TWI798583B - Electronic device and method for accelerating generation of simulation result of simulation software - Google Patents
Electronic device and method for accelerating generation of simulation result of simulation software Download PDFInfo
- Publication number
- TWI798583B TWI798583B TW109129815A TW109129815A TWI798583B TW I798583 B TWI798583 B TW I798583B TW 109129815 A TW109129815 A TW 109129815A TW 109129815 A TW109129815 A TW 109129815A TW I798583 B TWI798583 B TW I798583B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- imitation
- simulation
- feature
- simulation result
- Prior art date
Links
Images
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Debugging And Monitoring (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本發明是有關於一種加速模擬軟體的模擬結果的產生的電子裝置和方法。 The present invention relates to an electronic device and method for accelerating the generation of simulation results of simulation software.
數值模擬是透過理論計算和電腦程式的結合,再經由電腦去進行龐大且複雜的運算。模擬計算的過程中,需要使用到對的近似方法,所獲得的模擬結果才能符合真實的情況。因此,模擬結果的產生必須仰賴具有高度運算能力的硬體設備。隨著模擬模型的複雜度增加,用以產生模擬結果的時間也會隨之增加。因此,模擬軟體時常無法即時地提供模擬結果給使用者。據此,如何在不增加硬體建置成本的情況下加快模擬結果的產生,是本領域人員致力的目標之一。 Numerical simulation is a combination of theoretical calculations and computer programs, and then the computer performs large and complex calculations. In the process of simulation calculation, it is necessary to use the correct approximation method, so that the obtained simulation results can conform to the real situation. Therefore, the generation of simulation results must rely on hardware devices with high computing power. As the complexity of the simulation model increases, the time to generate simulation results also increases. Therefore, simulation software often cannot provide simulation results to users in real time. Accordingly, how to speed up the generation of simulation results without increasing the cost of hardware construction is one of the goals that people in the field are committed to.
本發明提供一種加速模擬軟體的模擬結果的產生的電子裝置和方法,可減少模擬結果的產生時間。 The invention provides an electronic device and method for accelerating the generation of simulation results of simulation software, which can reduce the generation time of simulation results.
本發明的一種加速模擬軟體的模擬結果的產生的電子裝置,包含處理器、儲存媒體以及收發器。收發器取得輸入資料。儲存媒體儲存多個模組。處理器耦接儲存媒體以及收發器,並且存取和執行多個模組,其中多個模組包含機器學習模型以及運算模組。機器學習模型根據輸入資料產生仿造資料。運算模組通過收發器將仿造資料的第一仿造特徵輸入至模擬軟體以產生第一仿造模擬結果,通過收發器接收使用者定義特徵,計算第一仿造特徵以及使用者定義特徵之間的第一相似度,基於第一相似度而根據第一仿造模擬結果產生與使用者定義特徵匹配的近似模擬結果,並且通過收發器輸出近似模擬結果。 An electronic device for accelerating the generation of simulation results of simulation software in the present invention includes a processor, a storage medium, and a transceiver. The transceiver obtains input data. The storage medium stores multiple modules. The processor is coupled to the storage medium and the transceiver, and accesses and executes multiple modules, wherein the multiple modules include machine learning models and computing modules. Machine learning models generate fake data based on input data. The calculation module inputs the first imitation feature of the imitation data to the simulation software through the transceiver to generate the first imitation simulation result, receives the user-defined feature through the transceiver, and calculates the first imitation feature between the first imitation feature and the user-defined feature. Based on the first degree of similarity, an approximate simulation result matching the user-defined feature is generated according to the first imitation simulation result, and the approximate simulation result is output through the transceiver.
在本發明的一實施例中,上述的運算模組基於內插法和外插法的其中之一而根據第一仿造特徵、第一仿造模擬結果以及使用者定義特徵產生近似模擬結果。 In an embodiment of the present invention, the above-mentioned computing module generates an approximate simulation result according to the first simulated feature, the first simulated simulation result and the user-defined feature based on one of interpolation and extrapolation.
