TWI803049B - Nano-structure-modified organic component manufacturing method and structure thereof - Google Patents

Nano-structure-modified organic component manufacturing method and structure thereof Download PDF

Info

Publication number
TWI803049B
TWI803049B TW110142089A TW110142089A TWI803049B TW I803049 B TWI803049 B TW I803049B TW 110142089 A TW110142089 A TW 110142089A TW 110142089 A TW110142089 A TW 110142089A TW I803049 B TWI803049 B TW I803049B
Authority
TW
Taiwan
Prior art keywords
solution
perovskite
nanostructure
material solution
transport layer
Prior art date
Application number
TW110142089A
Other languages
Chinese (zh)
Other versions
TW202320369A (en
Inventor
陳錫釗
鄭雅駿
張誌元
Original Assignee
國立雲林科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立雲林科技大學 filed Critical 國立雲林科技大學
Priority to TW110142089A priority Critical patent/TWI803049B/en
Publication of TW202320369A publication Critical patent/TW202320369A/en
Application granted granted Critical
Publication of TWI803049B publication Critical patent/TWI803049B/en

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A manufacturing method of nano-structure-modified organic components includes: pre-processing on a substrate to form a modified surface thereon; processing a first spin-coating and heating procedure with a conductive polymer liquid to form a conductive polymer layer on the modified surface; processing a second spin-coating and heating procedure with an inorganic material liquid to form a hole transport layer on the conductive polymer layer; processing a third spin-coating and heating procedure with an ABX3 material liquid to form a ABX3 layer on the hole transport layer; processing a fourth spin-coating and heating procedure with a polymer liquid to form an electron transport layer on the ABX3 layer; processing a deposition procedure with an electrode material to form a plurality of electrodes on the electron transport layer.

Description

奈米結構修飾之有機元件製造方法及其結構 Fabrication method and structure of organic element modified by nanometer structure

本發明係關於一種奈米結構〔nano-structure〕修飾〔modified〕之有機元件〔organic component〕製造方法及其結構;特別是關於一種奈米結構修飾之鈣鈦礦〔ABX3〕有機元件製造方法及其結構;更特別是關於一種奈米結構修飾之有機元件製造方法及其結構可用於製造感測元件〔sensor〕、發光二極體元件〔light emitted diode,LED〕或鈣鈦礦太陽能電池〔Perovskite solar cell,PSC〕。 The present invention relates to a nano-structure (nano-structure) modified (modified) organic component (organic component) manufacturing method and its structure; in particular to a nano-structure modified perovskite [ABX 3 ] organic component manufacturing method and its structure; more particularly, a nanostructure-modified organic element manufacturing method and its structure can be used to manufacture sensing elements [sensor], light emitting diode elements [light emitted diode, LED] or perovskite solar cells [ Perovskite solar cell, PSC].

舉例而言,習用鈣鈦礦太陽能電池製造方法及其結構,如中華民國專利公開第TW-202124282號〝鈣鈦礦前驅溶液、鈣鈦礦吸光層的製造方法、及鈣鈦礦太陽能電池〞之發明專利申請案,其揭示一種鈣鈦礦太陽能電池,且該鈣鈦礦太陽能電池包含一基板、一電子傳輸層、一鈣鈦礦吸收層、一電洞傳輸層及一電極層。 For example, the conventional perovskite solar cell manufacturing method and its structure, such as the Republic of China Patent Publication No. TW-202124282 "Perovskite Precursor Solution, Manufacturing Method of Perovskite Light Absorbing Layer, and Perovskite Solar Cell" An invention patent application discloses a perovskite solar cell, and the perovskite solar cell includes a substrate, an electron transport layer, a perovskite absorption layer, a hole transport layer and an electrode layer.

承上,前述第TW-202124282號之該基板具有一導電層,而該電子傳輸層選擇設置於該基板上,且該鈣鈦礦吸收層選擇設置於該電子傳輸層上,且該電洞傳輸層則選擇設置於該鈣鈦礦吸收層上,且該電極層則選擇設置於該電洞傳輸層上。 As mentioned above, the substrate of the aforementioned TW-202124282 has a conductive layer, and the electron transport layer is selectively disposed on the substrate, and the perovskite absorbing layer is selectively disposed on the electron transport layer, and the hole transport A layer is selectively disposed on the perovskite absorbing layer, and the electrode layer is selectively disposed on the hole transport layer.

承上,前述第TW-202124282號之該鈣鈦礦吸收層的XRD圖譜在(220)結晶方向與(310)結晶方向的繞射峰強度比介於0.9至1.1之間。另外,該鈣鈦礦吸收層的 XRD圖譜的2θ角在28.2度至28.8度的繞射峰強度與31.2度及31.8度的繞射峰強度比值介於0.95至1.05之間。 Continuing from the above, the XRD pattern of the perovskite absorbing layer of the aforementioned TW-202124282 has a diffraction peak intensity ratio between (220) crystal direction and (310) crystal direction between 0.9 and 1.1. In addition, the perovskite absorber layer’s The ratio of the diffraction peak intensities at 2θ angles of 28.2° to 28.8° to those at 31.2° and 31.8° in the XRD pattern is between 0.95 and 1.05.

另一習用鈣鈦礦太陽能電池製造方法及其結構,如中華民國專利公告第TW-474992號〝鈣鈦礦薄膜及太陽能電池的製備方法〞之發明專利,其揭示一種鈣鈦礦薄膜的製備方法。該鈣鈦礦薄膜的製備方法包含步驟:旋塗一第一溶液於一基板上,以便形成一薄膜;及旋塗一第二溶液於由該第一溶液所製備的薄膜上,以便形成一鈣鈦礦薄膜〔其通式為ABX3〕。 Another conventional perovskite solar cell manufacturing method and its structure, such as the invention patent of the Republic of China Patent Announcement No. TW-474992 "Perovskite Thin Film and Solar Cell Preparation Method", which discloses a perovskite thin film preparation method . The preparation method of the perovskite film comprises the steps of: spin-coating a first solution on a substrate to form a film; and spin-coating a second solution on the film prepared by the first solution to form a calcium Titanium thin film [its general formula is ABX 3 ].

承上,前述第TW-474992號之該第一溶液的溶質至少含有AX或BX2之中一種,而該第二溶液的溶質至少含有AX或BX2之中一種,其中A為鹼金屬離子、甲基胺離子、乙基胺離子、NH2CH=NH2離子或烷基胺離子之中至少一種,B為IV族元素〔鍺Gc、錫Sn或鉛Pb〕、III族元素銦或V族元素銻之中至少一種,X為VII族元素〔氟F、氯Cl、溴Br或碘I〕之中至少一種。 As mentioned above, the solute of the first solution of the aforementioned TW-474992 contains at least one of AX or BX 2 , and the solute of the second solution contains at least one of AX or BX 2 , wherein A is an alkali metal ion, At least one of methylamine ion, ethylamine ion, NH 2 CH=NH 2 ion or alkylamine ion, B is group IV element [germanium Gc, tin Sn or lead Pb], group III element indium or group V At least one of antimony elements, and X is at least one of group VII elements [fluorine F, chlorine Cl, bromine Br or iodine I].

承上,前述第TW-474992號之該第一溶液之溶劑可選擇為二甲基甲醯胺〔DMF〕或異丙醇〔isopropanol〕,且該第二溶液之溶劑亦可選擇為二甲基甲醯胺或異丙醇。 As mentioned above, the solvent of the first solution of the aforementioned TW-474992 can be selected as dimethylformamide [DMF] or isopropanol [isopropanol], and the solvent of the second solution can also be selected as dimethyl formamide or isopropanol.

另一習用鈣鈦礦太陽能電池製造方法及其結構,如中華民國專利公告第TW-I583011號〝大面積鈣鈦礦膜及鈣鈦礦太陽能電池模組及其製作方法〞之發明專利,其揭示一種大面積鈣鈦礦膜的製作方法。該大面積鈣鈦礦膜的製作方法包含步驟:提供一起始溶液藉由狹縫型擠壓式塗布方式於一導電基板上,以便形成一膜材〔其通式為ABX3〕,且該起始溶液之溶質至少包含A、B及X。 Another conventional perovskite solar cell manufacturing method and its structure, such as the invention patent of the Republic of China Patent Announcement No. TW-I583011 "Large-area perovskite film and perovskite solar cell module and its manufacturing method", which discloses A method for fabricating a large-area perovskite film. The manufacturing method of the large-area perovskite film includes the steps of: providing an initial solution on a conductive substrate by slit-type extrusion coating, so as to form a film material (its general formula is ABX 3 ), and the starting solution The solutes of the initial solution include at least A, B and X.

