TWI803364B - 蝕刻機台的控制方法 - Google Patents

蝕刻機台的控制方法 Download PDF

Info

Publication number
TWI803364B
TWI803364B TW111122901A TW111122901A TWI803364B TW I803364 B TWI803364 B TW I803364B TW 111122901 A TW111122901 A TW 111122901A TW 111122901 A TW111122901 A TW 111122901A TW I803364 B TWI803364 B TW I803364B
Authority
TW
Taiwan
Prior art keywords
etching
artificial intelligence
recipe
module
data
Prior art date
Application number
TW111122901A
Other languages
English (en)
Other versions
TW202345024A (zh
Inventor
蔡子敬
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Application granted granted Critical
Publication of TWI803364B publication Critical patent/TWI803364B/zh
Publication of TW202345024A publication Critical patent/TW202345024A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33027Artificial neural network controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45212Etching, engraving, sculpturing, carving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Drying Of Semiconductors (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

本揭露提供一種蝕刻機台的控制方法。該控制方法包括在該當前晶圓上執行一第一蝕刻配方;通過一第一測量模組產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;當該第一組數據不在一預定範圍內時,該人工智能模組產生一第二蝕刻配方並將該第二蝕刻配方應用於該沈積機台;並在下一晶圓上執行該第二佈植配方。

