) The control unit obtains a motion model of a second user, including muscle relaxation gait data of the second user measured during the gait training in a muscle relaxation state, by The muscle relaxation gait data of the second user is combined with the standard movement model to estimate at least one personalized training model.

步驟(c)該控制單元判斷該第二使用者實際訓練狀態是否符合該至少一個人化訓練模型之標準,進而調整該至少一個人化訓練模型,並提供一輔助訓練模型。 Step (c) The control unit judges whether the actual training state of the second user meets the standard of the at least one personal training model, and then adjusts the at least one personal training model, and provides an auxiliary training model.

藉此,本發明提供之一種即時調整步態訓練參數之方法,能夠依據第二使用者的狀態,而規劃出屬於第二使用者的個人化運動模型,且於訓練中能依第二使用者配合出力的數據,推薦適合的輔助訓練模型,達到依照訓練時實際表現,即時調整訓練難度的效果。 In this way, the present invention provides a method for real-time adjustment of gait training parameters, which can plan a personalized exercise model belonging to the second user according to the state of the second user, and can be trained according to the second user's According to the output data, a suitable auxiliary training model is recommended to achieve the effect of adjusting the difficulty of training in real time according to the actual performance during training.

10:即時調整步態訓練參數之方法 10: The method of real-time adjustment of gait training parameters

100:步態訓練設備 100: Gait training equipment

101:左腳力量感測器 101:Left foot force sensor

102:右腳力量感測器 102: Right foot power sensor

103:左膝壓力感測器 103:Left knee pressure sensor

104:右膝壓力感測器 104: Right knee pressure sensor

105:上感測元件 105: upper sensing element

106:下感測元件 106: Lower sensing element

11:踏板 11: Pedal

F1:重心轉移區間 F1: center of gravity transfer interval

F2:髖屈曲區間 F2: Hip flexion zone

F3:膝伸直區間 F3: Knee extension zone

L1:100%難度曲線 L1: 100% difficulty curve

L12:10%難度曲線 L12: 10% difficulty curve

圖1係本發明一較佳實施例之流程圖。 Fig. 1 is a flow chart of a preferred embodiment of the present invention.

圖2係本發明一較佳實施例配合步態訓練設備使用之使用狀態示意圖。 Fig. 2 is a schematic diagram of the use state of a preferred embodiment of the present invention used in conjunction with gait training equipment.

圖2a係本發明一較佳實施例之示意圖,顯示步態週期。 Figure 2a is a schematic diagram of a preferred embodiment of the present invention showing the gait cycle.

圖2b係本發明一較佳實施例之曲線圖,顯示第一使用者於肌肉放鬆狀態下在步態訓練中所測得的第一使用者肌肉放鬆步態數據。 Fig. 2b is a graph of a preferred embodiment of the present invention, showing the muscle-relaxed gait data of the first user measured during gait training in the muscle-relaxed state.

圖2c係本發明一較佳實施例之曲線圖,顯示第一使用者於主動出力狀態下在步態訓練所測得的第一使用者主動出力步態數據。 Fig. 2c is a graph of a preferred embodiment of the present invention, showing the first user's active exertion gait data measured during gait training in the active exertion state of the first user.

圖2d係本發明一較佳實施例之曲線圖,顯示第一使用者主動出力步態數據與第一使用者肌肉放鬆步態數據之比值。 Fig. 2d is a graph of a preferred embodiment of the present invention, showing the ratio of the first user's active effort gait data to the first user's muscle relaxation gait data.

圖2e係本發明一較佳實施例之曲線圖,顯示複數個第一使用者在主動出力與肌肉放鬆狀態所量測之數據的比值及平均值。 Fig. 2e is a graph of a preferred embodiment of the present invention, showing the ratio and average value of data measured by a plurality of first users in active effort and muscle relaxation states.

圖2f係本發明一較佳實施例之曲線圖,顯示重心轉移區間及髖屈曲區間。 Fig. 2f is a graph of a preferred embodiment of the present invention, showing the center of gravity transfer interval and the hip flexion interval.

圖2g係本發明一較佳實施例之曲線圖,顯示重心轉移區間及膝伸直區間。 Fig. 2g is a graph of a preferred embodiment of the present invention, showing the shifting interval of the center of gravity and the extension interval of the knee.

圖2h係本發明一較佳實施例之示意圖,示意膝蓋壓力感測器之上感測元件及下感測元件的實施狀態。 Fig. 2h is a schematic diagram of a preferred embodiment of the present invention, showing the implementation state of the upper sensing element and the lower sensing element of the knee pressure sensor.

圖3係本發明一較佳實施例之曲線圖,顯示個人化訓練模型。 Fig. 3 is a graph of a preferred embodiment of the present invention, showing a personalized training model.

圖3a係本發明一較佳實施例之曲線圖,顯示複數個個人化訓練模型。 Fig. 3a is a graph of a preferred embodiment of the present invention, showing a plurality of personalized training models.

圖3b係本發明一較佳實施例之曲線圖,顯示第二使用者肌肉放鬆狀態數據。 Fig. 3b is a graph of a preferred embodiment of the present invention, showing the muscle relaxation state data of the second user.

圖3c係本發明一較佳實施例之曲線圖,顯示預測第二使用者的個人化訓練模型中,預測主動出力最大值及預測主動出力最小值。 Fig. 3c is a graph of a preferred embodiment of the present invention, showing the predicted maximum active effort and the predicted minimum active effort in the personalized training model for the second user.

圖3d係本發明一較佳實施例之曲線圖,顯示第二使用者實際訓練狀態之實際主動出力最大值及實際主動出力最小值。 Fig. 3d is a graph of a preferred embodiment of the present invention, showing the maximum value of the actual active effort and the minimum value of the actual active effort of the second user in the actual training state.

圖3e係本發明一較佳實施例之曲線圖,顯示調整個人化訓練模型後得到的輔助訓練模型。 Fig. 3e is a graph of a preferred embodiment of the present invention, showing the auxiliary training model obtained after adjusting the personalized training model.

