TWI799318B - Apparatus and method for analyzing traffic status and computer program product implementing the method - Google Patents

Apparatus and method for analyzing traffic status and computer program product implementing the method Download PDF

Info

Publication number
TWI799318B
TWI799318B TW111126500A TW111126500A TWI799318B TW I799318 B TWI799318 B TW I799318B TW 111126500 A TW111126500 A TW 111126500A TW 111126500 A TW111126500 A TW 111126500A TW I799318 B TWI799318 B TW I799318B
Authority
TW
Taiwan
Prior art keywords
speed
road section
sample size
batch
low
Prior art date
Application number
TW111126500A
Other languages
Chinese (zh)
Other versions
TW202403537A (en
Inventor
呂珮榕
廖家妤
莊育祥
洪嘉辰
姜芝怡
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW111126500A priority Critical patent/TWI799318B/en
Application granted granted Critical
Publication of TWI799318B publication Critical patent/TWI799318B/en
Publication of TW202403537A publication Critical patent/TW202403537A/en

Links

Images

Landscapes

  • Debugging And Monitoring (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An apparatus and a method for analyzing traffic status, and a computer program product for implementing the method are provided. Firstly, a batch analysis filtering is performed on a plurality of mobile signaling data of a plurality of mobile devices received, so as to generate a plurality of mobile signaling location data. Then, the plurality of mobile signaling location data is mapped to a roadway, so as to calculate a total sample volume of the roadway, interval sample volumes and their respective corresponding hourly speed of the roadway. Afterward, based on the total sample volume of the roadway and a congestion threshold of the roadway calculated from historical data of the roadway, a sample group being selected of the total sample volume is determined. Finally, an aggregation is performed on the interval sample volumes and their respective corresponding hourly speed within the selected sample group, thereby quickly and precisely generating real-time hourly speed information of the roadway.

Description

分析路段狀況之設備、方法及電腦程式產品 Equipment, method and computer program product for analyzing road conditions

本案係關於一種交通路況分析技術,詳言之,係關於利用行動信令資料分析壅塞路況之設備、方法及電腦程式產品。 This case is about a traffic condition analysis technology, in detail, it is about the equipment, method and computer program product for analyzing congested road conditions using mobile signaling data.

近年來,以行動裝置基地站為基礎之車輛探偵(Cellular-Based Vehicle Probe;CVP)技術,因其涵蓋率廣和成本低等特色,廣泛使用於道路交通資訊之偵測上。一般而言,CVP技術主要是應用手機信令,即藉由CVP信令資料之時間差和位置差,來計算路段上之平均車速及旅行時間。 In recent years, Cellular-Based Vehicle Probe (CVP) technology based on mobile device base stations has been widely used in the detection of road traffic information due to its wide coverage and low cost. Generally speaking, CVP technology mainly uses mobile phone signaling, that is, calculates the average vehicle speed and travel time on the road section by using the time difference and position difference of CVP signaling data.

然而,由於行動信令路況分析技術是透過行動信令點位的時間與位置來分析路況,故會受到信令飄移和運具不同之影響。例如,信令飄移往往受限於基地站定位技術限制而難以避免,惟此問題卻會影響路況分析的正確性,尤其在壅塞時,信令的位置將更容易飄移不穩定,造成路況分析不準確。另一方面,運具通常需使用異質資料進行勾稽,如大眾運具班表、票證資訊、影像辨識資訊等,徒增系統或運算上的複雜度。 However, since the mobile signaling road condition analysis technology analyzes the road conditions through the time and location of the mobile signaling points, it will be affected by signaling drift and different vehicles. For example, signaling drift is often unavoidable due to the limitation of base station positioning technology, but this problem will affect the correctness of road condition analysis, especially when there is congestion, the position of signaling will drift more easily and become unstable, resulting in inaccurate road condition analysis. precise. On the other hand, means of transport usually need to use heterogeneous data for verification, such as public transport schedules, ticket information, image recognition information, etc., which only increases the complexity of the system or calculation.

因此,如何利用行動信令資料來快速且準確地分析壅塞路況,為目前待解決之議題。 Therefore, how to use the mobile signaling data to quickly and accurately analyze the congested road conditions is an issue to be solved at present.

為解決上述問題及其他問題,本案揭示一種分析路段狀況之設備、方法、電腦程式產品及電腦可讀取記錄媒體。 In order to solve the above-mentioned problems and other problems, this case discloses a device, method, computer program product and computer-readable recording medium for analyzing road conditions.

本案所揭之分析路段狀況之設備係包括:資料接收模組,用於接收複數個行動裝置的複數個行動信令資料;批次過濾模組,對該複數個行動裝置的該複數個行動信令資料進行批次分析過濾,以產生複數個行動信令位置資料;路段對應模組,將該複數個行動信令位置資料對應至一路段,以計算該路段的總樣本量、複數個區間樣本量、及各該區間樣本量所對應的時速;以及動態壅塞門檻計算模組,係根據該路段的歷史資料,計算該路段的壅塞門檻值;動態壅塞偵測模組,係根據該路段的該壅塞門檻值與該路段的該總樣本量,決定該總樣本量中被選取的樣本群;以及時速聚合模組,對該選取的樣本群中各該區間樣本量及其對應的時速進行時速聚合,俾產生該路段的即時時速資訊。 The equipment disclosed in this case for analyzing road conditions includes: a data receiving module for receiving multiple mobile signaling data from multiple mobile devices; a batch filtering module for receiving multiple mobile signaling data from multiple mobile devices; Perform batch analysis and filtering on the data to generate multiple mobile signaling location data; the section correspondence module maps the multiple mobile signaling location data to a road section to calculate the total sample size of the road section and the multiple interval samples and the speed per hour corresponding to the sample size of each section; and the dynamic congestion threshold calculation module, which calculates the congestion threshold of the road section according to the historical data of the road section; the dynamic congestion detection module, which calculates the congestion threshold value of the road section according to the The congestion threshold and the total sample size of the road section determine the sample group selected in the total sample size; and the speed aggregation module performs speed aggregation for each interval sample size and its corresponding speed in the selected sample group , so as to generate real-time speed information of the road section.

於一實施例中,本案之批次過濾模組係依時間順序批次切割該複數個行動信令資料,以對各批次的行動信令資料進行主成分分析、及方向過濾和距離過濾,使得各該批次的該行動信令資料經主成分分析、及方向過濾和距離過濾之後,產生各批次的行動信令位置資料,以構成該複數個行動信令位置資料。 In one embodiment, the batch filtering module of this case cuts the plurality of mobile signaling data in batches according to time sequence, so as to perform principal component analysis, direction filtering and distance filtering on the mobile signaling data of each batch, After the batches of the mobile signaling data are subjected to principal component analysis, direction filtering and distance filtering, each batch of mobile signaling location data is generated to form the plurality of mobile signaling location data.

於一實施例中,本案之動態壅塞偵測模組係比較該總樣本量與該壅塞門檻值,以於該總樣本量未大於該壅塞門檻值時選取時速較快的樣本群,而於該總樣本量大於該壅塞門檻值時,判斷該路段的低速占比是否大於根據該路段的該歷史資料所計算出的該路段的低速占比門檻值,以於該低速占比未大於該低速占比門檻值時選取時速較快的樣本群,而於該低速占比大於該低速占比門檻值時選取數量較多的樣本群。 In one embodiment, the dynamic congestion detection module of this case compares the total sample size with the congestion threshold value, so as to select a faster sample group when the total sample size is not greater than the congestion threshold value, and in the When the total sample size is greater than the congestion threshold, it is judged whether the low-speed proportion of the road section is greater than the low-speed proportion threshold value of the road section calculated based on the historical data of the road section, so that the low-speed proportion is not greater than the low-speed proportion. When the threshold value is exceeded, a sample group with a faster speed is selected, and when the low-speed ratio is greater than the low-speed ratio threshold value, a larger sample group is selected.