在本發明的一實施例中,上述的運算模組通過收發器將使用者定義特徵輸入至模擬軟體以產生最終模擬結果,並且通過收發器輸出最終模擬結果。 In an embodiment of the present invention, the above-mentioned computing module inputs the user-defined features into the simulation software through the transceiver to generate a final simulation result, and outputs the final simulation result through the transceiver.
在本發明的一實施例中,上述的多個模組更包含仿造特徵資料庫以及模擬結果資料庫。仿造特徵資料庫儲存包含第一仿造特徵的多個仿造特徵。模擬結果資料庫儲存分別對應於多個仿造特徵的多個仿造模擬結果,其中運算模組計算多個仿造特徵的 每一者與使用者定義特徵之間的相似度,並且響應於第一相似度為最高相似度而從多個仿造模擬結果中選出對應於第一相似度的第一仿造模擬結果以產生近似模擬結果。 In an embodiment of the present invention, the above-mentioned modules further include a database of imitation features and a database of simulation results. The counterfeit feature database stores a plurality of counterfeit features including the first counterfeit feature. The simulation result database stores a plurality of imitation simulation results respectively corresponding to a plurality of imitation features, wherein the computing module calculates the a degree of similarity between each of the features and a user-defined feature, and in response to the first degree of similarity being the highest degree of similarity, selecting a first simulated simulation result corresponding to the first degree of similarity from the plurality of simulated simulation results to generate an approximate simulation result.
在本發明的一實施例中,上述的多個模組更包含歷史資料庫。歷史資料庫儲存歷史資料,其中機器學習模型包含生成器以及判別器,其中判別器是根據歷史資料訓練的,其中生成器根據輸入資料產生候選仿造資料,其中判別器決定候選仿造資料為仿造資料。 In an embodiment of the present invention, the above-mentioned modules further include a history database. The historical database stores historical data, wherein the machine learning model includes a generator and a discriminator, wherein the discriminator is trained according to the historical data, wherein the generator generates candidate counterfeit data according to the input data, and the discriminator determines the candidate counterfeit data to be counterfeit data.
在本發明的一實施例中,上述的機器學習模型為生成對抗網路。 In an embodiment of the present invention, the aforementioned machine learning model is a generative adversarial network.
本發明的一種加速模擬軟體的模擬結果的產生的方法,包含:取得輸入資料;根據輸入資料產生仿造資料;將仿造資料的第一仿造特徵輸入至模擬軟體以產生第一仿造模擬結果;取得使用者定義特徵;計算第一仿造特徵以及使用者定義特徵之間的第一相似度;基於第一相似度而根據第一仿造模擬結果產生與使用者定義特徵匹配的近似模擬結果;以及輸出近似模擬結果。 A method for accelerating the generation of simulation results of simulation software according to the present invention includes: obtaining input data; generating counterfeit data according to the input data; inputting the first counterfeit feature of the counterfeit data into the simulation software to generate the first counterfeit simulation result; obtaining and using calculating a first similarity between the first simulated feature and the user-defined feature; generating an approximate simulation result matching the user-defined feature from the first simulated simulation result based on the first similarity; and outputting the approximate simulation result.
基於上述,本發明可在模擬軟體花費較長的時間來產生模擬結果之前,即時地產生近似模擬結果供使用者參考。 Based on the above, the present invention can generate approximate simulation results in real time for the user's reference before the simulation software takes a long time to generate the simulation results.
100:電子裝置 100: Electronic device
110:處理器 110: Processor
120:儲存媒體 120: storage media
121:運算模組 121: Operation module
122:機器學習模型 122:Machine Learning Models
1221:生成器 1221: generator
1222:判別器 1222: discriminator
123:歷史資料庫 123: Historical database
124:仿造特徵資料庫 124:Imitation feature database
125:模擬結果資料庫 125:Simulation result database
126:使用者定義特徵資料庫 126: User-defined feature database
130:收發器 130: Transceiver
S210、S220、S221、S222、S223、S230、S240、S410、S420、S430、S440、S510、S520、S530、S540、S550、S560、S570:步驟 S210, S220, S221, S222, S223, S230, S240, S410, S420, S430, S440, S510, S520, S530, S540, S550, S560, S570: steps
圖1根據本發明的實施例繪示一種加速模擬軟體的模擬結果 的產生的電子裝置的示意圖。 Fig. 1 shows a simulation result of an acceleration simulation software according to an embodiment of the present invention Schematic of the resulting electronics.