為了詳細說明本發明之技術特點所在,茲針對以下一較佳實施例,並配合圖式說明如後,其中,如圖1-2所示,本發明之即時調整步態訓練參數之方法10,主要配合一步態訓練設備100使用,該步態訓練設備100主要包含一感測單元、一訓練單元及一控制單元。該感測單元包括二腳底力量感測器及二膝蓋壓力感測器,其中,該等腳底力量感測器分別為一左腳力量感測器101、一右腳力量感測器102,該等膝蓋壓力感測器分別為一左膝壓力感測器103及一右膝壓力感測器104。該訓練單元包括二踏板11及其它用於驅動使用者的下肢進行訓練的構件,該左腳力量感測器101設置於其中一該踏板11,該右腳力量感測器102設置於另一該踏板11。該控制單元與該感測單元及該訓練單 元電性連接,並控制該訓練單元作動,該控制單元具有分析及計算能力,可為但不限於中央處理單元(Central Processing Unit,CPU)或其它具有分析及計算能力的訊息處理元件。當一第一使用者或一第二使用者使用該步態訓練設備100,該步態訓練設備100提供該即時調整步態訓練參數之方法10所需之控制、運算及作動,該即時調整步態訓練參數之方法10主要包含步驟(a)、(b)及(c)。在本較佳實施例中,該左腳力量感測器101及該右腳力量感測器102為荷重元(Load Cell),該左膝壓力感測器103及該右膝壓力感測器104為薄膜壓力感測器,值得一提的是,使用者可依實際需求選擇合適的感測器,不以此為限。 In order to describe the technical characteristics of the present invention in detail, hereby aim at the following preferred embodiment, and describe it as follows in conjunction with the drawings, wherein, as shown in Figure 1-2, the method 10 of the present invention for adjusting gait training parameters in real time, It is mainly used with a gait training device 100, and the gait training device 100 mainly includes a sensing unit, a training unit and a control unit. The sensing unit includes two plantar force sensors and two knee pressure sensors, wherein the plantar force sensors are respectively a left foot force sensor 101 and a right foot force sensor 102. The knee pressure sensors are respectively a left knee pressure sensor 103 and a right knee pressure sensor 104 . The training unit includes two pedals 11 and other components for driving the user's lower limbs for training. The left foot force sensor 101 is arranged on one of the pedals 11, and the right foot force sensor 102 is arranged on the other. Pedal 11. The control unit and the sensing unit and the training sheet The unit is electrically connected and controls the operation of the training unit. The control unit has analysis and calculation capabilities, which can be, but not limited to, a central processing unit (Central Processing Unit, CPU) or other information processing components with analysis and calculation capabilities. When a first user or a second user uses the gait training device 100, the gait training device 100 provides the control, calculation and action required by the method 10 for real-time adjustment of gait training parameters, the real-time adjustment step The method 10 for dynamically training parameters mainly includes steps (a), (b) and (c). In this preferred embodiment, the left foot force sensor 101 and the right foot force sensor 102 are Load Cells, the left knee pressure sensor 103 and the right knee pressure sensor 104 As a thin-film pressure sensor, it is worth mentioning that users can choose a suitable sensor according to actual needs, and it is not limited to this.

在本較佳實施例中,如圖2a所示,該步態訓練包含至少一步態週期,該步態週期對應於其中一隻腳的步態軌跡,該步態軌跡係模擬由人類行走時右腳跟著地開始到左腳趾離地、左腳跟著地到右腳趾離地最後又回到右腳跟著地的過程,圖2b、2c、2d、2e、2f、2g、3、3a、3b、3c、3d、3e的橫軸對應於圖2a的步態週期,將圖上的數據共分為100等分,以使用者的單一隻腳之腳跟觸地的位置對應於步態週期的起始點(即橫軸標示0的資料點),而同一隻腳之腳跟再次觸地之前的位置對應於橫軸第99的資料點。 In this preferred embodiment, as shown in Figure 2a, the gait training includes at least one gait cycle, which corresponds to the gait trajectory of one of the feet, which is simulated by a human when walking on the right The process from heel strike to left toe off the ground, left heel to right toe off the ground and finally back to right heel strike, Figure 2b, 2c, 2d, 2e, 2f, 2g, 3, 3a, 3b, 3c , 3d, and 3e correspond to the gait cycle in Figure 2a, divide the data on the graph into 100 equal parts, and use the position where the heel of the user's single foot touches the ground corresponds to the starting point of the gait cycle (that is, the data point marked 0 on the horizontal axis), and the position before the heel of the same foot touches the ground again corresponds to the 99th data point on the horizontal axis.

如圖1、2b、2c、2d及2e所示,該步驟(a)該感測單元蒐集該第一使用者於肌肉放鬆狀態下在一步態訓練中所測得的一第一使用者肌肉放鬆步態數據(如圖2b),以及該第一使用者於主動出力狀態下在該步態訓練所測得的第一使用者主動出力步態數據(如圖2c),該控制單元藉由該第一使用者主動出力步態數據與該第一使用者肌肉放鬆步態數據之比值,進而建立一標準運動模型(如圖2d)。此處「肌肉放鬆狀態」指的是使用者在該步態訓練時不需出力,僅藉由步態訓練設備100的控制單元驅動訓練單元,進而帶動使用者的雙腳擺 動,「主動出力狀態」指的是該訓練單元運作的過程中,使用者的雙腳須主動出力。 As shown in Figures 1, 2b, 2c, 2d and 2e, in this step (a), the sensing unit collects a first user's muscle relaxation measured in the gait training in the muscle relaxation state of the first user Gait data (as shown in Figure 2b), and the first user's active effort gait data (as shown in Figure 2c) measured in the gait training under the active exertion state of the first user, the control unit uses the The ratio of the first user's active exertion gait data to the first user's muscle relaxation gait data is used to establish a standard motion model (as shown in FIG. 2d ). The "muscle relaxation state" here means that the user does not need to make any effort during the gait training, and only the control unit of the gait training device 100 drives the training unit, thereby driving the user's feet to swing. "Active effort state" refers to the fact that the user's feet must actively exert force during the operation of the training unit.