於一實施例中,本案之時速聚合模組係對該選取的樣本群中各區間的時速低值與時速機率值進行加權平均,藉以產生該路段的即時時速資訊。 In one embodiment, the speed aggregation module of this case performs weighted average of the low speed value and the speed probability value of each interval in the selected sample group, so as to generate real-time speed information of the road section.

本案所揭之分析路段狀況之方法係包括:對所接收之複數個行動裝置的複數個行動信令資料執行批次分析過濾,以產生複數個行動信令位置資料;將該複數個行動信令位置資料對應至一路段,以計算該路段的總樣本量、複數個區間樣本量、及各該區間樣本量所對應的時速;根據該路段的該總樣本量與根據該路段的歷史資料所計算出之該路段的壅塞門檻值,決定該總樣本量中被選取的樣本群;以及對該選取的樣本群中各區間樣本量及其對應的時速進行時速聚合,俾產生該路段的即時時速資訊。 The method for analyzing road conditions disclosed in this case includes: performing batch analysis and filtering on multiple mobile signaling data received from multiple mobile devices to generate multiple mobile signaling location data; The location data is corresponding to a road section to calculate the total sample size of the road section, the sample size of multiple intervals, and the speed per hour corresponding to the sample size of each interval; calculated based on the total sample size of the road section and the historical data of the road section The congestion threshold of the road section is determined to determine the selected sample group in the total sample size; and the speed aggregation is performed on the sample size of each interval in the selected sample group and the corresponding speed to generate real-time speed information of the road section .

於一實施例中,本案所述對所接收之複數個行動裝置的複數個行動信令資料進行批次分析過濾以產生複數個行動信令位置資料之步驟係包括:依時間順序批次切割該複數個行動信令資料;對各批次的行動信令資料進行主成分分析、及方向過濾和距離過濾;以及各該批次的該行動信令資料經主成分分析、及方向過濾和距離過濾之後,產生各批次的行動信令位置資料,以構成該複數個行動信令位置資料。 In one embodiment, the step of performing batch analysis and filtering on the multiple mobile signaling data received from multiple mobile devices to generate multiple mobile signaling location data includes: cutting the mobile signaling data in batches according to time sequence A plurality of mobile signaling data; principal component analysis, direction filtering and distance filtering are performed on each batch of mobile signaling data; and principal component analysis, direction filtering and distance filtering are performed on the mobile signaling data of each batch Afterwards, each batch of mobile signaling location data is generated to form the plurality of mobile signaling location data.

於一實施例中,本案所述根據該路段的該總樣本量與根據該路段的歷史資料所計算出之該路段的壅塞門檻值,決定該總樣本量中被選取的樣本群之步驟係包括:比較該總樣本量與該壅塞門檻值,其中,於該總樣本量未大於該壅塞門檻值時,選取時速較快的樣本群,而於該總樣本量大於該壅塞門檻值時,判斷該路段的低速占比是否大於根據該路段的該歷史資料所計算出之該路段的低速占比門檻值,其中,於該低速占比未大於該低速占比門檻值時,選取時速較快的樣本群,而於該低速占比大於該低速占比門檻值時,選取數量較多的樣本群。 In one embodiment, according to the total sample size of the road section and the congestion threshold value of the road section calculated according to the historical data of the road section described in this case, the steps of determining the selected sample group in the total sample size include: : compare the total sample size with the congestion threshold, wherein, when the total sample size is not greater than the congestion threshold, select the faster sample group, and when the total sample size is greater than the congestion threshold, judge the Whether the low-speed ratio of the road section is greater than the low-speed ratio threshold value of the road section calculated based on the historical data of the road section, wherein, when the low-speed ratio is not greater than the low-speed ratio threshold value, select samples with faster speeds group, and when the low-speed ratio is greater than the low-speed ratio threshold value, a larger sample group is selected.

於一實施例中,本案所述選取時速較快的樣本群之步驟係包括:依時速快到慢計算前N個區間樣本量/該總樣本量以及N/總區間數量;以及於該前N個區間樣本量/該總樣本量係大於或等於該N/總區間數量,選取具有該前N個區間樣本量的群為時速較快的樣本群。 In one embodiment, the step of selecting a faster sample group as described in this case includes: calculating the sample size of the first N intervals/the total sample size and N/the total interval number from fast to slow; The interval sample size/the total sample size is greater than or equal to the N/total interval number, and the group with the sample size of the first N intervals is selected as the faster sample group.

於一實施例中,本案所述選取數量較多的樣本群之步驟係包括:以相鄰M個區間分為一群,以計算各群的樣本量加總量;以及選取具有最多該樣本加總量的群為該數量較多的樣本群。 In one embodiment, the step of selecting a large number of sample groups as described in this case includes: dividing adjacent M intervals into a group to calculate the sum of the sample sizes of each group; The group of the quantity is the sample group with a larger number.

於一實施例中,本案所述對該選取的樣本群中各區間樣本量及其對應的時速進行時速聚合以產生該路段的時速資訊之步驟係包括:對該選取的樣本群中各區間的時速低值與時速機率值進行加權平均,以產生該路段的即時時速資訊。 In one embodiment, the step of performing speed aggregation on the sample size of each interval in the selected sample group and its corresponding speed to generate the speed information of the road section described in this case includes: The low value of speed per hour and the probability value of speed per hour are weighted and averaged to generate real-time speed per hour information of the road section.

本案所揭之分析路段狀況之電腦程式產品,經電腦下載以執行上揭分析路段狀況之方法。 The computer program product for analyzing road conditions disclosed in this case can be downloaded to a computer to implement the method disclosed above for analyzing road conditions.

本案所揭之分析路段狀況之電腦可讀取記錄媒體,經電腦下載以執行上揭分析路段狀況之方法。 The computer-readable recording medium for analyzing road conditions disclosed in this case can be downloaded through the computer to implement the method disclosed above for analyzing road conditions.

藉由本案所揭之分析路段狀況之設備、方法、電腦程式產品及電腦可讀取記錄媒體,執行批次分析過濾以濾除飄移點位,之後將行動信令位置資料對應至路段上,再執行壅塞門檻值計算及動態壅塞偵測技術,以追蹤時速隨時序的變化,避免與實際路況不符的情形,故無需額外勾稽異質資料,即可快速且準確地分析路況為壅塞或順暢,藉此提升路況分析準確性。 Using the equipment, method, computer program product and computer-readable recording medium disclosed in this case to analyze the condition of the road section, perform batch analysis and filtering to filter out drifting points, and then map the mobile signaling position data to the road section, and then Implement congestion threshold calculation and dynamic congestion detection technology to track changes in speed over time and avoid situations that do not match the actual road conditions. Therefore, it is possible to quickly and accurately analyze whether the road conditions are congested or smooth without additional interrogation of heterogeneous data. Improve the accuracy of traffic analysis.

10:基地站 10: Base station

2:設備 2: Equipment

21:資料接收模組 21: Data receiving module

22:批次過濾模組 22:Batch filter module

23:路段對應模組 23: Road section corresponding module

24:動態壅塞門檻計算模組 24: Dynamic congestion threshold calculation module

25:動態壅塞偵測模組 25: Dynamic congestion detection module

26:時速聚合模組 26: Speed aggregation module

30:資料庫 30: Database

P1~P12:點位 P1~P12: point

S201~S206:步驟 S201~S206: steps

S301~S304:步驟 S301~S304: steps

S401~S406:步驟 S401~S406: steps

圖1係為根據本案之分析路段狀況之設備之實施例的架構示意圖。 Fig. 1 is a schematic diagram of the structure of an embodiment of the equipment for analyzing road section conditions according to the present application.

圖2係為根據本案之分析路段狀況之方法之實施例的流程示意圖。 Fig. 2 is a schematic flow chart of an embodiment of the method for analyzing road section conditions according to the present application.

圖3A係為本案之分析路段狀況之方法中批次分析過濾之實施例示意圖。 FIG. 3A is a schematic diagram of an embodiment of batch analysis and filtering in the method for analyzing road conditions in this case.

