TWI797048B - 骨骼矯正設備設計系統及其骨骼矯正設備 - Google Patents
骨骼矯正設備設計系統及其骨骼矯正設備 Download PDFInfo
- Publication number
- TWI797048B TWI797048B TW111133120A TW111133120A TWI797048B TW I797048 B TWI797048 B TW I797048B TW 111133120 A TW111133120 A TW 111133120A TW 111133120 A TW111133120 A TW 111133120A TW I797048 B TWI797048 B TW I797048B
- Authority
- TW
- Taiwan
- Prior art keywords
- modules
- exoskeleton
- correction
- module
- angle
- Prior art date
Links
Images
Landscapes
- Milling, Drilling, And Turning Of Wood (AREA)
- Sewage (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
- Stereophonic System (AREA)
Abstract
一種骨骼矯正設備設計系統,包含:複數個外骨骼模組,複數個該外骨骼模組之間之角度於一原始病理角度以及一預設矯正角度之間為可調整,使複數個該外骨骼模組於一病理位置以及一矯正位置之間為可位移;光學追蹤裝置,係與複數個該外骨骼模組相連接,該光學追蹤裝置包括複數個光學標的單元以及光學追蹤模組,該光學追蹤模組係藉由複數個該光學標的單元而取得一外骨骼模組矯正位置資訊,並將該外骨骼模組矯正位置資訊輸出;處理裝置,係生成用以裝設於複數個該外骨骼模組上之複數個矯正固定模組的立體結構。
Description
本發明相關於一種骨骼矯正設備設計系統及其骨骼矯正設備。
先天性杵狀足又稱為馬蹄內翻足,係為下肢最為常見之先天畸形。
習知之矯正馬蹄內翻足的方式分別為石膏治療矯正、傳統輔具治療矯正以及3D列印方案。其中,石膏治療矯正的缺點主要為製作過程中之矯正角度可能產生偏移,且石膏製作的過程冗長,無法在短時間內進行多次矯正;而傳統輔具治療矯正的缺點為矯正角度將受到限制,輔具與患部的貼合度低將導致輔具無法確實固定住患部。
3D列印方案係為習知技術中較新穎之矯正方式,然而製作矯正輔具的過程中,醫師所欲矯正之角度僅能以口述之形式供製作者揣摩該矯正輔具之立體圖後再進行繪製,且於修改所繪製之該立體圖的過程中係需要耗費大量人力以及時間成本,亦無法於短期內進行多次矯正。
因此,習知之矯正馬蹄內翻足的方式以及相關矯正設備仍具有其改良之必要。
因此,本發明的目的即在提供一種骨骼矯正設備設計系統及其骨骼矯正設備,係能夠以省時、省力的方式精準製備出符合醫師要求之矯正角度的骨骼矯正設備。
本發明為解決習知技術之問題所採用之技術手段係提供一種骨骼矯正設備設計系統,用以輔助醫師矯正病患之患部骨骼以及與該患部骨骼相連接之患部關節,該骨骼矯正設備設計系統包含:複數個外骨骼模組,複數個該外骨骼模組之間之角度於一原始病理角度以及一預設矯正角度之間為可調整,使複數個該外骨骼模組於一病理位置以及一矯正位置之間為可位移,而模擬該病患之該患部骨骼以及該患部關節自該原始病理角度矯正為該預設矯正角度;光學追蹤裝置,係與複數個該外骨骼模組相連接,該光學追蹤裝置包括複數個光學標的單元以及光學追蹤模組,複數個該光學標的單元係可拆卸地裝設於複數個該外骨骼模組上,該光學追蹤模組係用以追蹤複數個該光學標的單元於空間中之位置座標,當複數個該外骨骼模組之間位於該矯正位置時,該光學追蹤模組係藉由複數個該光學標的單元而取得一外骨骼模組矯正位置資訊,並將該外骨骼模組矯正位置資訊輸出;以及處理裝置,係自該光學追蹤模組接收該外骨骼模組矯正位置資訊,並依據該外骨骼模組矯正位置資訊生成用以裝設於複數個該外骨骼模組上之複數個矯正固定模組的立體結構,使得依據複數個該矯正固定模組的該立體結構而製備得出之複數個該矯正固定模組在裝設於複數個該外骨骼模組時,能將該患部關節矯正至該預設矯正角度。
