TWI798583B - Electronic device and method for accelerating generation of simulation result of simulation software - Google Patents

Electronic device and method for accelerating generation of simulation result of simulation software Download PDF

Info

Publication number
TWI798583B
TWI798583B TW109129815A TW109129815A TWI798583B TW I798583 B TWI798583 B TW I798583B TW 109129815 A TW109129815 A TW 109129815A TW 109129815 A TW109129815 A TW 109129815A TW I798583 B TWI798583 B TW I798583B
Authority
TW
Taiwan
Prior art keywords
data
imitation
simulation
feature
simulation result
Prior art date
Application number
TW109129815A
Other languages
Chinese (zh)
Other versions
TW202211070A (en
Inventor
李達生
陳彥棠
廖國凱
劉應翰
劉一鳴
林士山
賴致瑋
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW109129815A priority Critical patent/TWI798583B/en
Publication of TW202211070A publication Critical patent/TW202211070A/en
Application granted granted Critical
Publication of TWI798583B publication Critical patent/TWI798583B/en

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Debugging And Monitoring (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

An electronic device and a method for accelerating a generation of a simulation result of a simulation software are provided. The method includes: obtaining input data; generating fake data according to the input data; inputting a first fake feature of the fake data to the simulation software to generate a first fake simulation result; obtaining a user-defined feature; calculating a first similarity between the first fake feature and the user-defined feature; generating, based on the first similarity, an approximate simulation result matching with the user-defined feature according to the first fake simulation result; and outputting the approximate simulation result.

Description

加速模擬軟體的模擬結果的產生的電子裝置和方法Electronic device and method for accelerating generation of simulation results of simulation software

本發明是有關於一種加速模擬軟體的模擬結果的產生的電子裝置和方法。 The present invention relates to an electronic device and method for accelerating the generation of simulation results of simulation software.

數值模擬是透過理論計算和電腦程式的結合,再經由電腦去進行龐大且複雜的運算。模擬計算的過程中,需要使用到對的近似方法,所獲得的模擬結果才能符合真實的情況。因此,模擬結果的產生必須仰賴具有高度運算能力的硬體設備。隨著模擬模型的複雜度增加,用以產生模擬結果的時間也會隨之增加。因此,模擬軟體時常無法即時地提供模擬結果給使用者。據此,如何在不增加硬體建置成本的情況下加快模擬結果的產生,是本領域人員致力的目標之一。 Numerical simulation is a combination of theoretical calculations and computer programs, and then the computer performs large and complex calculations. In the process of simulation calculation, it is necessary to use the correct approximation method, so that the obtained simulation results can conform to the real situation. Therefore, the generation of simulation results must rely on hardware devices with high computing power. As the complexity of the simulation model increases, the time to generate simulation results also increases. Therefore, simulation software often cannot provide simulation results to users in real time. Accordingly, how to speed up the generation of simulation results without increasing the cost of hardware construction is one of the goals that people in the field are committed to.

本發明提供一種加速模擬軟體的模擬結果的產生的電子裝置和方法,可減少模擬結果的產生時間。 The invention provides an electronic device and method for accelerating the generation of simulation results of simulation software, which can reduce the generation time of simulation results.

本發明的一種加速模擬軟體的模擬結果的產生的電子裝置,包含處理器、儲存媒體以及收發器。收發器取得輸入資料。儲存媒體儲存多個模組。處理器耦接儲存媒體以及收發器,並且存取和執行多個模組,其中多個模組包含機器學習模型以及運算模組。機器學習模型根據輸入資料產生仿造資料。運算模組通過收發器將仿造資料的第一仿造特徵輸入至模擬軟體以產生第一仿造模擬結果,通過收發器接收使用者定義特徵,計算第一仿造特徵以及使用者定義特徵之間的第一相似度,基於第一相似度而根據第一仿造模擬結果產生與使用者定義特徵匹配的近似模擬結果,並且通過收發器輸出近似模擬結果。 An electronic device for accelerating the generation of simulation results of simulation software in the present invention includes a processor, a storage medium, and a transceiver. The transceiver obtains input data. The storage medium stores multiple modules. The processor is coupled to the storage medium and the transceiver, and accesses and executes multiple modules, wherein the multiple modules include machine learning models and computing modules. Machine learning models generate fake data based on input data. The calculation module inputs the first imitation feature of the imitation data to the simulation software through the transceiver to generate the first imitation simulation result, receives the user-defined feature through the transceiver, and calculates the first imitation feature between the first imitation feature and the user-defined feature. Based on the first degree of similarity, an approximate simulation result matching the user-defined feature is generated according to the first imitation simulation result, and the approximate simulation result is output through the transceiver.

在本發明的一實施例中,上述的運算模組基於內插法和外插法的其中之一而根據第一仿造特徵、第一仿造模擬結果以及使用者定義特徵產生近似模擬結果。 In an embodiment of the present invention, the above-mentioned computing module generates an approximate simulation result according to the first simulated feature, the first simulated simulation result and the user-defined feature based on one of interpolation and extrapolation.

在本發明的一實施例中,上述的運算模組通過收發器將使用者定義特徵輸入至模擬軟體以產生最終模擬結果,並且通過收發器輸出最終模擬結果。 In an embodiment of the present invention, the above-mentioned computing module inputs the user-defined features into the simulation software through the transceiver to generate a final simulation result, and outputs the final simulation result through the transceiver.

在本發明的一實施例中,上述的多個模組更包含仿造特徵資料庫以及模擬結果資料庫。仿造特徵資料庫儲存包含第一仿造特徵的多個仿造特徵。模擬結果資料庫儲存分別對應於多個仿造特徵的多個仿造模擬結果,其中運算模組計算多個仿造特徵的 每一者與使用者定義特徵之間的相似度,並且響應於第一相似度為最高相似度而從多個仿造模擬結果中選出對應於第一相似度的第一仿造模擬結果以產生近似模擬結果。 In an embodiment of the present invention, the above-mentioned modules further include a database of imitation features and a database of simulation results. The counterfeit feature database stores a plurality of counterfeit features including the first counterfeit feature. The simulation result database stores a plurality of imitation simulation results respectively corresponding to a plurality of imitation features, wherein the computing module calculates the a degree of similarity between each of the features and a user-defined feature, and in response to the first degree of similarity being the highest degree of similarity, selecting a first simulated simulation result corresponding to the first degree of similarity from the plurality of simulated simulation results to generate an approximate simulation result.