承上,前述第TW-I583011號之該大面積鈣鈦礦膜的製作方法另包含步驟:浸泡該膜材於一反溶劑中, 以便形成一鈣鈦礦膜,且該鈣鈦礦膜具有數個鈣鈦礦晶粒;及對該膜材進行退火,以便使該鈣鈦礦膜之鈣鈦礦晶粒變大。 Continuing from the above, the manufacturing method of the large-area perovskite film of the aforementioned TW-I583011 further includes the steps of: soaking the film material in an anti-solvent, In order to form a perovskite film, and the perovskite film has several perovskite crystal grains; and annealing the film material, so that the perovskite crystal grains of the perovskite film become larger.

承上,前述第TW-I583011號之該鈣鈦礦膜之鈣鈦礦結晶可選擇以連續均勻方式分佈在一導電基板上,且該鈣鈦礦膜之鈣鈦礦結晶之分佈面積可介於25cm2至1000cm2之間,且該導電基板之面積可介於25cm2至1000cm2之間。 Continuing from the above, the perovskite crystals of the perovskite film of the aforementioned TW-I583011 can be selected to be continuously and uniformly distributed on a conductive substrate, and the distribution area of the perovskite crystals of the perovskite film can be between between 25cm 2 and 1000cm 2 , and the area of the conductive substrate can be between 25cm 2 and 1000cm 2 .

承上,前述第TW-I583011號之該反溶劑使該膜材中產生該鈣鈦礦結晶,其中A為鹼金屬離子、甲基胺離子〔CH3NH3 +〕、甲脒離子〔NH2CH=NH2 +〕之中至少一種,B為鉛〔Pb〕、錫〔Sn〕、鍺〔Ge〕之中至少一種,X為VII族元素〔氟F、氯Cl、溴Br、碘I〕、六氟化磷〔PF6〕、硫氰酸〔SCN〕之中至少一種。 As mentioned above, the anti-solvent of the aforementioned TW-I583011 produces the perovskite crystal in the membrane material, wherein A is an alkali metal ion, methylamine ion [CH 3 NH 3 + ], formamidine ion [NH 2 At least one of CH=NH 2 + ], B is at least one of lead [Pb], tin [Sn], germanium [Ge], X is a group VII element [fluorine F, chlorine Cl, bromine Br, iodine I] , at least one of phosphorus hexafluoride [PF 6 ], and thiocyanic acid [SCN].

承上,前述第TW-I583011號之該起始溶液之溶劑可選擇為二甲基甲醯胺〔DMF〕、二甲基亞碸〔DMSO〕、伽瑪丁內酯〔GBL〕或其任意混合溶液。另外,該反溶劑為噻吩〔 〕thiophene)、噻吩的衍生物、碘苯〔Iodobenzene〕、乙醚〔ether〕、氯苯〔CB〕、二氯苯〔DCB〕、甲苯〔toluene〕、苯〔Benzene〕或其任意混合。 As mentioned above, the solvent of the starting solution of the aforementioned TW-I583011 can be selected from dimethylformamide [DMF], dimethylsulfoxide [DMSO], gamma butyrolactone [GBL] or any mixture thereof solution. In addition, the anti-solvent is thiophene [] thiophene), derivatives of thiophene, iodobenzene [Iodobenzene], ether [ether], chlorobenzene [CB], dichlorobenzene [DCB], toluene [toluene], benzene [Benzene] or any mixture thereof.

另一習用鈣鈦礦太陽能電池製造方法及其結構,如中華民國專利公告第TW-I699370號〝鈣鈦礦太陽能電池及其製造方法〞之發明專利,其揭示一種反式鈣鈦礦太陽能電池〔inverted p-i-n PVSCs〕。該反式鈣鈦礦太陽能電池包含一導電基材、一第一載子傳遞層、一主動層、一第二載子傳遞層及一相對電極層。 Another conventional perovskite solar cell manufacturing method and its structure, such as the invention patent of the Republic of China Patent Publication No. TW-I699370 "Perovskite solar cell and its manufacturing method", which discloses a trans-type perovskite solar cell [ inverted p-i-n PVSCs]. The reverse perovskite solar cell comprises a conductive substrate, a first carrier transfer layer, an active layer, a second carrier transfer layer and an opposite electrode layer.

承上,前述第TW-I699370號之該主動層包含一異質結構,而該異質結構包含:一金屬有機框架〔MOFs〕及一鈣鈦礦材料之混合;或一雙層結構,而該雙 層結構由一第一層及一第二層所組成。該第一層包含一第一金屬有機框架,而該第一金屬有機框架包含一第一鈣鈦礦材料,且該第二層包含一第二金屬有機框架,且該第二金屬有機框架包含一第二鈣鈦礦材料,且該第一金屬有機框架及第二金屬有機框架接觸於該第二載子傳遞層。 Continuing from the above, the active layer of the aforementioned TW-I699370 includes a heterostructure, and the heterostructure includes: a mixture of a metal-organic framework (MOFs) and a perovskite material; or a double-layer structure, and the double-layer structure The layer structure is composed of a first layer and a second layer. The first layer includes a first metal organic framework, and the first metal organic framework includes a first perovskite material, and the second layer includes a second metal organic framework, and the second metal organic framework includes a The second perovskite material, and the first metal organic framework and the second metal organic framework are in contact with the second carrier transport layer.

承上,前述第TW-I699370號之該第一載子傳遞層為電洞傳遞層,其材料選自由氧化鎳〔NiOx〕、2,2',7,7'-4-[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴〔Spiro-OMeTAD〕、聚二氧乙基噻吩:苯乙烯磺酸〔PEDOT:PSS〕、N,N'-二(3-甲基苯基)-N,N'-二苯基-[1,1'-聯苯基]-4,4'-二胺〔TPD〕、聚三己基聚噻吩〔P3HT〕、五氧化二釩〔V2O5〕、石墨稀〔graphene〕、硫化鉬〔MoS2〕、硒化鉬〔MoSe2〕、聚烷基噻吩〔polyalkyl-thiophene〕及三氧化鉬〔MoO3〕所組成之群組。 As above, the first carrier transport layer of the aforementioned TW-I699370 is a hole transport layer, and its material is selected from nickel oxide [NiO x ], 2,2',7,7'-4-[N,N -Bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene [Spiro-OMeTAD], polydioxyethylthiophene: styrenesulfonic acid [PEDOT:PSS], N,N'- Bis(3-methylphenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine [TPD], polytrihexylpolythiophene [P3HT], Vanadium pentoxide [V 2 O 5 ], graphene [graphene], molybdenum sulfide [MoS 2 ], molybdenum selenide [MoSe 2 ], polyalkyl-thiophene [polyalkyl-thiophene] and molybdenum trioxide [MoO 3 ] composed of groups.

承上,前述第TW-I699370號之該第二載子傳遞層為電子傳遞層,其材料選自由富勒烯、碳-60〔C60〕、[6.6]-苯基-C61-丁酸甲酯〔[6,6]-phenyl-C61-butyric acid methyl ester,PCBM〕、二氧化鈦〔TiO2〕、氧化鋅〔ZnO〕、二氧化錫〔SnO2〕及錫酸鋅〔Zn2SnO4〕所組成之群組。 As mentioned above, the second carrier transfer layer of the aforementioned TW-I699370 is an electron transfer layer, and its material is selected from fullerene, carbon-60 [C 60 ], [6.6]-phenyl-C61-butyric acid methyl Ester [[6,6]-phenyl-C61-butyric acid methyl ester, PCBM], titanium dioxide [TiO 2 ], zinc oxide [ZnO], tin dioxide [SnO 2 ] and zinc stannate [Zn 2 SnO 4 ] composed of groups.

承上,前述第TW-I699370號之該第二載子傳遞層及該相對電極層之間進一步包含一電洞阻擋層,且該電洞阻擋層之材料包含2,9-二甲基-4,7-二苯基-1,10-菲咯琳〔bathocuproine,BCP〕、4,7-二苯基-1,10-菲咯琳〔4,7-diphenyl-1,10-phenanthroline,Bphen〕、1,3,5-三(4-吡啶-3-基苯基)苯〔1,3,5-tri(p-pyrid-3-yl-phenyl)benzene,TpPyPB〕或二苯基二[4-(吡啶-3-基)苯基]矽烷〔diphenyl bis(4-(pyridin-3-yl)phenyl)silane,DPPS〕。 Based on the above, a hole blocking layer is further included between the second carrier transport layer and the opposite electrode layer of the aforementioned TW-I699370, and the material of the hole blocking layer includes 2,9-dimethyl-4 ,7-diphenyl-1,10-phenanthroline [bathocuproine, BCP], 4,7-diphenyl-1,10-phenanthroline [4,7-diphenyl-1,10-phenanthroline, Bphen] , 1,3,5-tri(4-pyridin-3-ylphenyl)benzene [1,3,5-tri(p-pyrid-3-yl-phenyl)benzene, TpPyPB] or diphenylbis[4 -(pyridin-3-yl)phenyl]silane [diphenyl bis(4-(pyridin-3-yl)phenyl)silane, DPPS].