Description

蝕刻機台的控制方法
本申請案主張美國第17/735,289號專利申請案之優先權(即優先權日為「2022年5月3日」),其內容以全文引用之方式併入本文中。
本揭露涉及一種蝕刻機台的控制方法,特別是一種具有人工智能模組的蝕刻機台的控制方法。
半導體裝置被用於各種電子設備之應用當中,例如個人電腦、手機、數位相機和其他電子設備。為滿足對計算能力不斷增長的需求,半導體裝置的尺寸不斷地縮小。然而,在縮減過程中會出現各種各樣的問題,而且這些問題還在不斷增加。因此,在提高半導體裝置的性能、質量、良率和可靠性以及降低複雜度等方面仍然面臨挑戰。
上文之「先前技術」說明僅係提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之任一部分。
本揭露的一方面提供一種蝕刻機台的控制方法,包括:在一當前晶圓上執行一第一蝕刻配方;通過一第一測量模組產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;當該第一組數據不在一預定範圍內時,該人工智能模組產生一第二蝕刻配方,並將該第二蝕刻配方應用於該蝕刻機台;及在下一晶圓上執行該第二個蝕刻配方。
本揭露的另一方面提供一種蝕刻機台的控制方法,包括:在一當前晶圓上執行一第一蝕刻配方;通過一第一測量模組產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;和當該第一組數據在一預定範圍內時,在下一晶圓上執行該第一蝕刻配方。
本揭露的另一方面提供一種蝕刻機台的控制方法,包括:在一當前晶圓上執行一蝕刻配方,其中該蝕刻配方包括至少一第一階段和一第二階段;通過一第一測量模組監測該蝕刻配方的第一階段來產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;和當該第一組數據不在一預定範圍內時,該人工智能模將組調整該蝕刻配方的第二階段。該蝕刻配方的第二階段在該蝕刻配方的第一階段之後執行。
本揭露的另一方面提供一種蝕刻機台的控制方法,包括:在一當前晶圓上執行一蝕刻配方,其中該蝕刻配方包括至少一第一階段和一第二階段;通過一第一測量模組監測該蝕刻配方的第一階段來產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;和當該第一組數據在一預定範圍內時,執行該蝕刻配方的第二階段。
本揭露的另一方面提供一種佈植機台的控制方法,包括:在一當前晶圓上執行一第一佈植配方;通過一第一測量模組產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;當該第一組數據不在一預定範圍內時,該人工智能模組產生一第二佈植配方,並將該第二佈植配方應用於該佈植機台;和在下一晶圓上執行該第二佈植配方。
本揭露的另一方面提供一種佈植機台的控制方法,包括:在一當前晶圓上執行一第一佈植配方;通過一第一測量模組產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;和當該第一組數據在一預定範圍內時,在下一晶圓上執行該第一佈植配方。
本揭露的另一方面提供一種沈積機台的控制方法,包括:在一當前晶圓上執行一第一沈積配方;通過一第一測量模組產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;當該第一組數據不在一預定範圍內時,該人工智能模組產生一第二沈積配方,並將該第二沈積配方應用於該沈積機台;和在下一晶圓上執行該第二沈積配方。
本揭露的另一方面提供一種沈積機台的控制方法,包括:在一當前晶圓上執行一第一沈積配方;通過一第一測量模組產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;當該第一組數據在一預定範圍內時,在下一晶圓上執行該第一沈積配方。
由於本揭露的機台控制方法的設計,透過人工智能模組及由第一量測模組測得的反饋數據,相關配方可在晶圓到晶圓的時間框架內被更新(或調整)。結果,晶圓的產量和/或可靠性將得以提高。
上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。
本揭露之以下說明伴隨併入且組成說明書之一部分的圖式,說明本揭露之實施例,然而本揭露並不受限於該實施例。此外,以下的實施例可適當整合以下實施例以完成另一實施例。
「一實施例」、「實施例」、「例示實施例」、「其他實施例」、「另一實施例」等係指本揭露所描述之實施例可包含特定特徵、結構或是特性,然而並非每一實施例必須包含該特定特徵、結構或是特性。再者,重複使用「在實施例中」一語並非必須指相同實施例,然而可為相同實施例。
為了使得本揭露可被完全理解,以下說明提供詳細的步驟與結構。顯然,本揭露的實施不會限制該技藝中的技術人士已知的特定細節。此外,已知的結構與步驟不再詳述,以免不必要地限制本揭露。本揭露的較佳實施例詳述如下。然而,除了詳細說明之外,本揭露亦可廣泛實施於其他實施例中。本揭露的範圍不限於詳細說明的內容,而是由申請專利範圍定義。
在本揭露中,半導體裝置一般是指能夠利用半導體特性發揮作用的裝置,電光裝置、發光顯示裝置、半導體電路和電子裝置都屬於半導體裝置的範疇。
圖1為流程圖,例示本揭露一實施例的一種蝕刻製程系統的控制方法10。圖2功能方塊圖,例示本揭露一實施例的蝕刻製程系統。
參照圖1和2,在步驟S11,在一當前晶圓上執行一蝕刻配方。
參照圖2,圖中包括以實線示出的材料製程流程和以虛線示出的資訊流程。材料製程流程可以包括用於蝕刻半導體基底的製程的一部分,半導體基底例如晶圓。
在一些實施例中,第一事件E1可以是將當前晶圓轉移到製程機台100中的晶圓載入事件,該製程機台100作為將當前晶圓從第一狀態改變為第二狀態的手段。
需要說明的是,在第一事件E1中,可能會分批處理多片晶圓,因此,本實施例中以單數形式提及晶圓並不一定將本揭露限定於單一晶圓,但可以說明包括多片晶圓、多個批次或任何此類材料分組的批次。
在一些實施例中,製程機台100可以包括例如蝕刻模組、沈積模組、研磨模組、微影模組、修整模組、和/或熱製程模組中的至少一個。在本實施例中,製程機台100包括蝕刻模組110。也就是說,在本實施例中,材料製程流程可以包括對當前晶圓的蝕刻製程。在一些實施例中,在由蝕刻模組110處理之前,當前晶圓的頂部可包括圖案化的光阻劑層或圖案化的硬遮罩層。
在一些實施例中,蝕刻模組110可以包括一個或多個的蝕刻室,其並未單獨說明。當前晶圓可以放置在蝕刻室中,然後可以使用蝕刻配方進行蝕刻製程。當前晶圓的蝕刻配方也可以視為第一蝕刻配方。在一些實施例中,第一蝕刻配方可以是標稱配方。
在一些實施例中,製程機台100可以包括圖形使用者界面(GUI)組件(為清楚起見未示出)和數據庫(為清楚起見未示出)。GUI組件被提供,以使使用者能夠:查看機台狀態和製程模組狀態;為選定的晶圓創建和編輯匯總的或原始(追蹤)的參數數據的x-y圖表;查看機台警告紀錄;設置數據收集計劃,指定將數據寫入數據庫或輸出文件的條件;將文件輸入到統計過程控制(statistical process control,SPC)圖表、建模和電子表格程序;檢查特定晶圓的晶圓製程資訊,並查看當前保存到數據庫中的數據;創建和編輯製程參數的SPC圖表,設置SPC警吿,並產生郵件警告;運行多元主成分分析 (principal component analysis,PCA) 和/或部分最小平方 (partial least squares,PLS) 模型;和/或查看診斷螢幕以便排除故障並報告製程機台100的問題。
在一些實施例中,來自製程機台100的原始數據和追蹤數據可以作為文件存儲在數據庫中。數據量可能取決於使用者設置的數據收集計劃,以及執行過程的頻率和運行的製程模組。從製程機台100獲得的數據可以存儲在表格中。在一些實施例中,製程機台100的GUI組件和製程機台100的數據庫是非必要的。
在一些實施例中,一人工智能模組300可以耦合到製程機台100,或者,詳細地,耦合到製程機台100的蝕刻模組110。在一些實施例中,人工智能(AI)模組300和製程機台100可以是物理上彼此分離的獨立元件。人工智能模組300和製程機台100之間的通信可以使用任何合適的通信技術,例如模擬技術(例如中繼邏輯)、數字技術(例如RS232、以太網或無線)、網路技術(例如本地局域網(local area network,LAN)、廣域網(wide area network,WAN)、互聯網)、藍芽技術、近場通信技術和/或任何其他合適的通信技術。人工智能模組300和製程機台100之間的通信可以符合通用設備模組/半導體設備通信標準(general equipment module/semiconductor equipment communications standard,GEM SECS)通信協議。
在一些實施例中,人工智能模組300可以被整合在製程機台100內。
在一些實施例中,人工智能模組300可以耦合到一第一測量模組210。在一些實施例中,人工智能模組300和第一測量模組210可以是物理上彼此分離的獨立元件。人工智能模組300和第一測量模組210之間的通信可以使用任何合適的通信技術,例如模擬技術(例如中繼邏輯)、數字技術(例如RS232、以太網或無線)、網路技術(例如本地局域網、廣域網、互聯網)、藍芽技術、近場通信技術和/或任何其他合適的通信技術。人工智能模組300與第一測量模組210之間的通信可以符合通用設備模組/半導體設備通信標準通信協議。