圖3B係為本案之分析路段狀況之方法中主成分分析之實施例示意圖。 Fig. 3B is a schematic diagram of an embodiment of principal component analysis in the method for analyzing road conditions in this case.

圖4係為本案之分析路段狀況之方法中取群之實施例示意圖。 Fig. 4 is a schematic diagram of an embodiment of group selection in the method for analyzing road section conditions in this case.

圖5係為本案之分析路段狀況之方法中區間樣本量及其所對應的時速之實施例示意圖。 Fig. 5 is a schematic diagram of an embodiment of the interval sample size and the corresponding speed per hour in the method for analyzing road section conditions in this case.

圖6係為本案之分析路段狀況之方法中選取快群之實施例的示意圖。 Fig. 6 is a schematic diagram of an embodiment of selecting a fast group in the method for analyzing road conditions in this case.

圖7係為本案之分析路段狀況之方法中選取大群之實施例的示意圖。 Fig. 7 is a schematic diagram of an embodiment of selecting a large group in the method for analyzing road conditions in this case.

以下藉由特定的實施例說明本案之實施方式,熟習此項技藝之人士可由本文所揭示之內容輕易地瞭解本案之其他優點及功效。本說明書所附圖式所繪示之結構、比值、大小等均僅用於配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,非用於限定本案可實施之限定條件,故任何修飾、改變或調整,在不影響本案所能產生之功效及所能達成之目的下,均應仍落在本案所揭示之技術內容得能涵蓋之範圍內。 The implementation of this case is described below through specific examples, and those skilled in this art can easily understand other advantages and effects of this case from the content disclosed herein. The structures, ratios, sizes, etc. shown in the drawings attached to this manual are only used to match the content disclosed in the manual, for the understanding and reading of those who are familiar with this technology, and are not used to limit the conditions that can be implemented in this case. Therefore, any modifications, changes or adjustments should still fall within the scope covered by the technical content disclosed in this case without affecting the functions and goals that can be achieved in this case.

請參閱圖1,本案之設備2包括資料接收模組21、批次過濾模組22、路段對應模組23、動態壅塞門檻計算模組24、動態壅塞偵測模組25、以及時速聚合模組26。 Please refer to Figure 1, the device 2 in this case includes a data receiving module 21, a batch filtering module 22, a road section corresponding module 23, a dynamic congestion threshold calculation module 24, a dynamic congestion detection module 25, and an hourly speed aggregation module 26.

在一實施例中,設備2係為一遠端或雲端之伺服器。在另一實施例中,圖1中的各模組均可為軟體、硬體或韌體;若為硬體,則可為具有資料處理與運算能力之處理單元、處理器、電腦;若為軟體或韌體,則可包括處理單元、處理器、電腦可執行之指令。 In one embodiment, the device 2 is a remote or cloud server. In another embodiment, each module in Fig. 1 can be software, hardware or firmware; if it is hardware, it can be a processing unit, processor, computer with data processing and computing capabilities; if it is Software or firmware may include processing units, processors, and computer-executable instructions.

資料接收模組21自基地站10接收複數個行動裝置的複數個行動信令資料。具體而言,行動裝置可例如為具有SIM(用户身份模組;Subscriber Identity Module)卡之智慧手機、智慧手錶、平板電腦等,其與 基地站10之間傳遞有行動信令資料,包括例如行動裝置之位置、時間與速度等資料。於一具體實施例中,行動信令資料例如為CVP信令資料。 The data receiving module 21 receives a plurality of mobile signaling data of a plurality of mobile devices from the base station 10 . Specifically, the mobile device can be, for example, a smart phone, a smart watch, a tablet computer, etc. with a SIM (Subscriber Identity Module) card. Mobile signaling data are transmitted between the base stations 10, including such data as the location, time and speed of the mobile device. In a specific embodiment, the action signaling data is, for example, CVP signaling data.

批次過濾模組22對資料接收模組21所接收之複數個行動裝置的複數個行動信令資料,進行批次、分析、過濾之處理,以產生複數個行動信令位置資料。詳言之,對於一個行動裝置,批次過濾模組22依時間順序累積複數個行動信令資料,累積至一定數量後切割為一批次,接著對該批次使用主成分分析(principal components analysis,PCA)法以分析該批點位之主成分,再進行方向過濾與距離過濾,進而將與主成分移動方向相反或與主成分垂直距離過遠的點位濾除。接著,過濾後之點位的其中一部分傳入路段對應模組23,另保留一部分作為下一批次的前幾個點位,以繼續對該下一批次使用主成分分析法及方向過濾與距離過濾,以此類推。並且,批次過濾模組22對各個行動裝置的複數個行動信令資料執行上述依時間順序累積、批次切割、主成分分析、方向過濾和距離過濾等處理,而各批次的行動信令資料經處理之後傳至路段對應模組23者即為所述複數個行動信令位置資料。 The batch filtering module 22 batches, analyzes and filters the mobile signaling data of the mobile devices received by the data receiving module 21 to generate a plurality of mobile signaling location data. Specifically, for a mobile device, the batch filtering module 22 accumulates a plurality of mobile signaling data in chronological order, and cuts them into batches after accumulating to a certain amount, and then uses principal components analysis (principal components analysis) for the batch , PCA) method to analyze the principal components of the batch of points, and then perform direction filtering and distance filtering, and then filter out the points that are opposite to the moving direction of the principal components or that are too far away from the principal components. Then, a part of the filtered points is imported into the road section corresponding module 23, and another part is reserved as the first few points of the next batch, so as to continue to use the principal component analysis method and direction filtering and distance filtering, and so on. Moreover, the batch filtering module 22 performs the above-mentioned processes such as chronological accumulation, batch cutting, principal component analysis, direction filtering and distance filtering on the plurality of mobile signaling data of each mobile device, and the mobile signaling of each batch After the data is processed, the data transmitted to the corresponding module 23 of the road section is the plurality of mobile signaling location data.

路段對應模組23將批次過濾模組22所產生之複數個行動信令位置資料對應之一路段,以計算出該路段的總樣本量、複數個區間樣本量及其所對應的時速。詳言之,根據複數個行動信令可計算出複數個用戶裝置的所在位置,結合路網資訊可獲得該路段上所有用戶裝置的數量(即,總樣本量),根據該路段的時速限制切割出複數個時速區間,而每個時速區間有其對應的用戶裝置數量(即,複數個區間樣本量及其所對應的時速)。須說明的是,由於批次過濾模組22不間斷地執行依時間順序累積、批次切 割、主成分分析、方向過濾和距離過濾等處理,爾後將複數個行動信令位置資料傳輸至路段對應模組23,因而路段對應模組23所計算出之該路段的總樣本量、複數個區間樣本量及其所對應的時速也是隨著時序而變化。 The road section corresponding module 23 corresponds the plurality of mobile signaling location data generated by the batch filtering module 22 to a road section to calculate the total sample size of the road section, the plurality of interval sample sizes and the corresponding speed per hour. Specifically, the locations of multiple user devices can be calculated based on multiple action signals, combined with the road network information, the number of all user devices on the road section (that is, the total sample size) can be obtained, and cut according to the speed limit of the road section A plurality of speed intervals are generated, and each speed interval has its corresponding number of user devices (that is, the sample size of the plurality of intervals and the corresponding speed). It should be noted that, since the batch filtering module 22 continuously executes chronological accumulation, batch switching cutting, principal component analysis, direction filtering, and distance filtering, etc., and then transmit the plurality of action signaling position data to the road section corresponding module 23, so the total sample size of the road section calculated by the road section corresponding module 23, the plurality of The interval sample size and the corresponding hourly speed also change with the time series.