然而,前述中華民國專利公開第TW-202124282號專利申請案、中華民國專利公告第TW-474992號、第TW-I583011號及第TW-I699370號雖然揭示各種鈣鈦礦太陽能電池製造方法及其結構,但其仍存在改善各種技術問題之必要,因此其必然存在進一步技術改良之需求。 However, the aforementioned ROC Patent Publication No. TW-202124282, ROC Patent Publication No. TW-474992, TW-I583011 and TW-I699370 disclose various manufacturing methods and structures of perovskite solar cells , but it still has the need to improve various technical problems, so it must have the need for further technical improvement.

簡言之,前述中華民國專利公開第TW-202124282號專利申請案、中華民國專利公告第TW-474992號、第TW-I583011號及第TW-I699370號僅為本發明技術背景之參考及說明目前技術發展狀態而已,其並非用以限制本發明之範圍。 In short, the aforementioned ROC Patent Application Publication No. TW-202124282, ROC Patent Publication No. TW-474992, TW-I583011 and TW-I699370 are only references and descriptions of the technical background of the present invention. It is merely a state of technology development and is not intended to limit the scope of the present invention.

有鑑於此,本發明為了滿足上述技術問題及需求,其提供一種奈米結構修飾之有機元件製造方法及其結構,其於一基板上進行一前置處理作業,以便獲得一已處理表面,並利用一導電高分子溶液於該已處理表面上進行一第一塗佈及加熱作業,以便形成一導電高分子薄膜,且利用一無機材料溶液於該導電高分子薄膜上進行一第二塗佈及加熱作業,以便形成一電洞傳輸層,且利用一鈣鈦礦材料溶液於該電洞傳輸層上進行一第三塗佈及加熱作業,以便形成一鈣鈦礦層,且利用一聚合物材料溶液於該鈣鈦礦層上進行一第四塗佈及加熱作業,以便形成一電子傳輸層,因此相對於習用鈣鈦礦太陽能電池製造方法及其結構可達成提升元件穩定度、電洞傳輸效率及功率轉換效率之目的。 In view of this, in order to meet the above-mentioned technical problems and demands, the present invention provides a nanostructure-modified organic element manufacturing method and its structure, which performs a pre-treatment operation on a substrate in order to obtain a treated surface, and Using a conductive polymer solution to perform a first coating and heating operation on the treated surface so as to form a conductive polymer film, and using an inorganic material solution to perform a second coating and heating on the conductive polymer film Heating operation to form a hole transport layer, and using a perovskite material solution to perform a third coating and heating operation on the hole transport layer to form a perovskite layer, and using a polymer material solution A fourth coating and heating operation is performed on the perovskite layer to form an electron transport layer, so that compared with the conventional perovskite solar cell manufacturing method and its structure, the device stability, hole transport efficiency and power can be improved The purpose of conversion efficiency.

本發明之主要目的係提供一種奈米結構修飾之有機元件製造方法及其結構,其於一基板上進行一前置處理作業,以便獲得一已處理表面,並利用一導電高分子溶液於該已處理表面上進行一第一塗佈及加熱作業,以便 形成一導電高分子薄膜,且利用一無機材料溶液於該導電高分子薄膜上進行一第二塗佈及加熱作業,以便形成一電洞傳輸層,且利用一鈣鈦礦材料溶液於該電洞傳輸層上進行一第三塗佈及加熱作業,以便形成一鈣鈦礦層,且利用一聚合物材料溶液於該鈣鈦礦層上進行一第四塗佈及加熱作業,以便形成一電子傳輸層,以便達成提升元件穩定度、電洞傳輸效率及功率轉換效率之功效。 The main purpose of the present invention is to provide a nanostructure modified organic element manufacturing method and its structure, which performs a pre-treatment operation on a substrate, in order to obtain a treated surface, and utilizes a conductive polymer solution on the processed surface A first coating and heating operation is carried out on the treated surface so that forming a conductive polymer film, and using an inorganic material solution to perform a second coating and heating operation on the conductive polymer film to form a hole transport layer, and using a perovskite material solution to coat the hole performing a third coating and heating operation on the transport layer to form a perovskite layer, and performing a fourth coating and heating operation on the perovskite layer using a polymer material solution to form an electron transport layer, In order to achieve the effects of improving device stability, hole transmission efficiency and power conversion efficiency.

為了達成上述目的,本發明較佳實施例之奈米結構修飾之有機元件製造方法包含: In order to achieve the above-mentioned purpose, the nanostructure-modified organic element manufacturing method of the preferred embodiment of the present invention includes:

於一基板上進行一前置處理作業,以便獲得一已處理表面; performing a pretreatment on a substrate in order to obtain a treated surface;

利用一導電高分子溶液於該已處理表面上進行一第一塗佈及加熱作業,以便形成一導電高分子薄膜; performing a first coating and heating operation on the treated surface with a conductive polymer solution, so as to form a conductive polymer film;

利用一無機材料溶液於該導電高分子薄膜上進行一第二塗佈及加熱作業,以便形成一電洞傳輸層; Using an inorganic material solution to perform a second coating and heating operation on the conductive polymer film, so as to form a hole transport layer;

利用一鈣鈦礦材料溶液於該電洞傳輸層上進行一第三塗佈及加熱作業,以便形成一鈣鈦礦層; performing a third coating and heating operation on the hole transport layer by using a perovskite material solution to form a perovskite layer;

利用一聚合物材料溶液於該鈣鈦礦層上進行一第四塗佈及加熱作業,以便形成一電子傳輸層;及 performing a fourth coating and heating operation on the perovskite layer with a polymer material solution to form an electron transport layer; and

將一電極材料於該電子傳輸層上進行一蒸鍍作業,以便形成數個電極。 An electrode material is subjected to an evaporation operation on the electron transport layer, so as to form several electrodes.

本發明較佳實施例之該基板選自一導電基板或一銦錫氧化物基板。 The substrate in a preferred embodiment of the present invention is selected from a conductive substrate or an indium tin oxide substrate.

本發明較佳實施例之該導電高分子溶液選自一苯乙烯磺酸溶液或一含苯乙烯磺酸之溶液。 The conductive polymer solution in a preferred embodiment of the present invention is selected from a styrene sulfonic acid solution or a solution containing styrene sulfonic acid.

本發明較佳實施例之該無機材料溶液選自一奈米級無機材料溶液、一奈米級一氧化鎳溶液、一含奈米級一氧化鎳之溶液或其它含奈米級氧化鎳之溶液。 The inorganic material solution in a preferred embodiment of the present invention is selected from a nanoscale inorganic material solution, a nanoscale nickel monoxide solution, a solution containing nanoscale nickel monoxide or other solutions containing nanoscale nickel oxide .

本發明較佳實施例之該鈣鈦礦材料溶液可選 擇添加一抗溶劑,且該抗溶劑選自一甲苯溶劑或一含甲苯之溶劑。 The perovskite material solution of the preferred embodiment of the present invention is optional An antisolvent is optionally added, and the antisolvent is selected from a toluene solvent or a toluene-containing solvent.

本發明較佳實施例之該聚合物材料溶液選自一富勒烯衍生物溶液或一含富勒烯衍生物之溶液。 The polymer material solution in a preferred embodiment of the present invention is selected from a solution of a fullerene derivative or a solution containing a fullerene derivative.

