TWI802074B - 自旋軌道偶合矩裝置 - Google Patents

自旋軌道偶合矩裝置 Download PDF

Info

Publication number
TWI802074B
TWI802074B TW110141734A TW110141734A TWI802074B TW I802074 B TWI802074 B TW I802074B TW 110141734 A TW110141734 A TW 110141734A TW 110141734 A TW110141734 A TW 110141734A TW I802074 B TWI802074 B TW I802074B
Authority
TW
Taiwan
Prior art keywords
spin
hall
orbit coupling
ane
coupling moment
Prior art date
Application number
TW110141734A
Other languages
English (en)
Other versions
TW202236710A (zh
Inventor
吳柏勳
黃斯衍
錢嘉陵
曲丹茹
Original Assignee
國立臺灣大學
中央研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣大學, 中央研究院 filed Critical 國立臺灣大學
Publication of TW202236710A publication Critical patent/TW202236710A/zh
Application granted granted Critical
Publication of TWI802074B publication Critical patent/TWI802074B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/101Semiconductor Hall-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Landscapes

  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)
  • Power Steering Mechanism (AREA)
  • Braking Arrangements (AREA)

Abstract

本揭露涉及一種自旋軌道偶合矩裝置,包括:一磁性層;以及一非磁性層,鄰近該磁性層,且包括一自旋霍爾材料,其中該自旋霍爾材料包括NixCu1-x合金,且x在0.4至0.8的範圍內。