在本較佳實施例中,為了提升各項數據的穩定性,該第一使用者的取樣數量係以複數個為例,藉由複數個該第一使用者主動出力步態數據之平均值與複數個該第一使用者肌肉放鬆步態數據之平均值之比值,進而建立該標準運動模型(如圖2e)。在其他較佳實施例中,若在一個該第一使用者的該第一使用者主動出力步態數據與該第一使用者肌肉放鬆步態數據就足以具有代表性的情況下,該第一使用者的數量亦能以一為例,故該第一使用者的數量並不僅以本較佳實施例為限。 In this preferred embodiment, in order to improve the stability of various data, the number of samples of the first user is taken as an example, and the average value of the first user's active effort gait data and The ratio of the average value of the plurality of muscle relaxation gait data of the first user is used to establish the standard motion model (as shown in FIG. 2e ). In other preferred embodiments, if the first user's active effort gait data and the first user's muscle relaxation gait data of the first user are representative enough, the first user The number of users can also be taken as one, so the number of the first user is not limited to this preferred embodiment.

在本較佳實施例中,如圖2a、2f及2g所示,該步態週期主要分為一重心轉移區間F1、一髖屈曲區間F2及一膝伸直區間F3,該重心轉移區間F1係位於該步態週期中0-40等分,該髖屈曲區間F2係位於該步態週期中45-70等分,該膝伸直區間F3係位於該步態週期中80-99等分。 In this preferred embodiment, as shown in Figures 2a, 2f and 2g, the gait cycle is mainly divided into a center of gravity transfer interval F1, a hip flexion interval F2 and a knee extension interval F3, and the center of gravity transfer interval F1 is Located in the 0-40 equal division of the gait cycle, the hip flexion interval F2 is located in the 45-70 equal division of the gait cycle, and the knee extension interval F3 is located in the 80-99 equal division of the gait cycle.

其中,以該第一使用者之右腳為例(左腳的判斷方式亦同,在此不再贅述),如圖2f所示,當位於該重心轉移區間F1時,該第一使用者之右腳踩踏該右腳力量感測器102所感測的數值大於一模型閾值(該第一使用者100%主動出力預測值),當位於該髖屈曲區間F2時,該右腳踩踏該右腳力量感測器102所感測的數值小於該模型閾值,如圖2g所示,當位於該膝伸直區間F3時,該右膝壓力感測器104小於該模型閾值。 Wherein, taking the right foot of the first user as an example (the judging method of the left foot is also the same and will not be repeated here), as shown in Figure 2f, when the center of gravity transfer interval F1 is located, the first user The value sensed by the right foot stepping on the right foot force sensor 102 is greater than a model threshold (the first user's 100% active effort prediction value), when the right foot is in the hip flexion zone F2, the right foot stepping on the right foot force The value sensed by the sensor 102 is less than the model threshold. As shown in FIG. 2g, when the knee is in the straightening zone F3, the right knee pressure sensor 104 is less than the model threshold.

在本較佳實施例中,如圖2h所示,該左膝壓力感測器103及該右膝壓力感測器104分別具有一上感測元件105及一下感測元件106(由於該左、右膝壓力感測器103、104之上、下感測元件105、106係為相同元件且具有相同的 配置關係,故僅以一圖式作為該該左膝壓力感測器103及該右膝壓力感測器104之示意),其中,假設該上感測元件105測得的壓力數值為P K1,該下感測元件106測得的壓力數值為P K2,該上感測元件105的中心點與該下感測元件106之下端面的最短距離為X 1(在此實施例中為100mm),該下感測元件106的中心點與該下感測元件106之下端面的最短距離為X 2(在此實施例中為10mm),則該左膝壓力感測器103(或該右膝壓力感測器104)的壓力中心位置=

Figure 111123298-A0305-02-0008-1
In this preferred embodiment, as shown in FIG. 2h, the left knee pressure sensor 103 and the right knee pressure sensor 104 respectively have an upper sensing element 105 and a lower sensing element 106 (due to the left, The upper and lower sensing elements 105, 106 of the right knee pressure sensors 103, 104 are the same elements and have the same configuration relationship, so only one diagram is used as the left knee pressure sensor 103 and the right knee Schematic of the pressure sensor 104), wherein, assuming that the pressure value measured by the upper sensing element 105 is P K 1 , the pressure value measured by the lower sensing element 106 is P K 2 , the upper sensing element 105 The shortest distance between the central point of the lower sensing element 106 and the lower end surface of the lower sensing element 106 is X 1 (100 mm in this embodiment), and the shortest distance between the central point of the lower sensing element 106 and the lower end surface of the lower sensing element 106 The distance is X 2 (10mm in this embodiment), then the pressure center position of the left knee pressure sensor 103 (or the right knee pressure sensor 104) =
Figure 111123298-A0305-02-0008-1

如圖1、3所示,該步驟(b)該控制單元取得一第二使用者的運動模型,該第二使用者運動模型包含該第二使用者於肌肉放鬆狀態下在該步態訓練所測得的一第二使用者肌肉放鬆步態數據,藉由該第二使用者肌肉放鬆步態數據結合該標準運動模型,進而推估一個人化訓練模型(如圖3)。在本較佳實施例中,如圖3a所示,係以該個人化訓練模型推估出10%、15%、20%、25%、30%、40%、50%、60%、70%、80%、90%及100%的難度曲線(圖3a中僅標示該100%難度曲線L1及該10%難度曲線L12),藉此建立不同難度的該個人化訓練模型,該些難度曲線可依需求進行調整,因此該些難度曲線不僅以本較佳實施例為限。 As shown in Figures 1 and 3, in step (b), the control unit acquires a second user's motion model, which includes the second user's movement in the gait training center in a state of muscle relaxation. The measured muscle relaxation gait data of a second user is combined with the standard motion model to estimate a personalized training model (as shown in FIG. 3 ). In this preferred embodiment, as shown in Figure 3a, the personal training model is used to estimate 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70% , 80%, 90% and 100% difficulty curves (only the 100% difficulty curve L1 and the 10% difficulty curve L12 are marked in FIG. It can be adjusted according to requirements, so these difficulty curves are not limited to this preferred embodiment.

