TWI796516B - Phosphor converted led with high color quality - Google Patents

Phosphor converted led with high color quality Download PDF

Info

Publication number
TWI796516B
TWI796516B TW108131373A TW108131373A TWI796516B TW I796516 B TWI796516 B TW I796516B TW 108131373 A TW108131373 A TW 108131373A TW 108131373 A TW108131373 A TW 108131373A TW I796516 B TWI796516 B TW I796516B
Authority
TW
Taiwan
Prior art keywords
phosphor layer
led
emission wavelength
phosphor
led die
Prior art date
Application number
TW108131373A
Other languages
Chinese (zh)
Other versions
TW202021156A (en
Inventor
漢斯 黑爾摩特 貝克特爾
葛羅葛瑞 丹尼斯
艾瑞克 瑪麗亞 羅琳
丹尼爾 盧賽爾 錢柏林
蘇密特 剛瓦爾
Original Assignee
美商亮銳公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/119,688 external-priority patent/US11233180B2/en
Application filed by 美商亮銳公司 filed Critical 美商亮銳公司
Publication of TW202021156A publication Critical patent/TW202021156A/en
Application granted granted Critical
Publication of TWI796516B publication Critical patent/TWI796516B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

A light emitting diode (LED) device may include an LED die having a first surface on a substrate. A first phosphor layer may be formed on a second surface and sides of the LED die. The second surface may be opposite the first surface. A second phosphor layer may be formed on the first phosphor layer. The second phosphor layer may have a peak emission wavelength (Lpk 2) located between a peak emission wavelength of the LED die (Lpk D) and a peak emission wavelength of the first phosphor layer (Lpk 1).

Description

具有高色彩品質之磷光體轉換LEDPhosphor-converted LEDs with high color quality

本申請案係關於LED,且更特定而言係關於磷光體轉換LED。 This application relates to LEDs, and more particularly to phosphor converted LEDs.

磷光體轉換白色LED發光二極體(LED)裝置通常使用由部分地吸收藍色LED光且發射綠光、黃光及紅光之一層冷光材料覆蓋之一藍色LED。冷光材料通常含有無機材料之一混合粉末。為了由照明委員會(CIE)定義為顯色指數(CRI)之高色彩品質,自LED發射之光之光譜功率分佈(SPD)必須緊密沿循一白色參考光之SPD。若將自LED發射之光與相機系統組合地使用(例如,作為一閃光燈),則在SPD中避免尖銳峰值及極小值可尤為重要。 Phosphor-converted white LED light-emitting diode (LED) devices typically use a blue LED covered by a layer of luminescent material that partially absorbs blue LED light and emits green, yellow, and red light. Luminescent materials usually contain a mixed powder of one of the inorganic materials. For high color quality as defined by the Commission on Illumination (CIE) as Color Rendering Index (CRI), the spectral power distribution (SPD) of the light emitted from the LED must closely follow the SPD of a white reference light. Avoiding sharp peaks and minima in SPDs can be especially important if the light emitted from the LED is used in combination with a camera system (eg, as a flash).

一種發光二極體(LED)裝置可包含具有在一基板上之一第一表面之一LED晶粒。一第一磷光體層可形成於該LED晶粒之一第二表面及各側上。該第二表面可與該第一表面相對。一第二磷光體層可形成於該第一磷光體層上。該第二磷光體層可具有位於該LED晶粒之一峰值發射波長(LpkD)與該第一磷光體層之一峰值發射波長(Lpk1)之間的一峰值發射波長(Lpk2)。 A light emitting diode (LED) device can include an LED die having a first surface on a substrate. A first phosphor layer can be formed on a second surface and sides of the LED die. The second surface may be opposite to the first surface. A second phosphor layer can be formed on the first phosphor layer. The second phosphor layer may have a peak emission wavelength (L pk 2) between a peak emission wavelength (L pk D) of the LED die and a peak emission wavelength (L pk 1) of the first phosphor layer .

一種發光二極體(LED)裝置可包含具有在一基板上之一第一表面之一LED晶粒。一第一磷光體層可形成於該LED晶粒之一第二表面上。該第二表面可與該第一表面相對。一第二磷光體層可形成於該第一磷光體層上。該第二磷光體層可具有位於該LED晶粒之一峰值發射波長(LpkD)與該第一磷光體層之一峰值發射波長(Lpk1)之間的一峰值發射波長(Lpk2)。形成於該LED晶粒之各側、該第一磷光體層之各側及該第二磷光體層之各側上之一反射塗層。 A light emitting diode (LED) device can include an LED die having a first surface on a substrate. A first phosphor layer can be formed on a second surface of the LED die. The second surface may be opposite to the first surface. A second phosphor layer can be formed on the first phosphor layer. The second phosphor layer may have a peak emission wavelength (L pk 2) between a peak emission wavelength (L pk D) of the LED die and a peak emission wavelength (L pk 1) of the first phosphor layer . A reflective coating is formed on each side of the LED die, on each side of the first phosphor layer, and on each side of the second phosphor layer.

16:n型區 16: n-type region

18:發光或作用區/p型區 18: Emitting or active region/p-type region

20:p型區 20: p-type region

21:p觸點 21: p contact

22:n觸點 22:n contact

24:介電質層 24: Dielectric layer

25:間隙 25: Clearance

26:互連件 26: Interconnect

27:間隙 27: Clearance

28:互連件 28: Interconnects

102:基板 102: Substrate

104:發光二極體晶粒/發光二極體結構 104: Light-emitting diode grain/light-emitting diode structure

202:第一磷光體層 202: first phosphor layer

300:發光二極體裝置 300: light emitting diode device

302:第二磷光體層 302: second phosphor layer

402:透鏡 402: lens

502:側壁 502: side wall

504:側壁 504: side wall

506:側壁 506: side wall

600:發光二極體裝置 600: light emitting diode device

602:反射塗層/第一反射塗層 602: Reflective coating / first reflective coating

702:透鏡 702: lens

802:第一發射光譜 802: First emission spectrum

804:第二發射光譜 804: Second emission spectrum

自聯合隨附圖式以實例之方式給出之以下闡述可獲得一更詳細理解,其中各圖中之相似元件符號指示相似元件,且其中:圖1係圖解說明一基板上之一LED晶粒之一剖視圖;圖2係圖解說明在LED上形成一第一磷光體層之一剖視圖;圖3係圖解說明在第一磷光體層上形成一第二磷光體層以形成一LED裝置之一剖視圖;圖4係圖解說明視情況圍繞LED裝置形成一透鏡之一剖視圖;圖5係圖解說明視情況自LED裝置移除第一磷光體層及第二磷光體層之部分之一剖視圖;圖6係圖解說明在LED晶粒之各側、第一磷光體層之剩餘部分及第二磷光體層之剩餘部分上形成一反射塗層以形成一LED裝置之一剖視圖;圖7係圖解說明視情況圍繞LED裝置形成一透鏡之一剖視 圖;圖8係圖解說明將僅塗佈有第一磷光體層之LED晶粒與塗佈有第一磷光體層及第二磷光體層兩者之LED晶粒相比較之發射光譜之一圖表;及圖9係圖解說明第二磷光體層及LED晶粒之發射光譜之一圖表。 A more detailed understanding can be obtained from the following description, given by way of example in conjunction with the accompanying drawings, in which like element numbers in the various figures indicate like elements, and in which: FIG. 1 illustrates an LED die on a substrate 2 is a cross-sectional view illustrating the formation of a first phosphor layer on the LED; FIG. 3 is a cross-sectional view illustrating the formation of a second phosphor layer on the first phosphor layer to form an LED device; FIG. 4 is a cross-sectional view illustrating the optional formation of a lens around the LED device; FIG. 5 is a cross-sectional view illustrating the optional removal of the first phosphor layer and the second phosphor layer from the LED device; FIG. A reflective coating is formed on each side of the bead, the remainder of the first phosphor layer, and the remainder of the second phosphor layer to form a cross-sectional view of an LED device; FIG. 7 illustrates one of a lens optionally formed around the LED device cutaway Figures; Figure 8 is one of a graph illustrating the emission spectrum of an LED die coated with only the first phosphor layer compared to an LED die coated with both the first phosphor layer and the second phosphor layer; and 9 is a graph illustrating the emission spectrum of the second phosphor layer and LED die.