動態壅塞門檻計算模組24根據資料庫30中該路段的歷史資料計算該路段的壅塞門檻值。具體言之,資料庫30儲存有路網資訊、道路容量資料、和歷史資料等,其中歷史資料例如該路段上同一時段歷史上(例如過去七天)的每隔一段時間(例如每五分鐘)的歷史總樣本量,動態壅塞門檻計算模組24選取總樣本量最大的約十個樣本量,平均之後的大約六成作為壅塞門檻值。另外,若無過去幾天的樣本資訊,則動態壅塞門檻計算模組24可以將資料庫30中該路段的道路容量設作為壅塞門檻值。另外,動態壅塞門檻計算模組24根據該路段的歷史資料計算該路段的低速占比門檻值,同樣可選取該路段上同一時段過去七天每五分鐘的平均時速的大約八成作為低速門檻,然後計算低於該低速門檻的樣本量相對於該歷史總樣本量的占比,作為低速占比門檻值。 The dynamic congestion threshold calculation module 24 calculates the congestion threshold of the road section according to the historical data of the road section in the database 30 . Specifically, the database 30 stores road network information, road capacity data, and historical data, etc., wherein the historical data, for example, at intervals (such as every five minutes) in the history of the same period of time on the road section (such as the past seven days) For the total historical sample size, the dynamic congestion threshold calculation module 24 selects about ten samples with the largest total sample size, and an average of about 60% is used as the congestion threshold. In addition, if there is no sample information of the past few days, the dynamic congestion threshold calculation module 24 can set the road capacity of the road segment in the database 30 as the congestion threshold. In addition, the dynamic congestion threshold calculation module 24 calculates the low-speed ratio threshold value of the road section according to the historical data of the road section, and can also select about 80% of the average speed per hour of every five minutes in the past seven days in the same period of time on the road section as the low-speed threshold, and then calculate The ratio of the sample size below the low-speed threshold to the total historical sample size is used as the low-speed ratio threshold.

動態壅塞偵測模組25根據該路段的該壅塞門檻值與該路段的該總樣本量,或根據該路段的該低速占比門檻值與該路段的該低速占比,決定該總樣本量中被選取的樣本群。於一實施例中,動態壅塞偵測模組25比較該路段的該總樣本量與該路段的該壅塞門檻值,若路段對應模組23所計算出的該路段的總樣本量不大於(即小於或等於)動態壅塞門檻計算模組24所計算出之壅塞門檻值,則動態壅塞偵測模組25.判定為車少或順暢,因而動態壅塞偵測模組25決定自該總樣本量中選取時速較快的樣本群。於另一實施例中,若路段對應模組23所計算出的該路段的總樣本量大於動態 壅塞門檻計算模組24所計算出之壅塞門檻值,則動態壅塞偵測模組25判定為車多或壅塞,動態壅塞偵測模組25接著比較該路段的低速占比與該路段的低速占比門檻值。若路段對應模組23所計算出的該路段的低速占比不大於(即小於或等於)動態壅塞門檻計算模組24所計算出的該路段的低速占比門檻值,則可能車多但車速夠快,仍未達壅塞條件,因而動態壅塞偵測模組25決定自該總樣本量中選取時速較快的樣本群。若路段對應模組23所計算出的該路段的低速占比大於動態壅塞門檻計算模組24所計算出的該路段的低速占比門檻值,則可能車多且速度慢,應視為滿足壅塞條件,因而動態壅塞偵測模組25決定自該總樣本量中選取數量較多的樣本群。 The dynamic congestion detection module 25 determines the total sample size according to the congestion threshold of the road section and the total sample size of the road section, or according to the low-speed ratio threshold value of the road section and the low-speed ratio of the road section. The selected sample group. In one embodiment, the dynamic congestion detection module 25 compares the total sample size of the road section with the congestion threshold value of the road section, and if the total sample size of the road section calculated by the road section corresponding module 23 is not greater than (i.e. less than or equal to) the congestion threshold calculated by the dynamic congestion threshold calculation module 24, then the dynamic congestion detection module 25. judges that there are few or smooth vehicles, so the dynamic congestion detection module 25 determines from the total sample size Select the faster sample group. In another embodiment, if the total sample size of the road section calculated by the road section corresponding module 23 is greater than the dynamic The congestion threshold calculated by the congestion threshold calculation module 24 is judged by the dynamic congestion detection module 25 as having too many vehicles or congestion, and then the dynamic congestion detection module 25 compares the low-speed ratio of the road section with the low-speed ratio of the road section. than the threshold. If the low-speed proportion of this road section calculated by the corresponding module 23 of the road section is not greater than (i.e. less than or equal to) the low-speed ratio threshold value of this road section calculated by the dynamic congestion threshold calculation module 24, then there may be many cars but the vehicle speed If it is fast enough, the congestion condition is not yet met, so the dynamic congestion detection module 25 decides to select a faster sample group from the total sample size. If the low-speed proportion of the road section calculated by the corresponding module 23 of the road section is greater than the low-speed ratio threshold value of the road section calculated by the dynamic congestion threshold calculation module 24, there may be many cars and the speed is slow, which should be regarded as satisfying the congestion condition, so the dynamic congestion detection module 25 decides to select a larger number of sample groups from the total sample size.

時速聚合模組26對動態壅塞偵測模組25所選取的樣本群中各該區間樣本量及其對應的時速進行時速聚合,即對該選取的樣本群中各區間的時速低值與時速機率值進行加權平均,藉以產生該路段的即時時速資訊,其中時速機率值係指一區間樣本量相比於該選取的樣本群的樣本量。另外,所產生之該段的即時時速資訊也會傳輸至資料庫30,以作為後續計算壅塞門檻值時之更新依據。 The speed aggregation module 26 aggregates the sample size and the corresponding speed of each interval in the sample group selected by the dynamic congestion detection module 25, that is, the low speed value and the speed probability of each interval in the selected sample group Values are weighted and averaged to generate real-time speed information of the road section, wherein the speed probability value refers to the sample size of an interval compared to the sample size of the selected sample group. In addition, the generated real-time speed information of the segment will also be transmitted to the database 30 as an update basis for subsequent calculation of the congestion threshold.

因此,藉由本案之包括資料接收模組21、批次過濾模組22、路段對應模組23、動態壅塞門檻計算模組24、動態壅塞偵測模組25及時速聚合模組26之設備2,接收來自基地站10的行動信令資料進行批次分析過濾以濾除飄移點位,疊代追蹤時速隨時序的變化,並且依據資料庫30中對應路段的歷史資料計算動態門檻值以藉此進行動態壅塞偵測,於車流量偏低的交通情況下,選取時速較快的樣本群以降低取樣到少數慢車所造成時速演算結果偏慢的影響,而於車流量偏中高的交通情況下,進一步考 慮車速資料以增加壅塞路況的判斷條件,另導入路段壅塞門檻動態更新機制,避免因採用路段基本固定資料而導致與實際路況不符的情形,以提升路況分析正確性。 Therefore, the device 2 in this case includes a data receiving module 21, a batch filtering module 22, a road section corresponding module 23, a dynamic congestion threshold calculation module 24, a dynamic congestion detection module 25 and a speed aggregation module 26 , receiving the action signaling data from the base station 10, performing batch analysis and filtering to filter out drift points, iteratively tracking the change of the speed with time sequence, and calculating the dynamic threshold value according to the historical data of the corresponding road section in the database 30 to thereby Carry out dynamic congestion detection. In traffic conditions with low traffic flow, select faster sample groups to reduce the influence of slow speed calculation results caused by sampling a small number of slow vehicles. In traffic conditions with medium to high traffic volume, further study Consider vehicle speed data to increase the judgment conditions of congested road conditions, and introduce a dynamic update mechanism for road congestion thresholds to avoid situations that do not match the actual road conditions due to the use of basic fixed data on road sections, so as to improve the accuracy of road condition analysis.