為了達成上述目的,本發明較佳實施例之奈米結構修飾之有機元件結構包含: In order to achieve the above-mentioned purpose, the nanostructure-modified organic element structure of the preferred embodiment of the present invention includes:

一基板,其進行一前置處理作業於該基板上而獲得一已處理表面; A substrate on which a pretreatment operation is performed to obtain a processed surface;

一導電高分子薄膜,其利用一導電高分子溶液於該已處理表面上進行一第一塗佈及加熱作業而形成該導電高分子薄膜; A conductive polymer film, which uses a conductive polymer solution to perform a first coating and heating operation on the treated surface to form the conductive polymer film;

一電洞傳輸層,其利用一無機材料溶液於該導電高分子薄膜上進行一第二塗佈及加熱作業而形成該電洞傳輸層; A hole transport layer, which uses an inorganic material solution to perform a second coating and heating operation on the conductive polymer film to form the hole transport layer;

一鈣鈦礦層,其利用一鈣鈦礦材料溶液於該電洞傳輸層上進行一第三塗佈及加熱作業而形成該鈣鈦礦層; A perovskite layer, which uses a perovskite material solution to perform a third coating and heating operation on the hole transport layer to form the perovskite layer;

一電子傳輸層,其利用一聚合物材料溶液於該鈣鈦礦層上進行一第四塗佈及加熱作業而形成該電子傳輸層;及 An electron transport layer, which uses a polymer material solution to perform a fourth coating and heating operation on the perovskite layer to form the electron transport layer; and

至少一電極,其將一電極材料於該電子傳輸層上進行一蒸鍍作業而形成該電極; at least one electrode, which forms the electrode by performing an evaporation operation on the electron transport layer with an electrode material;

其中該無機材料溶液之無機材料用以取代該導電高分子溶液之有機聚合物。 The inorganic material of the inorganic material solution is used to replace the organic polymer of the conductive polymer solution.

本發明較佳實施例之該基板選自一導電基板或一銦錫氧化物基板。 The substrate in a preferred embodiment of the present invention is selected from a conductive substrate or an indium tin oxide substrate.

本發明較佳實施例之該導電高分子溶液選自一苯乙烯磺酸溶液或一含苯乙烯磺酸之溶液。 The conductive polymer solution in a preferred embodiment of the present invention is selected from a styrene sulfonic acid solution or a solution containing styrene sulfonic acid.

本發明較佳實施例之該無機材料溶液選自一 奈米級無機材料溶液、一奈米級一氧化鎳溶液、一含奈米級一氧化鎳之溶液或其它含奈米級氧化鎳之溶液。 The inorganic material solution in a preferred embodiment of the present invention is selected from a Nanoscale inorganic material solution, a nanoscale nickel monoxide solution, a solution containing nanoscale nickel monoxide or other solutions containing nanoscale nickel oxide.

本發明較佳實施例之該鈣鈦礦材料溶液可選擇添加一抗溶劑,且該抗溶劑選自一甲苯溶劑或一含甲苯之溶劑。 An anti-solvent may optionally be added to the perovskite material solution in a preferred embodiment of the present invention, and the anti-solvent is selected from a toluene solvent or a toluene-containing solvent.

本發明較佳實施例之該聚合物材料溶液選自一富勒烯衍生物溶液或一含富勒烯衍生物之溶液。 The polymer material solution in a preferred embodiment of the present invention is selected from a solution of a fullerene derivative or a solution containing a fullerene derivative.

1:鈣鈦礦元件 1: Perovskite element

10:基板 10: Substrate

11:電洞傳輸層 11: Hole transport layer

12:鈣鈦礦層 12: Perovskite layer

13:電子傳輸層 13: Electron transport layer

14:電極 14: electrode

第1圖:本發明較佳實施例之奈米結構修飾之有機元件結構之側視示意圖。 Figure 1: A schematic side view of the nanostructure-modified organic device structure of a preferred embodiment of the present invention.

第2圖:本發明較佳實施例之奈米結構修飾之有機元件製造方法之流程方塊示意圖。 Fig. 2: A schematic block diagram of the process flow of the nanostructure-modified organic device manufacturing method according to the preferred embodiment of the present invention.

第3A至3C圖:本發明較佳實施例之奈米結構修飾之有機元件製造方法採用三種奈米級一氧化鎳材料表面之掃描電子顯微鏡影像示意圖。 Figures 3A to 3C: SEM images of the surfaces of three nanoscale nickel monoxide materials used in the method for manufacturing organic devices with nanostructure modification in a preferred embodiment of the present invention.

第4A至4C圖:本發明較佳實施例之奈米結構修飾之有機元件製造方法採用三種奈米級一氧化鎳材料後其鈣鈦礦表面之掃描電子顯微鏡影像示意圖。 Figures 4A to 4C: SEM images of the perovskite surface after using three nano-scale nickel monoxide materials in the method for manufacturing organic devices with nanostructure modification in a preferred embodiment of the present invention.

第5A至5C圖:本發明較佳實施例之奈米結構修飾之有機元件製造方法採用三種奈米級一氧化鎳材料後其鈣鈦礦表面之掃描電子顯微鏡影像及其二值化影像示意圖。 Figures 5A to 5C: SEM images and binarized images of the perovskite surface after the nanostructure-modified organic device manufacturing method of the preferred embodiment of the present invention uses three nano-scale nickel monoxide materials.

第6圖:本發明較佳實施例之奈米結構修飾之有機元件結構採用三種奈米級一氧化鎳材料下其電流密度對電壓之曲線示意圖。 Fig. 6: A schematic diagram of the current density vs. voltage curve of the nanostructure-modified organic element structure of the preferred embodiment of the present invention using three nano-scale nickel monoxide materials.

為了充分瞭解本發明,於下文將舉例較佳實施例並配合所附圖式作詳細說明,且其並非用以限定本發明。 In order to fully understand the present invention, preferred embodiments will be described below in detail together with the accompanying drawings, which are not intended to limit the present invention.

本發明較佳實施例之奈米結構修飾之有機元件製造方法及其結構適合應用於各種感測元件、各種發光二極體元件、各種鈣鈦礦太陽能電池元件〔反式結構鈣鈦礦太陽能電池元件〕或其相關產品,但其並非用以限制本發明之應用範圍。 The nano-structure modified organic element manufacturing method and its structure of the preferred embodiment of the present invention are suitable for various sensing elements, various light-emitting diode elements, and various perovskite solar cell elements [transverse structure perovskite solar cells Component] or its related products, but it is not intended to limit the scope of application of the present invention.

第1圖揭示本發明較佳實施例之奈米結構修飾之有機元件結構之側視示意圖。請參照第1圖所示,舉例而言,本發明較佳實施例之奈米結構修飾之有機元件結構主要包含一基板10、一電洞傳輸層11、一鈣鈦礦層12、一電子傳輸層13及數個電極14,且該基板10、電洞傳輸層11、鈣鈦礦層12、電子傳輸層13及電極14依序堆疊形成一鈣鈦礦元件1,且該鈣鈦礦元件1可選擇為一鈣鈦礦感測元件、一反式鈣鈦礦太陽能電池元件或一鈣鈦礦光電元件。 Fig. 1 shows a schematic side view of a nanostructure-modified organic device structure according to a preferred embodiment of the present invention. Please refer to Figure 1, for example, the structure of the organic element modified by the nanometer structure of the preferred embodiment of the present invention mainly includes a substrate 10, a hole transport layer 11, a perovskite layer 12, and an electron transport layer 13 and several electrodes 14, and the substrate 10, the hole transport layer 11, the perovskite layer 12, the electron transport layer 13 and the electrodes 14 are sequentially stacked to form a perovskite element 1, and the perovskite element 1 can be selected It is a perovskite sensing element, an inverse perovskite solar cell element or a perovskite photoelectric element.

第2圖揭示本發明較佳實施例之奈米結構修飾之有機元件製造方法之流程方塊示意圖,其對應於第1圖之奈米結構修飾之有機元件結構。請參照第1及2圖所示,本發明較佳實施例之奈米結構修飾之有機元件製造方法包含步驟S1:舉例而言,首先,以適當技術手段於該基板10上進行至少一前置處理作業,以便獲得一已處理表面〔未標示〕。 FIG. 2 discloses a schematic block diagram of a method for manufacturing a nanostructure-modified organic device according to a preferred embodiment of the present invention, which corresponds to the structure of the nanostructure-modified organic device in FIG. 1 . Please refer to Figures 1 and 2, the method for manufacturing organic devices with nanostructure modification in a preferred embodiment of the present invention includes step S1: For example, firstly, at least one pre-preparation process is performed on the substrate 10 by appropriate technical means. Treatment operations in order to obtain a treated surface [not marked].