在一些實施例中,人工智能模組300可以作為單輸入單輸出(single input single output,SISO)設備、單輸入多輸出(single input multiple output,SIMO)設備、多輸入單輸出(multiple input single output,MISO)設備和多輸入多輸出(multiple input multiple output,MISO)設備操作。
在一些實施例中,人工智能模組300可以包括任何合適的硬體(在一些實施例中,其可以執行軟體或應用程序),例如計算機、微處理器、微控制器、專用集成電路(application specific integrated circuits,ASIC)、現場可編程門陣列 (field-programmable gate arrays,FGPA) 和數字訊號處理器 (digital signal processors,DSP)(其中任何一個都可以視為硬體處理器)、編碼器、讀取編碼器的電路、存儲設備(包括一個或多個EPROMS、一個或多個EEPROM、動態隨機存取記憶體(dynamic random access memory,DRAM)、靜態隨機存取記憶體(static random access memory,SRAM)和/或快閃記憶體)、和/或任何其他合適的硬體元件。
在人工智能模組300中可以包括GUI組件(為了清楚起見未示出)和數據庫(為了清楚起見未示出)。人工智能模組300的GUI組件可以提供人工智能模組300和使用者之間的交互。經授權的使用者和管理員可以使用GUI組件來修改人工智能模組300的設置和默認參數。設置數據可以存儲在數據庫中。
在一些實施例中,人工智能模組300的GUI組件可以包括用於顯示人工智能模組300的當前狀態的狀態組件。此外,狀態組件可以包括圖表組件,用於使用一種或多種不同類型的圖表,以將系統相關和製程相關數據呈現給使用者。
在一些實施例中,人工智能模組300的數據庫可以用於歸檔輸入和輸出的數據。例如,人工智能模組300可以將接收的輸入、發送的輸出和人工智能模組300採取的動作存檔在可搜索的數據庫中。
在一些實施例中,人工智能模組300可以包括用於數據備份和恢復的手段。此外,可搜索的數據庫可以包括模型資訊、設置資訊和歷史資訊,並且人工智能模組300可以使用數據庫組件來備份和恢復歷史和當前的模型資訊和模型設置資訊。
在一些實施例中,人工智能模組300可以包括多個應用程序,包括至少一個機台相關的應用程序、至少一模組相關的應用程序、至少一感測器相關的應用程序、至少一接口相關的應用程序、至少一數據庫相關的應用程序、至少一GUI相關的應用程序、和/或至少一設置用應用程序。
在一些實施例中,人工智能模組300可以包括以下單獨一種或多種組合的算法:機器學習、隱馬爾可夫模型;遞歸神經網路;卷積神經網路;貝葉斯符號方法;一般對抗網路;支持向量機;和/或任何其他合適的人工智能算法。
在一些實施例中,人工智能模組300可以包括至少一個可以預測當前晶圓的第二狀態的製程模型。例如,蝕刻速率的製程模型可以與製程時間一起使用以計算蝕刻深度,及沈積速率的製程模型可以與製程時間一起使用以計算沈積厚度。在一些實施例中,製程模型可以包括SPC圖表、PLS模型、PCA模型、故障檢測/校正(fault detection/correction,FDC)模型和多變量分析(multivariate analysis,MVA)模型。在一些實施例中,人工智能模組300可以接收和利用外部提供的數據作為製程機台100中的製程參數的限制。例如,人工智能模組300的GUI組件可以提供作為手動輸入製程參數的限制的手段。
在一些實施例中,人工智能模組300可用於設置與其相關聯的任何數量的機台,機台可具有任何數量的相關聯的製程模組、或為獨立的製程模組。人工智能模組300可以收集、提供、處理、存儲和顯示來自涉及製程的機台、製程模組、和/或感測器的數據。
參照圖2,在使用第一蝕刻配方的蝕刻模組110的蝕刻製程之後,當前晶圓的晶圓狀態可以通過製程機台100的蝕刻模組110從第一狀態(蝕刻製程之前)轉變為第二狀態(蝕刻製程之後)。
參照圖1和2,在步驟S13,由一第一測量模組210產生當前晶圓的一組數據。
然後,可以將當前經處理的晶圓轉移到第一測量模組210。第一測量模組210可以收集當前經處理的晶圓的第二狀態的數據。在一些實施例中,第一測量模組210可以包括單個測量裝置或多個測量裝置。第一測量模組210可以包括製程模組相關的測量裝置、機台相關的測量裝置、和/或外部的測量裝置。
在一些實施例中,第一測量模組210可以是蝕刻後檢測(after-etching-inspection,AEI)度量機台。AEI度量機台可以在蝕刻製程之後調查和檢查缺陷、污染和關鍵尺寸 (critical dimension,CD)。在一些實施例中,第一測量模組210可以包括光學光譜(例如,光學關鍵尺寸optical critical dimension ,OCD)度量機台,其用於測量CD和/或蝕刻特徵的輪廓。下面以CD量測為例。
參照圖1和2,在步驟S15,利用人工智能模組300分析當前晶圓的數據,並且當當前晶圓的數據不在一預定範圍內時,透過人工智能模組300更新蝕刻配方。
參照圖2,在一些實施例中,第一測量模組210在蝕刻製程之後收集的當前經處理的晶圓的CD可以由人工智能模組300分析,以確定CD在預定範圍內。如果CD不在預定範圍內,則由第一測量模組210收集的當前經處理的晶圓的數據(如虛線箭頭FB1所示)可以被反饋給與製程機台100耦合的人工智能模組300,或者,詳細地,反饋給與製程機台100的蝕刻模組110耦合的人工智能模組300。人工智能模組300可以根據反饋的CD數據更新第一蝕刻配方,為下一個晶圓提供一第二蝕刻配方(如虛線箭頭UD1所示)。
在一些實施例中,人工智能模組300可以使用第一測量模組210在蝕刻製程之後收集的當前經處理的晶圓的CD來計算一組製程偏差。計算的製程偏差可以基於目標CD和由第一測量模組210在蝕刻製程之後收集的當前經處理的晶圓的CD來確定。製程偏差可用於確定對要處理的下一晶圓的第一蝕刻配方的校正。在本揭露的描述中,目標CD表示製程完成後所需的關鍵尺寸。
在一些實施例中,人工智能模組300可以使用基於表格和/或基於公式的技術。例如,配方可以在表格中,並且人工智能模組300進行表格查找以確定哪個校正或哪些校正能提供最佳的解決方案。或者,可以使用一組公式來確定校正,並且人工智能模組300確定哪個或哪些校正公式能提供最佳的解決方案。
當人工智能模組300使用基於表格的技術時,反饋控制的變量是可設置的。例如,變量可以是表格中的常數或係數。另外,可以有多個表,可以根據輸入範圍或輸出範圍進行基於規則的切換。
當人工智能模組300使用基於公式的控制時,反饋控制的變量是可設置的。例如,變量可以是公式中的常數或係數。此外,還可以有多種公式組合,可以根據輸入範圍或輸出範圍進行基於規則的切換。
參照圖2,第二事件E2可以代表當前經處理的晶圓的後續製程。在本實施例中,第二事件E2可以是清潔製程、沈積製程、或其他適用的製程。
通過使用與製程機台100耦合的人工智能模組300,可以在晶圓到晶圓的時間框架內更新(或調整)相關的配方(例如,本實施例中的蝕刻配方)。結果,晶圓的產量和/或可靠性將得以提高。
圖3為流程圖,例示本揭露另一實施例的一種蝕刻製程系統的控制方法20。圖4功能方塊圖,例示本揭露另一實施例的蝕刻製程系統。
參照圖3和4,在步驟S21,在一當前晶圓上執行包括多個階段的一蝕刻配方,並且通過使用第一測量模組210監測蝕刻配方的一第一階段來產生當前晶圓的一組數據。
參照圖4,方塊圖可以說明類似於圖2中說明的蝕刻製程系統,圖4中與圖2中相同或相似的元件已經被標記為相同或相似的標記,且省略重複的描述。
參照圖4,第一測量模組210可以被整合在製程機台100內。在一些實施例中,第一測量模組210可以是一組感測器,其可以監測製程相關參數,例如氣體流量、氣體比率、或其他適用的製程相關參數。
參照圖4,第一測量模組210可以實時地向人工智能模組300提供反饋數據。因此,人工智能模組300可以立即更新蝕刻配方。例如,第一蝕刻配方可以是多階段的配方,例如兩階段配方。第一測量模組210可以在第一蝕刻配方的第一階段期間連續監測製程相關參數並反饋給人工智能模組300(如虛線箭頭FB1所示)。
參照圖3和圖4,在步驟S23,人工智能模組300分析當前晶圓的數據,並且當當前晶圓的數據不在一預定範圍內時,人工智能模組調整蝕刻配方的一第二階段。
參照圖4,同時,人工智能模組300可以分析反饋數據以確定是否更新第一蝕刻配方的第二階段。如果第一蝕刻配方的第一階段包括製程偏差,人工智能模組300可以對第一蝕刻配方的第二階段進行校正和更新(如虛線箭頭UD1所示),以使經處理的晶圓具有在可接受的標準內的參數(例如,CD)。
相應地,第一測量模組210還可以在第一蝕刻配方的第二階段期間及其之後連續監測製程相關參數並反饋給人工智能模組300。同時,人工智能模組300可以分析反饋數據,以確定是否為下一個要處理的晶圓更新第一蝕刻配方。
圖5至圖9功能方塊圖,例示本揭露一些實施例的蝕刻製程系統。
參照圖5,方塊圖可以說明類似於圖2中說明的蝕刻製程系統,圖5中與圖2中相同或相似的元件已經被標記為相同或相似的標記,且省略重複的描述。
參照圖5,在包括蝕刻模組110的製程機台100處理第一事件E1的當前晶圓之前,製程機台100的追蹤數據(trace data),例如機台追蹤數據、維護數據、端點檢測(end point detection,EPD)數據,和/或其他與製程相關的數據可以前饋給人工智能模組300(如虛線箭頭FF1所示)。人工智能模組300可分析製程機台100的追蹤數據以調整用於處理當前晶圓的蝕刻配方(如虛線箭頭AD1所示)。於製程完成後,人工智能模組300還可以根據第一測量模組210的反饋數據更新經調整的蝕刻配方。