相關申請案之交叉參考Cross References to Related Applications

本申請案主張2018年10月19日申請之歐洲專利申請案第18201516.4號及2018年8月31日申請之美國專利申請案第16/119,688號之優先權的權益,該等專利申請案中之每一者的全文係以引用的方式併入本文中。 This application claims the benefit of priority of European Patent Application No. 18201516.4, filed October 19, 2018, and U.S. Patent Application No. 16/119,688, filed August 31, 2018, in which The entire text of each is incorporated herein by reference.

參考隨附圖式將在下文中更全面地闡述不同發光二極體(「LED」)實施方案之實例。此等實例並不互相排斥,且在一項實例中發現之特徵可與在一或多個其他實例中發現之特徵組合以達成額外實施方案。因此,應理解,僅出於說明性目的提供隨附圖式中展示之實例,且其等不意欲以任何方式限制本發明。通篇中相似編號指代相似元件。 Examples of various light emitting diode ("LED") implementations are set forth more fully hereinafter with reference to the accompanying drawings. These examples are not mutually exclusive, and features found in one example may be combined with features found in one or more other examples to arrive at additional implementations. Accordingly, it should be understood that the examples shown in the accompanying drawings are provided for illustrative purposes only and that they are not intended to limit the invention in any way. Like numbers refer to like elements throughout.

應理解,儘管本文中可使用第一、第二等術語來闡述各種元件,但此等元件不應由此等術語來限制。此等術語僅用於將一個元件與另一元件區分開。舉例而言,在不背離本發明之範疇之情形下,可將一第一元件稱作一第二元件,且類似地,可將一第二元件稱作一第一元件。如本文中所使用,術語「及/或」包含相關聯所列物項中之一或多者之任何及所有組合。 It will be understood that although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

應理解,當一元件(諸如,一層、區或基板)被稱為係「在」另一元件「上」或延伸「至」另一元件「上」時,則其可直接在另一個元件上或直接延伸至另一個元件上,或者亦可存在介入元件。相反,當一元件被稱為係「直接在」另一元件「上」或「直接」延伸「至」另一元件「上」時,則不存在介入元件。亦應理解,當一元件被稱為「連接」或「耦合」至另一元件時,則其可直接連接或耦合至另一個元件,或者可存在介入元件。相反,當一元件被稱為「直接連接」或「直接耦合」至另一元件時,則不存在介入元件。應理解,除各圖中所繪示之任何定向之外,此等術語亦意欲涵蓋元件之不同定向。 It will be understood that when an element such as a layer, region, or substrate is referred to as being "on" or extending "on" another element, it can be directly on the other element. Or extend directly to another element, or intervening elements may also be present. In contrast, when an element is referred to as being "directly on" or extending "directly to" another element, there are no intervening elements present. It will also be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, there are no intervening elements present. It will be understood that these terms are intended to encompass different orientations of elements in addition to any orientation depicted in the figures.

本文中可使用相對術語(諸如「在」......「下面」或「在」......「上面」,或者「上部」或「下部」,或者「水平」或「垂直」)以闡述如各圖中所圖解說明之一個元件、層件或區與另一元件、層或區之一關係。應理解,除各圖中所繪示之定向之外,此等術語亦意欲涵蓋裝置之不同定向。 Relative terms (such as "under" ... "below" or "on" ... "above", or "upper" or "lower", or "horizontal" or "vertical ”) to illustrate the relationship of one element, layer or region to another element, layer or region as illustrated in the figures. It will be understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.

如以上所闡述,為了由照明委員會(CIE)定義為顯色指數(CRI)之高色彩品質,自LED發射之光之光譜功率分佈(SPD)必須緊密沿循一白色參考光之SPD。為實現一高CRI,可必須施加不同磷光體材料以便發射不同波長之光。來自以一較短波長發射之磷光體之發射可由以一較長波長發射之磷光體吸收。此磷光體-磷光體相互作用可由於轉換程序中之光子損耗而降低效率。由於所發射光返回至一或多個LED晶粒之重定向,磷光體-磷光體相互作用亦可增加包括該一或多個LED晶粒之一LED封裝中之吸收損耗。 As explained above, for high color quality defined by the Commission on Illumination (CIE) as Color Rendering Index (CRI), the spectral power distribution (SPD) of the light emitted from the LED must closely follow the SPD of a white reference light. To achieve a high CRI, different phosphor materials may have to be applied in order to emit different wavelengths of light. Emission from a phosphor emitting at a shorter wavelength can be absorbed by a phosphor emitting at a longer wavelength. This phosphor-phosphor interaction can reduce efficiency due to loss of photons in the conversion process. Phosphor-phosphor interactions can also increase absorption losses in an LED package that includes the one or more LED dies due to redirection of emitted light back to the one or more LED dies.

在某些應用中,可期望減小SPD中接近LED之藍色發射峰 值的局部最小值。一磷光體組件之發射峰值可必須接近藍色LED之發射峰值。當一磷光體材料吸收一光子時,其獲得能量且進入一激發狀態。使磷光體材料弛豫之一種方式係發射一光子,因此損耗其能量(另一方法將係將能量作為熱量來損耗)。當所發射光子具有比所吸收光子更少之能量時,此能量差係斯托克斯(Stokes)移位。斯托克斯螢光係由已吸收較短波長(較高頻率或能量)之一光子之一分子發射一較長波長光子(較低頻率或能量)。換言之,斯托克斯移位可係一吸收最大波長與一發射最大波長之間的距離。由於斯托克斯移位,可需要大量磷光體材料。可需要儘可能減少由其他磷光體對所發射光之重吸收。 In some applications, it may be desirable to reduce the blue emission peak close to the LED in the SPD The local minimum of the value. The emission peak of a phosphor element may have to be close to that of the blue LED. When a phosphor material absorbs a photon, it gains energy and enters an excited state. One way to relax the phosphor material is to emit a photon, thus losing its energy (another way would be to lose the energy as heat). When emitted photons have less energy than absorbed photons, this energy difference is Stokes shifted. Stokes fluorescence is the emission of a longer wavelength photon (lower frequency or energy) by a molecule that has absorbed a photon of a shorter wavelength (higher frequency or energy). In other words, the Stokes shift can be the distance between an absorption maximum wavelength and an emission maximum wavelength. Due to the Stokes shift, large amounts of phosphor material may be required. It may be desirable to minimize reabsorption of emitted light by other phosphors.