Description

自旋軌道偶合矩裝置
本揭露涉及一種自旋軌道偶合矩裝置。更具體地,本揭露涉及一種使用新穎自旋霍爾材料之自旋軌道偶合矩裝置。
自旋電子學已經從利用鐵磁材料中的自旋極化電流現象(例如巨磁阻(giant magnetoresistance,GMR)和自旋轉移力矩(spin transfer torque,STT))發展為在具有強自旋軌道偶合(SOC)的材料中的純自旋電流現象(例如自旋霍爾效應(spin Hall effect,SHE)和自旋軌道偶合矩(spin orbit torque,SOT))。純自旋電流具有獨特的特性,即在金屬中的電荷載子最少且絕緣體中沒有電荷載子下能夠有效地傳遞自旋角動量。迄今為止,主要的純自旋電流材料是具有強SOC的5d4d重金屬(例如,Pt、W、Ta),表現出約0.1的高自旋霍爾角θSH,如同在使用SOT轉換的實驗中得到的結果。雖然一些3d金屬(例如Cu)具有較弱的SOC和θSH
Figure 110141734-A0305-02-0002-3
0,但其他(例如Ni和Cr)材料,包括鐵磁(FM)和反鐵磁(AF)材料,表現出相當大的逆自旋霍爾效應(inverse spin Hall effect,ISHE)和顯著的θSH。事實上,3d金屬為純自旋電流研究提供了新的途徑和功能,包括自旋電荷轉換(spin-to-charge conversion)、磁化強度相關自旋霍爾效應和SOT磁化轉換。與通常無磁性的5d金屬不同,3d金屬通常具有鐵磁性(例如Fe、Ni、Co)或反鐵磁性(例如Mn、Cr),其 中既有純自旋電流效應,也有自旋極化電流效應,儘管具有挑戰性,但必須對其進行描述。
3d材料中最有趣的自旋電流現象之一是在接近尼爾溫度(Néel temperature,TN)的反鐵磁(AF)絕緣體中發現了其具有增強的自旋電荷轉換和自旋電流傳輸(spin-current transmission)之效果。透過在YIG與自旋電流偵測器(例如,Pt)之間插入薄的AF絕緣體層(例如,NiO和CoO),可以大幅提升通過自旋塞貝克效應(spin Seebeck effect,SSE)中的熱梯度和自旋幫浦(spin pumping,SP)中的微波激發從鐵磁絕緣體Y3Fe5O12(YIG)誘發的純自旋電流。在AF金屬(例如,IrMn)的TN附近也觀察到由於自旋漲落(spin fluctuations)引起的增強。然而,對於解決自旋極化電流和純自旋電流的相互作用,絕緣或導電的AF材料並不理想,因為這些現象並存於FM材料中並且各自有完備的理論基礎。
眾所周知的Fe、Co、Ni和Py(高導磁合金(permalloy)=Fe19Ni81)等3d磁鐵具有非常高的居禮溫度(T C )。由於量測時的環境溫度通常落在T<T C ,因此很難區分在FM狀態下自旋極化電流和純自旋電流各自的影響,更遑論探測接近或高於T C 的自旋漲落現象了。選擇合適且具有量身訂做T C 3d FM材料至關重要,其可以清晰地進行描述、分離,甚至是可能利用由自旋極化電流和純自旋電流效應引起的效應。
本揭露涉及一種自旋軌道偶合矩裝置,包括:一非磁性層,包括一自旋霍爾(spin-Hall)材料,其中自旋霍爾材料包括NixCu1-x合金,x在0.4至0.8的範圍內(0.4
Figure 110141734-A0305-02-0003-4
x
Figure 110141734-A0305-02-0003-5
0.8)。
在傳統的自旋軌道偶合矩裝置中,通常採用5d重金屬元素(例如Pt、W、Ta)作為產生自旋霍爾效應之金屬層,導致傳統的自旋軌道偶合矩裝置製造成本高昂。在本揭露的自旋軌道偶合矩裝置中,使用NixCu1-x合金作為自旋霍爾材料。與5d重金屬元素相比,由3d金屬組成的NixCu1-x合金相對便宜。因此,使用NixCu1-x合金作為自旋軌道偶合矩裝置中的自旋霍爾材料可以降低製造成本。
於一些實施例中,NixCu1-x合金中的x可在0.4至0.8的範圍內(0.4
Figure 110141734-A0305-02-0004-8
x
Figure 110141734-A0305-02-0004-9
0.8)。於一些實施例中,x可在0.7至0.8的範圍內(0.7
Figure 110141734-A0305-02-0004-10
x
Figure 110141734-A0305-02-0004-11
0.8)。於一些實施例中,x可在0.75至0.8的範圍內(0.75
Figure 110141734-A0305-02-0004-12
x
Figure 110141734-A0305-02-0004-13
0.8)。
於一些實施例中,非磁性層的厚度(t)可在0.1nm至8nm的範圍內(0.1nm
Figure 110141734-A0305-02-0004-14
t
Figure 110141734-A0305-02-0004-15
8nm)。於一些實施例中,非磁性層的厚度(t)可在2nm至8nm的範圍內(2nm
Figure 110141734-A0305-02-0004-16
t
Figure 110141734-A0305-02-0004-17
8nm)。於一些實施例中,非磁性層的厚度(t)可在3nm至8nm的範圍內(3nm
Figure 110141734-A0305-02-0004-18
t
Figure 110141734-A0305-02-0004-19
8nm)。