在本發明的一實施例中,上述的多個模組更包含歷史資料庫。歷史資料庫儲存歷史資料,其中機器學習模型包含生成器以及判別器,其中判別器是根據歷史資料訓練的,其中生成器根據輸入資料產生候選仿造資料,其中判別器決定候選仿造資料為仿造資料。 In an embodiment of the present invention, the above-mentioned modules further include a history database. The historical database stores historical data, wherein the machine learning model includes a generator and a discriminator, wherein the discriminator is trained according to the historical data, wherein the generator generates candidate counterfeit data according to the input data, and the discriminator determines the candidate counterfeit data to be counterfeit data.

在本發明的一實施例中,上述的機器學習模型為生成對抗網路。 In an embodiment of the present invention, the aforementioned machine learning model is a generative adversarial network.

本發明的一種加速模擬軟體的模擬結果的產生的方法,包含:取得輸入資料;根據輸入資料產生仿造資料;將仿造資料的第一仿造特徵輸入至模擬軟體以產生第一仿造模擬結果;取得使用者定義特徵;計算第一仿造特徵以及使用者定義特徵之間的第一相似度;基於第一相似度而根據第一仿造模擬結果產生與使用者定義特徵匹配的近似模擬結果;以及輸出近似模擬結果。 A method for accelerating the generation of simulation results of simulation software according to the present invention includes: obtaining input data; generating counterfeit data according to the input data; inputting the first counterfeit feature of the counterfeit data into the simulation software to generate the first counterfeit simulation result; obtaining and using calculating a first similarity between the first simulated feature and the user-defined feature; generating an approximate simulation result matching the user-defined feature from the first simulated simulation result based on the first similarity; and outputting the approximate simulation result.

基於上述,本發明可在模擬軟體花費較長的時間來產生模擬結果之前,即時地產生近似模擬結果供使用者參考。 Based on the above, the present invention can generate approximate simulation results in real time for the user's reference before the simulation software takes a long time to generate the simulation results.

100:電子裝置 100: Electronic device

110:處理器 110: Processor

120:儲存媒體 120: storage media

121:運算模組 121: Operation module

122:機器學習模型 122:Machine Learning Models

1221:生成器 1221: generator

1222:判別器 1222: discriminator

123:歷史資料庫 123: Historical database

124:仿造特徵資料庫 124:Imitation feature database

125:模擬結果資料庫 125:Simulation result database

126:使用者定義特徵資料庫 126: User-defined feature database

130:收發器 130: Transceiver

S210、S220、S221、S222、S223、S230、S240、S410、S420、S430、S440、S510、S520、S530、S540、S550、S560、S570:步驟 S210, S220, S221, S222, S223, S230, S240, S410, S420, S430, S440, S510, S520, S530, S540, S550, S560, S570: steps

圖1根據本發明的實施例繪示一種加速模擬軟體的模擬結果 的產生的電子裝置的示意圖。 Fig. 1 shows a simulation result of an acceleration simulation software according to an embodiment of the present invention Schematic of the resulting electronics.

圖2根據本發明的實施例繪示產生仿造模擬結果的流程圖。 FIG. 2 illustrates a flow chart of generating simulation simulation results according to an embodiment of the present invention.

圖3根據本發明的實施例繪示根據輸入資料產生仿造資料的步驟的詳細流程圖。 FIG. 3 shows a detailed flow chart of the steps of generating counterfeit data according to the input data according to an embodiment of the present invention.

圖4根據本發明的實施例繪示產生近似模擬結果以及最終模擬結果的流程圖。 FIG. 4 illustrates a flowchart for generating approximate simulation results and final simulation results according to an embodiment of the present invention.

圖5根據本發明的實施例繪示一種加速模擬軟體的模擬結果的產生的方法的流程圖。 FIG. 5 is a flowchart of a method for accelerating the generation of simulation results of simulation software according to an embodiment of the present invention.

圖1根據本發明的實施例繪示一種加速模擬軟體的模擬結果的產生的電子裝置100的示意圖。電子裝置100可包含處理器110、儲存媒體120以及收發器130。 FIG. 1 is a schematic diagram of an electronic device 100 for accelerating the generation of simulation results of simulation software according to an embodiment of the present invention. The electronic device 100 may include a processor 110 , a storage medium 120 and a transceiver 130 .

處理器110例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、影像訊號處理器(image signal processor,ISP)、影像處理單元(image processing unit,IPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯 閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器110可耦接至儲存媒體120以及收發器130,並且存取和執行儲存於儲存媒體120中的多個模組和各種應用程式。 The processor 110 is, for example, a central processing unit (central processing unit, CPU), or other programmable general purpose or special purpose micro control unit (micro control unit, MCU), microprocessor (microprocessor), digital signal processing Digital Signal Processor (DSP), Programmable Controller, Application Specific Integrated Circuit (ASIC), Graphics Processing Unit (GPU), Image Signal Processor (ISP) ), image processing unit (image processing unit, IPU), arithmetic logic unit (arithmetic logic unit, ALU), complex programmable logic device (complex programmable logic device, CPLD), field programmable logic Gate array (field programmable gate array, FPGA) or other similar components or a combination of the above components. The processor 110 can be coupled to the storage medium 120 and the transceiver 130 , and access and execute multiple modules and various application programs stored in the storage medium 120 .