在本發明的一實施例中係提供一種骨骼矯正設備設計系統,該光學追蹤裝置更包括複數個定位板,複數個該光學標的單元係藉由複數個該定位板
而裝設於複數個該外骨骼模組上,複數個該定位板係可拆卸地裝設於複數個該外骨骼模組之表面。
在本發明的一實施例中係提供一種骨骼矯正設備設計系統,該處理裝置更包括成像模組,該成像模組係自該光學追蹤模組接收該外骨骼模組矯正位置資訊,並依據該外骨骼模組矯正位置資訊重現位於該矯正位置之複數個該外骨骼模組之3D影像,將該3D影像以3D列印檔案格式儲存為3D圖檔,以供該處理裝置設計生成複數個該矯正固定模組的該立體結構。
在本發明的一實施例中係提供一種骨骼矯正設備設計系統,該處理裝置更包括3D列印模組,經儲存之該3D圖檔之檔案格式係選自STL檔或OBJ檔,以供該3D列印模組製備複數個該矯正固定模組。
在本發明的一實施例中係提供一種骨骼矯正設備設計系統,複數個該外骨骼模組係包括腿部模組以及足部模組,複數個該矯正固定模組係為足踝模組。
在本發明的一實施例中係提供一種骨骼矯正設備,包含:複數個該外骨骼模組,複數個該外骨骼模組之間之角度係為該預設矯正角度,用以包覆於該病患之患部外,從而固定該患部骨骼以及該患部關節;以及如請求項1至5中任一項所述之該骨骼矯正設備設計系統所設計製備而得的複數個該矯正固定模組,係裝設並覆蓋於複數個該外骨骼模組之間,用以固定複數個該外骨骼模組於該患部,進而使複數個該外骨骼模組矯正該患部骨骼以及該患部關節自該原始病理角度至該預設矯正角度,其中,複數個該外骨骼模組係為可重複使用,複數個該外骨骼模組之間係可依據具有不同的立體結構之複數個矯正固定模組而呈現並固定為不同之該預設矯正角度,使複數個該外骨骼模組藉由不同之該
預設矯正角度而矯正該患部骨骼以及該患部關節,而自該原始病理角度最終矯正至落於醫學參考值範圍之角度中。
經由本發明的骨骼矯正設備設計系統及其骨骼矯正設備所採用之技術手段,能夠使得設計製備得出之骨骼矯正設備更為精密,病患於短時間內能夠進行多次矯正,提升矯正療程之效率。
100:骨骼矯正設備設計系統
100A:骨骼矯正設備
1:外骨骼模組
2:光學追蹤裝置
21:光學標的單元
22:光學追蹤模組
23:定位板
3:處理裝置
31:成像模組
32:3D列印模組
4:矯正固定模組
I:外骨骼模組矯正位置資訊
第1圖為顯示根據本發明的一實施例的骨骼矯正設備設計系統的方塊示意圖;第2a圖為顯示根據本發明的實施例的骨骼矯正設備設計系統的複數個該外骨骼模組之間進行角度矯正前之示意圖;第2b圖為顯示根據本發明的實施例的骨骼矯正設備設計系統的複數個該外骨骼模組之間進行角度矯正後之示意圖;第2c圖為顯示根據本發明的實施例的骨骼矯正設備設計系統的複數個該外骨骼模組之間進行角度矯正後之另一示意圖;第3圖為顯示根據本發明的另一實施例的骨骼矯正設備的示意圖;第4圖為顯示根據本發明的實施例的骨骼矯正設備應用於病患之前該病患的患部3D立體示意圖。
以下根據第1圖至第4圖,而說明本發明的實施方式。該說明並非為限制本發明的實施方式,而為本發明之實施例的一種。
如第1圖所示,依據本發明的一實施例的一種骨骼矯正設備設計系統100,用以輔助醫師矯正病患之患部骨骼以及與該患部骨骼相連接之患部關節,該骨骼矯正設備設計系統100包含:複數個外骨骼模組1,複數個該外骨骼模組1之間之角度於一原始病理角度以及一預設矯正角度之間為可調整,使複數個該外骨骼模組1於一病理位置以及一矯正位置之間為可位移,而模擬該病患之該患部骨骼以及該患部關節自該原始病理角度矯正為該預設矯正角度。
詳細而言,複數個該外骨骼模組1之尺寸與形狀係為醫師依據病患之年齡、體型之不同而選擇與該病患相對應之尺寸與形狀。如第2a圖所示,醫師係藉由複數個該外骨骼模組1而模擬該病患當前之患部狀態後,此時之複數個該外骨骼模組1之間之角度係被視為該原始病理角度,而此時複數個該外骨骼模組1於空間中之位置係被視為該病理位置。
如第1圖所示,依據本發明的實施例的該骨骼矯正設備設計系統100,包含光學追蹤裝置2,係與複數個該外骨骼模組1相連接,該光學追蹤裝置2包括複數個光學標的單元21以及光學追蹤模組22,複數個該光學標的單元21係可拆卸地裝設於複數個該外骨骼模組1上,該光學追蹤模組22係用以追蹤複數個該光學標的單元21於空間中之位置座標,當複數個該外骨骼模組1之間位於該矯正位置時,該光學追蹤模組22係藉由複數個該光學標的單元21而取得一外骨骼模組矯正位置資訊I,並將該外骨骼模組矯正位置資訊I輸出。