圖2根據本發明的實施例繪示產生仿造模擬結果的流程圖。 FIG. 2 illustrates a flow chart of generating simulation simulation results according to an embodiment of the present invention.
圖3根據本發明的實施例繪示根據輸入資料產生仿造資料的步驟的詳細流程圖。 FIG. 3 shows a detailed flow chart of the steps of generating counterfeit data according to the input data according to an embodiment of the present invention.
圖4根據本發明的實施例繪示產生近似模擬結果以及最終模擬結果的流程圖。 FIG. 4 illustrates a flowchart for generating approximate simulation results and final simulation results according to an embodiment of the present invention.
圖5根據本發明的實施例繪示一種加速模擬軟體的模擬結果的產生的方法的流程圖。 FIG. 5 is a flowchart of a method for accelerating the generation of simulation results of simulation software according to an embodiment of the present invention.
圖1根據本發明的實施例繪示一種加速模擬軟體的模擬結果的產生的電子裝置100的示意圖。電子裝置100可包含處理器110、儲存媒體120以及收發器130。
FIG. 1 is a schematic diagram of an
處理器110例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、影像訊號處理器(image signal processor,ISP)、影像處理單元(image processing unit,IPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯
閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器110可耦接至儲存媒體120以及收發器130,並且存取和執行儲存於儲存媒體120中的多個模組和各種應用程式。
The
儲存媒體120例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由處理器110執行的多個模組或各種應用程式。在本實施例中,儲存媒體120可儲存包括運算模組121、機器學習模型122、歷史資料庫123、仿造特徵資料庫124、模擬結果資料庫125以及使用者定義特徵資料庫126等多個模組,其功能將於後續說明。
The
收發器130以無線或有線的方式傳送及接收訊號。收發器130還可以執行例如低噪聲放大、阻抗匹配、混頻、向上或向下頻率轉換、濾波、放大以及類似的操作。
The
電子裝置100可用以產生仿造模擬結果。圖2根據本發明的實施例繪示產生仿造模擬結果的流程圖。在步驟S210中,運算模組121可通過收發器130取得輸入資料。輸入資料可以是用以產生模擬結果的圖像資料或資料曲線。舉例來說,輸入資料可包含衛星雲圖、雷達回波圖、溫度曲線、濕度曲線、降雨量累積曲線或空氣品質曲線等與氣象相關的圖像或曲線,但本發明不限於此。
The
在步驟S220中,機器學習模型122可根據輸入資料產生仿造資料。仿造資料可以是仿造的圖資或資料曲線。舉例來說,仿造資料可包含仿造的衛星雲圖、仿造的雷達回波圖、仿造的溫度曲線、仿造的濕度曲線、仿造的降雨量累積曲線或仿造的空氣品質曲線等圖像,但本發明不限於此。機器學習模型122例如是生成對抗網路(generative adversarial network,GAN)。機器學習模型122可包含生成器(generator)1221以及判別器(discriminator)1222,其中判別器1222是由機器學習模型122根據歷史資料庫123的歷史資料訓練訓練的,其中歷史資料包含歷史衛星雲圖、歷史雷達回波圖、歷史溫度曲線、歷史濕度曲線、歷史降雨量累積曲線或歷史空氣品質曲線等圖像。
In step S220, the
圖3根據本發明的實施例繪示根據輸入資料產生仿造資料的步驟的詳細流程圖。在步驟S221中,生成器1221可根據輸入資料產生候選仿造資料。在步驟S222中,判別器1222可比對候選仿造資料與歷史資料是否匹配。若候選仿造資料與歷史資料不匹配,則判別器1222可刪除候選仿造資料,並且步驟S221可被重新執行以產生新的候選仿造資料。若候選仿造資料與歷史資料匹配,則進入步驟S223。在步驟S223中,判別器1222可決定候選仿造資料為仿造資料,並且將產生的仿造資料儲存於仿造特徵資料庫124中。接著,步驟S221可被重新執行以產生新的候選仿造資料。圖3的步驟S221至步驟S223可被重複地執行直到仿造特徵資料庫124取得足夠的仿造資料為止。