於一些實施例中,自旋霍爾材料可為Ni80Cu20合金,且非磁性層的厚度可落在4.5nm至5.5nm的範圍內(4.5nm
Figure 110141734-A0305-02-0004-20
t
Figure 110141734-A0305-02-0004-21
5.5nm)。在這種情況下,Ni80Cu20合金的居禮溫度(Curie temperature)可約為室溫。然而,本揭露不限於此,且NixCu1-x合金的居禮溫度可以通過改變Ni含量或者非磁性層的厚度來調整。舉例來說,當NixCu1-x合金中的x降低時,可增加非磁性層的厚度以維持NixCu1-x合金的居禮溫度約為室溫。
於一些實施例中,當自旋霍爾材料(特別是NixCu1-x合金)為順磁(paramagnetic,PM)態時,自旋霍爾材料(特別是NixCu1-x合金)的自旋霍爾角(θSH)可介於42%至50%之間(42%
Figure 110141734-A0305-02-0004-44
θSH
Figure 110141734-A0305-02-0004-23
50%);當自旋霍爾材料(特別是NixCu1-x合金) 為鐵磁(ferromagnetic,FM)態時,自旋霍爾材料(特別是NixCu1-x合金)的自旋霍爾角可介於8%至15%之間(8%
Figure 110141734-A0305-02-0005-24
θSH
Figure 110141734-A0305-02-0005-25
15%)。
於一些實施例中,當自旋霍爾材料(特別是NixCu1-x合金)為順磁態時,自旋霍爾材料(特別是NixCu1-x合金)的自旋擴散長度(spin diffusion length,λsd)可介於0.2nm至0.3nm之間(0.2nm
Figure 110141734-A0305-02-0005-26
λsd
Figure 110141734-A0305-02-0005-27
0.3nm);當自旋霍爾材料(特別是NixCu1-x合金)為鐵磁態時,自旋霍爾材料(特別是NixCu1-x合金)的自旋霍爾角可介於0.4nm至0.5nm之間(0.4nm
Figure 110141734-A0305-02-0005-28
λsd
Figure 110141734-A0305-02-0005-29
0.5nm)。
於一些實施例中,自旋軌道偶合矩裝置可更包括一磁性層,鄰近非磁性層。磁性層可包括Fe、Ni、Co或其合金,但本揭露不限於此。
於一些實施例中,自旋軌道偶合矩裝置可為一磁性隨機存取記憶體(magnetic random access memory,MRAM)、磁性邏輯裝置或賽道記憶體(racetrack memory)。於一些實施例中,自旋軌道偶合矩裝置為MRAM。
本揭露更提供了一種用於檢測材料之磁序溫度的方法,包括以下步驟:提供一基板,形成一待測材料層於該基板上;對待測材料施加一溫度梯度;以及測量在溫度梯度下產生的電壓。
於一些實施例中,待測材料可形成於一Si基板上,對Si基板上的待測材料施加溫度梯度,並測量產生的電壓。電壓/溫度(△V/△T)突然消失的溫度可確定為待測材料的居禮溫度。
於一些實施例中,待測材料可形成於一YIG基板上,對YIG基板上的待測材料施加溫度梯度,並測量產生的電壓。電壓/溫度(△V/△T)最大的溫度可確定為待測材料的居禮溫度。
於一些實施例中,待測材料層的厚度(t)可在0.1nm至8nm的範圍內(0.1nm
Figure 110141734-A0305-02-0006-30
t
Figure 110141734-A0305-02-0006-31
8nm)。於一些實施例中,待測材料層的厚度(t)可在2nm至8nm的範圍內(2nm
Figure 110141734-A0305-02-0006-32
t
Figure 110141734-A0305-02-0006-33
8nm)。於一些實施例中,待測材料層的厚度(t)可在3nm至8nm的範圍內(3nm
Figure 110141734-A0305-02-0006-34
t
Figure 110141734-A0305-02-0006-35
8nm)。
眾所周知,高靈敏度的超導量子干涉儀(superconducting quantum interference device,SQUID)可用於測量待測材料的微小磁矩(magnetic moment)和磁序溫度,但是SQUID磁力儀十分昂貴。本揭露提供了一種基於Si基板上待測材料的鐵磁金屬中的異常能斯特效應(ANE)或基於YIG基板上待測材料的鐵磁金屬中的ANE和逆自旋霍爾效應(ISHE)以檢測材料的磁序溫度之新方法。因此,與使用SQUID磁力儀的傳統方法相比,可以相對便宜的方式測量材料的磁序溫度。
於本揭露中,提供具有相同fcc結構之Ni-Cu合金,其中磁序溫度T c 可透過改變Ni含量在很大的範圍內(40K~300K)調節。此外,本揭露提供了在Ni-Cu合金中純自旋電流的逆自旋霍爾效應(ISHE)和自旋極化電流的異常能斯特效應(ANE)之相互作用。FM態和PM態均有很強的純自旋電流效應,分別具有和不具自旋極化電流效應。本揭露更提供自旋漲落可以大幅提升自旋電荷轉換之證據,提升後的自旋霍爾角θSH甚至大於Pt、Ta和W的自旋霍爾角。本揭露顯示ANE可以做為靈敏的磁力儀以電檢測僅有數奈米厚的超薄FM薄膜的磁化強度和居禮溫度(T c )。
下文將配合圖式並詳細說明,使本揭露的其他目的、優點、及新穎特徵更明顯。
41:磁性層
42:非磁性層
圖1A顯示不同組成的200nm厚的NixCu1-x(0<x<1.0)的X射線繞射圖。