儲存媒體120例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由處理器110執行的多個模組或各種應用程式。在本實施例中,儲存媒體120可儲存包括運算模組121、機器學習模型122、歷史資料庫123、仿造特徵資料庫124、模擬結果資料庫125以及使用者定義特徵資料庫126等多個模組,其功能將於後續說明。 The storage medium 120 is, for example, any type of fixed or removable random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), flash memory (flash memory) , hard disk drive (hard disk drive, HDD), solid state drive (solid state drive, SSD) or similar components or a combination of the above components, and are used to store multiple modules or various application programs that can be executed by the processor 110 . In this embodiment, the storage medium 120 can store multiple models including the computing module 121, the machine learning model 122, the historical database 123, the imitation feature database 124, the simulation result database 125, and the user-defined feature database 126. group, its function will be explained later.

收發器130以無線或有線的方式傳送及接收訊號。收發器130還可以執行例如低噪聲放大、阻抗匹配、混頻、向上或向下頻率轉換、濾波、放大以及類似的操作。 The transceiver 130 transmits and receives signals in a wireless or wired manner. The transceiver 130 may also perform operations such as low noise amplification, impedance matching, frequency mixing, up or down frequency conversion, filtering, amplification, and the like.

電子裝置100可用以產生仿造模擬結果。圖2根據本發明的實施例繪示產生仿造模擬結果的流程圖。在步驟S210中,運算模組121可通過收發器130取得輸入資料。輸入資料可以是用以產生模擬結果的圖像資料或資料曲線。舉例來說,輸入資料可包含衛星雲圖、雷達回波圖、溫度曲線、濕度曲線、降雨量累積曲線或空氣品質曲線等與氣象相關的圖像或曲線,但本發明不限於此。 The electronic device 100 can be used to generate fake simulation results. FIG. 2 illustrates a flow chart of generating simulation simulation results according to an embodiment of the present invention. In step S210 , the computing module 121 can obtain input data through the transceiver 130 . The input data may be image data or data curves used to generate simulation results. For example, the input data may include weather-related images or curves such as satellite cloud images, radar echo images, temperature curves, humidity curves, rainfall accumulation curves, or air quality curves, but the invention is not limited thereto.

在步驟S220中,機器學習模型122可根據輸入資料產生仿造資料。仿造資料可以是仿造的圖資或資料曲線。舉例來說,仿造資料可包含仿造的衛星雲圖、仿造的雷達回波圖、仿造的溫度曲線、仿造的濕度曲線、仿造的降雨量累積曲線或仿造的空氣品質曲線等圖像,但本發明不限於此。機器學習模型122例如是生成對抗網路(generative adversarial network,GAN)。機器學習模型122可包含生成器(generator)1221以及判別器(discriminator)1222,其中判別器1222是由機器學習模型122根據歷史資料庫123的歷史資料訓練訓練的,其中歷史資料包含歷史衛星雲圖、歷史雷達回波圖、歷史溫度曲線、歷史濕度曲線、歷史降雨量累積曲線或歷史空氣品質曲線等圖像。 In step S220, the machine learning model 122 can generate imitation data according to the input data. The counterfeit data may be counterfeit graphics or data curves. For example, the fake data may include fake satellite cloud images, fake radar echo charts, fake temperature curves, fake humidity curves, fake rainfall accumulation curves or fake air quality curves, etc., but the present invention does not limited to this. The machine learning model 122 is, for example, a generative adversarial network (GAN). The machine learning model 122 may include a generator (generator) 1221 and a discriminator (discriminator) 1222, wherein the discriminator 1222 is trained by the machine learning model 122 according to the historical data of the historical database 123, wherein the historical data includes historical satellite cloud images, Images such as historical radar echo graphs, historical temperature curves, historical humidity curves, historical rainfall accumulation curves, or historical air quality curves.

圖3根據本發明的實施例繪示根據輸入資料產生仿造資料的步驟的詳細流程圖。在步驟S221中,生成器1221可根據輸入資料產生候選仿造資料。在步驟S222中,判別器1222可比對候選仿造資料與歷史資料是否匹配。若候選仿造資料與歷史資料不匹配,則判別器1222可刪除候選仿造資料,並且步驟S221可被重新執行以產生新的候選仿造資料。若候選仿造資料與歷史資料匹配,則進入步驟S223。在步驟S223中,判別器1222可決定候選仿造資料為仿造資料,並且將產生的仿造資料儲存於仿造特徵資料庫124中。接著,步驟S221可被重新執行以產生新的候選仿造資料。圖3的步驟S221至步驟S223可被重複地執行直到仿造特徵資料庫124取得足夠的仿造資料為止。 FIG. 3 shows a detailed flow chart of the steps of generating counterfeit data according to the input data according to an embodiment of the present invention. In step S221, the generator 1221 can generate candidate counterfeit data according to the input data. In step S222, the discriminator 1222 can compare whether the candidate counterfeit data matches the historical data. If the candidate counterfeit data does not match the historical data, the discriminator 1222 may delete the candidate counterfeit data, and step S221 may be re-executed to generate new candidate counterfeit data. If the candidate counterfeit data matches the historical data, go to step S223. In step S223 , the discriminator 1222 may determine that the candidate forgery data is a forgery data, and store the generated forgery data in the forgery feature database 124 . Next, step S221 can be re-executed to generate new candidate counterfeit data. Step S221 to step S223 in FIG. 3 can be repeatedly executed until the counterfeit feature database 124 obtains enough counterfeit information.

舉例來說,假設輸入資料為衛星雲圖。機器學習模型122可根據歷史資料(例如:歷史衛星雲圖)以及衛星雲圖產生多個仿造衛星雲圖。 For example, suppose the input data is a satellite cloud image. The machine learning model 122 can generate a plurality of fake satellite cloud images according to historical data (for example: historical satellite cloud images) and satellite cloud images.

回到圖2。在步驟S230中,運算模組121可對仿造特徵資料庫124中的多個仿造資料進行特徵萃取以取得分別對應於所述多個仿造資料的多個仿造特徵。運算模組121可將多個仿造特徵儲存於仿造特徵資料庫124中。 Back to Figure 2. In step S230 , the computing module 121 may perform feature extraction on a plurality of counterfeit data in the counterfeit feature database 124 to obtain a plurality of counterfeit features respectively corresponding to the plurality of counterfeit data. The computing module 121 can store a plurality of imitation features in the imitation feature database 124 .