如第1圖至第2c圖所示,依據本發明的實施例的該骨骼矯正設備設計系統100,其中該光學追蹤裝置2更包括複數個定位板,複數個該光學標的單元21係藉由複數個該定位板而裝設於複數個該外骨骼模組1上,複數個該定位板係可拆卸地裝設於複數個該外骨骼模組1之表面。
詳細而言,如第2b圖至第2c圖所示,醫師係藉由複數個該外骨骼模組1而模擬該病患當前之患部狀態後,需要將處於該病理位置之複數個該外骨骼模組1,依據該病患的矯正情況而調整角度以及位置至預設的該預設矯正角度以及預設的該矯正位置,以使處理裝置3精準地生成用以裝設於複數個該外骨骼模組1上之複數個矯正固定模組4的立體結構,並據此製備出複數個該矯正固定模組4。
進一部而言,如第2a圖至第2c圖所示,複數個該光學標的單元21係為反光球,該光學追蹤模組22係發射出紅外光照射於裝設在複數個該外骨骼模組1上的複數個該反光球,複數個該反光球係將該紅外光反射回該光學追蹤模組22,以使該光學追蹤模組22計算得出複數個該反光球於空間中之位置座標,進而計算出複數個該外骨骼模組之位置座標。因此,當複數個該外骨骼模組1之間位於該矯正位置時,該光學追蹤模組22係藉由複數個該反光球取得複數個該外骨骼模組1之間位於該矯正位置時之位置座標,並據此進一步取得該外骨骼模組矯正位置資訊I。
如第1圖所示,依據本發明的實施例的該骨骼矯正設備設計系統100,包含該處理裝置3,係自該光學追蹤模組22接收該外骨骼模組矯正位置資訊I,並依據該外骨骼模組矯正位置資訊I生成用以裝設於複數個該外骨骼模組1上之複數個該矯正固定模組4的立體結構,使得依據複數個該矯正固定模組4的該立體結構而製備得出之複數個該矯正固定模組4在裝設於複數個該外骨骼模組1時,能將該患部關節矯正至該預設矯正角度。
如第1圖所示,依據本發明的實施例的該骨骼矯正設備設計系統100,其中該處理裝置3更包括成像模組31,該成像模組31係自該光學追蹤模組
22接收該外骨骼模組矯正位置資訊I,並依據該外骨骼模組矯正位置資訊I重現位於該矯正位置之複數個該外骨骼模組1之3D影像,將該3D影像以3D列印檔案格式儲存為3D圖檔,以供該處理裝置3設計生成複數個該矯正固定模組4的該立體結構。
詳細而言,該成像模組31係能夠藉由該外骨骼模組矯正位置資訊I而精準地重現此時經醫師調整為特定之該預設矯正角度並處於特定之該矯正位置之複數個該外骨骼模組1之3D影像,以使該處理裝置3能夠藉由該3D影像而設計生成出適配於此時之複數個該外骨骼模組1的複數個該矯正固定模組4的該立體結構。
更進一步而言,於一個完整的矯正療程中將進行複數次之該矯正固定模組4的設計生成,矯正之最終目的係為:將該患部自該原始病理角度以及該病理位置,歷經複數次將前次之該預設矯正角度以及該矯正位置矯正為當次新的預設矯正角度以及新的矯正位置,從而最終矯正至落於醫學參考值範圍之角度以及位置中。醫師將會依據該病患之該患部的矯正情況而預設不同之預設矯正角度以及矯正位置,當次所預設之新的該預設矯正角度以及新的該矯正位置將會視前次之矯正狀況而進行相對應之調整,從而設計生成得以裝設於當次之具有新的該預設矯正角度以及位在新的該矯正位置的複數個該外骨骼模組1上的複數個矯正固定模組4的該立體結構。
詳細而言,該處理裝置3係更包括設計生成單元,該設計生成單元可以為人工智慧設計軟體或是醫學矯正相關之3D建模師,能夠針對該成像模組31所重現之該3D影像而設計生成得以裝設於當次之具有新的該預設矯正角度以
及位在新的該矯正位置的複數個該外骨骼模組1上的複數個矯正固定模組4的該立體結構。
如第1圖所示,依據本發明的實施例的該骨骼矯正設備設計系統100,其中該處理裝置3更包括3D列印模組32,經儲存之該3D圖檔之檔案格式係選自STL檔或OBJ檔,以供該3D列印模組32製備複數個該矯正固定模組4。
詳細而言,該3D列印模組32係依據該處理裝置3之該設計生成單元所設計生成之複數個該矯正固定模組4的該立體結構而製備出複數個該矯正固定模組4。
依據本發明的實施例的該骨骼矯正設備設計系統100,其中複數個該外骨骼模組1係包括腿部模組以及足部模組,複數個該矯正固定模組4係為足踝模組。