圖1B顯示NixCu1-x的晶格常數a與組成之關係圖。
圖1C為在溫度梯度下鐵磁金屬(FM)的異常能斯特效應(ANE)和FM/YIG的逆自旋霍爾效應(ISHE)和ANE之示意圖。
圖2A顯示由SQUID磁力儀測量之Ni75Cu25(5nm)/Si的磁化強度與溫度之關係圖。
圖2B顯示Ni75Cu25(5nm)/Si的ANE與溫度之關係圖。
圖2C顯示在Ni75Cu25(5nm)/Si和Ni75Cu25(5nm)/YIG中於其Tc以上的300K處測量的作為磁場(H)函數的自旋相關熱電壓圖。
圖2D顯示在Ni75Cu25(5nm)/Si和Ni75Cu25(5nm)/YIG中於其Tc以下200K處測量的作為磁場(H)函數的自旋相關熱電壓圖。
圖3A顯示NixCu1-x的溫度相關ANE(實心圓)和ISHE(空心圓)電壓圖,其中x為0.5、0.6、0.7、0.75及0.8。
圖3B顯示以NixCu1-x組成為函數的Tp、TA、Tc值的圖。
圖3C顯示Ni40Cu60的溫度相關ANE(實心圓)和ISHE(空心圓)電壓圖。
圖4A顯示NixCu1-x(5nm)/Si的△VANE(空心圓)與組成之關係圖和NixCu1-x(5nm)/YIG的△VISHE(實心圓)與組成之關係圖,其中在室溫下0<x<1.0。
圖4B顯示Ni80Cu20的△VISHE/ρ與厚度之關係圖,其中實心圓和空心圓是使用式(2)(如下所述)對PM和FM中Ni80Cu20的擬合結果。
圖4C顯示在室溫下θSH對λsd的圖,其中空心圓為Ni80Cu20在PM態和FM態的結果,其他實心符號為Pt在文獻中的結果,曲線表示θSH.λsd=0.13nm。
圖5顯示根據本揭露一實施例的自旋軌道偶合矩裝置的剖視圖。
以下提供本揭露的不同實施例。這些實施例是用於說明本揭露的技術內容,而非用於限制本揭露的權利範圍。一實施例的一特徵可透過合適的修飾、置換、組合、分離以應用於其他實施例。
應注意的是,在本文中,除了特別指明者之外,具備「一」元件不限於具備單一的該元件,而可具備一或更多的該元件。
此外,在本文中,除了特別指明者之外,所謂的一元件「適於」或「適合於」另一元件,是指該另一元件不屬於申請標的的一部分,而是示例性地或參考性地有助於設想該元件的性質或應用;同理,在本文中,除了特別指明者之外,所謂的一元件「適於」或「適合於」一組態或一動作,其描述的是該元件的特徵,而不表示該組態已經設定或該動作已經執行。
此外,在本文中,除了特別指明者之外,一數值可涵蓋該數值的±10%的範圍,特別是該數值±5%的範圍。除了特別指明者之外,一數值範圍是由較小端點數、較小四分位數、中位數、較大四分位數、及較大端點數所定義的多個子範圍所組成。
實驗方法
提供Si基板和YIG基板,並用丙酮和異丙醇清洗約30分鐘。然後,使用乙醇去除可能的殘留汙染物(如灰塵或顆粒)約10分鐘。最後,使用去離子水去除殘留的有機溶劑約10分鐘。
NixCu1-x薄膜分別沉積在清洗後的Si基板和YIG基板上。NixCu1-x薄膜可以透過本領域已知的任何方法製備。於本文中,濺射技術用於在Si基板和YIG基板上製備NixCu1-x薄膜。濺射系統是在10-7~10-8托(torr)的高真空環境下進行操作,濺射製程是採用氬氣電漿進行。但本揭露不限於此。於本揭露的另一實施例中,可採用磁控濺射來提高濺射效率,特別是針對磁性材料。
透過控制沉積速率或濺射靶材,可以調節NixCu1-x薄膜的組成。使用X射線反射儀(X-ray reflectometry)和原子力顯微鏡來測量薄膜厚度和表面粗糙度,使用X射線繞射(XRD)來測量晶體結構和薄膜方向(film orientations),並使用磁力儀來測量NixCu1-x薄膜的磁學特性(magnetic properties)。對於自旋相關傳輸(spin-dependent transport)測量,由2nm鋁膜保護的NixCu1-x薄膜透過光刻被圖案化為寬度為200μm的霍爾棒結構(Hall bar structure)。
結果
如圖1A所示,200nm厚的NixCu1-x合金之X射線繞射(XRD)圖譜顯示它們主要都是fcc(111)紋理(fcc(111)-textured)。隨著Ni含量的增加,(111)峰逐漸偏移至較高的繞射角,因為Ni的晶格常數0.351nm小於Cu的晶格常數0.361nm。如圖1B所示,fcc晶格參數(a)與Ni含量為線性相關,這是Vegard定律的表現。
有多種方法可以透過電(例如,異常霍爾、自旋霍爾)、熱(異常能斯特、自旋塞貝克)和FMR激發(例如,自旋幫浦(spin pumping))注入自旋極化電 流和純自旋電流。由於高電流密度和FMR加熱,自旋幫浦和電的注入可能會不經意地包括其他貢獻,特別是熱貢獻。透過異常能斯特效應(ANE)和自旋塞貝克效應(SSE)在面外方向進行縱向熱注入是最簡單的注入方案,幾乎沒有寄生效應(parasitic effects)。
圖1C為在溫度梯度下鐵磁金屬(FM)的異常能斯特效應(ANE)和FM/YIG的逆自旋霍爾效應(ISHE)和ANE之示意圖。
圖1C所示的左側裝置為在溫度梯度下測量電壓的裝置,其中在Si基板11上形成FM薄膜12(例如,NixCu1-x薄膜),並且將電壓計(圖中未示出)電性連接至FM薄膜12的墊(圖中未示出)上。此外,該設備中還提供了加熱器(圖中未示出)以向FM薄膜12提供溫度梯度。透過使用圖1C左側所示的裝置,可以測量FM薄膜12中的ANE電壓(VANE)。