以下闡述包含用於使用經形成於一LED上的多個磷光體層以減少由最外部磷光體層發射之光的重吸收且在高CRI下增加LED之效率的系統、方法及設備。藉由使用具有位於一第一磷光體層之一發射峰值與LED之一發射峰值之間之一發射峰值之一第二磷光體層,可有效地填充LED發射與第一磷光體層之發射之間的波長間隙。 The following description includes systems, methods, and apparatus for using multiple phosphor layers formed on an LED to reduce reabsorption of light emitted by the outermost phosphor layer and increase the efficiency of the LED at high CRI. By using a second phosphor layer with an emission peak located between an emission peak of a first phosphor layer and an LED, the wavelength between the LED emission and the emission of the first phosphor layer can be effectively filled gap.

現在參考圖1,展示圖解說明一基板102上之一LED晶粒104之一剖視圖。LED晶粒104之一第一表面可位於基板102上,且LED晶粒之一第二表面可位於與第一表面相對處。LED晶粒104可係任何類型之習用半導體發光裝置,且可經形成、附接或生長於基板102上。圖1展示可使用之一種類型之LED晶粒104之一說明性實例且不意欲限制以下闡述。LED晶粒104可係此項技術中已知之一類型三族氮化物LED。通常,藉由以下操作來製作三族氮化物LED:藉由金屬有機化學汽相沈積(MOCVD)、分子束磊晶(MBE)或其他磊晶技術在一藍寶石、碳化矽、三族氮化物或其他適合基板上磊晶生長不同組合物及摻雜劑濃度之半導體層 之一堆疊。該堆疊通常包含經形成於基板上方摻雜有(舉例而言)矽之一或多個n型層、經形成於該(等)n型層上方之一作用區(例如,一p-n二極體)中之一或多個發光層,及經形成於作用區上方摻雜有(舉例而言)鎂之一或多個p型層。在n型區及p型區上形成電觸點。 Referring now to FIG. 1 , a cross-sectional view illustrating an LED die 104 on a substrate 102 is shown. A first surface of the LED die 104 can be located on the substrate 102, and a second surface of the LED die can be located opposite the first surface. The LED die 104 can be any type of conventional semiconductor light emitting device and can be formed, attached or grown on the substrate 102 . Figure 1 shows an illustrative example of one type of LED die 104 that may be used and is not intended to limit the following description. LED die 104 may be a type III-nitride LED of one of the types known in the art. Typically, III-nitride LEDs are fabricated by depositing a sapphire, silicon carbide, III-nitride or Other semiconductor layers suitable for epitaxial growth of different compositions and dopant concentrations on substrates One stacks. The stack typically includes one or more n-type layers formed over a substrate doped with, for example, silicon, an active region (eg, a p-n diode) formed over the n-type layer(s). ), and one or more p-type layers formed over the active region doped with, for example, magnesium. Electrical contacts are formed on the n-type region and the p-type region.

在以下實例中,LED晶粒104可發射藍光或UV光。然而,除了LED,亦可使用諸如雷射二極體及由其他材料系統(諸如,其他三五族材料、三族磷化物、三族砷化物、二六族材料、ZnO或基於Si之材料)製成之半導體發光裝置等半導體發光裝置。 In the following examples, LED die 104 may emit blue or UV light. However, instead of LEDs, it is also possible to use materials such as laser diodes and LEDs made of other material systems (such as other III-V materials, III-Phosphides, III-As, II-VI materials, ZnO or Si-based materials). Semiconductor light emitting devices such as fabricated semiconductor light emitting devices.

圖1之裝置可藉由在一基板102上生長一類型三族氮化物半導體結構形成,如在此項技術中已知。基板102可係藍寶石或諸如(舉例而言)SiC、Si、GaN或一複合基板之任何適合基板。可在生長之前圖案化、粗糙化或紋理化在上面生長所述類型三族氮化物半導體結構的基板102之一表面,此可改良自裝置之光提取。可在生長之前或之後圖案化、粗糙化或紋理化基板102與生長表面相對之一表面(亦即,在一覆晶組態中大多數光穿過其而提取之表面),此可改良自裝置之光提取。 The device of FIG. 1 may be formed by growing a type III-nitride semiconductor structure on a substrate 102, as is known in the art. Substrate 102 may be sapphire or any suitable substrate such as, for example, SiC, Si, GaN, or a composite substrate. One of the surfaces of the substrate 102 on which Group III-nitride semiconductor structures of the type described can be grown can be patterned, roughened or textured prior to growth, which can improve light extraction from the device. The surface of the substrate 102 opposite the growth surface (i.e., the surface through which most light is extracted in a flip-chip configuration) can be patterned, roughened, or textured before or after growth, which can be improved from Device Light Extraction.

半導體結構包含夾在n型與p型區之間的一發光或作用區。可首先生長一n型區16,且該n型區可包含不同組合物及摻雜劑濃度之多個層。n型區16可包含預備層(諸如,緩衝層或成核層)及/或經設計以促進移除生長基板之層,其等可係n型或未經有意摻雜及針對使發光區高效地發射光所期望之特定光學、材料或電性質設計之n型或甚至p型裝置層。一發光或作用區18生長於n型區16上方。適合發光區18之實例包含一單一厚或薄發光層,或包含由障壁層隔開之多個薄或厚發光層之一多量子井發光區。然後,可在該發光區上方生長一p型區20。如n型區一樣,p型區可包 含不同組合物、厚度及摻雜劑濃度之多個層,該多個層包含未經有意摻雜之層或n型層。 The semiconductor structure includes a light emitting or active region sandwiched between n-type and p-type regions. An n-type region 16 may be grown first, and this n-type region may comprise multiple layers of different compositions and dopant concentrations. The n-type region 16 may include preparation layers (such as buffer layers or nucleation layers) and/or layers designed to facilitate removal of the growth substrate, which may be n-type or not intentionally doped and directed towards making the light emitting region highly efficient. n-type or even p-type device layers designed with specific optical, material or electrical properties desired to emit light. A light emitting or active region 18 is grown over the n-type region 16 . Examples of suitable light emitting regions 18 include a single thick or thin light emitting layer, or multiple quantum well light emitting regions that include multiple thin or thick light emitting layers separated by barrier layers. A p-type region 20 can then be grown over the light emitting region. Like the n-type region, the p-type region can contain Multiple layers comprising different compositions, thicknesses and dopant concentrations, including layers that are not intentionally doped or n-type layers.

在生長之後,一p觸點可形成於p型區18之表面上。p觸點21可包含多個導電層,諸如一反射金屬及可預防或減少反射金屬之電遷移之一防護金屬。反射金屬通常係銀,但可使用任一或多種適合材料。p觸點21、p型區20及作用區18之一部分可經移除以曝露一n觸點22形成於上面的n型區16之一部分。n觸點22及p觸點21可藉由一間隙25而彼此電隔離,間隙25可填充有諸如一種矽氧化物或任何其他適合材料之一介電質。可形成多個n觸點通孔。n觸點22及p觸點21不限於圖1中圖解說明之配置。n觸點22及p觸點21可重分佈以形成具有一介電質/金屬堆疊之接合墊,如此項技術中已知。 After growth, a p-contact may be formed on the surface of p-type region 18 . The p-contact 21 may include multiple conductive layers, such as a reflective metal and a guard metal that prevents or reduces electromigration of the reflective metal. The reflective metal is typically silver, but any suitable material or materials may be used. Portions of p-contact 21 , p-type region 20 and active region 18 may be removed to expose a portion of n-type region 16 over which an n-contact 22 is formed. The n-contact 22 and the p-contact 21 may be electrically isolated from each other by a gap 25, which may be filled with a dielectric such as a silicon oxide or any other suitable material. A plurality of n-contact vias may be formed. The n-contact 22 and the p-contact 21 are not limited to the configuration illustrated in FIG. 1 . The n-contact 22 and p-contact 21 can be redistributed to form bond pads with a dielectric/metal stack, as is known in the art.