具體來說,運算模組121可對多個仿造衛星雲圖的每一者進行特徵萃取以取得仿造區域雨量資訊(即:仿造特徵)。運算模組121可將仿造區域雨量資訊儲存於仿造特徵資料庫124中。舉例來說,仿造特徵資料庫124可儲存對應於400毫米的仿造區域雨量資訊、對應於500毫米的仿造區域雨量資訊以及對應於600毫米的仿造區域雨量資訊。 Specifically, the computing module 121 may perform feature extraction on each of the plurality of simulated satellite cloud images to obtain simulated regional rainfall information (ie, simulated features). The computing module 121 can store the simulated area rainfall information in the simulated feature database 124 . For example, the simulated feature database 124 may store simulated area rainfall information corresponding to 400 mm, simulated area rainfall information corresponding to 500 mm, and simulated area rainfall information corresponding to 600 mm.

在步驟S240中,運算模組121可將所述多個仿造特徵輸入至模擬軟體以產生分別對應於所述多個仿造特徵的多個仿造模擬結果。運算模組121可將多個仿造模擬結果儲存於模擬結果資料庫125。 In step S240, the computing module 121 may input the plurality of imitation features into the simulation software to generate a plurality of imitation simulation results respectively corresponding to the plurality of imitation features. The calculation module 121 can store a plurality of imitation simulation results in the simulation result database 125 .

舉例來說,若模擬軟體用於判斷水患是否發生,則運算模組121可分別將多個仿造區域雨量資訊(即:仿造特徵)輸入至模擬軟體。模擬軟體可產生分別對應於多個仿造區域雨量資訊的多個水患判斷結果(即:仿造模擬結果)。仿造特徵資料庫124可儲存多個區域雨量資訊以及分別與所述多個區域雨量資訊相對應的 多個水患判斷結果。舉例來說,仿造特徵資料庫124可儲存對應於400毫米的仿造區域雨量資訊以及相對應的水患判斷結果、對應於500毫米的仿造區域雨量資訊以及相對應的水患判斷結果以及對應於600毫米的仿造區域雨量資訊以及相對應的水患判斷結果。 For example, if the simulation software is used to determine whether a flood has occurred, the computing module 121 can respectively input a plurality of simulated regional rainfall information (ie, simulated features) into the simulated software. The simulation software can generate a plurality of flood judgment results respectively corresponding to a plurality of simulated regional rainfall information (ie, simulated simulation results). The imitation feature database 124 can store a plurality of regional rainfall information and corresponding to the plurality of regional rainfall information Multiple flood judgment results. For example, the imitation feature database 124 can store the simulated area rainfall information corresponding to 400 mm and the corresponding flood judgment result, the simulated area rainfall information corresponding to 500 mm and the corresponding flood judgment result, and the simulated area corresponding to 600 mm. Imitation of regional rainfall information and corresponding flood judgment results.

在取得多個仿造模擬結果後,電子裝置100即可根據多個仿造模擬結果產生與使用者的需求相對應的近似模擬結果。近似模擬結果的產生僅需花費極少的時間。此外,電子裝置100還可利用模擬軟體來產生費時較久但較為精準的最終模擬結果。圖4根據本發明的實施例繪示產生近似模擬結果以及最終模擬結果的流程圖。 After obtaining a plurality of counterfeit simulation results, the electronic device 100 can generate an approximate simulation result corresponding to the user's demand according to the plurality of counterfeit simulation results. Approximate simulation results are produced in a fraction of the time. In addition, the electronic device 100 can also use simulation software to generate a final simulation result that takes a long time but is relatively accurate. FIG. 4 illustrates a flowchart for generating approximate simulation results and final simulation results according to an embodiment of the present invention.

在步驟S410中,運算模組121可通過收發器130接收使用者定義特徵。使用者定義特徵可由使用者根據其需求而決定。舉例來說,若使用者對與540毫米的區域雨量資訊相對應的水患判斷結果感興趣,則使用者可決定使用者定義特徵為對應於540毫米的區域雨量資訊。使用者可通過輸入裝置(例如:鍵盤或觸控式螢幕)將使用者定義特徵輸入至電子裝置100。運算模組121可通過收發器130以自輸入裝置取得使用者定義特徵。運算模組121可將使用者定義特徵儲存於使用者定義特徵資料庫126中。 In step S410 , the computing module 121 may receive user-defined features through the transceiver 130 . User-defined features can be determined by users according to their needs. For example, if the user is interested in the flood judgment result corresponding to the regional rainfall information of 540 mm, the user may determine that the user-defined feature corresponds to the regional rainfall information of 540 mm. The user can input the user-defined features into the electronic device 100 through an input device such as a keyboard or a touch screen. The computing module 121 can obtain user-defined features from the input device through the transceiver 130 . The computing module 121 can store the user-defined features in the user-defined feature database 126 .

在步驟S420中,運算模組121可計算多個仿造特徵與使用者定義特徵之間的相似度,並且響應於多個仿造特徵中的第一仿造特徵與使用者定義特徵之間的第一相似度為最高相似度而從 多個仿造特徵中選出第一仿造特徵。舉例來說,運算模組121可響應於對應於500毫米的仿造區域雨量資訊與對應於540毫米的區域雨量資訊的相似度為最高相似度而從對應於400毫米的仿造區域雨量資訊、對應於500毫米的仿造區域雨量資訊以及對應於600毫米的仿造區域雨量資訊中選出對應於500毫米的仿造區域雨量資訊。 In step S420, the calculation module 121 can calculate the similarity between a plurality of imitation features and user-defined features, and respond to the first similarity between the first imitation feature and the user-defined feature among the plurality of imitation features degree is the highest similarity from A first imitation feature is selected from the plurality of imitation features. For example, the computing module 121 may select the simulated regional rainfall information corresponding to 400 mm, the simulated regional rainfall information corresponding to The simulated area rainfall information corresponding to 500 mm is selected from the simulated area rainfall information corresponding to 500 mm and the simulated area rainfall information corresponding to 600 mm.