圖1C所示右側裝置與左側裝置相似,不同之處在於左側裝置中的Si基板11被右側裝置中的YIG基板21取代。透過使用圖1C所示的右側裝置,可以透過電壓計(圖中未示出)來測量FM薄膜12中的ANE電壓(VANE)加上ISHE電壓(VISHE)。需要注意的是,在圖1C所示的右側裝置中,ANE電壓和ISHE電壓是分開顯示的,但ANE電壓和ISHE電壓可以用一個電壓計一起測量。
如圖1C所示,對於沿x方向具有面內磁化強度的FM,面外(z)方向的溫度梯度(▽T)在z方向注入電荷電流。FM中的自旋軌道偶合(spin-orbit coupling,SOC)導致不等量的自旋向上和自旋向下電子在相反方向上橫向偏轉,由於下式(1)的y方向上的ANE電場而導致自旋極化電流: E ANE =-Qs4πM ×▽T, (1)
並檢測為y方向的ANE電壓。
在縱向自旋塞貝克效應(SSE)方案中,在鐵磁YIG上放置一層薄金屬膜並施加垂直溫度梯度,將在z方向上的純自旋電流js注入金屬,其中透過SOC的作用使自旋向上和自旋向下電子兩者在y方向上橫向偏轉到同一側,並產生與σ×▽T或σ×js成比例的ISHE電場,其中σ為電子於x方向上的自旋指數(spin index)。在FM金屬的情況下,x方向的磁化強度由外部磁場對齊,由於ANE和ISHE產生的電場都在y方向,因此它們的電壓是加成的。
使用具有高靈敏度的SQUID磁力儀來測量薄NixCu1-x合金(通常為5nm厚)的微小磁矩(~10-5emu)和磁序溫度。圖2A顯示Ni75Cu25(5)/Si(括號中的數字是以奈米為單位的厚度)用於揭示260K的居禮溫度(T c )的實施例。由上式(1)所示,在常數|▽T|下,ANE電壓與磁化強度M成正比。因此,ANE可以電性訊號測量M。如圖2C和圖2D所示,Ni75Cu25(5)/Si的ANE電壓在200K時相當大,但在300K時消失。實際上,ANE電壓在260K的T c 處突然消失,如圖2B所示。ANE可輕鬆測量僅幾奈米厚的薄FM薄膜中的磁滯迴線(hysteresis loop)和T c ,可用作靈敏的磁力儀用於測量具有面內磁化強度的FM,其方式類似於異常霍爾效應(AHE)作為用於測量具有垂直異向性(perpendicular magnetic anisotropy)的FM之靈敏的磁力儀。
當Ni75Cu25(5)/YIG受到相似的20K/mm的面外溫度梯度時,除了在Ni75Cu25(5)內的ANE外,還有來自YIG的純自旋電流透過SSE注入而產生之ISHE電壓。如圖2C和圖2D所示,Ni75Cu25(5)/YIG在200K和300K下的電壓,即使Ni75Cu25(5)在T>260K時變成順磁性之後,也沒有自旋極化電流,只有純自旋電流。由於圖2C和圖2D所示的ANE和ISHE測量的橫向電壓在±H高磁場處飽和。△V值是由這些電壓所定義。在Ni75Cu25(5)/Si中,僅觀察到△V=△VANE在200K 下約為2.6μV,在300K下約為0μV。然而,在相似溫度梯度下的Ni75Cu25(5)/YIG中,當Ni75Cu25(5)順磁性且△VANE=0μV時,在300K下觀察到△V=△VISHE=5μV。重要的是,在200K下觀察到更大的△V=△VISHE+△VANE=9.5μV,其中包含ANE和ISHE的貢獻,其中可以在Ni75Cu25(5)/Si中測量△VANE。這些結果提供了鐵磁合金在鐵磁態和順磁態下表現出顯著的自旋電荷轉換的明確證據。於圖2C和圖2D中,ISHE電壓於低磁場區表現出的平台特性是由於YIG表面磁化的去磁因子(demagnetizing factor)的影響。在200K下的ANE曲線如圖2D所示,當中顯示Ni75Cu25(5)的矯頑力(coercivity)以及飽和磁場(saturation field)等重要磁特性參數。
本實施例還以S(μV/K)=△V/△T顯示結果,其中△T是溫差。圖3A顯示了△VANE和△VISHE的S(μV/K),後者從△V中減去△VANE,作為不同組成(0.4
Figure 110141734-A0305-02-0012-36
x
Figure 110141734-A0305-02-0012-37
0.8)的NixCu1-x的溫度與相變過程之函數。NixCu1-x/Si(實心圓)的S(μV/K)僅由ANE組成,顯示出在T A 處的急劇相變,即T C ,高於該值的NixCu1-x處於順磁態,不具ANE。另一方面,包含ANE和純自旋電流貢獻的NixCu1-x/YIG(空心圓)的S(μV/K)始終顯著低於且甚至高於T C
同樣明顯顯示的是由於自旋漲落引起的純自旋電流增強,在TC附近最為強烈,此時S(μV/K)最大。這些結果清楚地表明,Ni-Cu合金的自旋漲落可以大幅增強已經相當可觀的自旋電荷轉換。在T C 以上,自旋漲落隨溫度升高而減小,因此其對純自旋電流增強的影響也減小。Ni-Cu合金的磁序溫度如圖3B所示,由SQUID磁力儀確定的T C 值、Ni-Cu/Si的ANE消失時的T A 值和Ni-Cu/YIG的S(μV/K)最大時的T P 值非常一致。這三種方法均可用於確定FM材料的磁有序化溫度(ordering temperature),但ANE方法具有更高靈敏度的明顯優勢,特別有利 於量測薄膜的應用。在Ni-Cu合金中,磁有序化溫度隨著Ni含量的減少而線性降低,並在x=0.45左右Ni-Cu合金轉變為非磁性金屬。然而,如圖3C所示,雖然在Ni40Cu60/Si下降到約20K中沒有磁序且不具ANE,但在Ni40Cu60/YIG的所有溫度下都有可觀的S(μV/K),隨著溫度降低而增加的值反映了初始磁序和自旋漲落的存在。在大約60K的低溫下,當接近T=0K時,S(μV/K)會急劇下降至零。需注意的是,磁振子(magnon)的傳播距離(propagation length)與YIG中磁振子的濃度之間的競爭機制會導致非單調的溫度相關特性(nonmonotonic temperature-dependent behavior),與自旋電流的增強(例如,Pt/YIG)相似。然而,在Ni80Cu20中可以清楚區分兩種貢獻,因為自旋電流增強發生在室溫附近,但來自YIG的磁振子群的貢獻在低溫下仍然存在。