請再參照第1及2圖所示,舉例而言,該基板10可選自一玻璃基板或具類似材質之基板,且該基板10選自一導電基板或一銦錫氧化物〔ITO〕基板,且該前置處理作業選擇採用紫外線適當照射於該基板10之至少一表面一預定時間〔例如:15分鐘或其它處理時間〕,以便該已處理表面具有親水性,如此該已處理表面適用於後續旋轉塗佈作業。 Please refer to Figures 1 and 2 again. For example, the substrate 10 can be selected from a glass substrate or a substrate of similar material, and the substrate 10 can be selected from a conductive substrate or an indium tin oxide (ITO) substrate. , and the pre-treatment operation chooses to use ultraviolet rays to irradiate at least one surface of the substrate 10 for a predetermined time (for example: 15 minutes or other treatment time), so that the treated surface is hydrophilic, so that the treated surface is suitable for use in Subsequent spin coating job.

請再參照第1及2圖所示,本發明較佳實施例 之奈米結構修飾之有機元件製造方法包含步驟S2:舉例而言,接著,以適當技術手段利用一導電高分子溶液於該已處理表面上進行一第一塗佈及加熱作業,以便形成一導電高分子薄膜。本發明較佳實施例之該導電高分子溶液選自一苯乙烯磺酸〔PEDOT:PSS〕溶液、一含苯乙烯磺酸溶液或一有機材料溶液〔例如:PATT材料、Spiro-OMeTAD材料或P3HT材料等〕。 Please refer to Fig. 1 and Fig. 2 again, the preferred embodiment of the present invention The nanostructure modified organic device manufacturing method includes step S2: for example, then, using a conductive polymer solution to perform a first coating and heating operation on the treated surface by appropriate technical means, so as to form a conductive polymer film. The conductive polymer solution of the preferred embodiment of the present invention is selected from a styrene sulfonic acid [PEDOT:PSS] solution, a solution containing styrene sulfonic acid or an organic material solution [for example: PATT material, Spiro-OMeTAD material or P3HT materials, etc.].

請再參照第1及2圖所示,舉例而言,該第一塗佈及加熱作業採用3000rpm或其它轉速之旋轉塗佈〔spin-coating〕方式,並持續30秒或其它旋塗時間,且該第一塗佈及加熱作業採用一加熱板以適當加熱溫度〔例如:120℃或其它溫度〕加熱一預定時間〔例如:10分鐘或其它加熱處理時間〕。 Please refer to Figures 1 and 2 again. For example, the first coating and heating operation adopts a spin-coating (spin-coating) method at 3000 rpm or other speeds, and lasts for 30 seconds or other spin-coating times, and The first coating and heating operation uses a heating plate to heat at an appropriate heating temperature (for example: 120° C. or other temperature) for a predetermined time (for example: 10 minutes or other heat treatment time).

請再參照第1及2圖所示,本發明較佳實施例之奈米結構修飾之有機元件製造方法包含步驟S3:舉例而言,接著,以適當技術手段利用一無機材料溶液於該導電高分子薄膜上進行一第二塗佈及加熱作業,以便形成該電洞傳輸層11。 Please refer to Figures 1 and 2 again, the method for manufacturing organic elements with nanostructure modification in a preferred embodiment of the present invention includes step S3: for example, then, using an inorganic material solution in the conductive high A second coating and heating operation is performed on the molecular film to form the hole transport layer 11 .

請再參照第1及2圖所示,舉例而言,該無機材料溶液之無機材料〔例如:CuSCN、Cu2O、CuS、CuO、CuI、CoOx、Cu2BaSnS4或NiOx等或其它無機材料或過渡金屬材料〕用以取代該導電高分子溶液之有機聚合物〔例如:PEDOT:PSS或其它有機聚合物〕。 Please refer to Figures 1 and 2 again. For example, the inorganic material of the inorganic material solution [for example: CuSCN, Cu 2 O, CuS, CuO, CuI, CoO x , Cu 2 BaSnS 4 or NiO x , etc. or other Inorganic materials or transition metal materials] are used to replace the organic polymers of the conductive polymer solution [for example: PEDOT:PSS or other organic polymers].

請再參照第1及2圖所示,舉例而言,該無機材料溶液可選自一奈米級無機材料溶液、一奈米級一氧化鎳〔nano-NiO〕溶液、一含奈米級一氧化鎳之溶液或其它含奈米級氧化鎳之溶液。 Please refer to Figures 1 and 2 again. For example, the inorganic material solution can be selected from a nanoscale inorganic material solution, a nanoscale nickel monoxide [nano-NiO] solution, a nanoscale-containing Nickel oxide solution or other solutions containing nano-scale nickel oxide.

請再參照第1及2圖所示,舉例而言,該無機材料溶液具有一具奈米結構之一氧化鎳材料,且該具奈米 結構之一氧化鎳材料可選擇水熱法適當進行合成其奈米結構,且可利用該奈米結構所具有的孔隙特性,以增加其與該鈣鈦礦層12之接觸面積。 Please refer to Figures 1 and 2 again. For example, the inorganic material solution has a nickel oxide material with a nanostructure, and the nanostructure The nickel oxide material of structure 1 can choose the hydrothermal method to properly synthesize its nanostructure, and the pore characteristics of the nanostructure can be used to increase the contact area with the perovskite layer 12 .

請再參照第1及2圖所示,舉例而言,該第二塗佈及加熱作業採用3000rpm或其它轉速之旋轉塗佈方式,並持續30秒或其它旋塗時間,且該第二塗佈及加熱作業採用一加熱板以適當加熱溫度〔例如:80℃或其它溫度〕加熱一預定時間〔例如:15分鐘或其它加熱處理時間〕。 Please refer to Figures 1 and 2 again. For example, the second coating and heating operation adopts a spin coating method at 3000 rpm or other speeds, and lasts for 30 seconds or other spin coating times, and the second coating And the heating operation uses a heating plate to heat for a predetermined time (for example: 15 minutes or other heating treatment time) at an appropriate heating temperature (for example: 80° C. or other temperature).

請再參照第1及2圖所示,本發明較佳實施例之奈米結構修飾之有機元件製造方法包含步驟S4:舉例而言,接著,以適當技術手段利用一鈣鈦礦〔ABX3〕材料溶液於該電洞傳輸層11上進行一第三塗佈及加熱作業,以便形成該鈣鈦礦層12。 Please refer to Figures 1 and 2 again, the method for manufacturing organic devices with nanostructure modification in a preferred embodiment of the present invention includes step S4: for example, then, using a perovskite [ ABX3 ] The material solution is subjected to a third coating and heating operation on the hole transport layer 11 to form the perovskite layer 12 .

請再參照第1及2圖所示,舉例而言,該第三塗佈及加熱作業採用兩段式旋塗作業,且該兩段式旋塗作業包含1000rpm或其它轉速之第一階段旋轉塗佈方式與持續10秒或其它旋塗時間及3500rpm或其它轉速之第二階段旋轉塗佈方式與持續20秒或其它旋塗時間,且該第三塗佈及加熱作業採用一加熱板以適當加熱溫度〔例如:100℃或其它溫度〕加熱一預定時間〔例如:5分鐘或其它加熱處理時間〕,此時該鈣鈦礦層12可適當轉變成一明亮黑色薄膜。 Please refer to Figures 1 and 2 again. For example, the third coating and heating operation adopts a two-stage spin coating operation, and the two-stage spin coating operation includes the first stage of spin coating at 1000rpm or other speeds and continuous 10 seconds or other spin coating time and 3500rpm or other rotation speed of the second stage spin coating method and last 20 seconds or other spin coating time, and the third coating and heating operation adopts a heating plate to an appropriate heating temperature [for example: 100° C. or other temperature] for a predetermined time [for example: 5 minutes or other heat treatment time], at this time the perovskite layer 12 can be properly transformed into a bright black film.

請再參照第1及2圖所示,舉例而言,本發明另一較佳實施例於第二階段旋轉塗佈至一預定時間〔例如:10秒或其它添加時間〕時,選擇該鈣鈦礦材料溶液可選擇添加一抗溶劑,且該抗溶劑選自一甲苯溶劑或一含甲苯之溶劑,以便該抗溶劑可適當加速鈣鈦礦形成結晶〔例如:增加晶粒尺寸規格〕。 Please refer to Figures 1 and 2 again. For example, another preferred embodiment of the present invention selects the perovskite during the second stage of spin coating to a predetermined time (for example: 10 seconds or other addition time). An anti-solvent may optionally be added to the mineral material solution, and the anti-solvent is selected from a toluene solvent or a solvent containing toluene, so that the anti-solvent can properly accelerate the crystallization of the perovskite (eg, increase the grain size specification).