FIG. 3 shows a detailed flow chart of the steps of generating counterfeit data according to the input data according to an embodiment of the present invention. In step S221, the
舉例來說,假設輸入資料為衛星雲圖。機器學習模型122可根據歷史資料(例如:歷史衛星雲圖)以及衛星雲圖產生多個仿造衛星雲圖。
For example, suppose the input data is a satellite cloud image. The
回到圖2。在步驟S230中,運算模組121可對仿造特徵資料庫124中的多個仿造資料進行特徵萃取以取得分別對應於所述多個仿造資料的多個仿造特徵。運算模組121可將多個仿造特徵儲存於仿造特徵資料庫124中。
Back to Figure 2. In step S230 , the
具體來說,運算模組121可對多個仿造衛星雲圖的每一者進行特徵萃取以取得仿造區域雨量資訊(即:仿造特徵)。運算模組121可將仿造區域雨量資訊儲存於仿造特徵資料庫124中。舉例來說,仿造特徵資料庫124可儲存對應於400毫米的仿造區域雨量資訊、對應於500毫米的仿造區域雨量資訊以及對應於600毫米的仿造區域雨量資訊。
Specifically, the
在步驟S240中,運算模組121可將所述多個仿造特徵輸入至模擬軟體以產生分別對應於所述多個仿造特徵的多個仿造模擬結果。運算模組121可將多個仿造模擬結果儲存於模擬結果資料庫125。
In step S240, the
舉例來說,若模擬軟體用於判斷水患是否發生,則運算模組121可分別將多個仿造區域雨量資訊(即:仿造特徵)輸入至模擬軟體。模擬軟體可產生分別對應於多個仿造區域雨量資訊的多個水患判斷結果(即:仿造模擬結果)。仿造特徵資料庫124可儲存多個區域雨量資訊以及分別與所述多個區域雨量資訊相對應的
多個水患判斷結果。舉例來說,仿造特徵資料庫124可儲存對應於400毫米的仿造區域雨量資訊以及相對應的水患判斷結果、對應於500毫米的仿造區域雨量資訊以及相對應的水患判斷結果以及對應於600毫米的仿造區域雨量資訊以及相對應的水患判斷結果。
For example, if the simulation software is used to determine whether a flood has occurred, the
在取得多個仿造模擬結果後,電子裝置100即可根據多個仿造模擬結果產生與使用者的需求相對應的近似模擬結果。近似模擬結果的產生僅需花費極少的時間。此外,電子裝置100還可利用模擬軟體來產生費時較久但較為精準的最終模擬結果。圖4根據本發明的實施例繪示產生近似模擬結果以及最終模擬結果的流程圖。
After obtaining a plurality of counterfeit simulation results, the
在步驟S410中,運算模組121可通過收發器130接收使用者定義特徵。使用者定義特徵可由使用者根據其需求而決定。舉例來說,若使用者對與540毫米的區域雨量資訊相對應的水患判斷結果感興趣,則使用者可決定使用者定義特徵為對應於540毫米的區域雨量資訊。使用者可通過輸入裝置(例如:鍵盤或觸控式螢幕)將使用者定義特徵輸入至電子裝置100。運算模組121可通過收發器130以自輸入裝置取得使用者定義特徵。運算模組121可將使用者定義特徵儲存於使用者定義特徵資料庫126中。
In step S410 , the
在步驟S420中,運算模組121可計算多個仿造特徵與使用者定義特徵之間的相似度,並且響應於多個仿造特徵中的第一仿造特徵與使用者定義特徵之間的第一相似度為最高相似度而從
多個仿造特徵中選出第一仿造特徵。舉例來說,運算模組121可響應於對應於500毫米的仿造區域雨量資訊與對應於540毫米的區域雨量資訊的相似度為最高相似度而從對應於400毫米的仿造區域雨量資訊、對應於500毫米的仿造區域雨量資訊以及對應於600毫米的仿造區域雨量資訊中選出對應於500毫米的仿造區域雨量資訊。
In step S420, the
在一實施例中,在選出對應於最高相似度的第一仿造特徵後,運算模組121可響應於多個仿造特徵中的第二仿造特徵與使用者定義特徵之間的第二相似度為次高相似度而從剩餘的多個仿造特徵(即:尚未被選擇的複數個仿造特徵)中選出第二仿造特徵。舉例來說,在選出對應於500毫米的仿造區域雨量資訊後,運算模組121可響應於對應於600毫米的仿造區域雨量資訊與對應於540毫米的區域雨量資訊的相似度為次高相似度而從對應於400毫米的仿造區域雨量資訊以及對應於600毫米的仿造區域雨量資訊中選出對應於600毫米的仿造區域雨量資訊。