為形成至LED晶粒104之電連接,一或多個互連件26及28可形成於n觸點22及p觸點21上或電連接至n觸點22及p觸點21。互連件26可電連接至n觸點22。互連件28可電連接至p觸點21。互連件26及28可與n觸點22及p觸點21電隔離且自藉由介電質層24及一間隙27彼此電隔離。舉例而言,互連件26及28可係焊料、螺柱凸塊、金層或任何其他適合結構。在以下各圖中,半導體結構、n觸點22、p觸點21及互連件26及28經展示為LED結構104。基板102可被薄化或完全移除。圖案化、紋理化或粗糙化可藉由薄化而曝露的基板102之表面以改良光提取。 To form electrical connections to LED die 104 , one or more interconnects 26 and 28 may be formed on or electrically connected to n-contact 22 and p-contact 21 . Interconnect 26 may be electrically connected to n-contact 22 . Interconnect 28 may be electrically connected to p-contact 21 . Interconnects 26 and 28 may be electrically isolated from n-contact 22 and p-contact 21 and from each other by dielectric layer 24 and a gap 27 . For example, interconnects 26 and 28 may be solder, stud bumps, gold layers, or any other suitable structure. In the following figures, the semiconductor structure, n-contact 22 , p-contact 21 , and interconnects 26 and 28 are shown as LED structure 104 . Substrate 102 may be thinned or removed entirely. Patterning, texturing or roughening can improve light extraction by thinning the exposed surface of the substrate 102 .

現在參考圖2,展示圖解說明在LED晶粒104上形成一第一磷光體層202之一剖視圖。第一磷光體層202可施加至LED晶粒104之第二表面及各側。第一磷光體層202可具有介於自大約1μm至大約150μm之範圍內之一厚度。 Referring now to FIG. 2 , there is shown a cross-sectional view illustrating the formation of a first phosphor layer 202 on the LED die 104 . The first phosphor layer 202 can be applied to the second surface and sides of the LED die 104 . The first phosphor layer 202 may have a thickness ranging from about 1 μm to about 150 μm.

可使用一習用沈積程序形成第一磷光體層202。在一實例中,第一磷光體層202可係放置於LED晶粒104頂上且然後經加工以保形於LED晶粒104之形狀之一薄片。可使用真空與熱量之一組合來將第一磷光體層202層壓至LED晶粒104。 The first phosphor layer 202 can be formed using a conventional deposition procedure. In one example, the first phosphor layer 202 may be a thin sheet that is placed on top of the LED die 104 and then processed to conform to the shape of the LED die 104 . The first phosphor layer 202 may be laminated to the LED die 104 using a combination of vacuum and heat.

熟習此項技術者將認識到,第一磷光體層202不需要呈一層壓薄片之形式;其可經由噴塗、模製、網版印刷等以液體或漿糊形式施加。舉例而言,使用一習用沈積程序,諸如,化學汽相沈積(CVD)、電漿增強CVD(PECVD)、原子層沈積(ALD)、蒸鍍、濺鍍、化學溶液沈積、旋塗沈積或其他相似程序,可在LED晶粒104上保形地形成第一磷光體層202。 Those skilled in the art will recognize that the first phosphor layer 202 need not be in the form of a laminated sheet; it may be applied in liquid or paste form via spraying, molding, screen printing, or the like. For example, using a conventional deposition procedure such as chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), atomic layer deposition (ALD), evaporation, sputtering, chemical solution deposition, spin-on deposition or other Similar to the procedure, the first phosphor layer 202 can be conformally formed on the LED die 104 .

第一磷光體層202可包含一波長轉換材料,該波長轉換材料可係(舉例而言)習用磷光體、有機磷光體、量子點、有機半導體、二六族或三五族半導體、二六族或三五族半導體量子點或奈米晶體、染料、聚合物或發冷光之其他材料。第一磷光體層202可包含與波長轉換材料混合之一透明材料,諸如,聚矽氧。 The first phosphor layer 202 may comprise a wavelength converting material which may be, for example, conventional phosphors, organic phosphors, quantum dots, organic semiconductors, Group 26 or 35 semiconductors, Group 26 or Group III and V semiconductor quantum dots or nanocrystals, dyes, polymers, or other materials that emit luminescence. The first phosphor layer 202 may comprise a transparent material, such as polysilicon, mixed with a wavelength converting material.

波長轉換材料可吸收由LED晶粒104發射之光且可發射一或多個不同波長之光。由LED晶粒104發射之未經轉換光可係自結構提取之光之最終光譜之部分,儘管其無需如此。 The wavelength conversion material can absorb light emitted by LED die 104 and can emit light at one or more different wavelengths. The unconverted light emitted by the LED die 104 may be part of the final spectrum of light extracted from the structure, although it need not be.

在一實例中,LED晶粒104可係具有一峰值發射波長LpkD之一藍色發射LED。 In one example, the LED die 104 may be a blue-emitting LED having a peak emission wavelength L pk D .

在一實例中,第一磷光體層202可包括具有一經組合峰值發射波長Lpk1之一黃色發射波長轉換材料、一綠色發射波長轉換材料及一紅色發射波長轉換材料。 In an example, the first phosphor layer 202 may include a yellow emission wavelength converting material, a green emission wavelength converting material, and a red emission wavelength converting material having a combined peak emission wavelength L pk 1 .

第一磷光體層202可包括聚矽氧中之一或多種磷光體粉末。舉例而言,第一磷光體層202可包括GaLuAG、SCASN及CASN。第一磷光體層202中之材料之質量比可係大約20% SCASN:80% CASN。在第一磷光體層202中,GaLuAG對總紅色質量之比率可係大約8.47。 The first phosphor layer 202 may include one or more phosphor powders in polysiloxane. For example, the first phosphor layer 202 may include GaLuAG, SCASN, and CASN. The mass ratio of materials in the first phosphor layer 202 may be about 20% SCASN:80% CASN. In the first phosphor layer 202, the ratio of GaLuAG to total red mass may be about 8.47.

在另一實例中,第一磷光體層202可包括一綠色發射波長轉換材料與一紅色發射波長轉換材料之一混合物。綠色發射波長轉換材料可包含用鈰活化之石榴石,其具有(Y,Gd,Lu)3(Al,Ga)5O12:Ce之一化學組合物。綠色發射波長轉換材料可包含用銪活化之矽酸鹽及氮氧化物,諸如SiAlON。紅色發射波長轉換材料可包含用銪活化之氮化物(諸如,CASN、SCASN及BSSN)及量子點。 In another example, the first phosphor layer 202 may include a mixture of a green emission wavelength conversion material and a red emission wavelength conversion material. The green emitting wavelength conversion material may comprise garnet activated with cerium, which has a chemical composition of (Y,Gd,Lu) 3 (Al,Ga) 5 O 12 :Ce. Green emitting wavelength conversion materials may include silicates and oxynitrides activated with europium, such as SiAlON. Red-emitting wavelength converting materials may include nitrides activated with europium, such as CASN, SCASN, and BSSN, and quantum dots.