請再參照第1及2圖所示,本發明較佳實施例之奈米結構修飾之有機元件製造方法包含步驟S5:舉例而言,接著,以適當技術手段利用一聚合物材料溶液於該鈣鈦礦層12上進行一第四塗佈及加熱作業,以便形成該電子傳輸層13。 Please refer to Figures 1 and 2 again, the method for manufacturing organic devices with nanostructure modification in a preferred embodiment of the present invention includes step S5: for example, then, using a polymer material solution in the calcium A fourth coating and heating operation is performed on the titanium ore layer 12 to form the electron transport layer 13 .

請再參照第1及2圖所示,舉例而言,該第四塗佈及加熱作業採用1500rpm或其它轉速之旋轉塗佈方式,並持續60秒或其它旋塗時間,且該第四塗佈及加熱作業採用一加熱板以適當加熱溫度〔例如:100℃或其它溫度〕加熱一預定時間〔例如:1分鐘或其它加熱處理時間〕。 Please refer to Figures 1 and 2 again. For example, the fourth coating and heating operation adopts a spin coating method at 1500 rpm or other speeds, and lasts for 60 seconds or other spin coating times, and the fourth coating And the heating operation uses a heating plate to heat at an appropriate heating temperature (for example: 100° C. or other temperature) for a predetermined time (for example: 1 minute or other heating treatment time).

請再參照第1及2圖所示,舉例而言,該聚合物材料溶液可選自一富勒烯衍生物〔PCBM〕溶液或一含富勒烯衍生物材料之溶液,但其並非用以限制本發明之應用範圍。 Please refer to Figures 1 and 2 again. For example, the polymer material solution can be selected from a fullerene derivative [PCBM] solution or a solution containing a fullerene derivative material, but it is not used for Limit the scope of application of the present invention.

請再參照第1及2圖所示,本發明較佳實施例之奈米結構修飾之有機元件製造方法包含步驟S6:舉例而言,接著,以適當技術手段將一電極材料於該電子傳輸層13上進行一蒸鍍〔deposition〕作業,以便形成數個該電極14〔例如:電極陣列〕。 Please refer to Figures 1 and 2 again. The method for manufacturing organic devices with nanostructure modification in a preferred embodiment of the present invention includes step S6: 13 to perform a vapor deposition (deposition) operation, so as to form several of the electrodes 14 (for example: electrode array).

請再參照第1及2圖所示,舉例而言,該電極材料可選擇採用鎢舟加熱方式將銀錠〔或選擇其它導電材料〕熔化後進行該蒸鍍作業,且該電極14具有一適當面積〔例如:0.09cm2或其它尺寸規格〕。 Please refer to Figures 1 and 2 again. For example, the electrode material can be heated by a tungsten boat to melt the silver ingot (or select other conductive materials) to perform the evaporation operation, and the electrode 14 has an appropriate area. [For example: 0.09cm 2 or other dimensions].

第3A至3C圖揭示本發明較佳實施例之奈米結構修飾之有機元件製造方法採用三種奈米級一氧化鎳材料表面之掃描電子顯微鏡〔SEM,Scanning Electron Microscope〕影像示意圖。請參照第3A至3C圖所示,舉例而言,本發明較佳實施例之奈米結構修飾之有機元件製 造方法採用三種奈米級一氧化鎳材料,其包含nano-NiO140、nano-NiO160及nano-NiO180。 Figures 3A to 3C disclose the schematic diagrams of scanning electron microscope (SEM, Scanning Electron Microscope) images of the surface of three nano-scale nickel monoxide materials used in the method for manufacturing organic devices with nanostructure modification in a preferred embodiment of the present invention. Please refer to Figures 3A to 3C, for example, the nanostructure modified organic device of the preferred embodiment of the present invention The manufacturing method adopts three kinds of nano-scale nickel monoxide materials, which include nano-NiO140, nano-NiO160 and nano-NiO180.

請參照第3A圖所示,舉例而言,NiO140奈米氧化鎳的薄膜表面上的奈米結構氧化鎳比較鬆散;請參照第3B及3C圖所示,舉例而言,NiO160及NiO180奈米氧化鎳的薄膜表面上的奈米結構氧化鎳相對分散非常均勻,即由異丙醇導致其分散均勻。 Please refer to Figure 3A, for example, the nanostructured nickel oxide on the film surface of NiO140 nanometer nickel oxide is relatively loose; please refer to Figure 3B and 3C, for example, NiO160 and NiO180 nanometer oxide The nanostructured nickel oxide on the surface of the nickel film is relatively uniformly dispersed, that is, isopropanol causes its uniform dispersion.

第4A至4C圖揭示本發明較佳實施例之奈米結構修飾之有機元件製造方法採用三種奈米級一氧化鎳材料後其鈣鈦礦表面之掃描電子顯微鏡影像示意圖,其對照於第3A至3C圖所示。請參照第4A至4C圖所示,舉例而言,本發明較佳實施例之奈米結構修飾之有機元件製造方法採用三種奈米級一氧化鎳材料〔nano-NiO140、nano-NiO160及nano-NiO180〕後其鈣鈦礦表面顯示其皆具有奈米結構。 Figures 4A to 4C disclose the schematic diagrams of scanning electron microscope images of the perovskite surface after using three nano-scale nickel monoxide materials in the method for manufacturing organic devices with nanostructure modification in a preferred embodiment of the present invention, which are compared with those in Figures 3A to 4C. Figure 3C. Please refer to Figures 4A to 4C, for example, the organic device manufacturing method of nanostructure modification of the preferred embodiment of the present invention uses three kinds of nano-scale nickel monoxide materials [nano-NiO140, nano-NiO160 and nano-NiO160 and nano- After NiO180], its perovskite surface shows that it has a nanostructure.

第5A至5C圖揭示本發明較佳實施例之奈米結構修飾之有機元件製造方法採用三種奈米級一氧化鎳材料後其鈣鈦礦表面之掃描電子顯微鏡影像及其二值化影像示意圖。請參照第5A至5C圖所示,舉例而言,本發明較佳實施例之奈米結構修飾之有機元件製造方法採用三種奈米級一氧化鎳材料〔nano-NiO140、nano-NiO160及nano-NiO180〕後其鈣鈦礦表面顯示黑色為鈣鈦礦吸光層晶粒覆蓋的部分,白色則為未被鈣鈦礦吸光層晶粒覆蓋或晶界的孔隙缺陷。 Figures 5A to 5C show the scanning electron microscope images and their binarized images of the perovskite surface after the nanostructure-modified organic device manufacturing method of the preferred embodiment of the present invention uses three nano-scale nickel monoxide materials. Please refer to Figures 5A to 5C, for example, the organic device manufacturing method of nanostructure modification of the preferred embodiment of the present invention uses three nano-scale nickel monoxide materials [nano-NiO140, nano-NiO160 and nano-NiO160 and nano- After NiO180], the perovskite surface shows black as the part covered by the perovskite light-absorbing layer grains, and white as the pore defects not covered by the perovskite light-absorbing layer grains or grain boundaries.

舉例而言,本發明較佳實施例之奈米結構修飾之有機元件製造方法針對鈣鈦礦層沉積在不同溫度所合成的氧化鎳薄膜對鈣鈦礦晶粒表面覆蓋率之影響:當選擇沉積在NiO140薄膜上時,其表面覆蓋率約為78%;倘若當選擇沉積在NiO160薄膜上時,其表面覆蓋率則增大至約 為83.9%;倘若當選擇沉積在NiO180薄膜上時,其表面覆蓋率則降至約82.1%。簡言之,其覆蓋率的增加能夠提升電池的性能。 For example, the method for manufacturing organic devices with nanostructure modification in the preferred embodiment of the present invention aims at the influence of nickel oxide films synthesized at different temperatures on the surface coverage of perovskite crystal grains by depositing perovskite layers: when selectively deposited on On NiO140 film, its surface coverage is about 78%; if it is selectively deposited on NiO160 film, its surface coverage increases to about It is 83.9%; if it is selectively deposited on the NiO180 film, its surface coverage drops to about 82.1%. In short, the increase of its coverage can improve the performance of the battery.