在一實施例中,在選出對應於最高相似度的第一仿造特徵後,運算模組121可響應於多個仿造特徵中的第二仿造特徵與使用者定義特徵之間的第二相似度為次高相似度而從剩餘的多個仿造特徵(即:尚未被選擇的複數個仿造特徵)中選出第二仿造特徵。舉例來說,在選出對應於500毫米的仿造區域雨量資訊後,運算模組121可響應於對應於600毫米的仿造區域雨量資訊與對應於540毫米的區域雨量資訊的相似度為次高相似度而從對應於400毫米的仿造區域雨量資訊以及對應於600毫米的仿造區域雨量資訊中選出對應於600毫米的仿造區域雨量資訊。 In one embodiment, after selecting the first imitation feature corresponding to the highest similarity, the operation module 121 may respond to the second similarity between the second imitation feature and the user-defined feature among the plurality of imitation features as Select the second fake feature from the remaining fake features (that is, a plurality of fake features that have not been selected) based on the second highest similarity. For example, after selecting the simulated regional rainfall information corresponding to 500 mm, the computing module 121 may respond that the similarity between the simulated regional rainfall information corresponding to 600 mm and the regional rainfall information corresponding to 540 mm is the second highest similarity The simulated area rainfall information corresponding to 600 mm is selected from the simulated area rainfall information corresponding to 400 mm and the simulated area rainfall information corresponding to 600 mm.

在步驟S430中,運算模組121可基於第一相似度而根據第一仿造模擬結果產生與使用者定義特徵匹配的近似模擬結果,並可通過收發器130輸出近似模擬結果。具體來說,在根據第一相似度選出第一仿造特徵後,運算模組121可根據第一相似度而從儲存在模擬結果資料庫125中的多個仿造模擬結果中選出第一仿造模擬結果。接著,運算模組121可基於內插法或外插法而根據第一仿造特徵、對應於第一仿造特徵的第一仿造模擬結果以及 使用者定義特徵產生近似模擬結果。 In step S430 , the calculation module 121 can generate an approximate simulation result matching the user-defined feature according to the first imitation simulation result based on the first similarity, and can output the approximate simulation result through the transceiver 130 . Specifically, after selecting the first imitation feature according to the first similarity, the computing module 121 can select the first imitation simulation result from the plurality of imitation simulation results stored in the simulation result database 125 according to the first similarity . Then, the calculation module 121 can be based on the first imitation feature, the first imitation simulation result corresponding to the first imitation feature and User-defined features produce approximate simulation results.

舉例來說,運算模組121可基於內插法或外插法而根據500毫米的仿造區域雨量資訊(即:第一仿造特徵)、對應於500毫米的仿造區域雨量資訊的水患判斷結果(即:第一仿造模擬結果)以及對應於540毫米的區域雨量資訊(即:使用者定義特徵)來產生對應於540毫米的區域雨量資訊的水患判斷結果(即:近似模擬結果)。由於近似模擬結果僅需利用預先產生的第一仿造模擬結果即可產生,而不需使用到模擬軟體。因此,近似模擬結果可很迅速地產生。 For example, the calculation module 121 can use interpolation or extrapolation based on the simulated regional rainfall information of 500 mm (ie: the first simulated feature), the flood judgment result corresponding to the simulated regional rainfall information of 500 mm (ie : the first imitation simulation result) and the regional rainfall information corresponding to 540 mm (ie: user-defined features) to generate a flood judgment result (ie: approximate simulation result) corresponding to the regional rainfall information of 540 mm. Because the approximate simulation result can be generated only by using the pre-generated first imitation simulation result, without using simulation software. Therefore, approximate simulation results can be generated very quickly.

在一實施例中,在根據第一相似度和第二相似度選出第一仿造特徵以及第二仿造特徵後,運算模組121可根據第一相似度而從儲存在模擬結果資料庫125中的多個仿造模擬結果中選出第一仿造模擬結果,並且根據第二相似度而從儲存在模擬結果資料庫125中的多個仿造模擬結果中選出第二仿造模擬結果。接著,運算模組121可基於內插法或外插法而根據第一仿造特徵、對應於第一仿造特徵的第一仿造模擬結果、第二仿造特徵、對應於第二仿造特徵的第二仿造模擬結果以及使用者定義特徵產生近似模擬結果。 In one embodiment, after selecting the first imitation feature and the second imitation feature according to the first similarity and the second similarity, the computing module 121 can select A first forgery simulation result is selected from the plurality of forgery simulation results, and a second forgery simulation result is selected from the plurality of forgery simulation results stored in the simulation result database 125 according to the second similarity. Then, the operation module 121 can calculate the first imitation feature, the first imitation simulation result corresponding to the first imitation feature, the second imitation feature, the second imitation feature corresponding to the second imitation feature based on the interpolation method or the extrapolation method. Simulation results as well as user-defined features produce approximate simulation results.

舉例來說,運算模組121可基於內插法或外插法而根據500毫米的仿造區域雨量資訊(即:第一仿造特徵)、對應於500毫米的仿造區域雨量資訊的水患判斷結果(即:第一仿造模擬結果)、600毫米的仿造區域雨量資訊(即:第二仿造特徵)、對應於 600毫米的仿造區域雨量資訊的水患判斷結果(即:第二仿造模擬結果)以及對應於540毫米的區域雨量資訊(即:使用者定義特徵)來產生對應於540毫米的區域雨量資訊的水患判斷結果(即:近似模擬結果)。由於近似模擬結果僅需利用預先產生的第一仿造模擬結果和第二仿造模擬結果即可產生,而不需使用到模擬軟體。因此,近似模擬結果可很迅速地產生。 For example, the calculation module 121 can use interpolation or extrapolation based on the simulated regional rainfall information of 500 mm (ie: the first simulated feature), the flood judgment result corresponding to the simulated regional rainfall information of 500 mm (ie : the first imitation simulation result), the rainfall information of the imitation area of 600 mm (ie: the second imitation feature), corresponding to The flood judgment result of the simulated regional rainfall information of 600 mm (ie: the second simulated simulation result) and the corresponding regional rainfall information of 540 mm (ie: user-defined feature) to generate the flood hazard judgment corresponding to the regional rainfall information of 540 mm results (ie: approximate simulation results). Because the approximate simulation results can be generated only by using the pre-generated first simulation simulation results and second simulation simulation results, without using simulation software. Therefore, approximate simulation results can be generated very quickly.