其中,以右腳來說,由於在該重心轉移區間F1係為右腳向下踩踏的階段,因此該右腳力量感測器102所測得的數值越高,表示該個人化訓練模型的難度越高,當該右腳力量感測器102所測得的數值越低,則表示該個人化訓練模型的難度越低,因此在約莫該步態週期0-40之間,位於最上方的曲線為該100%難度曲線L1,最下方的曲線為該10%難度曲線L12,而在該臗屈曲區間F2及該膝伸直區間F3係為右腳抬起的階段,因此,當該右腳力量感測器102 所測得的數值越低,表示該個人化訓練模型的難度越高,當該右腳力量感測器102所測得的數值越高,則表示該個人化訓練模型的難度越低,因此在約莫該步態週期45-100之間,位於最下方的曲線為該100%難度曲線L1,最上方的曲線為該10%難度曲線L12。 Wherein, taking the right foot as an example, since the center of gravity transfer interval F1 is the stepping down stage of the right foot, the higher the value measured by the right foot force sensor 102, the more difficult the personalized training model is. The higher the value, the lower the value measured by the right foot strength sensor 102, the lower the difficulty of the personalized training model. Therefore, between about the gait cycle 0-40, the uppermost curve It is the 100% difficulty curve L1, the lowermost curve is the 10% difficulty curve L12, and the knee flexion interval F2 and the knee extension interval F3 are the stages of raising the right foot. Therefore, when the right foot strength sensor 102 The lower the measured value, the higher the difficulty of the personalized training model, and the higher the value measured by the right foot force sensor 102, the lower the difficulty of the personalized training model. The gait cycle is approximately between 45-100, the lowermost curve is the 100% difficulty curve L1, and the uppermost curve is the 10% difficulty curve L12.

在本較佳實施例中,如圖3b、3c、3d、3e所示,由不同難度的該個人化訓練模型中推估最適合該第二使用者的該個人化訓練模型的方式,首先,該第二使用者位於肌肉放鬆狀態,以右腳為例,由該右腳力量感測器102所得的數值,得到該第二使用者於肌肉放鬆狀態下時,在該步態週期中的一肌肉放鬆狀態最大值及一肌肉放鬆狀態最小值(如圖3b所示)再藉由該標準運動模型推估出該第二使用者於主動出力時,在該步態週期中的一預測主動出力最大值及一預測主動出力最小值(如圖3c所示),再以該第二使用者於主動出力狀態下由該右腳力量感測器102所得的數值,得到該第二使用者主動出力時,在該步態週期中的一實際主動出力最大值及一實際主動出力最小值(如圖3d所示),並分別將該實際主動出力最大值、該預測主動出力最大值及該肌肉放鬆狀態最大值帶入一重心轉移區間計算公式,以及分別將該實際主動出力最小值、該預測主動出力最小值及該肌肉放鬆狀態最小值帶入一髖屈曲區間計算公式,得到該重心轉移區間及該髖屈曲區間的出力程度,再由較低的出力程度推薦適合的該個人化訓練模型(如圖3e所示),其具體計算方式如下:該重心轉移區間計算公式:

Figure 111123298-A0305-02-0009-2
該重心轉移區間F1的出力程度。 In this preferred embodiment, as shown in Figures 3b, 3c, 3d, and 3e, the method of estimating the most suitable personalized training model for the second user from the personalized training models of different difficulties, first, The second user is in a state of muscle relaxation. Taking the right foot as an example, the value obtained by the right foot force sensor 102 can be obtained when the second user is in a state of muscle relaxation. The maximum value of the muscle relaxation state and the minimum value of a muscle relaxation state (as shown in Figure 3b) are then estimated by the standard motion model when the second user is actively exerting force, a predicted active effort in the gait cycle The maximum value and a predicted minimum value of active effort (as shown in Figure 3c), and then use the value obtained by the right foot force sensor 102 in the state of the second user's active effort to obtain the second user's active effort , in the gait cycle, an actual maximum active force and an actual minimum active force (as shown in Figure 3d), and respectively the actual maximum active force, the predicted maximum active force and the muscle relaxation The maximum value of the state is brought into a calculation formula of the center of gravity transfer interval, and the minimum value of the actual active output force, the minimum value of the predicted active output force and the minimum value of the muscle relaxation state are respectively brought into the calculation formula of a hip flexion interval to obtain the center of gravity transfer interval and The output degree of the hip flexion range, and then the lower output degree recommends the suitable personalized training model (as shown in Figure 3e). The specific calculation method is as follows: the calculation formula of the center of gravity transfer interval:
Figure 111123298-A0305-02-0009-2
The output level of the center of gravity shift section F1.

在本較佳實施例中,如圖3c及3d所示,該第二使用者在該重心轉移區間F1的出力程度=

Figure 111123298-A0305-02-0009-3
。 In this preferred embodiment, as shown in Figures 3c and 3d, the degree of effort of the second user in the center of gravity transfer interval F1 =
Figure 111123298-A0305-02-0009-3
.

髖屈曲區間計算公式:

Figure 111123298-A0305-02-0010-4
該髖屈曲區間F2的出力程度。 Calculation formula for hip flexion range:
Figure 111123298-A0305-02-0010-4
The degree of effort in the hip flexion zone F2.