In one embodiment, after selecting the first imitation feature corresponding to the highest similarity, the
在步驟S430中,運算模組121可基於第一相似度而根據第一仿造模擬結果產生與使用者定義特徵匹配的近似模擬結果,並可通過收發器130輸出近似模擬結果。具體來說,在根據第一相似度選出第一仿造特徵後,運算模組121可根據第一相似度而從儲存在模擬結果資料庫125中的多個仿造模擬結果中選出第一仿造模擬結果。接著,運算模組121可基於內插法或外插法而根據第一仿造特徵、對應於第一仿造特徵的第一仿造模擬結果以及
使用者定義特徵產生近似模擬結果。
In step S430 , the
舉例來說,運算模組121可基於內插法或外插法而根據500毫米的仿造區域雨量資訊(即:第一仿造特徵)、對應於500毫米的仿造區域雨量資訊的水患判斷結果(即:第一仿造模擬結果)以及對應於540毫米的區域雨量資訊(即:使用者定義特徵)來產生對應於540毫米的區域雨量資訊的水患判斷結果(即:近似模擬結果)。由於近似模擬結果僅需利用預先產生的第一仿造模擬結果即可產生,而不需使用到模擬軟體。因此,近似模擬結果可很迅速地產生。
For example, the
在一實施例中,在根據第一相似度和第二相似度選出第一仿造特徵以及第二仿造特徵後,運算模組121可根據第一相似度而從儲存在模擬結果資料庫125中的多個仿造模擬結果中選出第一仿造模擬結果,並且根據第二相似度而從儲存在模擬結果資料庫125中的多個仿造模擬結果中選出第二仿造模擬結果。接著,運算模組121可基於內插法或外插法而根據第一仿造特徵、對應於第一仿造特徵的第一仿造模擬結果、第二仿造特徵、對應於第二仿造特徵的第二仿造模擬結果以及使用者定義特徵產生近似模擬結果。
In one embodiment, after selecting the first imitation feature and the second imitation feature according to the first similarity and the second similarity, the
舉例來說,運算模組121可基於內插法或外插法而根據500毫米的仿造區域雨量資訊(即:第一仿造特徵)、對應於500毫米的仿造區域雨量資訊的水患判斷結果(即:第一仿造模擬結果)、600毫米的仿造區域雨量資訊(即:第二仿造特徵)、對應於
600毫米的仿造區域雨量資訊的水患判斷結果(即:第二仿造模擬結果)以及對應於540毫米的區域雨量資訊(即:使用者定義特徵)來產生對應於540毫米的區域雨量資訊的水患判斷結果(即:近似模擬結果)。由於近似模擬結果僅需利用預先產生的第一仿造模擬結果和第二仿造模擬結果即可產生,而不需使用到模擬軟體。因此,近似模擬結果可很迅速地產生。
For example, the
為了取得比近似模擬結果更加精準的最終模擬結果,在步驟S440中,運算模組121可通過收發器130將使用者定義特徵輸入至模擬軟體以產生最終模擬結果,並可通過收發器130輸出最終模擬結果。舉例來說,運算模組121可通過收發器130將對應於540毫米的區域雨量資訊(即:使用者定義特徵)輸入至模擬軟體以產生對應於540毫米的區域雨量資訊的水患判斷結果(即:最終模擬結果)。
In order to obtain a final simulation result that is more accurate than the approximate simulation result, in step S440, the
圖5根據本發明的實施例繪示一種加速模擬軟體的模擬結果的產生的方法的流程圖,其中所述方法可由如圖1所示的電子裝置實施。在步驟S510中,取得輸入資料。在步驟S520中,根據輸入資料產生仿造資料。在步驟S530中,將仿造資料的第一仿造特徵輸入至模擬軟體以產生第一仿造模擬結果。在步驟S540中,取得使用者定義特徵。在步驟S550中,計算第一仿造特徵以及使用者定義特徵之間的第一相似度。在步驟S560中,基於第一相似度而根據第一仿造模擬結果產生與使用者定義特徵匹配的近似模擬結果。在步驟S570中,輸出近似模擬結果。 