在另一實例中,第一磷光體層202可包括綠色發射波長轉換材料與紅色發射波長轉換材料之一混合物。綠色發射波長轉換材料可包含GaLuAG及GaYAG。紅色發射波長轉換材料可包含SCASN及CASN,其中SCASN對CASN之質量比係大約20:80。綠色發射波長轉換材料之總質量對紅色發射波長轉換材料之總質量的比率係大約8.47,且可介於自5至10的範圍內。 In another example, the first phosphor layer 202 may include a mixture of one of a green-emitting wavelength converting material and a red-emitting wavelength converting material. The green emitting wavelength conversion material may include GaLuAG and GaYAG. The red emitting wavelength conversion material may comprise SCASN and CASN, wherein the mass ratio of SCASN to CASN is about 20:80. The ratio of the total mass of green-emitting wavelength converting material to the total mass of red-emitting wavelength converting material is about 8.47 and may range from 5-10.

現在參考圖3,展示圖解說明在第一磷光體層202上形成一第二磷光體層302以形成一LED裝置300之一剖視圖。第二磷光體層302可被施加至第一磷光體層202之頂部及各側。可使用上文參考第一磷光體層202之形成所闡述之技術中之任一者來形成第二磷光體層302。第二磷光體層302可具有介於自大約10μm至大約150μm之範圍內之一厚度。 Referring now to FIG. 3 , there is shown a cross-sectional view illustrating the formation of a second phosphor layer 302 on the first phosphor layer 202 to form an LED device 300 . A second phosphor layer 302 may be applied to the top and sides of the first phosphor layer 202 . Second phosphor layer 302 may be formed using any of the techniques described above with reference to the formation of first phosphor layer 202 . The second phosphor layer 302 may have a thickness ranging from about 10 μm to about 150 μm.

第二磷光體層302可包含一波長轉換材料,該波長轉換材料可係(舉例而言)習用磷光體、有機磷光體、量子點、有機半導體、二六 族或三五族半導體、二六族或三五族半導體量子點或奈米晶體、染料、聚合物,或發冷光之其他材料。第二磷光體層302可包含與波長轉換材料混合之一透明材料,諸如,聚矽氧。 The second phosphor layer 302 may comprise a wavelength converting material which may be, for example, a conventional phosphor, an organic phosphor, a quantum dot, an organic semiconductor, a Group 3 or 5 semiconductors, group 26 or group 35 semiconductors quantum dots or nanocrystals, dyes, polymers, or other materials that emit luminescence. The second phosphor layer 302 may comprise a transparent material, such as polysilicon, mixed with a wavelength converting material.

波長轉換材料可吸收由LED晶粒104及/或第一磷光體層202發射之光,且可發射一或多個不同波長之光。由LED晶粒104及/或第一磷光體層202發射之未經轉換光可係自結構提取之光之最終光譜的部分,儘管其無需如此。 The wavelength conversion material can absorb light emitted by LED die 104 and/or first phosphor layer 202 and can emit light at one or more different wavelengths. The unconverted light emitted by the LED die 104 and/or the first phosphor layer 202 may be part of the final spectrum of light extracted from the structure, although it need not be.

第二磷光體層302可包括具有介於LpkD與Lpk1之間之一峰值發射波長Lpk2(亦即,LpkD<Lpk2<Lpk1)的一或多種磷光體材料。在一實例中,峰值發射波長Lpk2可比LpkD大大約100nm且比Lpk1小大約100nm(亦即,LpkD+100nm<Lpk2<Lpk1-100nm)。在另一實例中,峰值發射波長Lpk2可比LpkD大大約50nm且比Lpk1小大約50nm(亦即,LpkD+50nm<Lpk2<Lpk1-50nm)。 The second phosphor layer 302 may include one or more phosphor materials having a peak emission wavelength L pk 2 between L pk D and L pk 1 (ie, L pk D<L pk 2<L pk 1 ). . In an example, the peak emission wavelength L pk 2 may be approximately 100 nm greater than L pk D and approximately 100 nm smaller than L pk 1 (ie, L pk D+100 nm<L pk 2<L pk 1-100 nm). In another example, the peak emission wavelength L pk 2 may be about 50 nm greater than L pk D and about 50 nm smaller than L pk 1 (ie, L pk D+50 nm<L pk 2<L pk 1-50 nm).

在另一實例中,峰值發射波長Lpk2可比LpkD大大約10nm且比Lpk1小大約10nm(亦即,LpkD+10nm<Lpk2<Lpk1-10nm)。當第一磷光體層202包括綠色發射波長轉換材料(綠色)與紅色發射波長轉換材料(紅色)之具有綠色:紅色

Figure 108131373-A0305-02-0012-2
1之一質量比之一混合物時,Lpk2之此範圍可係較佳的。 In another example, the peak emission wavelength L pk 2 may be about 10 nm greater than L pk D and about 10 nm smaller than L pk 1 (ie, L pk D+10 nm<L pk 2<L pk 1-10 nm). When the first phosphor layer 202 includes a green emission wavelength conversion material (green) and a red emission wavelength conversion material (red) with green: red
Figure 108131373-A0305-02-0012-2
When a mixture of a mass ratio of 1, this range of L pk 2 can be preferred.

在另一實例中,第二磷光體層之峰值發射波長係大約460nm。第二磷光體層之峰值發射波長可比LpkD大大約10nm、20nm、30nm或40nm。第二磷光體層之峰值發射波長可比LpkD長大約10nm至20nm。在另一實施例中,Lpk2可比LpkD長大約10nm至30nm。在另一實施例中,Lpk2可比LpkD長大約20nm至40nm。較佳地,Lpk2係在440nm至 490nm內,更佳地在450nm至470nm內且最佳地在455nm至465nm內。 In another example, the peak emission wavelength of the second phosphor layer is about 460 nm. The peak emission wavelength of the second phosphor layer may be approximately 10 nm, 20 nm, 30 nm, or 40 nm greater than LpkD . The peak emission wavelength of the second phosphor layer may be about 10 nm to 20 nm longer than L pk D. In another embodiment, L pk 2 may be about 10 nm to 30 nm longer than L pk D. In another embodiment, L pk 2 may be about 20 nm to 40 nm longer than L pk D. Preferably, L pk 2 is within 440nm to 490nm, more preferably within 450nm to 470nm and most preferably within 455nm to 465nm.

第二磷光體層302可包括聚矽氧中之Sr3MgSi2O8:Eu粉末。第二磷光體層302之磷光體之質量對聚矽氧之質量可等於1。 The second phosphor layer 302 may include Sr 3 MgSi 2 O 8 :Eu powder in polysiloxane. The mass of phosphor of the second phosphor layer 302 may be equal to 1 for the mass of polysiloxane.