在本較佳實施例中,如圖3c及3d所示,該第二使用者在該髖屈曲區間F2的出力程度=

Figure 111123298-A0305-02-0010-5
。 In this preferred embodiment, as shown in Figures 3c and 3d, the degree of effort of the second user in the hip flexion zone F2 =
Figure 111123298-A0305-02-0010-5
.

由於該髖屈曲區間F2的出力程度小於該重心轉移區間F1的出力程度,故選擇以該髖屈曲區間F2的出力程度推薦適合的該個人化訓練模型,例如將圖3a中80%的難度曲線所代表的模型作為該個人化訓練模型。 Since the output of the hip flexion zone F2 is smaller than the output of the center of gravity transfer zone F1, the individualized training model is recommended based on the output of the hip flexion zone F2, for example, the 80% difficulty curve in Figure 3a The represented model serves as the personalized training model.

如圖1、3c、3d、3e、4所示,該步驟(c)該控制單元判斷該使用者實際訓練狀態是否符合該個人化訓練模型之標準,進而調整該個人化訓練模型,並提供一輔助訓練模型。 As shown in Figures 1, 3c, 3d, 3e, and 4, in step (c), the control unit judges whether the user's actual training state meets the standard of the personalized training model, and then adjusts the personalized training model, and provides a Auxiliary training model.

在本較佳實施例中,該控制單元判斷該第二使用者實際訓練狀態是否符合該個人化訓練模型之標準的方式,包含一區間內連續判斷方式與一單點觸發判斷方式,該區間內連續判斷方式係於該步態週期的其中一區間內(例如:該重心轉移區間F1、該髖屈曲區間F2、該膝伸直區間F3),持續判斷該第二使用者實際訓練狀態是否符合該個人化訓練模型之標準,當該第二使用者一開始訓練即符合標準時,該步態訓練設備100的訓練單元維持原先設定的速度,當不符合標準時,該控制單元控制該訓練單元降低運行速度(在本較佳實施例中設定每次降低12%的運行速度,且最低降到原先設定速度的25%,但不以此為限),當該第二使用者在該訓練單元降速之後又符合標準時,該控制單元控制該訓練單元的運行速度每次提升38%,最大到達原先設定速度的100%;該單點觸發判斷方式係在該步態週期的其中一區間內(例如:該重心轉移區間F1、該髖屈曲區間F2、該膝伸直區間F3)的任一數據達到該個人化訓練 模型之標準,就視為達成該個人化訓練模型之標準,以避免該第二使用者需要持續出力的方式才能調整該個人化訓練模型。 In this preferred embodiment, the method for the control unit to judge whether the actual training state of the second user meets the standard of the personalized training model includes a continuous judgment method in an interval and a single-point trigger judgment method. The continuous judgment method is in one of the intervals of the gait cycle (for example: the center of gravity transfer interval F1, the hip flexion interval F2, and the knee extension interval F3), and continuously judges whether the actual training state of the second user conforms to the The standard of the personalized training model, when the second user meets the standard at the beginning of the training, the training unit of the gait training device 100 maintains the original set speed, when the standard is not met, the control unit controls the training unit to reduce the running speed (In this preferred embodiment, the running speed is set to be reduced by 12% each time, and the minimum is reduced to 25% of the original set speed, but not limited to this), when the second user slows down after the training unit When meeting the standard again, the control unit controls the operating speed of the training unit to increase by 38% each time, and the maximum reaches 100% of the original set speed; Any data in the center of gravity transfer interval F1, the hip flexion interval F2, and the knee extension interval F3) reaches the personalized training The standard of the model is deemed to have reached the standard of the personalized training model, so as to avoid the need for the second user to continuously exert effort to adjust the personalized training model.

在本較佳實施例中,該控制單元判斷該第二使用者在該髖屈曲區間F2是否達到髖關節屈曲的其中一種方法為,以右腳為例,結合該第二使用者於主動出力狀態時該右膝壓力感測器104所測得的壓力中心位置X K 、該第二使用者於放鬆狀態時所測得的平均壓力中心位置

Figure 111123298-A0305-02-0011-6
、該右腳力量感測器102感測該第二使用者於主動出力狀態下之力量P F 、該右腳力量感測器102感測該第二使用者於放鬆狀態下的力量U FR 、該個人化訓練模型U FP 及設定難度R%等參數進行判斷;當判斷該第二使用者在該髖屈曲區間F2達到髖關節屈曲時,須符合以下條件:(X K >
Figure 111123298-A0305-02-0011-7
+RU RKX )∩(P F <(U FP -U FR R%+U FP ),其中,該第二使用者於放鬆狀態下的壓力中心變動範圍U RKX 的算法為,該第二使用者於放鬆狀態下的該髖屈曲區間F2所記錄到的壓力中心位置之最大值與最小值差值的一半,平均壓力中心位置
Figure 111123298-A0305-02-0011-10
則是該髖屈曲區間F2紀錄到的壓力中心位置平均值。 In this preferred embodiment, one of the methods for the control unit to determine whether the second user has reached hip flexion in the hip flexion interval F2 is, taking the right foot as an example, combining the second user in the active exertion state The pressure center position X K measured by the right knee pressure sensor 104, the average pressure center position measured by the second user in a relaxed state
Figure 111123298-A0305-02-0011-6
, the right foot force sensor 102 senses the second user's force P F in the active exertion state, the right foot force sensor 102 senses the second user's force U FR in the relaxed state, The personalized training model U FP and the setting difficulty R % are used for judgment; when it is judged that the second user reaches hip flexion in the hip flexion interval F2, the following conditions must be met: ( X K >
Figure 111123298-A0305-02-0011-7
+ RU RKX )∩( P F <( U FP -U FR R %+ U FP ), wherein, the algorithm of the variation range U RKX of the pressure center of the second user in the relaxed state is, the Half of the difference between the maximum value and the minimum value of the pressure center position recorded by the second user in the hip flexion zone F2 in the relaxed state, the average pressure center position
Figure 111123298-A0305-02-0011-10
is the average value of the pressure center position recorded in the hip flexion interval F2.