詳細而言,本發明之該骨骼矯正設備設計系統100亦可設計生成針對上肢方面之矯正的骨骼矯正設備,係藉由對複數個該外骨骼模組1之形狀、結構進行相對應之調整,以使本發明之該骨骼矯正設備設計系統100得以輔助矯正病患位於上肢之患部。
如第3圖所示,依據本發明的另一實施例的骨骼矯正設備100A,包含:複數個該外骨骼模組1,複數個該外骨骼模組1之間之角度係為該預設矯正角度,用以包覆於該病患之患部外,從而固定該患部骨骼以及該患部關節;以及如請求項1至5中任一項所述之該骨骼矯正設備設計系統100所設計製備而得的複數個該矯正固定模組4,係裝設並覆蓋於複數個該外骨骼模組1之間,用以固定複數個該外骨骼模組1於該患部,進而使複數個該外骨骼模組1矯正該患部骨骼以及該患部關節自該原始病理角度至該預設矯正角度,其中,複數個該外
骨骼模組1係為可重複使用,複數個該外骨骼模組1之間係可依據具有不同的立體結構之複數個矯正固定模組4而呈現並固定為不同之該預設矯正角度,使複數個該外骨骼模組1藉由不同之該預設矯正角度而矯正該患部骨骼以及該患部關節,而自該原始病理角度最終矯正至落於醫學參考值範圍之角度中。
詳細而言,由於新生兒於出生後前幾週之下肢尺寸以及形狀之改變較為和緩,因此複數個該外骨骼模組可以於完整矯正療程中的每次矯正重複使用。因此,於該完整矯正療程中之每次矯正,僅需藉由本發明之該骨骼矯正設備設計系統100而設計製備出新的複數個該矯正固定模組4,並將新的複數個該矯正固定模組4與複數個該外骨骼模組1相組合後供該病患穿戴,即能完成該完整矯正療程中之每一次的矯正。
如第4圖以及〔表1〕所示,第4圖係為使用本發明之該骨骼矯正設備設計系統100及其骨骼矯正設備100A前之病患的患部之原始病理3D立體示意圖,此病例之病患係為一位二週大之男嬰,該病患之該患部係為呈現馬蹄內翻足之左足,且經醫師診斷,該病患之Dimeglio評分(Dimeglio Score)係為15,係認定為嚴重之馬蹄內翻足。〔表1〕係為針對該病患所制定之矯正計畫表,藉由本發明之該骨骼矯正設備設計系統100及其骨骼矯正設備100A,能夠使該病患僅需歷經5~6次之矯正即能使該原始病理角度以及該病理位置矯正至落於,或是接近醫學參考值範圍之角度以及位置中。
藉由本發明所採用之技術手段,能夠使得設計製備得出之該骨骼矯正設備100A更為精密,且病患於短時間內能夠進行多次矯正,進而提升整個矯正療程之效率。
詳細而言,藉由本發明之該骨骼矯正設備設計系統100,醫師得以便利地調整複數個該外骨骼模組1之該預設矯正角度以及該矯正位置,且藉由該光學追蹤裝置2搭配該處理裝置,能夠精準地重現位於該矯正位置之複數個該外骨骼模組1之3D影像,得以精準地設計、製備出複數個該矯正固定模組4,進而將複數個該外骨骼模組1與複數個該矯正固定模組4互相裝設而固定形成本發明之該骨骼矯正設備100A。由於上述過程的所需時間短,使得病患能夠於短時間內進行多次矯正,進而節省整個矯正療程之時間以及人力上的成本。
以上之敘述以及說明僅為本發明之較佳實施例之說明,對於此項技術具有通常知識者當可依據以下所界定申請專利範圍以及上述之說明而作其他之修改,惟此些修改仍應是為本發明之發明精神而在本發明之權利範圍中。
100:骨骼矯正設備設計系統
1:外骨骼模組
2:光學追蹤裝置
21:光學標的單元
22:光學追蹤模組
23:定位板
3:處理裝置
31:成像模組
32:3D列印模組
I:外骨骼模組矯正位置資訊
Claims (6)
- 一種骨骼矯正設備設計系統,用以輔助醫師矯正病患之患部骨骼以及與該患部骨骼相連接之患部關節,該骨骼矯正設備設計系統包含:複數個外骨骼模組,複數個該外骨骼模組之間之角度於一原始病理角度以及一預設矯正角度之間為可調整,使複數個該外骨骼模組於一病理位置以及一矯正位置之間為可位移,而模擬該病患之該患部骨骼以及該患部關節自該原始病理角度矯正為該預設矯正角度;光學追蹤裝置,係與複數個該外骨骼模組相連接,該光學追蹤裝置包括複數個光學標的單元以及光學追蹤模組,複數個該光學標的單元係可拆卸地裝設於複數個該外骨骼模組上,該光學追蹤模組係用以追蹤複數個該光學標的單元於空間中之位置座標,當複數個該外骨骼模組之間位於該矯正位置時,該光學追蹤模組係藉由複數個該光學標的單元而取得一外骨骼模組矯正位置資訊,並將該外骨骼模組矯正位置資訊輸出;以及處理裝置,係自該光學追蹤模組接收該外骨骼模組矯正位置資訊,並依據該外骨骼模組矯正位置資訊生成用以裝設於複數個該外骨骼模組上之複數個矯正固定模組的立體結構,使得依據複數個該矯正固定模組的該立體結構而製備得出之複數個該矯正固定模組在裝設於複數個該外骨骼模組時,能將該患部關節矯正至該預設矯正角度。