於一實施例中,本案上述各模組所產生之資料可供多種交通服務進行後續應用,透過APP或網頁呈現出來,以供提前道路改向或是發布交通措施以避免道路壅塞,藉此節省旅行時間。於另一實施例中,本案之上述模組亦可單獨拆開,例如批次過濾模組所執行的處理,其中可抓出飄移之點位數量、比例等,後續亦能應用於停駐點、事故偵測等技術;而動態壅塞偵測模組所執行之處理,其中壅塞路況判斷則可用於道路易壅塞程度貼標,將貼標資料作為屬性之一,應用於其他交通分析服務。 In one embodiment, the data generated by the above-mentioned modules in this case can be used for subsequent applications of various traffic services, and can be presented through an APP or a webpage for early road diversion or release of traffic measures to avoid road congestion, thereby saving travel time. In another embodiment, the above-mentioned modules of this case can also be disassembled separately, such as the processing performed by the batch filtering module, in which the number and proportion of drifting points can be captured, and can also be applied to the stop points later , accident detection and other technologies; as for the processing performed by the dynamic congestion detection module, the judgment of congested road conditions can be used to label the degree of road congestion, and the labeling data is used as one of the attributes to be applied to other traffic analysis services.

請參閱圖2,本案之分析路段狀況之方法主要包括步驟S201~S206,主要由圖1的設備2所執行。 Please refer to FIG. 2 , the method for analyzing road conditions in this case mainly includes steps S201 to S206 , which are mainly executed by the device 2 in FIG. 1 .

於步驟S201中,自基地站接收複數個行動裝置的複數個行動信令資料,接著進至步驟S202。 In step S201, a plurality of mobile signaling data of a plurality of mobile devices are received from the base station, and then proceed to step S202.

於步驟S202中,對複數個行動裝置的複數個行動信令資料進行批次分析過濾,以產生複數個行動信令位置資料。所述批次分析過濾之步驟詳如圖3A所示,包括步驟S301~S304。 In step S202, batch analysis and filtering are performed on the mobile signaling data of the mobile devices to generate the mobile signaling location data. The steps of batch analysis and filtration are shown in Figure 3A in detail, including steps S301-S304.

於步驟S301中,執行批次切割。詳言之,對各個行動裝置的多個行動信令資料依時間順序累積,累計至一定數量後切割為一批次,如批次1,接著進至步驟S302。 In step S301, batch cutting is performed. In detail, multiple mobile signaling data for each mobile device are accumulated in chronological order, and after a certain amount is accumulated, they are divided into batches, such as batch 1, and then proceed to step S302.

於步驟S302中,執行主成分分析。詳言之,對批次1的多個點位(也就是行動信令資料)執行主成分分析,參閱圖3B,圖中一批次包含 12個點位P1~P12,點位編號代表點位時間的先後順序,以主成分分析法找出之主成分,如箭頭所示,接著進至步驟S303。 In step S302, principal component analysis is performed. In detail, principal component analysis is performed on multiple points of batch 1 (that is, the action signaling data), as shown in Figure 3B, in which a batch contains There are 12 points P1~P12, the point numbers represent the sequence of point time, the principal components found by the principal component analysis method are shown by the arrows, and then go to step S303.

於步驟S303中,執行方向過濾及距離過濾。如圖3B中所示,12個點位中,可以看到點位P5、P6的平行移動方向與主成分不符,而點位P2、P4、P9、P10與主成分的垂直距離過大,因此過濾後之點位僅剩下點位P1、P3、P7、P8、P11、P12共6個,接著進至步驟S304。 In step S303, direction filtering and distance filtering are performed. As shown in Figure 3B, among the 12 points, it can be seen that the parallel movement directions of points P5 and P6 do not match the principal components, while the vertical distances between points P2, P4, P9, and P10 and the principal components are too large, so filtering After that, there are only 6 points P1, P3, P7, P8, P11, and P12 left, and then proceed to step S304.

於步驟S304中,留下過濾後的點位群,另保留部分點位至下一批次。具體言之,批次1的最後三成點位,也就是點位P11、P12將被保留為下一批次的前面兩者,故批次2的點位係為P11、P12、P13、P14、…,批次3也是以此類推而產生。因此,過濾後點位群1中包括點位P1、P3、P7、P8四個,即作為行動信令位置資料,過濾後點位群2和3也是以此類推而產生故所包括的點位即作為行動信令位置資料,接著進至步驟S203。 In step S304, the filtered point group is retained, and some points are reserved for the next batch. Specifically, the last 30% points of batch 1, that is, points P11 and P12 will be reserved as the first two of the next batch, so the points of batch 2 are P11, P12, P13, P14, ..., batch 3 is also generated by analogy. Therefore, the filtered point group 1 includes four points P1, P3, P7, and P8, that is, as the action signaling position data, and the filtered point group 2 and 3 are also generated by analogy, so the included points That is, as the mobile signaling location data, then proceed to step S203.

於步驟S203中,將複數個行動信令位置資料對應至路段,接著進至步驟S204。 In step S203, a plurality of mobile signaling location data are mapped to road sections, and then proceed to step S204.

於步驟S204中,計算出該路段的總樣本量、複數個區間樣本量及其所對應的時速,接著進至步驟S205。於一具體實施例中,請參閱圖5,以一速限80之路段時速樣本分布為例,時速允許到速限+20,因而以(80+20)/5去切割時速區間,故由以樣本量為縱軸而以時速區間為橫軸之圖5可知,該路段當下時間的總樣本量、複數個區間樣本量及其所對應的時速。 In step S204, the total sample size of the road section, the sample size of multiple intervals and the corresponding speed per hour are calculated, and then proceed to step S205. In a specific embodiment, please refer to FIG. 5 , take a speed limit of 80 road section speed sample distribution as an example, the speed per hour is allowed to the speed limit+20, so the speed per hour interval is cut by (80+20)/5, so by Figure 5 shows the sample size as the vertical axis and the speed interval as the horizontal axis. It can be seen that the total sample size of the road section at the current time, the sample size of multiple intervals and the corresponding speed per hour.

於步驟S205中,根據該路段的總樣本量與根據該路段的歷史資料所計算出的壅塞門檻值,決定總樣本量中被選取的樣本群。具體實 施請參閱圖4,本案之分析路段狀況之方法中取群方法包括步驟S401~S406。 In step S205, according to the total sample size of the road section and the congestion threshold value calculated according to the historical data of the road section, the selected sample group in the total sample size is determined. Specific facts Please refer to FIG. 4 , the group selection method in the method for analyzing road section conditions in this case includes steps S401-S406.

於步驟S401中,計算該路段的壅塞門檻值。於一實施例中,壅塞門檻值的計算式如下: In step S401, the congestion threshold of the road section is calculated. In one embodiment, the calculation formula of the congestion threshold is as follows:

壅塞門檻值=AVG(樣本量峰值)*0.6 Congestion threshold = AVG (peak sample size) * 0.6

於一實施例中,樣本量峰值:以當下時間為基準,往回推七天內的每個五分鐘樣本量,取樣本量最大的十個樣本量。因此,壅塞門檻值即為近期七天內樣本峰值平均之6成。若無七天內之樣本資訊,則以該路段的道路容量為壅塞門檻值。 In one embodiment, the peak value of the sample size: based on the current time, push back the sample size of each five minutes within seven days, and take the ten sample sizes with the largest sample size. Therefore, the congestion threshold is 60% of the sample peak average in the last seven days. If there is no sample information within seven days, the road capacity of the road section is used as the congestion threshold.

於步驟S402中,判斷該路段的總樣本量是否大於該路段的壅塞門檻值。若總樣本量不大於壅塞門檻值,則可視為車少或順暢,進至步驟S403。若總樣本量大於壅塞門檻值,則可視為車多,進至步驟S405。 In step S402, it is determined whether the total sample size of the road section is greater than the congestion threshold of the road section. If the total sample size is not greater than the congestion threshold, it can be considered that there are few or smooth vehicles, and the process goes to step S403. If the total sample size is greater than the congestion threshold, it can be considered that there are too many vehicles, and the process goes to step S405.

於步驟S403中,選擇時速較快的樣本群。於一實施例中,假設該路段的總樣本量為407,則快群取法如下。 In step S403, a sample group with a faster time velocity is selected. In one embodiment, assuming that the total sample size of the road section is 407, the fast group selection method is as follows.