現在參考圖4,展示圖解說明視情況圍繞LED裝置300形成一透鏡402之一剖視圖。透鏡402可與基板102及第二磷光體層302接觸。透鏡402可橫向地向外延伸超出LED裝置300。透鏡402可包括用於改良自LED裝置300之光提取之一透明材料。可使用習用沈積技術形成透鏡402。透鏡402可包括以下中之一或多者:PMMA、聚碳酸酯、聚矽氧、HRPC。透鏡之一或多個部分可係塗佈鋁的。 Referring now to FIG. 4 , there is shown a cross-sectional view illustrating the optional formation of a lens 402 around the LED device 300 . The lens 402 may be in contact with the substrate 102 and the second phosphor layer 302 . The lens 402 can extend laterally outward beyond the LED device 300 . Lens 402 may comprise a transparent material for improved light extraction from LED device 300 . Lens 402 may be formed using conventional deposition techniques. The lens 402 may include one or more of the following: PMMA, polycarbonate, silicone, HRPC. One or more portions of the lens may be aluminum coated.

現在參考圖5,圖解說明視情況自圖3中展示之LED裝置300移除第一磷光體層202及第二磷光體層302之部分之一剖視圖。 Referring now to FIG. 5 , there is illustrated a cross-sectional view of portions of the first phosphor layer 202 and the second phosphor layer 302 optionally removed from the LED device 300 shown in FIG. 3 .

可使用一習用蝕刻或砂蝕程序移除第一磷光體層202及第二磷光體層302之部分。舉例而言,可使用反應性離子蝕刻(RIE)、電漿蝕刻或一選擇性蝕刻程序移除第一磷光體層202及第二磷光體層302之部分。 Portions of the first phosphor layer 202 and the second phosphor layer 302 may be removed using a conventional etch or sand etch process. For example, portions of first phosphor layer 202 and second phosphor layer 302 may be removed using reactive ion etching (RIE), plasma etching, or a selective etching process.

第一磷光體層202之剩餘部分可具有與LED晶粒104之側壁502實質上齊平之側壁504。第二磷光體層302之剩餘部分可具有與LED晶粒104之側壁502實質上齊平之側壁506。 The remainder of the first phosphor layer 202 can have sidewalls 504 that are substantially flush with the sidewalls 502 of the LED die 104 . The remainder of the second phosphor layer 302 can have sidewalls 506 that are substantially flush with the sidewalls 502 of the LED die 104 .

現在參考圖6,圖解說明在LED晶粒104、第一磷光體層202之剩餘部分及第二磷光體層302之剩餘部分之各側上形成一反射塗層602以形成一LED裝置600之一剖視圖。 Referring now to FIG. 6 , a cross-sectional view of forming a reflective coating 602 on each side of the LED die 104 , the remainder of the first phosphor layer 202 , and the remainder of the second phosphor layer 302 to form an LED device 600 is illustrated.

可使用一習用沈積程序形成反射塗層602。在一實例中, 反射塗層602可係放置於LED晶粒104以及第一磷光體層202及第二磷光體層302之剩餘部分之各側上且然後經加工以黏附至LED晶粒104以及第一磷光體層202及第二磷光體層302之剩餘部分之一薄片。可使用真空及熱量之一組合來將反射塗層602層壓至LED晶粒104以及第一磷光體層202及第二磷光體層302之剩餘部分。 Reflective coating 602 may be formed using a conventional deposition procedure. In one instance, Reflective coating 602 may be placed on each side of LED die 104 and the remainder of first phosphor layer 202 and second phosphor layer 302 and then processed to adhere to LED die 104 and first phosphor layer 202 and second phosphor layer 302. One flake of the remainder of the two phosphor layers 302 . A combination of vacuum and heat may be used to laminate reflective coating 602 to LED die 104 and the remainder of first phosphor layer 202 and second phosphor layer 302 .

熟習此項技術者將認識到,反射塗層602不需呈一層壓薄片之形式;其可經由噴塗、模製、網版印刷、滴塗等以液體或漿糊形式施加。舉例而言,使用一習用沈積程序,諸如CVD、PECVD、ALD、蒸鍍、濺鍍、化學溶液沈積、旋塗沈積或其他相似程序,可在毗鄰於LED晶粒104之基板102上形成第一反射塗層602。 Those skilled in the art will recognize that the reflective coating 602 need not be in the form of a laminated sheet; it may be applied in liquid or paste form via spraying, molding, screen printing, dropping, or the like. For example, using a conventional deposition process, such as CVD, PECVD, ALD, evaporation, sputtering, chemical solution deposition, spin-on deposition, or other similar processes, the first reflective coating 602 .

反射塗層602可包括一金屬,諸如,Ti、Au、Ag或相似物。在一實例中,反射塗層602可包括一聚矽氧基質中之TiO2粉末。 Reflective coating 602 may include a metal such as Ti, Au, Ag or the like. In one example, reflective coating 602 may include TiO 2 powder in a polysiloxane matrix.

反射塗層602可具有與第二磷光體層302之剩餘部分之一上表面實質上齊平之一上表面。 The reflective coating 602 may have an upper surface that is substantially flush with an upper surface of the remainder of the second phosphor layer 302 .

現在參考圖7,展示圖解說明視情況圍繞LED裝置600形成一透鏡702之一剖視圖。透鏡702可與基板102、反射塗層602及第二磷光體層302接觸。透鏡702可橫向地向外延伸超出LED裝置600。透鏡702可包括用於改良自LED裝置600之光提取之一透明材料。可使用習用沈積技術形成透鏡702。透鏡702可包括以下中之一或多者:PMMA、聚碳酸酯、聚矽氧、HRPC。透鏡之一或多個部分可係塗佈鋁的。 Referring now to FIG. 7 , there is shown a cross-sectional view illustrating the optional formation of a lens 702 around the LED device 600 . Lens 702 may be in contact with substrate 102 , reflective coating 602 and second phosphor layer 302 . Lens 702 may extend laterally outward beyond LED device 600 . Lens 702 may comprise a transparent material for improved light extraction from LED device 600 . Lens 702 may be formed using conventional deposition techniques. The lens 702 may include one or more of the following: PMMA, polycarbonate, silicone, HRPC. One or more portions of the lens may be aluminum coated.

現在參考圖8,展示圖解說明僅塗佈有第一磷光體層202之LED晶粒104之一第一發射光譜802及塗佈有第一磷光體層202及第二磷光體層302兩者之LED晶粒104之一第二發射光譜804之一圖表。第一發射光 譜802及第二發射光譜804可展示相同LED波長及相同色彩坐標系。 Referring now to FIG. 8, there is shown a first emission spectrum 802 illustrating a first emission spectrum 802 of an LED die 104 coated with only the first phosphor layer 202 and an LED die coated with both the first phosphor layer 202 and the second phosphor layer 302. 104 is a graph of a second emission spectrum 804 . first emitted light Spectrum 802 and second emission spectrum 804 may exhibit the same LED wavelength and the same color coordinate system.