- 如請求項1所述之骨骼矯正設備設計系統,其中該光學追蹤裝置更包括複數個定位板,複數個該光學標的單元係藉由複數個該定位板而裝設於複數個該外骨骼模組上,複數個該定位板係可拆卸地裝設於複數個該外骨骼模組之表面。
- 如請求項1所述之骨骼矯正設備設計系統,其中該處理裝置更包括成像模組,該成像模組係自該光學追蹤模組接收該外骨骼模組矯正位置資訊,並依據該外骨骼模組矯正位置資訊重現位於該矯正位置之複數個該外骨骼模組之3D影像,將該3D影像以3D列印檔案格式儲存為3D圖檔,以供該處理裝置設計生成複數個該矯正固定模組的該立體結構。
- 如請求項3所述之骨骼矯正設備設計系統,其中該處理裝置更包括3D列印模組,經儲存之該3D圖檔之檔案格式係選自STL檔或OBJ檔,以供該3D列印模組製備複數個該矯正固定模組。
- 如請求項1所述之骨骼矯正設備設計系統,其中複數個該外骨骼模組係包括腿部模組以及足部模組,複數個該矯正固定模組係為足踝模組。
- 一種骨骼矯正設備,包含:複數個該外骨骼模組,複數個該外骨骼模組之間之角度係為該預設矯正角度,用以包覆於該病患之患部外,從而固定該患部骨骼以及該患部關節;以及如請求項1至5中任一項所述之該骨骼矯正設備設計系統所設計製備而得的複數個該矯正固定模組,係裝設並覆蓋於複數個該外骨骼模組之間,用以固定複數個該外骨骼模組於該患部,進而使複數個該外骨骼模組矯正該患部骨骼以及該患部關節自該原始病理角度至該預設矯正角度,其中,複數個該外骨骼模組係為可重複使用,複數個該外骨骼模組之間係可依據具有不同的立體結構之複數個該矯正固定模組而呈現並固定為不同之預設矯正角度,使複數個該外骨骼模組藉由不同之該預設矯正角度而矯正該患部骨骼以及該患部關節,而自該原始病理角度最終矯正至落於醫學參考值範圍之角度中。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111133120A TWI797048B (zh) | 2022-09-01 | 2022-09-01 | 骨骼矯正設備設計系統及其骨骼矯正設備 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111133120A TWI797048B (zh) | 2022-09-01 | 2022-09-01 | 骨骼矯正設備設計系統及其骨骼矯正設備 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI797048B true TWI797048B (zh) | 2023-03-21 |
TW202410864A TW202410864A (zh) | 2024-03-16 |
Family
ID=86692561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111133120A TWI797048B (zh) | 2022-09-01 | 2022-09-01 | 骨骼矯正設備設計系統及其骨骼矯正設備 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI797048B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200509870A (en) * | 2002-11-27 | 2005-03-16 | Conformis Inc | Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty |
US20080009771A1 (en) * | 2006-03-29 | 2008-01-10 | Joel Perry | Exoskeleton |
CN101246602A (zh) * | 2008-02-04 | 2008-08-20 | 东华大学 | 基于几何骨架的人体姿态重建方法 |