在本較佳實施例中,該控制單元判斷該第二使用者在該膝伸直區間F3是否達到膝伸直的其中一種方法為,以右腳為例,需結合該第二使用者於主動出力狀態下由該右膝壓力感測器104所測得的壓力數值P K 、該第二使用者於肌肉放鬆時由該右膝壓力感測器104所測得的壓力數值U RKP ,以及設定難度R%等參數進行判斷;當判斷該第二使用者在該膝伸直區間F3達到膝伸直動作時,須符合以下條件:P K <0.9-0.4×RU RKP In this preferred embodiment, one of the methods for the control unit to judge whether the second user has reached knee straightening in the knee straightening section F3 is, taking the right foot as an example, it is necessary to combine the second user with the active The pressure value P K measured by the right knee pressure sensor 104 in the exertion state, the pressure value U RKP measured by the right knee pressure sensor 104 when the second user relaxes the muscles, and the setting Difficulty R % and other parameters are used for judgment; when it is judged that the second user has reached the knee straightening action in the knee straightening interval F3, the following conditions must be met: P K <0.9-0.4× RU RKP .

在本較佳實施例中,以該區間內連續判斷的方式判斷該第二使用者實際訓練狀態是否符合該個人化訓練模型之標準,係以該第二使用者在該 髖屈曲區間F2中的量測數據是否達到該個人化訓練模型之預測值的80%,若未達該個人化訓練模型之預測值的80%,視為不符合標準,若僅達到該個人化訓練模型之預測值的50%,僅視為有參與該步態訓練。此外,在該個人化訓練模型中,當該第二使用者在歷經五次的該步態週期的步態訓練之後,若有其中四次符合該個人化訓練模型之標準,則該控制單元會透過提升該個人化訓練模型難度的方式提供該輔助訓練模型,當該第二使用者在歷經五次的該步態週期的步態訓練之後,若有其中四次不符合該個人化訓練模型之標準,則該控制單元會透過降低該個人化訓練模型難度的方式提供該輔助訓練模型。 In this preferred embodiment, it is judged whether the actual training state of the second user meets the standard of the personalized training model by means of continuous judgment in the interval. Whether the measurement data in the hip flexion interval F2 reaches 80% of the predicted value of the personalized training model, if it does not reach 80% of the predicted value of the personalized training model, it is considered not to meet the standard, if it only reaches the personalized training model 50% of the predicted value of the training model is only considered to have participated in the gait training. In addition, in the personalized training model, after the second user undergoes the gait training of the gait cycle for five times, if four of them meet the standard of the personalized training model, the control unit will The auxiliary training model is provided by increasing the difficulty of the personalized training model. After the second user has undergone five gait trainings of the gait cycle, if four of them do not meet the requirements of the personalized training model standard, the control unit will provide the auxiliary training model by reducing the difficulty of the personalized training model.

在本較佳實施例中,如圖3e所示,係以該個人化訓練模型的70%難度作為該輔助訓練模型為例。在其他較佳實施例中,以該區間內連續判斷的方式判斷並調整該個人化訓練模型,可依該個人化訓練模型定義出10%、15%、20%、25%、30%、40%、50%、60%、80%、90%、100%的難度作為該輔助訓練模型;以該單點觸發判斷的方式判斷並調整該個人化訓練模型,可依該個人化訓練模型定義出20%、40%、60%、80%、100%的難度作為該輔助訓練模型。 In this preferred embodiment, as shown in FIG. 3e, the 70% difficulty of the personalized training model is used as the auxiliary training model as an example. In other preferred embodiments, the personalized training model is judged and adjusted in the manner of continuous judgment in the interval, and 10%, 15%, 20%, 25%, 30%, 40% can be defined according to the personalized training model. %, 50%, 60%, 80%, 90%, and 100% of difficulty as the auxiliary training model; judging and adjusting the personalized training model by means of the single-point trigger judgment can be defined according to the personalized training model Difficulties of 20%, 40%, 60%, 80%, and 100% are used as the auxiliary training model.

藉此,本發明提供之一種即時調整步態訓練參數之方法10,能夠依據第二使用者的狀態,而規劃出屬於第二使用者的個人化運動模型,且於訓練中能依照第二使用者配合出力的數據,推薦適合的輔助訓練模型,達到依照訓練時實際表現,即時調整訓練難度的效果。 Thus, the present invention provides a method 10 for real-time adjustment of gait training parameters, which can plan a personalized exercise model belonging to the second user according to the state of the second user, and can be used in training according to the second user. Based on the output data, the operator recommends a suitable auxiliary training model to achieve the effect of adjusting the difficulty of training in real time according to the actual performance during training.

上述較佳實施例是為了幫助理解本發明的原理和方法,本發明並不限於上述之較佳實施例。凡在本發明的精神和原則之內的任何組合和更動修改,都應在本發明的保護範圍內。 The above-mentioned preferred embodiments are to help understand the principle and method of the present invention, and the present invention is not limited to the above-mentioned preferred embodiments. Any combination and modification within the spirit and principle of the present invention shall fall within the protection scope of the present invention.