此外,當比較ANE和ISHE對5-nm之NixCu1-x在測量的各種成分(0
Figure 110141734-A0305-02-0013-38
x
Figure 110141734-A0305-02-0013-39
1.0)中的自旋相關熱激發電壓時,在室溫下純自旋電流和自旋極化電流的相互作用也很明顯。如圖4A所示,在300K下測量的△VISHE(實心圓)隨著Ni含量的增加而增加,直到Ni80Cu20,超過此值時△VIsHE隨著△VANE(空心圓)的同步出現而減小,其中5-nm NixCu1-x的x>0.8時是鐵磁性的。因此,在Ni80Cu20的特定情況下,室溫下相變附近的自旋漲落可以顯著增強自旋電流。因此,可以利用自旋漲落來大幅增強Ni80Cu20於室溫操作下的純自旋電流。
為了室溫下定量確定Ni80Cu20增強的自旋電荷效率,對不同厚度的Ni80Cu20進行SSE測量,以評估自旋霍爾角θSH和自旋擴散長度λsd。ISHE電壓取決於厚度t,如下式(2):
Figure 110141734-A0305-02-0013-1
其中L=6mm是電壓端子(voltage terminals)之間的距離,|△T|=26K/mm是溫度梯度,C是自旋電流注入係數(spin current injection coefficient)。電阻率(t)也是透過實驗確定的。透過線性內插(interpolation),可以得到Ni為C(Ni)=1.55Am-1K-1,Cu為C(Cu)=1.24Am-1K-1,Ni80Cu20為C(Ni80Cu20)=1.5Am-1K-1
對於非磁性金屬(例如,Pt),△V ISHE (t)/ρ(t)以準雙曲線方式隨著t的增加而減小。然而,△V ISHE (t)/ρ(t)的結果顯示在圖4B中,Ni80Cu20t=7nm處表現出明顯的驟降,因為其磁有序化溫度接近300K。t大於和小於7nm的Ni80Cu20樣品之TC分別高於和低於300K,因此在圖4B中的7nm處存在不連續性。從圖4B(實體線)中的式(2)進行擬合,當Ni80Cu20處於FM狀態時,可以得到θSH=11%,λsd=0.42nm,與重金屬相當。另一方面,當Ni80Cu20處於PM狀態時,可以得到大幅增強的值,θSH=46%和λsd=0.22nm。在使用θSH
Figure 110141734-A0305-02-0014-40
1的載子數的定義下,θSH=46%是目前記錄中最大的。
儘管金屬的θSH值取決於實驗技術或分析可能會有很大差異(例如,Pt),但根據經驗,θSH.λsd
Figure 110141734-A0305-02-0014-41
常數的關係已經被提出,如圖4C所示,其中包含各種報告的結果。我們Ni80Cu20在FM狀態下θSH=11%和λsd=0.42nm的結果,以及在PM狀態下θSH=46%和λsd=0.22nm的結果似乎也與θSH.λsd~0.13nm表示為線的相關性一致。Ni80Cu20中增強的自旋電荷轉換和較大的θSH與短程自旋漲落導致更短的λsd。一般來說,Ni-Cu合金,特別是Ni80Cu20,不僅比Pt表現出更高的自旋電荷效率,而且成本比Pt低大約三個數量級。
綜上所述,本揭露顯示自旋極化電流的異常能斯特效應、純自旋電流的逆自旋霍爾效應和磁性合金中的自旋漲落之間的強烈相互作用,這些相互作用已在具有訂製的磁序溫度之多種組成(0
Figure 110141734-A0305-02-0014-42
x
Figure 110141734-A0305-02-0014-43
1.0)的NixCu1-x中被發現。我 們證明純自旋電流和自旋漲落的強烈相互作用可以大幅增強自旋電荷轉換,在室溫下的Ni80Cu20產生46%的顯著高的自旋霍爾角,可用於各種基於自旋的應用和裝置上。我們還顯示出,透過ANE的自旋相關熱傳輸可以用作靈敏的磁力儀,以電檢測磁性相變(magnetic phase transition)。
圖5顯示根據本揭露一實施例的自旋軌道偶合矩裝置的剖視圖。
本實施例的自旋軌道偶合矩裝置包括:非磁性層42,包括自旋霍爾材料;以及磁性層41,鄰近非磁性層42。於本文中,自旋霍爾材料可以是上述的NixCu1-x合金。磁性層41可以包括鐵磁材料,鐵磁材料可以包括Fe、Ni、Co或其合金;但本揭露不限於此。此外,本實施例的自旋軌道偶合矩裝置可用作磁性隨機存取記憶體。
當非磁性層42為厚度約5nm的Ni80Cu20層時,自旋軌道偶合矩裝置可在室溫下工作。然而,本揭露不限於此。於本揭露的另一實施例中,可以根據需要調整NixCu1-x合金的x和非磁性層42的厚度來實現在室溫或在低於或高於室溫的其他溫度下操作的自旋軌道偶合矩裝置。
儘管本揭露已透過實施例來說明,應理解的是,只要不背離本揭露的精神及申請專利範圍所主張者,可作出許多其他可能的修飾及變化。
41:磁性層
42:非磁性層