(由快到慢前N個區間樣本量/總樣本量)>=N/區間數量。 (Sample size of the first N intervals from fast to slow/total sample size)>=N/Number of intervals.

請參閱圖6。 See Figure 6.

N=1,4/407<1/20 N=1, 4/407<1/20

N=2,(4+8)/407<2/20 N=2,(4+8)/407<2/20

N=3,(4+8+7)/407<3/20 N=3,(4+8+7)/407<3/20

N=12,(4+8+7+10+10+8+16+16+41+38+57+31)/407>12/20 N=12, (4+8+7+10+10+8+16+16+41+38+57+31)/407>12/20

換言之,N=1~12的區間即為時速較快的樣本群,如圖6中的方框所示即為被選取的樣本群,此作為後續計算該路段的即時時速資訊的依據。 In other words, the interval of N=1~12 is the sample group with a faster speed, as shown in the box in Figure 6, it is the selected sample group, which is used as the basis for the subsequent calculation of the real-time speed information of the road section.

於步驟S405中,判斷該路段的低速占比是否大於該路段的低速占比門檻值。在此之前,於步驟S405中,計算該路段的低速占比門檻值。 In step S405, it is determined whether the low-speed ratio of the road section is greater than the low-speed ratio threshold value of the road section. Before that, in step S405, the low-speed ratio threshold value of the section is calculated.

低速占比門檻值的計算如下: The low-speed ratio threshold is calculated as follows:

於一實施例中,假設該路段過去7天平均時速為70,則低速門檻為70*0.8=56,則以該路當下時間為基準,過去七天低速占比門檻值=過去七天低速樣本量/過去七天總樣本量。 In one embodiment, assuming that the average speed of the road section in the past 7 days is 70, then the low-speed threshold is 70*0.8=56, then based on the current time of the road, the threshold of low-speed proportion in the past seven days = the number of low-speed samples in the past seven days/ Total sample size for the past seven days.

另外,如圖7所示,假設該例中,總樣本量為407中,時速低於56kph之樣本有292個,而圖7顯示時速0-55區間的樣本量有287個,則該路段當下的低速占比為287/407(約0.7)。 In addition, as shown in Figure 7, assuming that in this example, the total sample size is 407, there are 292 samples with a speed lower than 56kph, and Figure 7 shows that there are 287 samples in the range of 0-55 per hour, then the road section is currently The ratio of low speed is 287/407 (about 0.7).

若低速占比不大於低速占比門檻值,則可視為車雖多但車速不慢,進至步驟S403。若低速占比大於低速占比門檻值,則可視為車多又慢,滿足壅塞條件,進至步驟S406。 If the low-speed ratio is not greater than the low-speed ratio threshold, it can be considered that there are many vehicles but the vehicle speed is not slow, and the process proceeds to step S403. If the low-speed ratio is greater than the low-speed ratio threshold, it can be considered that there are many and slow vehicles and the congestion condition is met, and the process goes to step S406.

於步驟S406中,選擇數量較多的樣本群。於一實施例中,假設該路段的總樣本量為407,則大群取法為:M個相鄰區間分為一群,具有時速區間樣本量加總最高的一群即為大群。若不只一群的樣本量加總最高,則選取較時速較低的群。 In step S406, a larger sample group is selected. In one embodiment, assuming that the total sample size of the road section is 407, the large group selection method is as follows: M adjacent sections are divided into one group, and the group with the highest total sample size of the speed intervals is the large group. If more than one group has the highest total sample size, select the group with a lower speed.

如圖7所示,於一實施例中,三個相鄰區間分為一群,則可知由時速區間35-40、40-45、45-50所構成之群的區間樣本量加總最高, 此為大群,如圖7中的方框所示即為被選取的樣本群,此作為後續計算該路段的即時時速資訊的依據。 As shown in Figure 7, in one embodiment, three adjacent intervals are divided into one group, then it can be seen that the interval sample size of the group formed by the speed intervals 35-40, 40-45, and 45-50 has the highest total sum, This is a large group, as shown in the box in Figure 7, is the selected sample group, which is used as the basis for subsequent calculation of the real-time speed information of this road section.

完成上述步驟S205(包括步驟S401~S406)的選取樣本群之後,進至步驟S206。 After completing the selection of sample groups in the above step S205 (including steps S401~S406), proceed to step S206.

於步驟S206中,對所選取的樣本群中各區間樣本量及其所對應的時速進行時速聚合,俾快速且精準地產生該路段的即時時速資訊。具體言之,對該選取的樣本群中各區間的時速低值與時速機率值進行加權平均,以產生該路段的即時時速資訊,其中: In step S206, speed aggregation is performed on the sample size of each interval in the selected sample group and the corresponding speed, so as to quickly and accurately generate real-time speed information of the road section. Specifically, the weighted average of the low speed per hour and the probability of speed per hour of each interval in the selected sample group is carried out to generate the real-time speed per hour information of this road section, wherein:

於一實施例中,若選取快群,參閱圖6,如方框所示之快群,12個區間共246個樣本量,時速聚合如下: In one embodiment, if the fast group is selected, refer to Fig. 6, the fast group shown in the box has a total of 246 samples in 12 intervals, and the hourly aggregation is as follows:

(4/246)*95+(8/246)*90+(7/246)*85+(10/246)*80+(10/246)*75+(8/246)*70+(16/246)*65+(16/246)*60+(41/246)*55+(38/246)*50+(57/246)*45+(31/246)*40=55.96 (4/246)*95+(8/246)*90+(7/246)*85+(10/246)*80+(10/246)*75+(8/246)*70+(16 /246)*65+(16/246)*60+(41/246)*55+(38/246)*50+(57/246)*45+(31/246)*40=55.96

因此,在此實施例中,該路段當下時段由於總樣本量少於壅塞門檻值,或總樣本量雖然多於壅塞門檻值但低速占比仍少於低速門檻值,故選取快群,計算所得之該時段的即時時速為55.96kph。 Therefore, in this embodiment, because the total sample size of this road segment is less than the congestion threshold value in the current period, or although the total sample size is more than the congestion threshold value but the proportion of low speed is still less than the low speed threshold value, the fast group is selected, and the calculated The instant speed during this period is 55.96kph.

於另一實施例中,若選取大群,參閱圖6,如方框所示之大群,3個區間共136樣本量,時速聚合如下: In another embodiment, if a large group is selected, refer to Fig. 6, the large group shown in the box has a total of 136 samples in 3 intervals, and the hourly aggregation is as follows:

(48/136)*35+(31/136)*40+(57/136)*45=40.33 (48/136)*35+(31/136)*40+(57/136)*45=40.33

因此,在此實施例中,該路段當下時段由於總樣本量多於壅塞門檻值且低速占比亦多於低速門檻值,故選取大群,計算所得之該時段的即時時速為40.33kph。 Therefore, in this embodiment, since the total sample size of the road segment is more than the congestion threshold value and the proportion of low speed is also more than the low speed threshold value at the current time period, a large group is selected, and the calculated real-time speed of this time period is 40.33kph.

須說明的是,本發明之方法可執行在例如伺服器、電腦或其他具有資料處理、運算、儲存、網路通聯等功能的一個單獨或多個集合之設備中,其中,該伺服器、電腦或設備包括中央處理器、硬碟、記憶體等。 It should be noted that, the method of the present invention can be implemented in a single or multiple sets of equipment such as servers, computers or other functions such as data processing, computing, storage, network communication, etc., wherein the server, computer Or the equipment includes a central processing unit, a hard disk, a memory, and the like.

另外,本發明之電腦程式產品係經由電腦載入程式後執行該方法,而本發明之電腦可讀取紀錄媒體(例如硬碟、軟碟、光碟、USB隨身碟)係儲存有該電腦程式產品。另外,電腦程式產品亦可在網路上直接傳輸提供,故電腦程式產品係為載有電腦可讀取之程式且不限外在形式之物。 In addition, the computer program product of the present invention executes the method after the program is loaded into the computer, and the computer-readable recording medium (such as hard disk, floppy disk, optical disk, USB flash drive) of the present invention stores the computer program product . In addition, computer program products can also be directly transmitted and provided on the Internet, so computer program products refer to things that contain programs that can be read by computers and are not limited to external forms.