10:即時調整步態訓練參數之方法 10: The method of real-time adjustment of gait training parameters

Claims (7)

一種即時調整步態訓練參數之方法,適用於一步態訓練設備,該步態訓練設備包含一感測單元、一訓練單元及一控制單元,該控制單元與該感測單元及該訓練單元電性連接,並控制該訓練單元作動,該即時調整步態訓練參數之方法包含步驟:(a)該感測單元蒐集至少一第一使用者於肌肉放鬆狀態下在一步態訓練所測得的一第一使用者肌肉放鬆步態數據,以及該至少一第一使用者於主動出力狀態下於該步態訓練所測得的一第一使用者主動出力步態數據,該控制單元藉由該第一使用者主動出力步態數據與該第一使用者肌肉放鬆步態數據之比值,建立一標準運動模型,其中,該步態訓練包含至少一步態週期,該步態週期主要分為一重心轉移區間、一髖屈曲區間及一膝伸直區間;(b)該控制單元取得一第二使用者的運動模型,包含該第二使用者於肌肉放鬆狀態下在該步態訓練所測得的一第二使用者肌肉放鬆步態數據,藉由該第二使用者肌肉放鬆步態數據結合該標準運動模型,推估至少一個人化訓練模型;其中該控制單元推估該個人化訓練模型的計算方式為,由該第二使用者肌肉放鬆步態數據,得到該第二使用者肌肉放鬆狀態時,在該步態週期中的一肌肉放鬆狀態最大值及一肌肉放鬆狀態最小值,再藉由該標準運動模型推估出該第二使用者於主動出力時,在該步態週期中的一預測主動出力最大值及一預測主動出力最小值,再以該第二使用者於主動出力狀態時該感測單元所得的數值,得到該第二使用者主動出力時,在該步態週期中的一實際主動出力最大值及一實際主動出力最小 值,並分別將該實際主動出力最大值、該預測主動出力最大值及該肌肉放鬆狀態最大值帶入一重心轉移區間計算公式,以及分別將該實際主動出力最小值、該預測主動出力最小值及該肌肉放鬆狀態最小值帶入一髖屈曲區間計算公式,得到該重心轉移區間及該髖屈曲區間的出力程度,再以較低的出力程度作為該第二使用者的該個人化訓練模型;以及(c)該控制單元判斷該第二使用者實際訓練狀態是否符合該至少一個人化訓練模型之標準,進而調整該至少一個人化訓練模型,並提供一輔助訓練模型。 A method for real-time adjustment of gait training parameters, suitable for one-step training equipment, the gait training equipment includes a sensing unit, a training unit and a control unit, the control unit is electrically connected to the sensing unit and the training unit Connecting and controlling the training unit to act, the method for adjusting the gait training parameters in real time includes the steps: (a) the sensing unit collects at least one first user’s first measured gait training in the muscle relaxation state; A user's muscle relaxation gait data, and the first user's active effort gait data measured by the at least one first user in the active effort state during the gait training, the control unit uses the first The ratio of the user's active effort gait data to the first user's muscle relaxation gait data is used to establish a standard motion model, wherein the gait training includes at least one step cycle, and the gait cycle is mainly divided into a center of gravity transfer interval , a hip flexion interval and a knee extension interval; (b) the control unit obtains a motion model of a second user, including a first motion measured by the second user during the gait training in a state of muscle relaxation Two user's muscle relaxation gait data, by combining the second user's muscle relaxation gait data with the standard motion model, at least one personalized training model is estimated; wherein the control unit estimates that the calculation method of the personalized training model is: , from the muscle relaxation gait data of the second user, when the second user is in the muscle relaxation state, a maximum value of the muscle relaxation state and a minimum value of the muscle relaxation state in the gait cycle are obtained, and then by the standard The motion model estimates a predicted maximum value of active force and a predicted minimum value of active force in the gait cycle when the second user is actively exerting force, and then uses the sense When the second user actively exerts force, an actual maximum active effort and a minimum actual active effort in the gait cycle can be obtained value, and respectively bring the actual maximum value of active output, the predicted maximum value of active output and the maximum value of the muscle relaxation state into a center of gravity transfer interval calculation formula, and the actual minimum value of active output, the predicted minimum value of active output and the minimum value of the muscle relaxation state into a hip flexion interval calculation formula to obtain the center of gravity transfer interval and the output level of the hip flexion interval, and then use the lower output level as the personalized training model for the second user; And (c) the control unit judges whether the actual training state of the second user meets the standard of the at least one personalized training model, and then adjusts the at least one personalized training model and provides an auxiliary training model. 如請求項1所述之即時調整步態訓練參數之方法,其中:在該步驟(b)中,該至少一個人化訓練模型為複數個。 The method for adjusting gait training parameters in real time according to Claim 1, wherein: in the step (b), the at least one humanized training model is plural. 如請求項1所述之即時調整步態訓練參數之方法,其中:該感測單元包含二膝蓋壓力感測器及二腳底力量感測器,在該即時調整步態訓練參數之方法的該步驟(c)中,該控制單元判斷該第二使用者在該髖屈曲區間是否達到髖關節屈曲時,須符合以下條件:(X K >
Figure 111123298-A0305-02-0015-8
+RU RKX )∩(P F <(U FP -U FR R%+U FP ),其中,X K 為該第二使用者於主動出力狀態時的其中一該膝蓋壓力感測器所測得的壓力中心位置,
Figure 111123298-A0305-02-0015-9
為該第二使用者於放鬆狀態時的該膝蓋壓力感測器所測得的平均壓力中心位置,U FR 為該第二使用者於放鬆狀態時的其中一該腳底力量感測器所測得的力量數值,U FP 為該個人化訓練模型,R%為設定難度。
The method for adjusting gait training parameters in real time as described in Claim 1, wherein: the sensing unit includes two knee pressure sensors and two plantar force sensors, in the step of the method for real-time adjusting gait training parameters In (c), when the control unit judges whether the second user has reached hip flexion in the hip flexion interval, the following conditions must be met: ( X K >
Figure 111123298-A0305-02-0015-8
+ RU RKX )∩( P F <( U FP - U FR R %+ U FP ), wherein, X K is one of the knee pressure sensors when the second user is in the active exertion state The pressure center position measured by the instrument,
Figure 111123298-A0305-02-0015-9
is the average pressure center position measured by the knee pressure sensor when the second user is in a relaxed state, and U FR is measured by one of the plantar force sensors when the second user is in a relaxed state The strength value of , U FP is the personalized training model, and R % is the setting difficulty.
如請求項1所述之即時調整步態訓練參數之方法,其中:該感測單元包含二膝蓋壓力感測器及二腳底力量感測器,在該即時調整步態訓練參數之方法的該步驟(c)中,該控制單元判斷該第二使用者在該膝伸直區間是否 達到膝伸直時,須符合以下條件:P K <0.9-0.4×RU RKP ,其中,P K 為該第二使用者於主動出力狀態時的其中一該膝蓋壓力感測器所測得的壓力數值,U RKP 為該第二使用者於肌肉放鬆時的該膝蓋壓力感測器所測得的壓力數值,R%為設定難度。 The method for adjusting gait training parameters in real time as described in Claim 1, wherein: the sensing unit includes two knee pressure sensors and two plantar force sensors, in the step of the method for real-time adjusting gait training parameters In (c), when the control unit judges whether the second user reaches knee extension in the knee extension interval, the following conditions must be met: P K <0.9-0.4× RU RKP , where P K is The pressure value measured by one of the knee pressure sensors when the second user is in the active exertion state, U RKP is the pressure measured by the knee pressure sensor when the second user is in muscle relaxation Value, R % is the set difficulty. 如請求項1所述之即時調整步態訓練參數之方法,其中:在該步驟(c)中,判斷該第二使用者實際訓練狀態是否符合該個人化訓練模型之標準的方式,包含一區間內連續判斷方式與單點觸發判斷方式。 The method for adjusting gait training parameters in real time as described in Claim 1, wherein: in the step (c), the method of judging whether the actual training state of the second user meets the standard of the personalized training model includes an interval Internal continuous judgment mode and single-point trigger judgment mode. 如請求項1所述之即時調整步態訓練參數之方法,其中:在該步驟(c)中,當該第二使用者實際訓練狀態未符合該個人化訓練模型之標準時,該控制單元透過降低該個人化訓練模型難度的方式提供該輔助訓練模型。 The method for adjusting gait training parameters in real time as described in claim 1, wherein: in the step (c), when the actual training state of the second user does not meet the standard of the personalized training model, the control unit lowers the The means of personalizing the difficulty of the training model provides the auxiliary training model. 如請求項1所述之即時調整步態訓練參數之方法,其中:在該步驟(c)中,當該第二使用者實際訓練狀態已符合該個人化訓練模型之標準時,該控制單元透過提升該個人化訓練模型難度的方式提供該輔助訓練模型。 The method for adjusting gait training parameters in real time as described in claim 1, wherein: in the step (c), when the actual training state of the second user has met the standard of the personalized training model, the control unit will increase the The means of personalizing the difficulty of the training model provides the auxiliary training model.
TW111123298A 2022-06-22 2022-06-22 The method of real-time adjustment of gait training parameters TWI804358B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111123298A TWI804358B (en) 2022-06-22 2022-06-22 The method of real-time adjustment of gait training parameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111123298A TWI804358B (en) 2022-06-22 2022-06-22 The method of real-time adjustment of gait training parameters