Claims (14)

  1. 一種自旋軌道偶合矩裝置,包括:一非磁性層,包括一自旋霍爾(spin-Hall)材料,其中該自旋霍爾材料包括NixCu1-x合金,x在0.4至0.8的範圍內。
  2. 如請求項1所述的自旋軌道偶合矩裝置,其中x在0.7至0.8的範圍內。
  3. 如請求項2所述的自旋軌道偶合矩裝置,其中x在0.75至0.8的範圍內。
  4. 如請求項1所述的自旋軌道偶合矩裝置,其中該非磁性層的一厚度在0.1nm至8nm的範圍內。
  5. 如請求項4所述的自旋軌道偶合矩裝置,其中該非磁性層的該厚度在2nm至8nm的範圍內。
  6. 如請求項5所述的自旋軌道偶合矩裝置,其中該非磁性層的該厚度在3nm至8nm的範圍內。
  7. 如請求項1所述的自旋軌道偶合矩裝置,其中該自旋霍爾材料為Ni0.8Cu0.2合金,且該非磁性層的一厚度在4.5nm至5.5nm的範圍內。
  8. 如請求項7所述的自旋軌道偶合矩裝置,其中該Ni0.8Cu0.2合金的一居禮溫度(Curie temperature)約為室溫。
  9. 如請求項1所述的自旋軌道偶合矩裝置,其中當該自旋霍爾材料為順磁態時,該自旋霍爾材料的自旋霍爾角介於42%至50%之間。
  10. 如請求項1所述的自旋軌道偶合矩裝置,其中當該自旋霍爾材料為鐵磁態時,該自旋霍爾材料的自旋霍爾角介於8%至15%之間。
  11. 如請求項1所述的自旋軌道偶合矩裝置,其中當該自旋霍爾材料為順磁態時,該自旋霍爾材料的自旋擴散長度(spin diffusion length)介於0.2nm至0.3nm之間。
  12. 如請求項1所述的自旋軌道偶合矩裝置,其中當該自旋霍爾材料為鐵磁態時,該自旋霍爾材料的自旋擴散長度介於0.4nm至0.5nm之間。
  13. 如請求項1所述的自旋軌道偶合矩裝置,更包括一磁性層,鄰近該非磁性層。
  14. 如請求項1所述的自旋軌道偶合矩裝置,其中該自旋軌道偶合矩裝置為一磁性隨機存取記憶體。
TW110141734A 2020-11-19 2021-11-10 自旋軌道偶合矩裝置 TWI802074B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063115660P 2020-11-19 2020-11-19
US63/115,660 2020-11-19

