TWI796033B - People flow analysis and identification system - Google Patents
People flow analysis and identification system Download PDFInfo
- Publication number
- TWI796033B TWI796033B TW110145623A TW110145623A TWI796033B TW I796033 B TWI796033 B TW I796033B TW 110145623 A TW110145623 A TW 110145623A TW 110145623 A TW110145623 A TW 110145623A TW I796033 B TWI796033 B TW I796033B
- Authority
- TW
- Taiwan
- Prior art keywords
- people
- crowd
- people flow
- field
- image
- Prior art date
Links
Images
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Image Analysis (AREA)
Abstract
Description
本發明係有關於一種人流分析辨識系統,特別是有關於一種利用影像擷取及運算處理而精準計算出一區域內之人數及人流變化之分析辨識系統。。 The present invention relates to a human flow analysis and identification system, in particular to an analysis and identification system that accurately calculates the number of people and changes in the flow of people in an area by using image capture and arithmetic processing. .
過往在特定場域中,如造勢場地、展覽會館或是跨年晚會中,均會吸引許多的人群前往參加,但由於人潮過於擁擠,無論是主辦單位或是協助治安維護的警方單位,在計算現場總人數時僅能以估算的方式,有時是以空拍圖來鳥瞰整個場地上的人潮來進行計算,有時是以出入口處的平均出入人數來進行加乘計算,有時則以場地面積來除以一平方公尺內所能站立人數來進行計算,使得在一場地中的人數計算造成極大的落差,久而久之,此參與人數之可信度便不再為人們所信服。 In the past, in certain venues, such as rally venues, exhibition halls, or New Year’s Eve parties, many people would be attracted to attend. The total number of people at the scene can only be estimated. Sometimes it is calculated by taking a bird’s-eye view of the crowd on the entire site from an aerial photo. Sometimes it is calculated by multiplying the average number of people entering and exiting at the entrance and exit. Sometimes it is calculated by the site Dividing the area by the number of people who can stand within one square meter is used for calculation, which causes a huge gap in the calculation of the number of people in a venue. Over time, the credibility of the number of participants is no longer convincing.
更進一步地,目前在一些特定應用中已開始進行在該些場域中人流之辨識,其目的是在於得知人群的移動方向、人群的群聚特徵,其較常使用之方式可以為利用熱源感應或辨識行動裝置之方式,來加以辨別人群之移動以及是否為大量群聚,然而前者會由於人體在人群中彼此阻隔的關係,而無法精準計算出人群中之人數,而後者則是只能判斷出在一場域中之人數及其人流變 化,但若是需要進一步地得知此場地內之一區域範圍內之人數及其人流變化時,便無法透過該種方式來達成。 Furthermore, in some specific applications, the recognition of the flow of people in these fields has begun. The purpose is to know the direction of movement of the crowd and the characteristics of the crowd. The more commonly used method can be to use the heat source The way of sensing or identifying mobile devices is used to identify the movement of the crowd and whether it is a large crowd. However, the former cannot accurately calculate the number of people in the crowd due to the isolation of the human body in the crowd, while the latter can only Determine the number of people in a field and their flow However, if it is necessary to further know the number of people and changes in the flow of people in an area of the venue, it cannot be achieved through this method.
綜觀前所述,本發明之發明人思索並設計一種人流分析辨識系統,以期針對習知技術之缺失加以改善,進而增進產業上之實施利用。 In view of the foregoing, the inventor of the present invention conceived and designed a human flow analysis and identification system in order to improve the deficiencies of conventional technologies and further enhance industrial implementation and utilization.
基於上述目的,本發明係提供一種人流分析辨識系統,其適用於辨識人流資訊之一平台主機上,其係包含一影像圖資單元、一場域範圍設定單元、一影像擷取單元、一人像處理單元以及一顯示處理單元。影像圖資單元係用以儲存一第一場域之平面地圖。場域範圍設定單元係用以輸入第一場域之一範圍資訊。影像擷取單元係用以擷取第一場域內之一區域影像。人像處理單元係從該區域影像內擷取相對應所述範圍資訊之一目標範圍影像,係並利用一人群計數演算法以產生此目標範圍影像內之至少一標註點,其中每一標註點係代表此第一場域中之一人類。顯示處理單元係利用一二維仿射轉換演算法以轉換此目標範圍影像中之該些標註點至平面地圖上,使此平面地圖上呈現對應該些一標註點之至少一人潮分布點,並顯示此平面地圖及該些人潮分布點於顯示螢幕上。 Based on the above purpose, the present invention provides a people flow analysis and identification system, which is suitable for identifying people flow information on a platform host, which includes an image data unit, a field range setting unit, an image capture unit, and a portrait processing unit. unit and a display processing unit. The image data unit is used to store a planar map of the first field. The field range setting unit is used for inputting information of a range of the first field. The image capturing unit is used for capturing an image of an area in the first field. The portrait processing unit extracts a target range image corresponding to the range information from the area image, and uses a crowd counting algorithm to generate at least one marked point in the target range image, wherein each marked point is Represents a human being in this first field. The display processing unit uses a two-dimensional affine transformation algorithm to convert the marked points in the target range image to the planar map, so that at least one crowd distribution point corresponding to the marked points is displayed on the planar map, and Display this plane map and these crowd distribution points on the display screen.