第一發射光譜802及第二發射光譜804可經規範化為藍色LED晶粒104發射。如可看到,與第一磷光體層202組合之LED晶粒104及與第一磷光體層202及第二磷光體層302兩者組合之LED晶粒104兩者皆發射具有在藍光(450nm至490nm)與紅光(635nm至700nm)之間的光譜峰值之一光。應注意,用於產生第一發射光譜802之第一磷光體層202及用於產生第二發射光譜804之第一磷光體層202可由相同磷光體材料組成。然而,每一第一磷光體層202中之特定磷光體濃度可變化以產生相同色彩點。此外,應注意,第二磷光體層302之施加可由於可由第一磷光體層202吸收及轉換之光反射而改變第一磷光體層202之發射。 The first emission spectrum 802 and the second emission spectrum 804 may be normalized to blue LED die 104 emission. As can be seen, both the LED die 104 in combination with the first phosphor layer 202 and the LED die 104 in combination with both the first phosphor layer 202 and the second phosphor layer 302 emit light having a wavelength in the blue (450nm to 490nm) Light with one of the spectral peaks between red light (635nm to 700nm). It should be noted that the first phosphor layer 202 used to generate the first emission spectrum 802 and the first phosphor layer 202 used to generate the second emission spectrum 804 may be composed of the same phosphor material. However, the particular phosphor concentration in each first phosphor layer 202 can be varied to produce the same color point. Furthermore, it should be noted that the application of the second phosphor layer 302 may alter the emission of the first phosphor layer 202 due to the reflection of light that may be absorbed and converted by the first phosphor layer 202 .

與僅具有第一磷光體層202之情況相比,在具有兩個磷光體層之情況下在LED晶粒104之藍色發射峰值之後在470nm處SPD中之局部最小值可增加。此可在以下表1中看到。 The local minimum in the SPD at 470 nm after the blue emission peak of the LED die 104 can be increased with two phosphor layers compared to the case with only the first phosphor layer 202 . This can be seen in Table 1 below.

Figure 108131373-A0305-02-0015-1
Figure 108131373-A0305-02-0015-1

與僅具有第一磷光體層202之LED晶粒104之一顯色指數CRI(Ra)91.4相比,具有兩個磷光體層之LED晶粒104之SPD之CRI(Ra)增加至一CRI(Ra)94.2。與在僅具有第一磷光體層202之LED晶粒104之情況下為LED峰值高度之38.2%相比,在具有兩個磷光體層之LED晶粒104之藍色發射峰值之後SPD中之局部最小值可增加至為LED峰值之48%。 The CRI(Ra) of the SPD of the LED die 104 with two phosphor layers increases to one CRI(Ra) compared to the color rendering index CRI(Ra) of 91.4 for the LED die 104 with only the first phosphor layer 202 94.2. Local minimum in SPD after blue emission peak for LED die 104 with two phosphor layers compared to 38.2% of LED peak height for LED die 104 with only first phosphor layer 202 Can be increased to 48% of LED peak.

現在參考圖9,展示圖解說明第二磷光體層302及LED晶粒104之發射光譜之一圖表。如以上所闡述,第二磷光體層302可包括具有在LED晶粒104之LpkD與第一磷光體層202之Lpk1之間的一峰值發射波長Lpk2(亦即,LpkD<Lpk2<Lpk1)之一或多種磷光體材料。圖表展示其中Lpk2係大約460nm或LpkD+20nm之一實例。Lpk2亦可係大約LpkD+10nm。 Referring now to FIG. 9 , there is shown a graph illustrating the emission spectra of the second phosphor layer 302 and the LED die 104 . As set forth above, the second phosphor layer 302 may include a peak emission wavelength L pk 2 having a peak emission wavelength between L pk D of the LED die 104 and L pk 1 of the first phosphor layer 202 (ie, L pk D< One or more phosphor materials of L pk 2<L pk 1). The graph shows an example where Lpk 2 is about 460nm or Lpk D+20nm. L pk 2 may also be approximately L pk D + 10 nm.

儘管以上以特定組合闡述特徵及元件,但熟習此項技術者將瞭解,可單獨使用或以與其他特徵及元件之任何組合使用每一特徵或元件。此外,本文中闡述之方法可在併入一電腦可讀媒體中以供由一電腦或處理器執行之一電腦程式、軟體或韌體中實施。電腦可讀媒體之實例包含電子信號(通過有線或無線連接傳輸)及電腦可讀儲存媒體。電腦可讀儲存媒體之實例包含,但不限於一唯讀記憶體(ROM)、一隨機存取記憶體(RAM)、一暫存器、快取記憶體、半導體記憶體裝置,磁性媒體(諸如,內部硬碟及可抽換式磁碟)、磁光媒體及光學媒體(諸如CD-ROM磁碟及數位通用磁碟(DVD))。 Although features and elements are described above in particular combinations, those skilled in the art will appreciate that each feature or element can be used alone or in any combination with other features and elements. Furthermore, the methods described herein can be implemented in a computer program, software or firmware incorporated into a computer readable medium for execution by a computer or processor. Examples of computer readable media include electronic signals (transmitted over wired or wireless connections) and computer readable storage media. Examples of computer readable storage media include, but are not limited to, a read only memory (ROM), a random access memory (RAM), a scratchpad, cache memory, semiconductor memory devices, magnetic media such as , internal hard disks and removable disks), magneto-optical media and optical media (such as CD-ROM disks and digital versatile disks (DVD)).

102:基板 102: Substrate

104:發光二極體晶粒/發光二極體結構 104: Light-emitting diode grain/light-emitting diode structure

202:第一磷光體層 202: first phosphor layer

300:發光二極體裝置 300: light emitting diode device

302:第二磷光體層 302: second phosphor layer

Claims (13)