Publications (2)

Publication Number Publication Date
TW202236710A TW202236710A (zh) 2022-09-16
TWI802074B true TWI802074B (zh) 2023-05-11

Family

ID=81587960

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110141734A TWI802074B (zh) 2020-11-19 2021-11-10 自旋軌道偶合矩裝置

Country Status (2)

Country Link
US (1) US11974506B2 (zh)
TW (1) TWI802074B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11469371B2 (en) * 2019-08-29 2022-10-11 Taiwan Semiconductor Manufacturing Company, Ltd. SOT-MRAM cell in high density applications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201719945A (zh) * 2015-09-10 2017-06-01 英特爾股份有限公司 具有以自旋軌道耦合而切換的磁性絕緣體之自旋邏輯
US20200212291A1 (en) * 2018-12-28 2020-07-02 Intel Corporation Antiferromagnet based spin orbit torque memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201719945A (zh) * 2015-09-10 2017-06-01 英特爾股份有限公司 具有以自旋軌道耦合而切換的磁性絕緣體之自旋邏輯
US20200212291A1 (en) * 2018-12-28 2020-07-02 Intel Corporation Antiferromagnet based spin orbit torque memory device

Also Published As

Publication number Publication date
US20220158084A1 (en) 2022-05-19
TW202236710A (zh) 2022-09-16
US11974506B2 (en) 2024-04-30

Similar Documents

Publication Publication Date Title
Lu et al. Shape-anisotropy-controlled magnetoresistive response in magnetic tunnel junctions
Yamanouchi et al. Domain structure in CoFeB thin films with perpendicular magnetic anisotropy
Grünberg Layered magnetic structures in research and application
Zhou et al. From fieldlike torque to antidamping torque in antiferromagnetic Mn 2 Au
Zhu et al. Origin of the inverse spin switch effect in superconducting spin valves
Yuan et al. Temperature dependence of magnetoresistance in magnetic tunnel junctions with different free layer structures
Leitao et al. Field detection in spin valve sensors using CoFeB/Ru synthetic-antiferromagnetic multilayers as magnetic flux concentrators
Masuda et al. Interlayer exchange coupling and spin Hall effect through an Ir-doped Cu nonmagnetic layer
Lou et al. Large anomalous unidirectional magnetoresistance in a single ferromagnetic layer
TWI802074B (zh) 自旋軌道偶合矩裝置
Seki et al. Nucleation-type magnetization reversal by spin-polarized current in perpendicularly magnetized FePt layers
Oshima et al. Current-perpendicular spin valves with partially oxidized magnetic layers for ultrahigh-density magnetic recording
Li et al. Magnetic properties of a Pt/Co2FeAl/MgO structure with perpendicular magnetic anisotropy
Mallick et al. Enhanced spin transport in a ferrite having distributed energy barriers for exchange bias
Feng et al. Fabrication of exchange-biased spin valves with CoFeB amorphous layers
Luo et al. Magnetoresistance in amorphous oxide films CoFeHfO
Peterson et al. Annealing Temperature Effects on Spin Hall Magnetoresistance in Perpendicularly Magnetized W/CoFeB Bilayers
Nowak et al. Electron tunneling and noise studies in ferromagnetic junctions
Diouf et al. Anisotropy, exchange bias, dipolar coupling and magnetoresistive response in Nio–Co–Al2O3–Co magnetic tunnel junctions
Wong et al. Magnetoresistance of manganite-cobalt ferrite spacerless junctions
Saglam Spin Transport and Spin-Orbit Torques in Antiferromagnets
Ott Neutron studies of magnetic oxide thin films
Reiss et al. Spinelectronics and its applications
Cao et al. Structure and isotropic high-frequency response of Co-HfN nanogranular films
Chen et al. Magnetization Switching and Hall Effect in Co/Pd-Based Pseudospin-Valves With Perpendicular Magnetic Anisotropy