FIG. 5 shows a flow chart of a method for accelerating the generation of simulation results of simulation software according to an embodiment of the present invention, wherein the method can be implemented by the electronic device shown in FIG. 1 . In step S510, input data is acquired. In step S520, the counterfeit data is generated according to the input data. In step S530, input the first counterfeit feature of the counterfeit data into the simulation software to generate a first counterfeit simulation result. In step S540, user-defined features are acquired. In step S550, a first similarity between the first imitation feature and the user-defined feature is calculated. In step S560 , an approximate simulation result matching the user-defined feature is generated according to the first imitation simulation result based on the first similarity. In step S570, an approximate simulation result is output.
綜上所述,本發明的電子裝置可運用生成對抗網路來產生多個仿造特徵,並將多個仿造特徵輸入至模擬軟體以預先產生多個仿造模擬結果。當使用者欲取得針對特定特徵的模擬結果時,使用者可將使用者定義特徵輸入至電子裝置。電子裝置可比對使用者定義特徵與預存的多個仿造特徵的相似度,並且選出與使用者定義特徵高度相關的一或多個仿造特徵。電子裝置可根據與一或多個仿造特徵相對應的一或多個仿造模擬結果來計算出近似模擬結果。由於近似模擬結果不需由模擬軟體所產生,故近似模擬結果的產生十分迅速。除了產生近似模擬結果,電子裝置還可將使用者定義特徵輸入至模擬軟體以產生更加精準的模擬結果。 To sum up, the electronic device of the present invention can use the generative adversarial network to generate multiple counterfeit features, and input the multiple counterfeit features into the simulation software to generate multiple counterfeit simulation results in advance. When the user wants to obtain a simulation result for a specific feature, the user can input the user-defined feature into the electronic device. The electronic device can compare the similarity between the user-defined feature and a plurality of pre-stored counterfeit features, and select one or more counterfeit features highly related to the user-defined feature. The electronic device can calculate an approximate simulation result according to one or more counterfeit simulation results corresponding to the one or more counterfeit features. Since the approximate simulation results do not need to be generated by simulation software, the approximate simulation results are generated very quickly. In addition to producing approximate simulation results, the electronic device can also input user-defined features into the simulation software to produce more accurate simulation results.