舉例而言,本發明較佳實施例之奈米結構修飾之有機元件製造方法針對鈣鈦礦層沉積在不同溫度所合成的氧化鎳薄膜對鈣鈦礦表面晶粒平均大小之影響:當選擇沉積在NiO140薄膜上時,其表面晶粒大小約為975.255nm2;倘若當選擇沉積在NiO160薄膜上時,其表面晶粒大小增大至約1441.667nm2;倘若當選擇沉積在NiO18O薄膜上時,其表面晶粒大小則縮小至約771.569nm2。簡言之,鈣鈦礦表面晶粒的受光面積越大所產生之電子電洞對也就越多,因此表面晶粒越大越能夠提升電池的性能。 For example, the method for manufacturing organic devices with nanostructure modification in a preferred embodiment of the present invention is aimed at the influence of nickel oxide films synthesized at different temperatures on the average grain size of the perovskite surface: when the perovskite layer is deposited on On NiO140 film, its surface grain size is about 975.255nm 2 ; if it is selectively deposited on NiO160 film, its surface grain size increases to about 1441.667nm 2 ; if it is selectively deposited on NiO18O film, its The surface grain size then shrinks to about 771.569nm 2 . In short, the larger the light-receiving area of the perovskite surface grains, the more electron-hole pairs will be generated. Therefore, the larger the surface grains, the better the performance of the battery.

第6圖揭示本發明較佳實施例之奈米結構修飾之有機元件結構採用三種奈米級一氧化鎳材料下其電流密度對電壓之曲線示意圖。請參照第6圖所示,舉例而言,本發明較佳實施例之奈米結構修飾之有機元件結構採用三種奈米級一氧化鎳材料〔nano-NiO140、nano-NiO160及nano-NiO180〕,並獲得不同特性,如表1所示。 Fig. 6 shows a schematic diagram of the current density vs. voltage curves of the nanostructure-modified organic device structure of the preferred embodiment of the present invention using three kinds of nano-scale nickel monoxide materials. Please refer to Figure 6, for example, the organic device structure of the nanostructure modification of the preferred embodiment of the present invention uses three nano-scale nickel monoxide materials [nano-NiO140, nano-NiO160 and nano-NiO180], And obtain different characteristics, as shown in Table 1.

表1:奈米結構修飾之有機元件之特性

Figure 110142089-A0101-12-0014-1
Table 1: Properties of Nanostructure Modified Organic Components
Figure 110142089-A0101-12-0014-1

請再參照第6圖所示,舉例而言,本發明較佳實施例之奈米結構修飾之有機元件結構針對電洞傳輸層以平面結構之PEDOT:PSS或奈米結構之氧化鎳對反式鈣鈦礦太陽能電池的J-V特性曲線之影響:其顯示奈米結構之氧化鎳能提高開路電壓及短路電流。 Please refer to Figure 6 again. For example, the organic device structure modified by the nanostructure of the preferred embodiment of the present invention is aimed at the hole transport layer with a planar structure of PEDOT:PSS or a nanostructured nickel oxide against the trans The influence of the J-V characteristic curve of perovskite solar cells: it shows that the nanostructured nickel oxide can improve the open circuit voltage and short circuit current.

舉例而言,本發明較佳實施例之奈米結構修飾 之有機元件製造方法針對不同的奈米結構氧化鎳作為電洞傳輸層對反式鈣鈦礦太陽能電池的J-V特性曲線之影響:在160℃合成出的微球結構氧化鎳有較高的開路電壓0.93V和短路電流16.3mA,其主要因素為微球之間所產生的多孔特性,有效增加了電洞傳輸的效率,使功率轉換效率達到9.63%,比起PEDOT:PSS平面結構的效率提高至約1.32倍。 For example, the nanostructure modification of the preferred embodiment of the present invention The influence of different nanostructured nickel oxides as the hole transport layer on the J-V characteristic curve of the reverse perovskite solar cell: the microspherical nickel oxide synthesized at 160°C has a higher open circuit voltage 0.93V and a short-circuit current of 16.3mA, the main factor is the porous characteristics generated between the microspheres, which effectively increases the efficiency of hole transmission, making the power conversion efficiency reach 9.63%, which is higher than that of PEDOT:PSS planar structure. About 1.32 times.

前述較佳實施例僅舉例說明本發明及其技術特徵,該實施例之技術仍可適當進行各種實質等效修飾及/或替換方式予以實施;因此,本發明之權利範圍須視後附申請專利範圍所界定之範圍為準。本案著作權限制使用於中華民國專利申請用途。 The above-mentioned preferred embodiments only illustrate the present invention and its technical characteristics, and the technology of this embodiment can still be implemented in various substantially equivalent modifications and/or replacements; therefore, the scope of rights of the present invention depends on the appended patent application The scope defined by the scope shall prevail. The copyright in this case is restricted to be used for patent applications in the Republic of China.

1:鈣鈦礦元件 1: Perovskite element

10:基板 10: Substrate

11:電洞傳輸層 11: Hole transport layer

12:鈣鈦礦層 12: Perovskite layer

13:電子傳輸層 13: Electron transport layer

14:電極 14: electrode

Claims (10)

一種奈米結構修飾之有機元件製造方法,其包含:於一基板上進行一前置處理作業,以便獲得一已處理表面;利用一導電高分子溶液於該已處理表面上進行一第一塗佈及加熱作業,以便形成一導電高分子薄膜;利用一無機材料溶液於該導電高分子薄膜上進行一第二塗佈及加熱作業,以便形成一電洞傳輸層,而該無機材料溶液選自一奈米級無機材料溶液,且該無機材料溶液具有一具奈米結構;利用一鈣鈦礦材料溶液於該電洞傳輸層上進行一第三塗佈及加熱作業,以便形成一鈣鈦礦層,且利用該無機材料溶液之奈米結構所具有的孔隙特性,以增加其與該鈣鈦礦層之接觸面積;利用一聚合物材料溶液於該鈣鈦礦層上進行一第四塗佈及加熱作業,以便形成一電子傳輸層;及將一電極材料於該電子傳輸層上進行一蒸鍍作業,以便形成數個電極。 A method for manufacturing organic elements with nanostructure modification, which includes: performing a pretreatment operation on a substrate to obtain a treated surface; using a conductive polymer solution to perform a first coating on the treated surface and heating operations to form a conductive polymer film; use an inorganic material solution to perform a second coating and heating operation on the conductive polymer film to form a hole transport layer, and the inorganic material solution is selected from a a nanoscale inorganic material solution, and the inorganic material solution has a nanostructure; using a perovskite material solution to perform a third coating and heating operation on the hole transport layer, so as to form a perovskite layer, And using the pore characteristics of the nanostructure of the inorganic material solution to increase the contact area with the perovskite layer; using a polymer material solution to perform a fourth coating and heating operation on the perovskite layer, In order to form an electron transport layer; and performing an evaporation operation on the electron transport layer with an electrode material, so as to form several electrodes. 依申請專利範圍第1項所述之奈米結構修飾之有機元件製造方法,其中該導電高分子溶液選自一苯乙烯磺酸溶液或一含苯乙烯磺酸之溶液。 According to the method for manufacturing organic devices with nanostructure modification described in claim 1 of the patent application, the conductive polymer solution is selected from a styrene sulfonic acid solution or a solution containing styrene sulfonic acid. 依申請專利範圍第1項所述之奈米結構修飾之有機元件製造方法,其中該無機材料溶液選自一奈米級一氧化鎳溶液、一含奈米級一氧化鎳之溶液或一含奈米級過渡金屬材料之溶液。 According to the method for manufacturing organic elements with nanostructure modification described in item 1 of the scope of the patent application, the inorganic material solution is selected from a nanoscale nickel monoxide solution, a solution containing nanoscale nickel monoxide, or a nanoscale nickel monoxide containing solution. Solutions of meter-scale transition metal materials. 依申請專利範圍第1項所述之奈米結構修飾之有機元件製造方法,其中該鈣鈦礦材料溶液可選擇添加一抗溶劑,且該抗溶劑選自一甲苯溶劑或一含甲苯之溶劑。 According to the method for manufacturing organic devices with nanostructure modification described in item 1 of the scope of the patent application, an anti-solvent can be optionally added to the perovskite material solution, and the anti-solvent is selected from a toluene solvent or a toluene-containing solvent. 依申請專利範圍第1項所述之奈米結構修飾之有機元件製造方法,其中該聚合物材料溶液選自一富勒烯衍生物 溶液或一含富勒烯衍生物之溶液。 According to the method for manufacturing organic devices with nanostructure modification described in item 1 of the scope of the patent application, wherein the polymer material solution is selected from a fullerene derivative solution or a solution containing fullerene derivatives. 一種奈米結構修飾之有機元件結構,其包含:一基板,其進行一前置處理作業於該基板上而獲得一已處理表面;一導電高分子薄膜,其利用一導電高分子溶液於該已處理表面上進行一第一塗佈及加熱作業而形成該導電高分子薄膜;一電洞傳輸層,其利用一無機材料溶液於該導電高分子薄膜上進行一第二塗佈及加熱作業而形成該電洞傳輸層,而該無機材料溶液選自一奈米級無機材料溶液,且該無機材料溶液具有一具奈米結構;一鈣鈦礦層,其利用一鈣鈦礦材料溶液於該電洞傳輸層上進行一第三塗佈及加熱作業而形成該鈣鈦礦層,且利用該無機材料溶液之奈米結構所具有的孔隙特性,以增加其與該鈣鈦礦層之接觸面積;一電子傳輸層,其利用一聚合物材料溶液於該鈣鈦礦層上進行一第四塗佈及加熱作業而形成該電子傳輸層;及至少一電極,其將一電極材料於該電子傳輸層上進行一蒸鍍作業而形成該電極;其中該無機材料溶液之無機材料用以取代該導電高分子溶液之有機聚合物。 A nano-structure modified organic device structure, which includes: a substrate, which performs a pre-treatment operation on the substrate to obtain a treated surface; a conductive polymer film, which uses a conductive polymer solution on the processed surface The conductive polymer film is formed by performing a first coating and heating operation on the treated surface; a hole transport layer is formed by performing a second coating and heating operation on the conductive polymer film using an inorganic material solution The hole transport layer, and the inorganic material solution is selected from a nanoscale inorganic material solution, and the inorganic material solution has a nanostructure; a perovskite layer, which utilizes a perovskite material solution in the hole Perform a third coating and heating operation on the transport layer to form the perovskite layer, and use the pore characteristics of the nanostructure of the inorganic material solution to increase its contact area with the perovskite layer; an electron transport layer, which uses a polymer material solution to perform a fourth coating and heating operation on the perovskite layer to form the electron transport layer; and at least one electrode, which performs an evaporation of an electrode material on the electron transport layer The electrode is formed by plating operation; wherein the inorganic material of the inorganic material solution is used to replace the organic polymer of the conductive polymer solution. 依申請專利範圍第6項所述之奈米結構修飾之有機元件結構,其中該導電高分子溶液選自一苯乙烯磺酸溶液或一含苯乙烯磺酸之溶液。 According to the nanostructure-modified organic device structure described in claim 6 of the patent application, the conductive polymer solution is selected from a styrene sulfonic acid solution or a solution containing styrene sulfonic acid. 依申請專利範圍第6項所述之奈米結構修飾之有機元件結構,其中該無機材料溶液選自一奈米級一氧化鎳溶液、一含奈米級一氧化鎳之溶液或一含奈米級過渡金屬材料之溶液。 According to the nanostructure-modified organic element structure described in item 6 of the scope of the patent application, wherein the inorganic material solution is selected from a nano-scale nickel monoxide solution, a solution containing nano-scale nickel monoxide, or a nano-scale nickel monoxide-containing solution Solutions of grade transition metal materials. 依申請專利範圍第6項所述之奈米結構修飾之有機元件結構,其中該鈣鈦礦材料溶液可選擇添加一抗溶劑,且 該抗溶劑選自一甲苯溶劑或一含甲苯之溶劑。 According to the nanostructure modified organic device structure described in item 6 of the scope of the patent application, an anti-solvent can be optionally added to the perovskite material solution, and The anti-solvent is selected from a toluene solvent or a toluene-containing solvent. 依申請專利範圍第6項所述之奈米結構修飾之有機元件結構,其中該聚合物材料溶液選自一富勒烯衍生物溶液或一含富勒烯衍生物之溶液。 According to the nanostructure-modified organic device structure described in claim 6 of the patent application, the polymer material solution is selected from a solution of a fullerene derivative or a solution containing a fullerene derivative.
TW110142089A 2021-11-11 2021-11-11 Nano-structure-modified organic component manufacturing method and structure thereof TWI803049B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110142089A TWI803049B (en) 2021-11-11 2021-11-11 Nano-structure-modified organic component manufacturing method and structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110142089A TWI803049B (en) 2021-11-11 2021-11-11 Nano-structure-modified organic component manufacturing method and structure thereof