Publications (2)

Publication Number Publication Date
TWI804358B true TWI804358B (en) 2023-06-01
TW202400272A TW202400272A (en) 2024-01-01

Family

ID=87803388

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111123298A TWI804358B (en) 2022-06-22 2022-06-22 The method of real-time adjustment of gait training parameters

Country Status (1)

Country Link
TW (1) TWI804358B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110507322A (en) * 2019-07-30 2019-11-29 西安交通大学 One kind quantifying status assessing system and method based on virtual induction myoelectricity
JP2022055736A (en) * 2020-09-29 2022-04-08 パナソニックIpマネジメント株式会社 Situation estimation apparatus, server apparatus, situation estimation system, and situation estimation method
CN114366559A (en) * 2021-12-31 2022-04-19 华南理工大学 Multi-mode sensing system for lower limb rehabilitation robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110507322A (en) * 2019-07-30 2019-11-29 西安交通大学 One kind quantifying status assessing system and method based on virtual induction myoelectricity
JP2022055736A (en) * 2020-09-29 2022-04-08 パナソニックIpマネジメント株式会社 Situation estimation apparatus, server apparatus, situation estimation system, and situation estimation method
CN114366559A (en) * 2021-12-31 2022-04-19 华南理工大学 Multi-mode sensing system for lower limb rehabilitation robot

Also Published As

Publication number Publication date
TW202400272A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
US7914420B2 (en) Sensing applications for exercise machines
US7942783B2 (en) Exercise aid device
JP7163370B2 (en) Artificial intelligence assistance for modifying biomechanical loads
US20080051261A1 (en) Exercise protocols for treadmills and bicycle ergometers for exercise, diagnostics and rehabilitation
WO2010039674A2 (en) Step trainer for enhanced performance using rhythmic cues
JPWO2019035444A1 (en) Sole pressure measuring device, information providing device and information providing method
Huang et al. Assessment of long-term badminton experience on foot posture index and plantar pressure distribution
TWI804358B (en) The method of real-time adjustment of gait training parameters
US20220125336A1 (en) Asymmetrical rhythmic auditory cueing based gait modification
CN115334964A (en) Device, system and method for generating information on musculoskeletal recovery of a subject
US11266879B2 (en) Adaptive active training system
JP6792773B2 (en) Lactate work threshold estimation device and lactate work threshold estimation method
JP2006325989A (en) Exercise assisting device
US20240024187A1 (en) Method for real-time adjustment of gait training parameter
Chow et al. Intersegmental coordination scales with gait speed similarly in men and women
TWI749452B (en) Adaptive active training system
KR20240013925A (en) Method for real-time adjustment of gait training parameters
CN117339183A (en) Method for adjusting gait training parameters in real time
CN113907746A (en) Rope skipping posture correction method and system for simultaneous take-off of feet
KR101916763B1 (en) Multi-functional training robot system that provides user-customized exercise program using multi-biometric sensor and user-sensitive active control technology and method of using same
JP2011254954A (en) Exercise volume measuring system with individual authentication function
CN113244084A (en) Adaptable active training system
JP7393481B1 (en) How to instantly adjust gait training parameters
TWI792975B (en) Muscle tension evaluation device and evaluation method thereof
JPH04180777A (en) Step type training machine and its control method