為了取得比近似模擬結果更加精準的最終模擬結果,在步驟S440中,運算模組121可通過收發器130將使用者定義特徵輸入至模擬軟體以產生最終模擬結果,並可通過收發器130輸出最終模擬結果。舉例來說,運算模組121可通過收發器130將對應於540毫米的區域雨量資訊(即:使用者定義特徵)輸入至模擬軟體以產生對應於540毫米的區域雨量資訊的水患判斷結果(即:最終模擬結果)。 In order to obtain a final simulation result that is more accurate than the approximate simulation result, in step S440, the calculation module 121 can input the user-defined features into the simulation software through the transceiver 130 to generate the final simulation result, and can output the final simulation result through the transceiver 130 Simulation results. For example, the calculation module 121 can input the regional rainfall information corresponding to 540 mm (ie: user-defined features) into the simulation software through the transceiver 130 to generate a flood judgment result corresponding to the regional rainfall information of 540 mm (ie : the final simulation result).

圖5根據本發明的實施例繪示一種加速模擬軟體的模擬結果的產生的方法的流程圖,其中所述方法可由如圖1所示的電子裝置實施。在步驟S510中,取得輸入資料。在步驟S520中,根據輸入資料產生仿造資料。在步驟S530中,將仿造資料的第一仿造特徵輸入至模擬軟體以產生第一仿造模擬結果。在步驟S540中,取得使用者定義特徵。在步驟S550中,計算第一仿造特徵以及使用者定義特徵之間的第一相似度。在步驟S560中,基於第一相似度而根據第一仿造模擬結果產生與使用者定義特徵匹配的近似模擬結果。在步驟S570中,輸出近似模擬結果。 FIG. 5 shows a flow chart of a method for accelerating the generation of simulation results of simulation software according to an embodiment of the present invention, wherein the method can be implemented by the electronic device shown in FIG. 1 . In step S510, input data is acquired. In step S520, the counterfeit data is generated according to the input data. In step S530, input the first counterfeit feature of the counterfeit data into the simulation software to generate a first counterfeit simulation result. In step S540, user-defined features are acquired. In step S550, a first similarity between the first imitation feature and the user-defined feature is calculated. In step S560 , an approximate simulation result matching the user-defined feature is generated according to the first imitation simulation result based on the first similarity. In step S570, an approximate simulation result is output.

綜上所述,本發明的電子裝置可運用生成對抗網路來產生多個仿造特徵,並將多個仿造特徵輸入至模擬軟體以預先產生多個仿造模擬結果。當使用者欲取得針對特定特徵的模擬結果時,使用者可將使用者定義特徵輸入至電子裝置。電子裝置可比對使用者定義特徵與預存的多個仿造特徵的相似度,並且選出與使用者定義特徵高度相關的一或多個仿造特徵。電子裝置可根據與一或多個仿造特徵相對應的一或多個仿造模擬結果來計算出近似模擬結果。由於近似模擬結果不需由模擬軟體所產生,故近似模擬結果的產生十分迅速。除了產生近似模擬結果,電子裝置還可將使用者定義特徵輸入至模擬軟體以產生更加精準的模擬結果。 To sum up, the electronic device of the present invention can use the generative adversarial network to generate multiple counterfeit features, and input the multiple counterfeit features into the simulation software to generate multiple counterfeit simulation results in advance. When the user wants to obtain a simulation result for a specific feature, the user can input the user-defined feature into the electronic device. The electronic device can compare the similarity between the user-defined feature and a plurality of pre-stored counterfeit features, and select one or more counterfeit features highly related to the user-defined feature. The electronic device can calculate an approximate simulation result according to one or more counterfeit simulation results corresponding to the one or more counterfeit features. Since the approximate simulation results do not need to be generated by simulation software, the approximate simulation results are generated very quickly. In addition to producing approximate simulation results, the electronic device can also input user-defined features into the simulation software to produce more accurate simulation results.

S510、S520、S530、S540、S550、S560、S570:步驟S510, S520, S530, S540, S550, S560, S570: steps

Claims (7)