參照圖6,方塊圖可以說明類似於圖2中說明的蝕刻製程系統,圖6中與圖2中相同或相似的元件已經被標記為相同或相似的標記,且省略重複的描述。
參照圖6,當前晶圓可以在被製程機台100處理之前被轉移到一第二測量模組220。在一些實施例中,第二測量模組220可以包括單個測量裝置或多個測量裝置。第二測量模組220可以包括模組相關的測量裝置、機台相關的測量裝置、和/或外部測量裝置。在本實施例中,第二測量模組220可以是顯影後檢測(after-development-inspection,ADI)度量機台。在一些實施例中,第二測量模組220可以包括光學光譜(例如,光學關鍵尺寸OCD)度量機台,其用於測量CD和/或遮罩的輪廓。第二測量模組220測量當前晶圓頂部的圖案化的光阻劑層或圖案化的硬遮罩層的關鍵尺寸和輪廓。測量的CD可以被前饋到人工智能模組300(如虛線箭頭FF2所示)。
在包括蝕刻模組110的製程機台100處理當前晶圓之前,人工智能模組300可以利用第二測量模組220的前饋數據與目標CD之間的差異來選擇或計算一組製程參數來實現期望的結果。調整後的配方可應用於製程機台100以處理當前晶圓(如虛線箭頭AD2所示)。在一些實施例中,前饋數據還可以包括與當前晶圓相關聯的數據,例如批號數據、批次數據、運行數據、成分數據和晶圓歷史數據。於製程完成後,人工智能模組300還可以根據第一測量模組210的反饋數據更新經調整的蝕刻配方。
參照圖7,方塊圖可以說明類似於圖6中說明的蝕刻製程系統,圖7中與圖6中相同或相似的元件已經被標記為相同或相似的標記,且省略重複的描述。
參照圖7,第二測量模組220可以被整合在製程機台100內。在一些實施例中,第二測量模組220是一組可以監測製程相關參數的感測器。整合的第二測量模組220的前饋流程類似於圖6的說明,在此不再贅述。
參照圖8,方塊圖可以說明類似於圖7中說明的蝕刻製程系統,圖8中與圖7中相同或相似的元件已經被標記為相同或相似的標記,且省略重複的描述。
參照圖8,第一測量模組210和第二測量模組220可以都被整合在製程機台100內。第一測量模組210的反饋流程類似於圖4的說明,在此不再贅述。第二測量模組220的前饋流程類似於圖6的說明,在此不再贅述。
參照圖9,方塊圖可以說明類似於圖5中說明的蝕刻製程系統,圖9中與圖5中相同或相似的元件已經被標記為相同或相似的標記,且省略重複的描述。
參照圖9,在包括蝕刻模組110的製程機台100處理第一事件E1的當前晶圓之前,製程機台100的追蹤數據,例如機台追蹤數據、維護數據、端點檢測數據,和/或其他與製程相關的數據可以前饋給人工智能模組300(如虛線箭頭FF1所示)。此外,第二測量模組220的測量數據也可以前饋至人工智能模組300(如虛線箭頭FF2所示)。人工智能模組300可以分析製程機台100的追蹤數據及第二量測模組220所測得的數據,以調整用於處理當前晶圓的蝕刻配方(如虛線箭頭AD3所示)。於製程完成後,人工智能模組300還可以根據第一測量模組210的反饋數據更新經調整的蝕刻配方。
圖10為流程圖,例示本揭露另一實施例的一種沈積製程系統的控制方法30。圖11功能方塊圖,例示本揭露另一實施例的沈積製程系統。
參照圖10和11,在步驟S31,在一當前晶圓上執行一第一沈積配方。
參照圖11,圖中包括以實線示出的材料製程流程和以虛線示出的資訊流程。材料製程流程可以包括用於沈積半導體基底的製程的一部分,半導體基底例如晶圓。
在一些實施例中,第一事件E1可以是將當前晶圓轉移到製程機台100中的晶圓載入事件,該製程機台100提供用於將當前晶圓從第一狀態改變為第二狀態的手段。在本實施例中,製程機台100可包括一沈積模組120。也就是說,在本實施例中,材料製程流程可以包括對當前晶圓的沈積製程。
在一些實施例中,製程機台100可以包括類似於圖2所示的GUI組件和數據庫,在此不再贅述。
參照圖11,人工智能模組300可以耦合到製程機台100的沈積模組120。製程機台100和人工智能模組300之間的通信可以類似於圖2所說明的,在此不再贅述。在一些實施例中,人工智能模組300可以被整合在製程機台100內。
在一些實施例中,沈積模組120可以包括一沈積室,其並未另行說明。當前晶圓可以放置在沈積室中,然後可以使用沈積配方進行沈積製程。當前晶圓的沈積配方也可以視為第一沈積配方。在一些實施例中,第一沈積配方可以是標稱配方。
參照圖11,在使用第一沈積配方的沈積模組120的沈積製程之後,當前晶圓的晶圓狀態可以通過製程機台100的沈積模組120從第一狀態(沈積製程之前)轉變為第二狀態(沈積製程之後)。
參照圖10和11,在步驟S33,由一第一測量模組210產生當前晶圓的一組數據。
然後,將當前經處理的晶圓轉移到第一測量模組210。第一測量模組210可以收集當前經處理的晶圓的第二狀態的數據。在一些實施例中,第一測量模組210可以包括單個測量裝置或多個測量裝置。第一測量模組210可以包括製程模組相關的測量裝置、機台相關的測量裝置、和/或外部的測量裝置。在本實施例中,第一測量模組210可以是用於測量薄膜厚度的度量機台。
參照圖10和11,在步驟S35,人工智能模組300分析當前晶圓的數據,並且當當前晶圓的數據不在一預定範圍內時,人工智能模組300更新第一沈積配方。
參照圖11,在一些實施例中,第一測量模組210在沈積製程之後收集的當前經處理的晶圓的薄膜厚度可以由人工智能模組300分析,以確定薄膜厚度在預定範圍內。如果薄膜厚度不在預定範圍內,則第一測量模組210收集的當前經處理的晶圓的數據(如虛線箭頭FB1所示)可以反饋給與製程機台100耦合的人工智能模組300,或者,詳細地,反饋給與製程機台100的沈積模組120耦合的人工智能模組300。人工智能模組300可根據反饋的薄膜厚度數據更新第一沈積配方,為下一個晶圓提供第二沈積配方(如虛線箭頭UD1所示)。
在一些實施例中,人工智能模組300可以使用第一測量模組210在沈積製程之後收集的當前經處理的晶圓的薄膜厚度來計算一組製程偏差。計算的製程偏差可以基於目標薄膜厚度和由第一測量模組210在沈積製程之後收集的當前經處理的晶圓的薄膜厚度來確定。製程偏差可用於確定對要處理的下一晶圓的第一沈積配方的校正。在本揭露的描述中,目標薄膜厚度是指沈積製程完成後的期望薄膜厚度。
在一些實施例中,人工智能模組300可以使用基於表格和/或基於公式的技術。例如,配方可以在表格中,並且人工智能模組300進行表格查找以確定哪個校正或哪些校正能提供最佳的解決方案。或者,可以使用一組公式來確定校正,並且人工智能模組300確定哪個或哪些校正公式能提供最佳的解決方案。
當人工智能模組300使用基於表格的技術時,反饋控制的變量是可設置的。例如,變量可以是表格中的常數或係數。另外,可以有多個表,可以根據輸入範圍或輸出範圍進行基於規則的切換。
當人工智能模組300使用基於公式的控制時,反饋控制的變量是可設置的。例如,變量可以是公式中的常數或係數。此外,還可以有多種公式組合,可以根據輸入範圍或輸出範圍進行基於規則的切換。
參照圖11,第二事件E2可以代表當前經處理的晶圓的後續製程。在本實施例中,第二事件E2可以是平坦化製程,或其他適用的製程。
通過使用與製程機台100耦合的人工智能模組300,可以在晶圓到晶圓的時間框架內更新(或調整)相關的配方(例如,本實施例中的沈積配方)。結果,晶圓的產量和/或可靠性將得以提高。
圖12和13功能方塊圖,例示本揭露一些實施例的沈積製程系統。
參照圖12,方塊圖可以說明類似於圖11中說明的沈積製程系統,圖12中與圖11中相同或相似的元件已經被標記為相同或相似的標記,且省略重複的描述。
參照圖12,第一測量模組210可以被整合在製程機台100內。在一些實施例中,第一測量模組210可以是一組感測器,其可以監測製程相關參數,例如氣體流量、氣體比率、或其他適用的製程相關參數。
參照圖12,第一測量模組210可以實時地向人工智能模組300提供反饋數據。因此,人工智能模組300可以立即更新沈積配方。例如,第一沈積配方可以是多階段配方,例如兩階段配方。第一測量模組210可以在第一沈積配方的第一階段期間連續監測製程相關參數並反饋給人工智能模組300(如虛線箭頭FB1所示)。同時,人工智能模組300可以分析反饋數據以確定是否更新第一沈積配方的第二階段。如果第一沈積配方的第一階段包括製程偏差,人工智能模組300可以對第一沈積配方的第二階段進行校正和更新(如虛線箭頭UD1所示),以使經處理的晶圓具有在可接受的標準內的參數(例如,薄膜厚度)。
相應地,第一測量模組210還可以在第一沈積配方的第二階段期間及其之後連續監測製程相關參數並反饋給人工智能模組300。同時,人工智能模組300可以分析反饋數據,以確定是否為下一個要處理的晶圓更新第一沈積配方。
參照圖13,方塊圖可以說明類似於圖11中說明的沈積製程系統,圖13中與圖11中相同或相似的元件已經被標記為相同或相似的標記,且省略重複的描述。
參照圖13,在包括沈積模組120的製程機台100處理第一事件E1的當前晶圓之前,製程機台100的追蹤數據,例如機台追蹤數據、維護數據、端點檢測數據,和/或其他與製程相關的數據可以前饋給人工智能模組300(如虛線箭頭FF1所示)。人工智能模組300可分析製程機台100的追蹤數據以調整用於處理當前晶圓的沈積配方(如虛線箭頭AD1所示)。於製程完成後,人工智能模組300還可以根據第一測量模組210的反饋數據更新經調整的沈積配方。