另外,本發明還提供一種電腦可讀取記錄媒體,係應用於具有處理器及/或記憶體之計算設備或電腦中,且電腦可讀取記錄媒體儲存有指令,並可利用計算設備或電腦透過處理器及/或記憶體執行電腦可讀取記錄媒體,以於執行電腦可讀取記錄媒體時執行上述方法及/或內容。 In addition, the present invention also provides a computer-readable recording medium, which is applied to a computing device or computer with a processor and/or memory, and the computer-readable recording medium stores instructions, and the computing device or computer can be used to Executing the computer-readable recording medium through the processor and/or memory, so as to execute the above method and/or content when executing the computer-readable recording medium.

綜上所述,本案揭示一種分析路段狀況之設備、方法及電腦程式產品,利用行動信令資料分析壅塞路況,依序進行信令接收、飄移信令過濾、路段對應、時速計算等步驟,藉由主成分過濾法透過批次點位的移動方向找出向量,不符合該向量方向性的點位即視為飄移點位。而在減低運具影響層面,在路段對應後而開始計算路段時速前,透過歷史資料信令樣本數、車速資料或道路容量等,判別當下車流與時速是否符合壅塞特徵,故無需使用異質資料進行勾稽,透過行動信令本身之移動特性即可將信令進行分群和取群,進而調整用於最終時速計算所使用的樣本群,從而提升路況分析準確性。 To sum up, this case discloses a device, method and computer program product for analyzing road conditions. It uses mobile signaling data to analyze congested road conditions, and then performs steps such as signaling reception, drift signaling filtering, road section correspondence, and speed calculation. The vector is found through the moving direction of the batch points by the principal component filtering method, and the points that do not conform to the directionality of the vector are regarded as drifting points. In terms of reducing the impact of vehicles, after the road section is mapped and before the speed of the road section is calculated, use the historical data signaling sample number, vehicle speed data or road capacity to determine whether the current traffic flow and speed meet the congestion characteristics, so there is no need to use heterogeneous data By performing cross-checking, the signaling can be grouped and grouped through the mobile characteristics of the mobile signaling itself, and then the sample group used for the final speed calculation can be adjusted, thereby improving the accuracy of road condition analysis.

上述實施例僅例示性說明本案之功效,而非用於限制本案,任何熟習此項技藝之人士均可在不違背本案之精神及範疇下對上述該些實 施態樣進行修飾與改變。因此本案之權利保護範圍,應如後述之申請專利範圍所列。 The above-mentioned embodiments are only illustrative of the effects of this case, and are not used to limit this case. Modifications and changes are made. Therefore, the scope of protection of rights in this case should be listed in the scope of patent application described later.

10:基地站 10: Base station

2:設備 2: Equipment

21:資料接收模組 21: Data receiving module

22:批次過濾模組 22:Batch filter module

23:路段對應模組 23: Road section corresponding module

24:動態壅塞門檻計算模組 24: Dynamic congestion threshold calculation module

25:動態壅塞偵測模組 25: Dynamic congestion detection module

26:時速聚合模組 26: Speed aggregation module

30:資料庫 30: Database

Claims (8)

一種分析路段狀況之設備,係包括:資料接收模組,用於接收複數個行動裝置的複數個行動信令資料;批次過濾模組,對該複數個行動裝置的該複數個行動信令資料進行批次分析過濾,以產生複數個行動信令位置資料;路段對應模組,將該複數個行動信令位置資料對應至一路段,以計算該路段的總樣本量、複數個區間樣本量、及各該區間樣本量所對應的時速;動態壅塞門檻計算模組,係根據該路段的歷史資料,計算該路段的壅塞門檻值;動態壅塞偵測模組,係根據該路段的該壅塞門檻值與該路段的該總樣本量,決定該總樣本量中被選取的樣本群,其中,該動態壅塞偵測模組係比較該總樣本量與該壅塞門檻值,以於該總樣本量未大於該壅塞門檻值時選取時速較快的樣本群,而於該總樣本量大於該壅塞門檻值時,判斷該路段的低速占比是否大於根據該路段的歷史資料所計算出的該路段的低速占比門檻值,以於該低速占比未大於該低速占比門檻值時選取時速較快的樣本群,而於該低速占比大於該低速占比門檻值時選取數量較多的樣本群;以及時速聚合模組,對該選取的樣本群中各該區間樣本量及其對應的時速進行時速聚合,俾產生該路段的即時時速資訊。 A device for analyzing the condition of a road section, including: a data receiving module for receiving a plurality of mobile signaling data from a plurality of mobile devices; a batch filtering module for receiving the plurality of mobile signaling data from a plurality of mobile devices Carry out batch analysis and filtering to generate a plurality of mobile signaling location data; the section correspondence module maps the plurality of mobile signaling location data to a road section to calculate the total sample size of the road section, the plurality of interval sample sizes, And the speed per hour corresponding to the sample size of each section; the dynamic congestion threshold calculation module calculates the congestion threshold value of the road section according to the historical data of the road section; the dynamic congestion detection module calculates the congestion threshold value of the road section according to the congestion threshold value of the road section and the total sample size of the road section to determine the selected sample group in the total sample size, wherein the dynamic congestion detection module compares the total sample size with the congestion threshold, so that if the total sample size is not greater than When the congestion threshold is selected, the sample group with a faster speed is selected, and when the total sample size is greater than the congestion threshold, it is judged whether the low-speed ratio of the road section is greater than the low-speed ratio of the road section calculated based on the historical data of the road section. Comparing the threshold value, to select a sample group with a faster speed when the low-speed ratio is not greater than the low-speed ratio threshold value, and select a larger number of sample groups when the low-speed ratio is greater than the low-speed ratio threshold value; and The speed aggregation module performs speed aggregation on the sample size of each interval in the selected sample group and the corresponding speed, so as to generate real-time speed information of the road section. 如請求項1所述之設備,其中,該批次過濾模組係依時間順序批次切割該複數個行動信令資料,以對各批次的行動信令資料進行主成分分析、及方向過濾和距離過濾,使得各該批次的該行動信令資料經主 成分分析、及方向過濾和距離過濾之後,產生各批次的行動信令位置資料,以構成該複數個行動信令位置資料。 The device as described in claim 1, wherein the batch filtering module batch-cuts the plurality of mobile signaling data in time order, so as to perform principal component analysis and direction filtering on each batch of mobile signaling data and distance filtering, so that the action signaling data of each batch is passed through the master After component analysis, direction filtering and distance filtering, each batch of mobile signaling location data is generated to form the plurality of mobile signaling location data. 如請求項1所述之設備,其中,該時速聚合模組係對該選取的樣本群中各區間的時速低值與時速機率值進行加權平均,藉以產生該路段的即時時速資訊。 The device as described in claim 1, wherein the speed aggregation module performs weighted average of the low speed value and the speed probability value of each interval in the selected sample group, so as to generate real-time speed information of the road section. 一種分析路段狀況之方法,係包括:對所接收之複數個行動裝置的複數個行動信令資料執行批次分析過濾,以產生複數個行動信令位置資料;將該複數個行動信令位置資料對應至一路段,以計算該路段的總樣本量、複數個區間樣本量、及各該區間樣本量所對應的時速;根據該路段的該總樣本量與根據該路段的歷史資料所計算出之該路段的壅塞門檻值,決定該總樣本量中被選取的樣本群,且進一步包括比較該總樣本量與該壅塞門檻值,其中,於該總樣本量未大於該壅塞門檻值時,選取時速較快的樣本群,而於該總樣本量大於該壅塞門檻值時,判斷該路段的低速占比是否大於根據該路段的該歷史資料所計算出之該路段的低速占比門檻值,其中,於該低速占比未大於該低速占比門檻值時,選取時速較快的樣本群,而於該低速占比大於該低速占比門檻值時,選取數量較多的樣本群;以及對該選取的樣本群中各區間樣本量及其對應的時速進行時速聚合,俾產生該路段的即時時速資訊。 A method for analyzing the condition of a road segment, comprising: performing batch analysis and filtering on multiple mobile signaling data received from multiple mobile devices to generate multiple mobile signaling location data; using the multiple mobile signaling location data Corresponding to a road section to calculate the total sample size of the road section, the sample size of multiple intervals, and the speed per hour corresponding to the sample size of each interval; based on the total sample size of the road section and the historical data of the road section. The congestion threshold of the road section determines the selected sample group in the total sample size, and further includes comparing the total sample size with the congestion threshold value, wherein, when the total sample size is not greater than the congestion threshold value, the speed per hour is selected Faster sample group, and when the total sample size is greater than the congestion threshold, it is judged whether the low-speed ratio of the road section is greater than the low-speed ratio threshold value of the road section calculated based on the historical data of the road section, wherein, When the low-speed ratio is not greater than the low-speed ratio threshold, select a faster sample group, and when the low-speed ratio is greater than the low-speed ratio threshold, select a larger sample group; and for the selected The sample size of each interval in the sample group and the corresponding speed are aggregated to generate real-time speed information of the road section. 如請求項4所述之方法,其中,所述對所接收之複數個行動裝置的複數個行動信令資料進行批次分析過濾以產生複數個行動信令位置資料之步驟係包括:依時間順序批次切割該複數個行動信令資料;對各批次的行動信令資料進行主成分分析、及方向過濾和距離過濾;以及各該批次的該行動信令資料經主成分分析、及方向過濾和距離過濾之後,產生各批次的行動信令位置資料,以構成該複數個行動信令位置資料。 The method as described in Claim 4, wherein, the step of performing batch analysis and filtering on the multiple mobile signaling data received from multiple mobile devices to generate multiple mobile signaling location data includes: chronological order Batch cutting the plurality of mobile signaling data; performing principal component analysis, direction filtering and distance filtering on the mobile signaling data of each batch; and performing principal component analysis and direction filtering on the mobile signaling data of each batch After filtering and distance filtering, each batch of mobile signaling location data is generated to form the plurality of mobile signaling location data. 如請求項4所述之方法,其中,所述選取時速較快的樣本群之步驟係包括:依時速快到慢計算前N個區間樣本量/該總樣本量以及N/總區間數量;以及於該前N個區間樣本量/該總樣本量係大於或等於該N/總區間數量,選取具有該前N個區間樣本量的群為時速較快的樣本群;其中,所述選取數量較多的樣本群之步驟係包括:以M個相鄰區間分為一群,以計算各群的樣本量加總量;以及選取具有最多該樣本加總量的群為該數量較多的樣本群。 The method as described in claim 4, wherein the step of selecting a sample group with a faster time speed includes: calculating the sample size of the first N intervals/the total sample size and N/total number of intervals from fast to slow; and When the sample size of the first N intervals/the total sample size is greater than or equal to the N/total interval number, the group with the sample size of the first N intervals is selected as the faster sample group; The step of having a large number of sample groups includes: dividing M adjacent intervals into a group to calculate the sum total of the sample sizes of each group; 如請求項4所述之方法,所述對該選取的樣本群中各區間樣本量及其對應的時速進行時速聚合以產生該路段的時速資訊之步驟係包括:對該選取的樣本群中各區間的時速低值與時速機率值進行加權平均,以產生該路段的即時時速資訊。 As in the method described in claim 4, the step of performing speed aggregation on the sample size of each interval in the selected sample group and its corresponding speed to generate the speed information of the road section includes: each of the selected sample groups The low speed per hour value of the section is weighted and averaged with the speed probability value to generate real-time speed information of the road section. 一種電腦程式產品,經電腦下載以執行如請求項4-7中任一項所述之方法。 A computer program product, downloaded by a computer to execute the method described in any one of claims 4-7.
TW111126500A 2022-07-14 2022-07-14 Apparatus and method for analyzing traffic status and computer program product implementing the method TWI799318B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111126500A TWI799318B (en) 2022-07-14 2022-07-14 Apparatus and method for analyzing traffic status and computer program product implementing the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111126500A TWI799318B (en) 2022-07-14 2022-07-14 Apparatus and method for analyzing traffic status and computer program product implementing the method