一種加速模擬軟體的模擬結果的產生的電子裝置,包括:收發器,取得輸入資料,所述輸入資料為與氣象相關的圖像資料或資料曲線;儲存媒體,儲存多個模組;以及處理器,耦接所述儲存媒體以及所述收發器,並且存取和執行所述多個模組,其中所述多個模組包括:機器學習模型,根據所述輸入資料產生仿造資料,所述仿造資料是仿造的與氣象相關的圖像資料或資料曲線;以及運算模組,通過所述收發器將所述仿造資料的第一仿造特徵輸入至所述模擬軟體以產生第一仿造模擬結果,通過所述收發器接收使用者定義特徵,計算所述第一仿造特徵以及所述使用者定義特徵之間的第一相似度,基於所述第一相似度而根據所述第一仿造模擬結果產生與所述使用者定義特徵匹配的近似模擬結果,並且通過所述收發器輸出所述近似模擬結果。 An electronic device for accelerating the generation of simulation results of simulation software, comprising: a transceiver for obtaining input data, the input data being weather-related image data or data curves; a storage medium for storing multiple modules; and a processor , coupling the storage medium and the transceiver, and accessing and executing the plurality of modules, wherein the plurality of modules include: a machine learning model that generates imitation data according to the input data, and the imitation The data is imitated weather-related image data or data curves; and the computing module inputs the first imitation feature of the imitation data into the simulation software through the transceiver to generate the first imitation simulation result, through The transceiver receives a user-defined feature, calculates a first similarity between the first imitation feature and the user-defined feature, and generates a result corresponding to the first imitation simulation result based on the first similarity. The user defines approximate simulation results for feature matching, and outputs the approximate simulation results via the transceiver. 如請求項1所述的電子裝置,其中所述運算模組基於內插法和外插法的其中之一而根據所述第一仿造特徵、所述第一仿造模擬結果以及所述使用者定義特徵產生所述近似模擬結果。 The electronic device according to claim 1, wherein the calculation module is based on one of interpolation and extrapolation according to the first imitation feature, the first imitation simulation result, and the user definition Features yield the approximate simulation results. 如請求項1所述的電子裝置,其中所述運算模組通過所述收發器將所述使用者定義特徵輸入至所述模擬軟體以產生最終模擬結果,並且通過所述收發器輸出所述最終模擬結果。 The electronic device according to claim 1, wherein the computing module inputs the user-defined features into the simulation software through the transceiver to generate a final simulation result, and outputs the final simulation result through the transceiver Simulation results. 如請求項1所述的電子裝置,其中所述多個模組更包括:仿造特徵資料庫,儲存包括所述第一仿造特徵的多個仿造特徵;模擬結果資料庫,儲存分別對應於所述多個仿造特徵的多個仿造模擬結果,其中所述運算模組計算所述多個仿造特徵的每一者與所述使用者定義特徵之間的相似度,並且響應於所述第一相似度為最高相似度而從所述多個仿造模擬結果中選出對應於所述第一相似度的所述第一仿造模擬結果以產生所述近似模擬結果。 The electronic device as described in claim 1, wherein the plurality of modules further include: a counterfeit feature database storing a plurality of counterfeiting features including the first counterfeiting feature; a simulation result database storing the counterfeit features corresponding to the a plurality of simulated simulation results of a plurality of simulated features, wherein the computing module calculates a degree of similarity between each of the plurality of simulated features and the user-defined feature, and responds to the first similarity The first forged simulation result corresponding to the first similarity is selected from the plurality of forged simulation results for the highest similarity to generate the approximate simulation result. 如請求項1所述的電子裝置,其中所述多個模組更包括:歷史資料庫,儲存歷史資料,其中所述機器學習模型包括生成器以及判別器,其中所述判別器是根據所述歷史資料訓練的,其中所述生成器根據所述輸入資料產生候選仿造資料,其中所述判別器決定所述候選仿造資料為所述仿造資料。 The electronic device as claimed in item 1, wherein the multiple modules further include: a historical database for storing historical data, wherein the machine learning model includes a generator and a discriminator, wherein the discriminator is based on the Training on historical data, wherein the generator generates candidate forged data according to the input data, and wherein the discriminator determines that the candidate forged data is the forged data. 如請求項5所述的電子裝置,其中所述機器學習模型為生成對抗網路。 The electronic device according to claim 5, wherein the machine learning model is a generative adversarial network. 一種加速模擬軟體的模擬結果的產生的方法,包括: 取得輸入資料,所述輸入資料為與氣象相關的圖像資料或資料曲線;根據所述輸入資料產生仿造資料,所述仿造資料是仿造的與氣象相關的圖像資料或資料曲線;將所述仿造資料的第一仿造特徵輸入至所述模擬軟體以產生第一仿造模擬結果;取得使用者定義特徵;計算所述第一仿造特徵以及所述使用者定義特徵之間的第一相似度;基於所述第一相似度而根據所述第一仿造模擬結果產生與所述使用者定義特徵匹配的近似模擬結果;以及輸出所述近似模擬結果。 A method of accelerating the generation of simulation results of simulation software, comprising: Obtain input data, the input data is weather-related image data or data curves; generate imitation data based on the input data, and the imitation data is imitated weather-related image data or data curves; The first imitation feature of the imitation data is input into the simulation software to generate the first imitation simulation result; the user-defined feature is obtained; the first similarity between the first imitation feature and the user-defined feature is calculated; based on generating an approximate simulation result matching the user-defined feature according to the first mimic simulation result; and outputting the approximate simulation result.
TW109129815A 2020-09-01 2020-09-01 Electronic device and method for accelerating generation of simulation result of simulation software TWI798583B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109129815A TWI798583B (en) 2020-09-01 2020-09-01 Electronic device and method for accelerating generation of simulation result of simulation software

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109129815A TWI798583B (en) 2020-09-01 2020-09-01 Electronic device and method for accelerating generation of simulation result of simulation software

Publications (2)

Publication Number Publication Date
TW202211070A TW202211070A (en) 2022-03-16
TWI798583B true TWI798583B (en) 2023-04-11

Family

ID=81746864

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109129815A TWI798583B (en) 2020-09-01 2020-09-01 Electronic device and method for accelerating generation of simulation result of simulation software

Country Status (1)