圖14為流程圖,例示本揭露另一實施例的佈植製程一種佈植製程系統的控制方法一種佈植製程系統的控制方法40。圖15功能方塊圖,例示本揭露另一實施例的佈植製程系統。
參照圖14和15,在步驟S41,在一當前晶圓上執行一第一佈植配方。
參照圖15,圖中包括以實線示出的材料製程流程和以虛線示出的資訊流程。材料製程流程可以包括用於植入半導體基底的製程的一部分,半導體基底例如晶圓。
在一些實施例中,第一事件E1可以是將當前晶圓轉移到製程機台100中的晶圓載入事件,該製程機台100提供用於將當前晶圓從第一狀態改變為第二狀態的手段。在本實施例中,製程機台100可包括一佈植模組130。也就是說,在本實施例中,材料製程流程可以包括對當前晶圓的佈植製程。
在一些實施例中,製程機台100可以包括類似於圖2所示的GUI組件和數據庫,在此不再贅述。
參照圖15,人工智能模組300可以耦合到製程機台100的佈植模組130。製程機台100和人工智能模組300之間的通信可以類似於圖2所說明的,在此不再贅述。在一些實施例中,人工智能模組300可以被整合在製程機台100內。
在一些實施例中,佈植模組130可以包括一佈植室,其並未另行說明。當前晶圓可以放置在佈植室中,然後可以使用佈植配方進行佈植製程。當前晶圓的佈植配方也可以視為第一佈植配方。在一些實施例中,第一佈植配方可以是標稱配方。
參照圖15,在使用第一佈植配方的佈植模組130的佈植製程之後,當前晶圓的晶圓狀態可以通過製程機台100佈植模組130從第一狀態(佈植製程之前)轉變為第二狀態(佈植製程之後)。
參照圖14和15,在步驟S43,由一第一測量模組210產生當前晶圓的一組數據。
然後,可以將當前經處理的晶圓轉移到第一測量模組210。第一測量模組210可以收集當前經處理的晶圓的第二狀態的數據。在一些實施例中,第一測量模組210可以包括單個測量裝置或多個測量裝置。第一測量模組210可以包括製程模組相關的測量裝置、機台相關的測量裝置、和/或外部的測量裝置。在本實施例中,第一測量模組210可以是用於測量例如電阻等電性數據的度量機台。
參照圖14和圖15,在步驟S45,人工智能模組300分析當前晶圓的數據,並且當當前晶圓的數據不在一預定範圍內時,人工智能模組300更新第一佈植配方。
參照圖15,在一些實施例中,第一測量模組210在佈植製程之後收集的當前經處理的晶圓的電性數據可以由人工智能模組300分析,以確定電性數據在預定範圍內。如果電性數據不在預定範圍內,則第一測量模組210收集的當前經處理的晶圓的數據(如虛線箭頭FB1所示)可以反饋給與製程機台100耦合的人工智能模組300,或者,詳細地,反饋給與製程機台100的佈植模組130耦合的人工智能模組300。人工智能模組300可根據反饋的電性數據更新第一佈植配方,為下一個晶圓提供一第二佈植配方(如虛線箭頭UD1所示)。
在一些實施例中,人工智能模組300可以使用第一測量模組210在佈植製程之後收集的當前經處理的晶圓的電性數據來計算一組製程偏差。計算的製程偏差可以基於目標電性數據和由第一測量模組210在佈植製程之後收集的當前經處理的晶圓的電性數據來確定。製程偏差可用於確定對要處理的下一晶圓的第一佈植配方的校正。在本揭露的描述中,目標電性數據表示佈植製程完成後所需的電性數據。
在一些實施例中,人工智能模組300可以使用基於表格和/或基於公式的技術。例如,配方可以在表格中,並且人工智能模組300進行表格查找以確定哪個校正或哪些校正能提供最佳的解決方案。或者,可以使用一組公式來確定校正,並且人工智能模組300確定哪個或哪些校正公式能提供最佳的解決方案。
當人工智能模組300使用基於表格的技術時,反饋控制的變量是可設置的。例如,變量可以是表中的常數或係數。另外,可以有多個表,可以根據輸入範圍或輸出範圍進行基於規則的切換。
當人工智能模組300使用基於公式的控制時,反饋控制的變量是可設置的。例如,變量可以是公式中的常數或係數。此外,還可以有多種公式組合,可以根據輸入範圍或輸出範圍進行基於規則的切換。
參照圖15,第二事件E2可以代表當前經處理的晶圓的後續製程。在本實施例中,第二事件E2可以是沈積製程,也可以是其他適用的製程。
通過使用與製程機台100耦合的人工智能模組300,可以在晶圓到晶圓的時間框架內更新(或調整)相關的配方(例如,本實施例中的佈植配方)。結果,晶圓的產量和/或可靠性將得以提高。
圖16和17功能方塊圖,例示本揭露另一實施例的佈植製程系統。
參照圖16,方塊圖可以說明類似於圖15中說明的佈植製程系統,圖16中與圖15中相同或相似的元件已經被標記為相同或相似的標記,且省略重複的描述。
參照圖16,第一測量模組210可以被整合在製程機台100內。在一些實施例中,第一測量模組210可以是一組感測器,其可以監測製程相關參數,例如佈植能量、佈植劑量、或其他適用的製程相關參數。
參照圖16,第一測量模組210可以實時地向人工智能模組300提供反饋數據。因此,人工智能模組300可以立即更新佈植配方。例如,第一佈植配方可以是多階段配方,例如兩階段配方。第一測量模組210可以在第一佈植配方的第一階段期間連續監測製程相關參數並反饋給人工智能模組300(如虛線箭頭FB1所示)。同時,人工智能模組300可以分析反饋數據以確定是否更新第一佈植配方的第二階段。如果第一佈植配方的第一階段包括製程偏差,人工智能模組300可以對第一佈植配方的第二階段進行校正和更新(如虛線箭頭UD1所示),以使經處理的晶圓具有在可接受的標準內的參數(例如,電性數據)。
相應地,第一測量模組210還可以在第一佈植配方的第二階段期間及其之後連續監測製程相關參數並反饋給人工智能模組300。同時,人工智能模組300可以分析反饋數據,以確定是否為下一個要處理的晶圓更新第一佈植配方。
參照圖17,方塊圖可以說明類似於圖15中說明的佈植製程系統,圖17中與圖15中相同或相似的元件已經被標記為相同或相似的標記,且省略重複的描述。
參照圖17,在包括佈植模組130的製程機台100處理第一事件E1的當前晶圓之前,製程機台100的追蹤數據,例如機台追蹤數據、維護數據、端點檢測數據,和/或其他與製程相關的數據可以前饋給人工智能模組300(如虛線箭頭FF1所示)。人工智能模組300可分析製程機台100的追蹤數據以調整用於處理當前晶圓的佈植配方(如虛線箭頭AD1所示)。於製程完成後,人工智能模組300還可以根據第一測量模組210的反饋數據更新經調整的佈植配方。
圖18為流程圖,例示本揭露另一實施例的一種微影製程系統的控制方法50。圖19功能方塊圖,例示本揭露另一實施例的微影製程系統。
參照圖18和19,在步驟S51,一在當前晶圓上執行一微影配方。
參照圖19,圖中包括以實線示出的材料製程流程和以虛線示出的資訊流程。材料製程流程可以包括用於微影半導體基底的製程的一部分,半導體基底例如晶圓。
在一些實施例中,第一事件E1可以是將當前晶圓轉移到製程機台100中的晶圓輸入事件,該製程機台100提供用於將當前晶圓從第一狀態改變到第二狀態的手段。在本實施例中,製程機台100可包括一微影模組140。也就是說,在本實施例中,材料製程流程可以包括對當前晶圓的微影製程。
在一些實施例中,製程機台100可以包括類似於圖2所示的GUI組件和數據庫,在此不再贅述。
參照圖19,人工智能模組300可以耦合到製程機台100的微影模組140。製程機台100和人工智能模組300之間的通信可以類似於圖2所說明的,在此不再贅述。在一些實施例中,人工智能模組300可以被整合在製程機台100內。
當前晶圓可使用微影配方進行微影製程。當前晶圓的微影配方也可以視為第一微影配方。在一些實施例中,第一微影配方可以是標稱配方。
參照圖19,在使用第一微影配方的微影模組140的微影製程之後,當前晶圓的晶圓狀態可以通過製程機台100的微影模組140從第一狀態(微影製程之前)轉變為第二狀態(微影製程之後)。
參照圖18和19,在步驟S53,由一第一測量模組210產生當前晶圓的一組數據。
然後,可以將當前經處理的晶圓轉移到第一測量模組210。第一測量模組210可以收集當前經處理的晶圓的第二狀態的數據。在一些實施例中,第一測量模組210可以包括單個測量裝置或多個測量裝置。第一測量模組210可以包括製程模組相關的測量裝置、機台相關的測量裝置、和/或外部的測量裝置。在本實施例中,第一測量模組210可以是顯影後檢測(after-development-inspection,ADI)度量機台。在一些實施例中,第一量測模組210可以包括光學光譜(例如,光學關鍵尺寸OCD)度量機台,其用於測量CD和/或遮罩的輪廓。第一測量模組210測量當前晶圓頂部的圖案化的光阻劑層的關鍵尺寸和輪廓。
參照圖18和19,在步驟S55,利用人工智能模組300分析當前晶圓的數據,並且當當前晶圓的數據不在一預定範圍內時,透過人工智能模組300更新微影配方。
在一些實施例中,第一測量模組210在微影製程之後收集的當前經處理的晶圓的CD可以由人工智能模組300分析,以確定CD在預定範圍內。如果CD不在預定範圍內,則由第一測量模組210收集的當前經處理的晶圓的數據(如虛線箭頭FB1所示)可以被反饋給與製程機台100耦合的人工智能模組300,或者,詳細地,反饋給與製程機台100的微影模組140耦合的人工智能模組300。人工智能模組300可以根據反饋的CD數據更新第一微影配方,為下一個晶圓提供一第二微影配方(如虛線箭頭UD1所示)。
在一些實施例中,人工智能模組300可以使用第一測量模組210在微影製程之後收集的當前經處理的晶圓的CD來計算一組製程偏差。計算的製程偏差可以基於目標CD和由第一測量模組210在微影製程之後收集的當前經處理的晶圓的CD來確定。製程偏差可用於確定對要處理的下一晶圓的第一微影配方的校正。