WO2010027015A1 (ja) * | 2008-09-05 | 2010-03-11 | 国立大学法人東京大学 | モーションキャプチャ装置 |
US20180177450A1 (en) * | 2014-03-17 | 2018-06-28 | Ben Hansen | Method and system for delivering biomechanical feedback to human and object motion |
-
2022
- 2022-09-01 TW TW111133120A patent/TWI797048B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200509870A (en) * | 2002-11-27 | 2005-03-16 | Conformis Inc | Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty |
US20080009771A1 (en) * | 2006-03-29 | 2008-01-10 | Joel Perry | Exoskeleton |
CN101246602A (zh) * | 2008-02-04 | 2008-08-20 | 东华大学 | 基于几何骨架的人体姿态重建方法 |
WO2010027015A1 (ja) * | 2008-09-05 | 2010-03-11 | 国立大学法人東京大学 | モーションキャプチャ装置 |
US20180177450A1 (en) * | 2014-03-17 | 2018-06-28 | Ben Hansen | Method and system for delivering biomechanical feedback to human and object motion |
Also Published As
Publication number | Publication date |
---|---|
TW202410864A (zh) | 2024-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Robotics in dental implantology | |
Ghai et al. | Use of 3-D printing technologies in craniomaxillofacial surgery: a review | |
CN111179350B (zh) | 髋关节图像处理系统 | |
Lin et al. | Three-dimensional computer-assisted surgical simulation and intraoperative navigation in orthognathic surgery: a literature review | |
Bell | Computer planning and intraoperative navigation in orthognathic surgery | |
Lo et al. | Craniofacial computerassisted surgical planning and simulation | |
US9411939B2 (en) | Method for producing patient-specific plate | |
Yu et al. | Navigation-guided reduction and orbital floor reconstruction in the treatment of zygomatic-orbital-maxillary complex fractures | |
Ayoub et al. | A novel approach for planning orthognathic surgery: the integration of dental casts into three-dimensional printed mandibular models | |