S510、S520、S530、S540、S550、S560、S570:步驟S510, S520, S530, S540, S550, S560, S570: steps
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109129815A TWI798583B (en) | 2020-09-01 | 2020-09-01 | Electronic device and method for accelerating generation of simulation result of simulation software |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109129815A TWI798583B (en) | 2020-09-01 | 2020-09-01 | Electronic device and method for accelerating generation of simulation result of simulation software |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202211070A TW202211070A (en) | 2022-03-16 |
TWI798583B true TWI798583B (en) | 2023-04-11 |
Family
ID=81746864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109129815A TWI798583B (en) | 2020-09-01 | 2020-09-01 | Electronic device and method for accelerating generation of simulation result of simulation software |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI798583B (en) |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8655632B2 (en) * | 2009-09-03 | 2014-02-18 | Schlumberger Technology Corporation | Gridless geological modeling |
TW201437914A (en) * | 2008-02-22 | 2014-10-01 | Applied Materials Inc | User interface with visualization of real and virtual data |
TW201633192A (en) * | 2014-12-18 | 2016-09-16 | Asml荷蘭公司 | Feature search by machine learning |
TW201738811A (en) * | 2016-04-18 | 2017-11-01 | 北京嘀嘀無限科技發展有限公司 | Systems and methods for recommending an estimated time of arrival |
TW201801024A (en) * | 2016-06-28 | 2018-01-01 | 安研科技股份有限公司 | Method for generating two-dimensional flood potential map |
TW201812646A (en) * | 2016-07-18 | 2018-04-01 | 美商南坦奧美克公司 | Distributed machine learning system, method of distributed machine learning, and method of generating proxy data |
CN108170714A (en) * | 2017-12-01 | 2018-06-15 | 武汉华信联创技术工程有限公司 | A kind of three-dimensional simulation system of typhoon disaster monitoring and evaluation |
TW201824113A (en) * | 2016-12-28 | 2018-07-01 | 財團法人工業技術研究院 | Social data analyzing system and method for predicting emerging topics |
TW201833590A (en) * | 2013-06-26 | 2018-09-16 | 加拿大商天勢研究無限公司 | Method and system for displaying weather information on a timeline |
EP3407292A1 (en) * | 2017-05-24 | 2018-11-28 | General Electric Company | Neural network point cloud generation system |
US20190130266A1 (en) * | 2017-10-27 | 2019-05-02 | Royal Bank Of Canada | System and method for improved neural network training |
WO2019104304A1 (en) * | 2017-11-27 | 2019-05-31 | Siemens Industry Software Nv | Accelerated simulation setup process using prior knowledge extraction for problem matching |
TW201939369A (en) * | 2018-03-02 | 2019-10-01 | 財團法人國家實驗研究院 | Method for predicting movie box office capable of classifying a movie as a blockbuster or miserable according to a box office threshold |
TW202014992A (en) * | 2018-10-08 | 2020-04-16 | 財團法人資訊工業策進會 | System and method for simulating expression of virtual facial model |
TW202022633A (en) * | 2018-12-10 | 2020-06-16 | 財團法人資訊工業策進會 | Optimization method and module thereof based on feature extraction and machine learning |
CN111476976A (en) * | 2020-04-28 | 2020-07-31 | 广西壮族自治区水利科学研究院 | Dynamic analysis system for reservoir rainstorm early warning threshold |
TW202028877A (en) * | 2018-09-28 | 2020-08-01 | 台灣積體電路製造股份有限公司 | Lithography simulation method |
-
2020
- 2020-09-01 TW TW109129815A patent/TWI798583B/en active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201437914A (en) * | 2008-02-22 | 2014-10-01 | Applied Materials Inc | User interface with visualization of real and virtual data |
US8655632B2 (en) * | 2009-09-03 | 2014-02-18 | Schlumberger Technology Corporation | Gridless geological modeling |
TW201833590A (en) * | 2013-06-26 | 2018-09-16 | 加拿大商天勢研究無限公司 | Method and system for displaying weather information on a timeline |
TW201633192A (en) * | 2014-12-18 | 2016-09-16 | Asml荷蘭公司 | Feature search by machine learning |
TW201738811A (en) * | 2016-04-18 | 2017-11-01 | 北京嘀嘀無限科技發展有限公司 | Systems and methods for recommending an estimated time of arrival |
TW201801024A (en) * | 2016-06-28 | 2018-01-01 | 安研科技股份有限公司 | Method for generating two-dimensional flood potential map |
TW201812646A (en) * | 2016-07-18 | 2018-04-01 | 美商南坦奧美克公司 | Distributed machine learning system, method of distributed machine learning, and method of generating proxy data |