Country Link
TW (1) TWI798583B (en)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8655632B2 (en) * 2009-09-03 2014-02-18 Schlumberger Technology Corporation Gridless geological modeling
TW201437914A (en) * 2008-02-22 2014-10-01 Applied Materials Inc User interface with visualization of real and virtual data
TW201633192A (en) * 2014-12-18 2016-09-16 Asml荷蘭公司 Feature search by machine learning
TW201738811A (en) * 2016-04-18 2017-11-01 北京嘀嘀無限科技發展有限公司 Systems and methods for recommending an estimated time of arrival
TW201801024A (en) * 2016-06-28 2018-01-01 安研科技股份有限公司 Method for generating two-dimensional flood potential map
TW201812646A (en) * 2016-07-18 2018-04-01 美商南坦奧美克公司 Distributed machine learning system, method of distributed machine learning, and method of generating proxy data
CN108170714A (en) * 2017-12-01 2018-06-15 武汉华信联创技术工程有限公司 A kind of three-dimensional simulation system of typhoon disaster monitoring and evaluation
TW201824113A (en) * 2016-12-28 2018-07-01 財團法人工業技術研究院 Social data analyzing system and method for predicting emerging topics
TW201833590A (en) * 2013-06-26 2018-09-16 加拿大商天勢研究無限公司 Method and system for displaying weather information on a timeline
EP3407292A1 (en) * 2017-05-24 2018-11-28 General Electric Company Neural network point cloud generation system
US20190130266A1 (en) * 2017-10-27 2019-05-02 Royal Bank Of Canada System and method for improved neural network training
WO2019104304A1 (en) * 2017-11-27 2019-05-31 Siemens Industry Software Nv Accelerated simulation setup process using prior knowledge extraction for problem matching
TW201939369A (en) * 2018-03-02 2019-10-01 財團法人國家實驗研究院 Method for predicting movie box office capable of classifying a movie as a blockbuster or miserable according to a box office threshold
TW202014992A (en) * 2018-10-08 2020-04-16 財團法人資訊工業策進會 System and method for simulating expression of virtual facial model
TW202022633A (en) * 2018-12-10 2020-06-16 財團法人資訊工業策進會 Optimization method and module thereof based on feature extraction and machine learning
CN111476976A (en) * 2020-04-28 2020-07-31 广西壮族自治区水利科学研究院 Dynamic analysis system for reservoir rainstorm early warning threshold
TW202028877A (en) * 2018-09-28 2020-08-01 台灣積體電路製造股份有限公司 Lithography simulation method

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201437914A (en) * 2008-02-22 2014-10-01 Applied Materials Inc User interface with visualization of real and virtual data
US8655632B2 (en) * 2009-09-03 2014-02-18 Schlumberger Technology Corporation Gridless geological modeling
TW201833590A (en) * 2013-06-26 2018-09-16 加拿大商天勢研究無限公司 Method and system for displaying weather information on a timeline
TW201633192A (en) * 2014-12-18 2016-09-16 Asml荷蘭公司 Feature search by machine learning
TW201738811A (en) * 2016-04-18 2017-11-01 北京嘀嘀無限科技發展有限公司 Systems and methods for recommending an estimated time of arrival
TW201801024A (en) * 2016-06-28 2018-01-01 安研科技股份有限公司 Method for generating two-dimensional flood potential map
TW201812646A (en) * 2016-07-18 2018-04-01 美商南坦奧美克公司 Distributed machine learning system, method of distributed machine learning, and method of generating proxy data
TW201824113A (en) * 2016-12-28 2018-07-01 財團法人工業技術研究院 Social data analyzing system and method for predicting emerging topics
EP3407292A1 (en) * 2017-05-24 2018-11-28 General Electric Company Neural network point cloud generation system
US20190130266A1 (en) * 2017-10-27 2019-05-02 Royal Bank Of Canada System and method for improved neural network training
WO2019104304A1 (en) * 2017-11-27 2019-05-31 Siemens Industry Software Nv Accelerated simulation setup process using prior knowledge extraction for problem matching
CN108170714A (en) * 2017-12-01 2018-06-15 武汉华信联创技术工程有限公司 A kind of three-dimensional simulation system of typhoon disaster monitoring and evaluation
TW201939369A (en) * 2018-03-02 2019-10-01 財團法人國家實驗研究院 Method for predicting movie box office capable of classifying a movie as a blockbuster or miserable according to a box office threshold
TW202028877A (en) * 2018-09-28 2020-08-01 台灣積體電路製造股份有限公司 Lithography simulation method
TW202014992A (en) * 2018-10-08 2020-04-16 財團法人資訊工業策進會 System and method for simulating expression of virtual facial model
TW202022633A (en) * 2018-12-10 2020-06-16 財團法人資訊工業策進會 Optimization method and module thereof based on feature extraction and machine learning
CN111476976A (en) * 2020-04-28 2020-07-31 广西壮族自治区水利科学研究院 Dynamic analysis system for reservoir rainstorm early warning threshold

Also Published As

Publication number Publication date
TW202211070A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
CN108875510B (en) Image processing method, device, system and computer storage medium
TWI718422B (en) Method, device and equipment for fusing model prediction values
CN112765287B (en) Method, device and medium for mining character relation based on knowledge graph embedding
WO2017166449A1 (en) Method and device for generating machine learning model
CN109923558A (en) Mixture of expert neural network
EP3748495A1 (en) Audio playing method and device, terminal and computer-readable storage medium
US11514315B2 (en) Deep neural network training method and apparatus, and computer device
CN111340177A (en) Neural network processing method and device based on nested bit representation
JP7298825B2 (en) Learning support device, learning device, learning support method, and learning support program
CN114925748B (en) Model training and modal information prediction method, related device, equipment and medium
WO2018220700A1 (en) New learning dataset generation method, new learning dataset generation device, and learning method using generated learning dataset
CN111523940B (en) Deep reinforcement learning-based recommendation method and system with negative feedback
JP7124373B2 (en) LEARNING DEVICE, SOUND GENERATOR, METHOD AND PROGRAM
CN111373391B (en) Language processing device, language processing system, and language processing method
CN117892175A (en) SNN multi-mode target identification method, system, equipment and medium
TWI798583B (en) Electronic device and method for accelerating generation of simulation result of simulation software
CN110827789A (en) Music generation method, electronic device and computer-readable storage medium
CN113470162B (en) Method, device, system and storage medium for constructing three-dimensional head model
JP7061089B2 (en) Classification device, classification method and classification program
CN110796561B (en) Influence maximization method and device based on three-hop velocity attenuation propagation model
CN114119438A (en) Training method and device of image collage model and image collage method and device
CN111178535B (en) Method and apparatus for implementing automatic machine learning
CN111696517A (en) Speech synthesis method, speech synthesis device, computer equipment and computer readable storage medium
JP7465025B1 (en) Information processing device, inference device, machine learning device, information processing method, inference method, and machine learning method
CN113505194B (en) Training method and device for rewrite word generation model