在一些實施例中,人工智能模組300可以使用基於表格和/或基於公式的技術。例如,配方可以在表格中,並且人工智能模組300進行表格查找以確定哪個校正或哪些校正能提供最佳的解決方案。或者,可以使用一組公式來確定校正,並且人工智能模組300確定哪個或哪些校正公式能提供最佳的解決方案。
當人工智能模組300使用基於表格的技術時,反饋控制的變量是可設置的。例如,變量可以是表中的常數或係數。另外,可以有多個表,可以根據輸入範圍或輸出範圍進行基於規則的切換。
當人工智能模組300使用基於公式的控制時,反饋控制的變量是可設置的。例如,變量可以是公式中的常數或係數。此外,還可以有多種公式組合,可以根據輸入範圍或輸出範圍進行基於規則的切換。
參照圖19,第二事件E2可以代表當前經處理的晶圓的後續製程。在本實施例中,第二事件E2可以是蝕刻製程,也可以是其他適用的製程。
通過使用與製程機台100耦合的人工智能模組300,可以在晶圓到晶圓的時間框架內更新(或調整)相關的配方(例如,本實施例中的微影配方)。結果,晶圓的產量和/或可靠性將得以提高。
在一些實施例中,人工智能模組300可接收描述當前晶圓處理前的一第一組數據。例如,第一組數據可以來自如ADI機台之類的測量設備。此外,第一組數據可以包括SEM數據和光學數據。此外,第一組數據可以包括晶圓的數據,包括物理數據、電性數據和製程數據。
在一些實施例中,人工智能模組300可以進行配方選擇並將選擇前饋給製程機台100。人工智能模組300可以使用基於表格和/或基於公式的技術來確定最佳的配方。人工智能模組300可以接收關於當前要處理的晶圓和期望的處理結果的資訊,然後提供用以實現期望的處理結果的至少一個配方的選擇。人工智能模組300可以對接收到的資訊施加限制並且可以提供圍繞期望處理結果的區間。在選擇過程中,人工智能模組300包括當前配方和標稱配方。
在一些實施例中,人工智能模組300可以接收製程數據。例如,製程數據可以來自機台、製程模組(製程腔室)、和/或製程感測器(例如,被整合在製程機台100內的第一測量模組210)。
在一些實施例中,人工智能模組300可以基於當前晶圓狀態和至少一個製程模型來確定一組結果。例如,製程模型可以基於製程模組(製程腔室)的當前狀態。
在一些實施例中,人工智能模組300可接收描述處理後的當前晶圓的一第二組數據。例如,第二組數據可以來自如AEI機台之類的測量設備。此外,第二組數據可以包括SEM數據和光學數據。此外,第二組數據可以包括晶圓的數據,包括物理數據、電性數據和製程數據。
在一些實施例中,人工智能模組300可以使用基於表格和/或基於公式的技術來根據第二組數據以確定校正。人工智能模組300可以接收關於處理後的當前晶圓和期望的處理結果的資訊,並提供至少一個校正,其代表(處理後)所獲得的結果與預期的製程結果之間的差異。人工智能模組300可以對接收到的資訊應用限制並且可以提供圍繞校正的區間。人工智能模組300可以包括當前數據、延遲數據和/或歷史數據以確定校正。
在一些實施例中,人工智能模組300可以計算更新的配方。人工智能模組300使用來自第一測量模組210、製程機台100和第二測量模組220的結果來計算更新的配方。人工智能模組300可以提供至少一個它已經確定將校正(處理後)所獲得的結果和期望的製程結果之間的差異的更新方案。
在一些實施例中,人工智能模組300可以包括一個或多個濾波器(為清楚起見未示出),用於對度量數據進行濾波,以便去除隨機雜訊。
在一些實施例中,人工智能模組300可以包括離群值過濾器(為清楚起見未示出),離群值過濾器可用於去除靜態無效且不應被視為晶圓測量平均值的異常值。離群值過濾器可用於從均值中消除高離群值和低離群值。例如,箱須法可以應用於現場度量的數據。
本揭露的一方面提供一種蝕刻機台的控制方法,包括:在一當前晶圓上執行一第一蝕刻配方;通過一第一測量模組產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;當該第一組數據不在一預定範圍內時,該人工智能模組產生一第二蝕刻配方,並將該第二蝕刻配方應用於該蝕刻機台;及在下一晶圓上執行該第二個蝕刻配方。
本揭露的另一方面提供一種蝕刻機台的控制方法,包括:在一當前晶圓上執行一第一蝕刻配方;通過一第一測量模組產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;和當該第一組數據在一預定範圍內時,在下一晶圓上執行該第一蝕刻配方。
本發明的另一方面提供一種蝕刻工具的控制方法,包括: 在當前晶圓上執行蝕刻配方,所述蝕刻配方至少包括第一階段和第二階段。通過使用第一測量模塊監測蝕刻配方的第一階段來生成當前晶片的第一組數據;通過耦合到第一測量模塊的人工智能模塊分析第一組數據;當第一組數據不在預定範圍內時,人工智能模塊調整第二階段的蝕刻配方。該蝕刻配方的第二階段在該蝕刻配方的第一階段之後執行。
本揭露的另一方面提供一種蝕刻機台的控制方法,包括:在一當前晶圓上執行一蝕刻配方,其中該蝕刻配方包括至少一第一階段和一第二階段;通過一第一測量模組監測該蝕刻配方的第一階段來產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;和當該第一組數據在一預定範圍內時,執行該蝕刻配方的第二階段。
本揭露的另一方面提供一種沈積機台的控制方法,包括:在一當前晶圓上執行一第一沈積配方;通過一第一測量模組產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;當該第一組數據不在一預定範圍內時,該人工智能模組產生一第二沈積配方,並將該第二沈積配方應用於該沈積機台;和在下一晶圓上執行該第二沈積配方。
本揭露的另一方面提供一種沈積機台的控制方法,包括:在一當前晶圓上執行一第一沈積配方;通過一第一測量模組產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;當該第一組數據在一預定範圍內時,在下一晶圓上執行該第一沈積配方。
本揭露的另一方面提供一種佈植機台的控制方法,包括:在一當前晶圓上執行一第一佈植配方;通過一第一測量模組產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;當該第一組數據不在一預定範圍內時,該人工智能模組產生一第二佈植配方,並將該第二佈植配方應用於該佈植機台;和在下一晶圓上執行該第二佈植配方。
本揭露的另一方面提供一種佈植機台的控制方法,包括:在一當前晶圓上執行一第一佈植配方;通過一第一測量模組產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;和當該第一組數據在一預定範圍內時,在下一晶圓上執行該第一佈植配方。
由於本揭露的機台控制方法的設計,透過人工智能模組300及由第一量測模組測210得的反饋數據,相關的配方可在晶圓到晶圓的時間框架內被更新(或調整)。結果,晶圓的產量和/或可靠性將得以提高。
雖然已詳述本揭露及其優點,然而應理解可進行各種變化、取代與替代而不脫離申請專利範圍所定義之本揭露的精神與範圍。例如,可用不同的方法實施上述的許多製程,並且以其他製程或其組合替代上述的許多製程。
再者,本申請案的範圍並不受限於說明書中所述之製程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。該技藝之技術人士可自本揭露的揭示內容理解可根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質上相同結果之現存或是未來發展之製程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等製程、機械、製造、物質組成物、手段、方法、或步驟係包含於本申請案之申請專利範圍內。
10:控制方法 100:製程機台 110:蝕刻模組 120:沈積模組 130:佈植模組 140:微影模組 300:人工智能模組 20:控制方法 210:第一量測模組 220:第二量測模組 30:控制方法 40:控制方法 50:控制方法 AD1:虛線箭頭 AD2:虛線箭頭 AD3:虛線箭頭 E1:第一事件 E2:第二事件 FB1:虛線箭頭 FF1:虛線箭頭 FF2:虛線箭頭 UD1:虛線箭頭
參閱實施方式與申請專利範圍合併考量圖式時,可得以更全面了解本申請案之揭示內容,圖式中相同的元件符號係指相同的元件。 圖1為流程圖,例示本揭露一實施例的一種蝕刻製程系統的控制方法; 圖2是功能方塊圖,例示本揭露一實施例的蝕刻製程系統; 圖3為流程圖,例示本揭露另一實施例的一種蝕刻製程系統的控制方法; 圖4功能方塊圖,例示本揭露另一實施例的蝕刻製程系統; 圖5至圖9功能方塊圖,例示本揭露一些實施例的蝕刻製程系統; 圖10為流程圖,例示本揭露另一實施例的一種沈積製程系統的控制方法; 圖11功能方塊圖,例示本揭露另一實施例的沈積製程系統; 圖12和13功能方塊圖,例示本揭露一些實施例的沈積製程系統; 圖14為流程圖,例示本揭露另一實施例的佈植製程一種佈植製程系統的控制方法; 圖15功能方塊圖,例示本揭露另一實施例的佈植製程系統; 圖16和17功能方塊圖,例示本揭露另一實施例的佈植製程系統; 圖18為流程圖,例示本揭露另一實施例的一種微影製程系統的控制方法; 圖19功能方塊圖,例示本揭露另一實施例的微影製程系統。
100:製程機台
110:蝕刻模組
300:人工智能模組
210:第一量測模組
E1:第一事件
E2:第二事件
FB1:虛線箭頭
UD1:虛線箭頭