TW201824113A (en) * | 2016-12-28 | 2018-07-01 | 財團法人工業技術研究院 | Social data analyzing system and method for predicting emerging topics |
EP3407292A1 (en) * | 2017-05-24 | 2018-11-28 | General Electric Company | Neural network point cloud generation system |
US20190130266A1 (en) * | 2017-10-27 | 2019-05-02 | Royal Bank Of Canada | System and method for improved neural network training |
WO2019104304A1 (en) * | 2017-11-27 | 2019-05-31 | Siemens Industry Software Nv | Accelerated simulation setup process using prior knowledge extraction for problem matching |
CN108170714A (en) * | 2017-12-01 | 2018-06-15 | 武汉华信联创技术工程有限公司 | A kind of three-dimensional simulation system of typhoon disaster monitoring and evaluation |
TW201939369A (en) * | 2018-03-02 | 2019-10-01 | 財團法人國家實驗研究院 | Method for predicting movie box office capable of classifying a movie as a blockbuster or miserable according to a box office threshold |
TW202028877A (en) * | 2018-09-28 | 2020-08-01 | 台灣積體電路製造股份有限公司 | Lithography simulation method |
TW202014992A (en) * | 2018-10-08 | 2020-04-16 | 財團法人資訊工業策進會 | System and method for simulating expression of virtual facial model |
TW202022633A (en) * | 2018-12-10 | 2020-06-16 | 財團法人資訊工業策進會 | Optimization method and module thereof based on feature extraction and machine learning |
CN111476976A (en) * | 2020-04-28 | 2020-07-31 | 广西壮族自治区水利科学研究院 | Dynamic analysis system for reservoir rainstorm early warning threshold |
Also Published As
Publication number | Publication date |
---|---|
TW202211070A (en) | 2022-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108875510B (en) | Image processing method, device, system and computer storage medium | |
TWI718422B (en) | Method, device and equipment for fusing model prediction values | |
CN112765287B (en) | Method, device and medium for mining character relation based on knowledge graph embedding | |
WO2017166449A1 (en) | Method and device for generating machine learning model | |
CN109923558A (en) | Mixture of expert neural network | |
EP3748495A1 (en) | Audio playing method and device, terminal and computer-readable storage medium | |
US11514315B2 (en) | Deep neural network training method and apparatus, and computer device | |
CN111340177A (en) | Neural network processing method and device based on nested bit representation | |
JP7298825B2 (en) | Learning support device, learning device, learning support method, and learning support program | |
CN114925748B (en) | Model training and modal information prediction method, related device, equipment and medium | |
WO2018220700A1 (en) | New learning dataset generation method, new learning dataset generation device, and learning method using generated learning dataset | |
CN111523940B (en) | Deep reinforcement learning-based recommendation method and system with negative feedback | |
JP7124373B2 (en) | LEARNING DEVICE, SOUND GENERATOR, METHOD AND PROGRAM | |
CN111373391B (en) | Language processing device, language processing system, and language processing method | |
CN117892175A (en) | SNN multi-mode target identification method, system, equipment and medium | |
TWI798583B (en) | Electronic device and method for accelerating generation of simulation result of simulation software | |
CN110827789A (en) | Music generation method, electronic device and computer-readable storage medium | |
CN113470162B (en) | Method, device, system and storage medium for constructing three-dimensional head model | |
JP7061089B2 (en) | Classification device, classification method and classification program | |
CN110796561B (en) | Influence maximization method and device based on three-hop velocity attenuation propagation model | |
CN114119438A (en) | Training method and device of image collage model and image collage method and device | |
CN111178535B (en) | Method and apparatus for implementing automatic machine learning | |
CN111696517A (en) | Speech synthesis method, speech synthesis device, computer equipment and computer readable storage medium | |
JP7465025B1 (en) | Information processing device, inference device, machine learning device, information processing method, inference method, and machine learning method | |
CN113505194B (en) | Training method and device for rewrite word generation model |