Publications (2)

Publication Number Publication Date
TWI799318B true TWI799318B (en) 2023-04-11
TW202403537A TW202403537A (en) 2024-01-16

Family

ID=86948734

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111126500A TWI799318B (en) 2022-07-14 2022-07-14 Apparatus and method for analyzing traffic status and computer program product implementing the method

Country Status (1)

Country Link
TW (1) TWI799318B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100070128A1 (en) * 2008-09-15 2010-03-18 Microsoft Corporation vehicle operation by leveraging traffic related data
TWI512690B (en) * 2013-09-16 2015-12-11 Chunghwa Telecom Co Ltd Application of vehicle population movement mode changes to detect road congestion
CN105574895A (en) * 2016-01-05 2016-05-11 浙江博天科技有限公司 Congestion detection method during the dynamic driving process of vehicle
CN112562334A (en) * 2020-12-08 2021-03-26 绍兴数鸿科技有限公司 Method, device and medium for calculating real-time speed of curved road section based on floating car data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100070128A1 (en) * 2008-09-15 2010-03-18 Microsoft Corporation vehicle operation by leveraging traffic related data
TWI512690B (en) * 2013-09-16 2015-12-11 Chunghwa Telecom Co Ltd Application of vehicle population movement mode changes to detect road congestion
CN105574895A (en) * 2016-01-05 2016-05-11 浙江博天科技有限公司 Congestion detection method during the dynamic driving process of vehicle
CN112562334A (en) * 2020-12-08 2021-03-26 绍兴数鸿科技有限公司 Method, device and medium for calculating real-time speed of curved road section based on floating car data

Also Published As

Publication number Publication date
TW202403537A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
US10339800B2 (en) Method and device for processing traffic road information
CN107507418B (en) Method and device for analyzing stay process of vehicles entering service area on highway
CN110784825B (en) Method and device for generating vehicle running track
US20200334571A1 (en) Method and apparatus for training trajectory classification model, and electronic device
CN111737377B (en) Method and device for identifying drift trajectory, computing equipment and storage medium
US11798408B2 (en) Green wave speed determination method, electronic device and storage medium
CN112530163B (en) Traffic accident prediction method, traffic accident prediction device, electronic device, and storage medium
US20220237919A1 (en) Method, Apparatus, and Computing Device for Lane Recognition
CN107507417A (en) A kind of smartway partitioning method and device based on microwave radar echo-signal
CN108538054B (en) Method and system for acquiring traffic road condition information based on mobile phone signaling data
CN109831744A (en) It is a kind of exception track recognizing method, device and storage equipment
CN113380039B (en) Data processing method and device and electronic equipment
CN110196440B (en) Method and device for identifying coincident track, electronic equipment and storage medium
TWI799318B (en) Apparatus and method for analyzing traffic status and computer program product implementing the method
CN116704750B (en) Traffic state identification method based on clustering algorithm, electronic equipment and medium
CN116192691B (en) Data packet delay judging method and computing equipment
CN111915892A (en) Data request response method and device, computer equipment and medium
US20230065341A1 (en) Road data monitoring method and apparatus, electronic device and storage medium
CN115440037A (en) Traffic flow data acquisition method and device, electronic equipment and storage medium
US20220172295A1 (en) Systems, methods, and devices for aggregating and quantifying telematics data
CN108010319B (en) Road state identification method and device
CN113129603A (en) Parallel road overspeed determination method, device, terminal and storage medium
CN113012430A (en) Vehicle queuing length detection method, device, equipment and readable storage medium
CN112784789B (en) Method, device, electronic equipment and medium for identifying traffic flow of road
CN112926823B (en) Intelligent traffic service data detection method and device and electronic equipment