Claims (16)

  1. 一種蝕刻機台的控制方法,包括:在一當前晶圓上執行一第一蝕刻配方;通過一第一測量模組產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;當該第一組數據不在一預定範圍內時,該人工智能模組產生一第二蝕刻配方,並將該第二蝕刻配方應用於該蝕刻機台;在下一晶圓上執行該第二個蝕刻配方;以及其中該人工智能模組被整合在該蝕刻機台內。
  2. 如請求項1所述的蝕刻機台的控制方法,其中該人工智能模組包括以下單獨一種或多種算法的組合:機器學習、隱馬爾可夫模型、遞歸神經網路;卷積神經網路;貝葉斯符號方法;一般對抗網路;或支持向量機。
  3. 如請求項2所述的蝕刻機台的控制方法,還包括在對該當前晶圓執行該第一蝕刻配方之前,將該蝕刻機台的至少一參數前饋至該人工智能模組。
  4. 如請求項3所述的蝕刻機台的控制方法,還包括在對該當前晶圓執行該第一蝕刻配方之前,將該當前晶圓的至少一參數前饋至該人工智能模組。
  5. 如請求項4所述的蝕刻機台的控制方法,其中該當前晶圓的至少一參數係由一第二測量模組測量。
  6. 如請求項5所述的蝕刻機台的控制方法,其中該第一測量模組包括一蝕刻後檢測度量機台,其用於量測執行該第一蝕刻配方後的一關鍵尺寸。
  7. 如請求項6所述的蝕刻機台的控制方法,其中該第二測量模組包括一顯影後檢測度量機台,其用於量測執行該第一蝕刻配方前的一關鍵尺寸。
  8. 如請求項7所述的蝕刻機台的控制方法,其中該人工智能模組與該第一測量模組通過模擬技術、數字技術、網路技術、藍芽技術或近場通信技術進行通信。
  9. 一種蝕刻機台的控制方法,包括:在一當前晶圓上執行一蝕刻配方,其中該蝕刻配方包括至少一第一階段和一第二階段;通過一第一測量模組監測該蝕刻配方的第一階段來產生該當前晶圓的一第一組數據;通過耦合到該第一測量模組的一人工智能模組分析該第一組數據;和當該第一組數據不在一預定範圍內時,該人工智能模將組調整該蝕刻配方的第二階段;其中該蝕刻配方的第二階段在該蝕刻配方的第一階段之後執行; 其中該人工智能模組被整合在該蝕刻機台內。
  10. 如請求項9所述的蝕刻機台的控制方法,其中該人工智能模組包括以下單獨一種或多種算法的組合:機器學習、隱馬爾可夫模型、遞歸神經網路;卷積神經網路;貝葉斯符號方法;一般對抗網路;或支持向量機。
  11. 如請求項10所述的蝕刻機台的控制方法,還包括在對該當前晶圓執行該第一蝕刻配方之前,將該蝕刻機台的至少一參數前饋至該人工智能模組。
  12. 如請求項11所述的蝕刻機台的控制方法,還包括在對該當前晶圓執行該蝕刻配方之前,將該當前晶圓的至少一參數前饋至該人工智能模組。
  13. 如請求項12所述的蝕刻機台的控制方法,其中該當前晶圓的至少一參數係由一第二測量模組測量。
  14. 如請求項13所述的蝕刻機台的控制方法,其中該第一測量模組包括被整合在該蝕刻機台內的一組感測器。
  15. 如請求項14所述的蝕刻機台的控制方法,其中該第二測量模組包括一顯影後檢測度量機台,其用於量測執行該蝕刻配方前的一關鍵尺寸。
  16. 如請求項15所述的蝕刻機台的控制方法,其中該人工智能模組與該 第一測量模組通過模擬技術、數字技術、網路技術、藍芽技術或近場通信技術進行通信。
TW111122901A 2022-05-03 2022-06-20 蝕刻機台的控制方法 TWI803364B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/735,289 2022-05-03
US17/735,289 US20230359172A1 (en) 2022-05-03 2022-05-03 Method for controlling etching tool