Publications (2)

Publication Number Publication Date
TW202320369A TW202320369A (en) 2023-05-16
TWI803049B true TWI803049B (en) 2023-05-21

Family

ID=87379076

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110142089A TWI803049B (en) 2021-11-11 2021-11-11 Nano-structure-modified organic component manufacturing method and structure thereof

Country Status (1)

Country Link
TW (1) TWI803049B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201607071A (en) * 2014-08-13 2016-02-16 國立清華大學 Method of fabricating perovskite solar cell
US20160315213A1 (en) * 2013-07-16 2016-10-27 Huazhong University Of Science And Technology Mesoscopic solar cell based on perovskite light absorption material and method for making the same
TWI584509B (en) * 2014-12-08 2017-05-21 Lg 化學股份有限公司 Organic/inorganic hybrid perovskite compound, preparing method thereof, and solar cell comprising the same
TW201806186A (en) * 2016-08-01 2018-02-16 國立成功大學 Light-emitting diode and method for fabricating the same
CN110190193A (en) * 2019-06-06 2019-08-30 中节能万润股份有限公司 A kind of perovskite solar battery and preparation method thereof containing protective layer
WO2020244047A1 (en) * 2019-06-04 2020-12-10 致晶科技(北京)有限公司 Perovskite nanomaterial, composite light-emitting material containing same and preparation method therefor and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160315213A1 (en) * 2013-07-16 2016-10-27 Huazhong University Of Science And Technology Mesoscopic solar cell based on perovskite light absorption material and method for making the same
TW201607071A (en) * 2014-08-13 2016-02-16 國立清華大學 Method of fabricating perovskite solar cell
TWI584509B (en) * 2014-12-08 2017-05-21 Lg 化學股份有限公司 Organic/inorganic hybrid perovskite compound, preparing method thereof, and solar cell comprising the same
TW201806186A (en) * 2016-08-01 2018-02-16 國立成功大學 Light-emitting diode and method for fabricating the same
WO2020244047A1 (en) * 2019-06-04 2020-12-10 致晶科技(北京)有限公司 Perovskite nanomaterial, composite light-emitting material containing same and preparation method therefor and application thereof
CN110190193A (en) * 2019-06-06 2019-08-30 中节能万润股份有限公司 A kind of perovskite solar battery and preparation method thereof containing protective layer

Also Published As

Publication number Publication date
TW202320369A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
Mahmud et al. Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells
JP5555402B2 (en) Organic photosensitive devices grown on nanoscale morphologically controlled rough electrodes
US8178779B2 (en) Organic photovoltaic cells
TWI455385B (en) Organic solar cell and method forming the same
Zhao et al. Flexible and wearable optoelectronic devices based on perovskites
US20160197281A1 (en) Photoelectric conversion device and fabrication method therefor
US20160087234A1 (en) Organic solar cell comprising nano-bump structure and manufacturing method therefor
JP6051170B2 (en) Photocell
CN110993798A (en) Perovskite type solar cell based on cooperative post-treatment of multiple ammonium salts and preparation method thereof
Liang et al. Recent Progress in Perovskite‐Based Reversible Photon–Electricity Conversion Devices
US11557689B2 (en) Integrated tandem solar cell and manufacturing method thereof
Bae et al. All-self-metered solution-coating process in ambient air for the fabrication of efficient, large-area, and semitransparent perovskite solar cells
KR102160474B1 (en) A method for manufacturing a inorganic hole transport layer and a perovskite solar cell containing the same
KR101932390B1 (en) Preparation for method of perovskite photoactive layer and perovskite solar cells comprising the perovskite photoactive layer thereby
Patel et al. Applications of Carbon‐Based Materials for Improving the Performance and Stability of Perovskite Solar Cells
TWI803049B (en) Nano-structure-modified organic component manufacturing method and structure thereof
KR101495764B1 (en) Inverted organic solar cell containing quantum dot single layer in electron transfer layer and method for fabricating the same
KR102409983B1 (en) Preparation method of antimony chalcohalide photoactive layer
KR102283474B1 (en) Heterojunction optoelectronic device, and manufacturing method thereof
KR101706175B1 (en) Ppreparation method of light absorbing layer for compound semiconductor solar cell and light absorbing layer for compound semiconductor solar cell prepared by the method
KR101942008B1 (en) Bulk hetero-junction solar cell and manufacturing the same
Wang et al. Perovskite materials in photovoltaics
CN114765200B (en) Single-substrate four-terminal cascading perovskite-cadmium telluride laminated solar cell
KR102540686B1 (en) Method for producing perovskite compound powder
KR102202046B1 (en) Flexible organic solar cells and manufacturing method of thereof