一種發光二極體(LED)裝置,其包括:一LED晶粒,其經組態以發射具有一峰值發射波長(peak emission wavelength)的藍光;一第一磷光體層,其經安置於該LED晶粒上且經組態以藉由從該LED晶粒發射之該藍光之激發(excitation)發射綠光、黃光及紅光;及一第二磷光體層,其經安置於該第一磷光體層上與該LED晶粒相對且包括一Sr3MgSi2O8:Eu磷光體,該第二磷光體層經組態以發射比藉由從該LED晶粒發射之該藍光之激發之該LED晶粒之一峰值發射波長長大約10至50奈米之一峰值發射波長的光,該Sr3MgSi2O8:Eu磷光體經組態以相較於不具有該第二磷光體層之LED裝置而增加在大約470奈米之一局部最小值處之該LED裝置之一光譜功率分佈(SPD),該Sr3MgSi2O8:Eu磷光體經組態以產生與不具有該第二磷光體層之LED裝置實質上相同之該LED裝置之一光譜發射之一x色彩坐標。 A light emitting diode (LED) device comprising: an LED die configured to emit blue light having a peak emission wavelength; a first phosphor layer disposed on the LED die on-die and configured to emit green, yellow and red light by excitation of the blue light emitted from the LED die; and a second phosphor layer disposed on the first phosphor layer Opposite the LED die and including a Sr 3 MgSi 2 O 8 :Eu phosphor, the second phosphor layer is configured to emit more light than that of the LED die excited by the blue light emitted from the LED die. Light having a peak emission wavelength approximately 10 to 50 nanometers longer, the Sr 3 MgSi 2 O 8 :Eu phosphor configured to increase in Spectral power distribution (SPD) of the LED device at a local minimum at about 470 nm, the Sr 3 MgSi 2 O 8 :Eu phosphor configured to produce an LED device with and without the second phosphor layer substantially the same x color coordinate of the spectral emission of the LED device. 如請求項1之LED裝置,其中該第二磷光體層之該峰值發射波長比該LED晶粒之該峰值發射波長長大約10奈米。 The LED device of claim 1, wherein the peak emission wavelength of the second phosphor layer is about 10 nanometers longer than the peak emission wavelength of the LED die. 如請求項1之LED裝置,其中該第二磷光體層之該峰值發射波長比該第一磷光體層之一峰值發射波長短大約10奈米至20奈米。 The LED device of claim 1, wherein the peak emission wavelength of the second phosphor layer is about 10 nm to 20 nm shorter than the peak emission wavelength of the first phosphor layer. 如請求項1之LED裝置,其進一步包括: 一透鏡,其環繞該LED晶粒、該第一磷光體層及該第二磷光體層。 As the LED device of claim 1, it further comprises: A lens surrounds the LED die, the first phosphor layer and the second phosphor layer. 如請求項1之LED裝置,其中該第一磷光體層包括聚矽氧(silicone)中之Y3(Al,Ga)5O12、Lu3(Al,Ga)5O12、SCASN及CASN構成。 The LED device according to claim 1, wherein the first phosphor layer comprises Y 3 (Al, Ga) 5 O 12 , Lu 3 (Al, Ga) 5 O 12 , SCASN and CASN in polysiloxane. 如請求項5之LED裝置,其中SCASN對CASN之一質量比(mass ratio)係大約20:80。 The LED device of claim 5, wherein the mass ratio of SCASN to CASN is about 20:80. 如請求項5之LED裝置,其中Lu3(Al,Ga)5O12對SCASN及CASN之一比率係大約8.47。 The LED device of claim 5, wherein the ratio of Lu 3 (Al,Ga) 5 O 12 to SCASN and CASN is about 8.47. 如請求項1之LED裝置,其進一步包括:一反射塗層,其經形成於該LED晶粒之各側、該第一磷光體層之各側及該第二磷光體層之各側上。 The LED device of claim 1, further comprising: a reflective coating formed on each side of the LED die, each side of the first phosphor layer, and each side of the second phosphor layer. 如請求項8之LED裝置,其中該反射塗層包括聚矽氧中之TiO2The LED device according to claim 8, wherein the reflective coating comprises TiO 2 in polysiloxane. 如請求項1之LED裝置,其中該LED晶粒之該峰值發射波長係大約440奈米。 The LED device of claim 1, wherein the peak emission wavelength of the LED die is about 440 nm. 如請求項1之LED裝置,其中該第二磷光體層之該峰值發射波長比該LED晶粒之該峰值發射波長長大約20奈米至40奈米。 The LED device of claim 1, wherein the peak emission wavelength of the second phosphor layer is about 20 nm to 40 nm longer than the peak emission wavelength of the LED die. 如請求項5之LED裝置,其中Y3(Al,Ga)5O12及Lu3(Al,Ga)5O12對SCASN及CASN之一比率係大5且小於10。 The LED device according to claim 5, wherein the ratio of Y 3 (Al,Ga) 5 O 12 and Lu 3 (Al,Ga) 5 O 12 to SCASN and CASN is greater than 5 and less than 10. 如請求項1之LED裝置,其中該第二磷光體層之該峰值發射波長大約460奈米。 The LED device of claim 1, wherein the peak emission wavelength of the second phosphor layer is about 460 nm.
TW108131373A 2018-08-31 2019-08-30 Phosphor converted led with high color quality TWI796516B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16/119,688 2018-08-31
US16/119,688 US11233180B2 (en) 2018-08-31 2018-08-31 Phosphor converted LED with high color quality
EP18201516.4 2018-10-19
EP18201516 2018-10-19

Publications (2)

Publication Number Publication Date
TW202021156A TW202021156A (en) 2020-06-01
TWI796516B true TWI796516B (en) 2023-03-21

Family

ID=67876129

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108131373A TWI796516B (en) 2018-08-31 2019-08-30 Phosphor converted led with high color quality

Country Status (4)

Country Link
EP (1) EP3844821A1 (en)
KR (1) KR102530363B1 (en)
TW (1) TWI796516B (en)
WO (1) WO2020047100A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120286304A1 (en) * 2011-05-10 2012-11-15 Letoquin Ronan P Recipient Luminophoric Mediums Having Narrow Spectrum Luminescent Materials and Related Semiconductor Light Emitting Devices and Methods
US20160064623A1 (en) * 2014-09-03 2016-03-03 Cree, Inc. Light emitting diode (led) component comprising a phosphor with improved excitation properties
US20160104820A1 (en) * 2014-10-10 2016-04-14 Seoul Semiconductor Co., Ltd. Lighting emitting device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10036940A1 (en) * 2000-07-28 2002-02-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Luminescence conversion LED
US8277687B2 (en) * 2005-08-10 2012-10-02 Mitsubishi Chemical Corporation Phosphor and light-emitting device using same
WO2007052777A1 (en) * 2005-11-04 2007-05-10 Matsushita Electric Industrial Co., Ltd. Light-emitting module, and display unit and lighting unit using the same
JP2010004035A (en) * 2008-05-22 2010-01-07 Mitsubishi Chemicals Corp Semiconductor light-emitting apparatus, illuminator, and image display apparatus
JP2011181793A (en) * 2010-03-03 2011-09-15 Koito Mfg Co Ltd Light emitting device
JP5677371B2 (en) * 2012-06-04 2015-02-25 株式会社東芝 Light emitting device
KR102184381B1 (en) * 2014-03-21 2020-11-30 서울반도체 주식회사 Light emitting device having uv light diode and lighting apparatus including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120286304A1 (en) * 2011-05-10 2012-11-15 Letoquin Ronan P Recipient Luminophoric Mediums Having Narrow Spectrum Luminescent Materials and Related Semiconductor Light Emitting Devices and Methods
US20160064623A1 (en) * 2014-09-03 2016-03-03 Cree, Inc. Light emitting diode (led) component comprising a phosphor with improved excitation properties
US20160104820A1 (en) * 2014-10-10 2016-04-14 Seoul Semiconductor Co., Ltd. Lighting emitting device

Also Published As

Publication number Publication date
EP3844821A1 (en) 2021-07-07
CN112913037A (en) 2021-06-04
KR102530363B1 (en) 2023-05-09
WO2020047100A1 (en) 2020-03-05
KR20210052514A (en) 2021-05-10
TW202021156A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
CN105390580B (en) Light emitting semiconductor device
EP2504870B1 (en) Wavelength converted semiconductor light emitting diode
TWI784058B (en) Light emitting device with improved warm-white color point
TWI355095B (en) Light emitting devices with enhanced luminous effi
US20160315070A1 (en) Light emitting device including a filter and a protective layer
JP2013526078A (en) White light emitting LED chip and manufacturing method thereof
WO2010131133A1 (en) Wavelength conversion for producing white light from high power blue led
TW201427105A (en) Wavelength converted light emitting device
US20220045245A1 (en) Phosphor converter structures for thin film packages and method of manufacture
KR102674066B1 (en) Light emitting device package
US10283681B2 (en) Phosphor-converted light emitting device
US11233180B2 (en) Phosphor converted LED with high color quality
TWI559579B (en) Light emitting device
CN104040735B (en) The surface treatment of light emitting semiconductor device
TWI796516B (en) Phosphor converted led with high color quality
CN112913037B (en) Phosphor converted LED with high color quality
CN108133990A (en) Light emitting diode (LED) chip with vertical structure based on GaN material
TWI644457B (en) Semiconductor light emitting device with shaped substrate
TWI746546B (en) Wavelength converting material for a light emitting device