Publications (2)

Publication Number Publication Date
TWI803364B true TWI803364B (zh) 2023-05-21
TW202345024A TW202345024A (zh) 2023-11-16

Family

ID=87424630

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111122901A TWI803364B (zh) 2022-05-03 2022-06-20 蝕刻機台的控制方法

Country Status (3)

Country Link
US (1) US20230359172A1 (zh)
CN (1) CN117012670A (zh)
TW (1) TWI803364B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201946101A (zh) * 2018-03-29 2019-12-01 荷蘭商Asml荷蘭公司 在半導體製程中用於評估控制策略之方法
TW202119138A (zh) * 2018-11-14 2021-05-16 荷蘭商Asml荷蘭公司 獲得用於訓練半導體製程模型的訓練資料之方法
TWM618950U (zh) * 2021-05-20 2021-11-01 賴煜勲 運用人工智慧之產品製程異常分析平台

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201946101A (zh) * 2018-03-29 2019-12-01 荷蘭商Asml荷蘭公司 在半導體製程中用於評估控制策略之方法
TW202119138A (zh) * 2018-11-14 2021-05-16 荷蘭商Asml荷蘭公司 獲得用於訓練半導體製程模型的訓練資料之方法
TWM618950U (zh) * 2021-05-20 2021-11-01 賴煜勲 運用人工智慧之產品製程異常分析平台

Also Published As

Publication number Publication date
US20230359172A1 (en) 2023-11-09
CN117012670A (zh) 2023-11-07
TW202345024A (zh) 2023-11-16

Similar Documents

Publication Publication Date Title
US7158851B2 (en) Feedforward, feedback wafer to wafer control method for an etch process
JP5069114B2 (ja) モデルフィードバックアップデートを用いた分離/入れ子形カスケーディングトリム制御
KR101311640B1 (ko) 웨이퍼 균일성 제어에서의 동적 계측 샘플링을 이용한 웨이퍼 처리 방법
US7067333B1 (en) Method and apparatus for implementing competing control models
KR101154658B1 (ko) 반도체 프로세싱 시스템에서 프로세싱 시스템 컨트롤러를 조작하는 방법 및 호스트 컨트롤러를 조작하는 방법
US6405144B1 (en) Method and apparatus for programmed latency for improving wafer-to-wafer uniformity
US6665623B1 (en) Method and apparatus for optimizing downstream uniformity
US6895295B1 (en) Method and apparatus for controlling a multi-chamber processing tool
TWI803364B (zh) 蝕刻機台的控制方法
US20230420273A1 (en) Etching system for fabricating semiconductor device structure
US6732007B1 (en) Method and apparatus for implementing dynamic qualification recipes
TWI840843B (zh) 佈植機台的控制方法
TWI817570B (zh) 沈積機台的控制方法
CN103811379B (zh) 工具优化调节系统和相关方法
TWI847321B (zh) 製備半導體元件結構的沉積系統
TW202401549A (zh) 製備半導體元件結構的蝕刻系統
US20230420306A1 (en) Implanting method for fabricating semiconductor device structure
US20230420307A1 (en) Deposition method for fabricating semiconductor device structure
US20230418259A1 (en) Etching method for fabricating semiconductor device structure
US20230416904A1 (en) Deposition system for fabricating semiconductor device structure
US20230420310A1 (en) Implanting system for fabricating semiconductor device structure
TW202401534A (zh) 製備半導體元件結構的載子植入系統
US7200459B1 (en) Method for determining optimal photolithography overlay targets based on process performance and yield in microelectronic fabrication
WO2002103776A2 (en) Method for relating photolithography overlay target damage and chemical mechanical planarization (cmp) fault detection to cmp tool identification
Kurakula et al. Applications of Data Mining in Integrated Circuits Manufacturing