Movahed et al. | Protocol for concomitant temporomandibular joint custom-fitted total joint reconstruction and orthognathic surgery utilizing computer-assisted surgical simulation | |
Hu et al. | Clinical application of individualized 3D-printed navigation template to children with cubitus varus deformity | |
Wu et al. | Computer-assisted navigation: its role in intraoperatively accurate mandibular reconstruction | |
WO2020259712A1 (zh) | 一种基于云平台的智能矫形外固定系统 | |
Wong et al. | Accuracy of maxillary repositioning surgery using CAD/CAM customized surgical guides and fixation plates | |
Tankersley et al. | Comparison of the planned versus actual jaw movement using splint-based virtual surgical planning: how close are we at achieving the planned outcomes? | |
Chang et al. | Accuracy assessment of computer-aided three-dimensional simulation and navigation in orthognathic surgery (CASNOS) | |
Lee et al. | Virtual skeletal complex model-and landmark-guided orthognathic surgery system | |
Wang et al. | The accuracy of virtual-surgical-planning-assisted treatment of hemifacial microsomia in adult patients: distraction osteogenesis vs. orthognathic surgery | |
Lu et al. | Digital occlusal splint for condylar reconstruction in children with temporomandibular joint ankylosis | |
Du et al. | Treatment of skeletal open bite using a navigation system: CAD/CAM osteotomy and drilling guides combined with pre-bent titanium plates | |
Sembronio et al. | One-stage computer-guided customized management of skeletal asymmetry by concomitant proportional condylectomy and orthognathic surgery in patients with unilateral condylar hyperplasia | |
TWI797048B (zh) | 骨骼矯正設備設計系統及其骨骼矯正設備 | |
TW202014162A (zh) | 免面弓之咬合關係置位咬合器方法與咬合關係轉移模組 | |
Cai et al. | Navigation-assisted mandibular body distraction osteogenesis: a preliminary study in goats | |
CN112288797A (zh) | 颅骨矫正方案生成系统、构建方法、获取方法及装置 |