較佳地,本發明之人流分析辨識系統更包含一人流顯示單元,其係以用擷取顯示處理單元在一時間區間內所連續產生之該些至少一人潮分布點,並依一時間順序顯示該些至少一人潮分布點,以在顯示螢幕之平面地圖上產生一第一人流移動分布。 Preferably, the crowd analysis and identification system of the present invention further includes a crowd display unit, which is used to capture and display the at least one crowd distribution point continuously generated by the processing unit within a time interval, and display them in a time sequence The at least one crowd distribution point is used to generate a first crowd movement distribution on the planar map of the display screen.
較佳地,此範圍資訊包含坐標、攤位名稱、地址或是地標資訊。 Preferably, the range information includes coordinates, booth name, address or landmark information.
較佳地,此顯示處理單元係在平面地圖上利用不同顏色以呈現該些人潮分布點在不同位置上之分布密度。 Preferably, the display processing unit uses different colors on the planar map to present the distribution density of the crowd distribution points at different positions.
較佳地,當此分布密度大於一警示門檻值時,顯示處理單元係發出一警示通知訊息。 Preferably, when the distribution density is greater than a warning threshold, the display processing unit sends a warning notification message.
較佳地,本發明之人流分析辨識系統更包含一人流影像串接單元以串接一區域人流移動系統,此區域人流移動系統係用以顯示第二場域中之第二人流移動分布。 Preferably, the people flow analysis and recognition system of the present invention further includes a people flow video concatenation unit to connect with a regional people flow movement system, and the regional people flow movement system is used to display the second people flow movement distribution in the second field.
較佳地,此顯示處理單元係透過所述人流影像串接單元以串接顯示第一人流移動分布及第二人流移動分布。 Preferably, the display processing unit serially displays the first movement distribution of the flow of people and the second movement distribution of the flow of people through the connection unit of the flow of people images.
較佳地,此第二場域係包含所述第一場域。 Preferably, the second field includes the first field.
較佳地,此第二場域係獨立於所述第一場域。 Preferably, this second domain is independent of said first domain.
透過上述可以得知,本發明之人流分析辨識系統的確可以解決習知技術上所長久存在的問題,其透過擷取場域影像、設定此影像內之目標範圍、辨識出此目標範圍內之人像以及將此人像轉換成一標註點以呈現於有關此場域的2維地圖上,如此一來,使用者可以立即得知此場域內特定範圍之人潮或人流。 From the above, it can be seen that the crowd analysis and identification system of the present invention can indeed solve the long-standing problems in the conventional technology. It captures the field image, sets the target range in the image, and recognizes the portraits in the target range And convert the portrait into a marked point to present on the 2D map of the field, so that the user can immediately know the crowd or flow of people in a specific range in the field.
更甚者,本發明之人流分析辨識系統更可以與另一區域人流移動系統進行串接,使得另一場所的人流可接續或串接至本發明之人流分析辨識系統,讓使用者更清楚的了解人流的變化以進行分析,因此, 本發明相對於習知技術的確具有新穎性及進步性,同時對於相關領域而言亦具有實質上的產業應用性。 What's more, the people flow analysis and identification system of the present invention can be connected in series with the people flow movement system in another area, so that the people flow in another place can be connected or connected in series to the people flow analysis and identification system of the present invention, so that users can more clearly Understand changes in foot traffic for analysis, therefore, Compared with the prior art, the present invention is indeed novel and progressive, and also has substantial industrial applicability to related fields.
100:人流分析辨識系統 100: People flow analysis and identification system
10:影像圖資單元 10: Image and data unit
11:平面地圖 11: Plane map
20:場域範圍設定單元 20: field range setting unit
21、211、212、213、214:範圍資訊 21, 211, 212, 213, 214: scope information
30:影像擷取單元 30: Image capture unit
31:區域影像 31: Regional image
40:人像處理單元 40:Portrait processing unit
41:目標範圍影像 41: target range image
42:標註點 42: Dimension point
50:顯示處理單元 50: display processing unit
51:人潮分布點 51: crowd distribution point
52:顯示螢幕 52: display screen
53:分布密度 53: Distribution density
60:人流顯示單元 60: People flow display unit
61:第一人流移動分布 61: The first flow of people mobile distribution
70:人流影像串接單元 70: Crowd flow video concatenation unit
200:區域人流移動系統 200: Regional People Flow Mobile System
201:第二人流移動分布 201: The distribution of the second flow of people
A:第一場域 A: The first field
B:第二場域 B: the second field
第1圖係為本發明之人流分析辨識系統之方塊圖。 Figure 1 is a block diagram of the people flow analysis and identification system of the present invention.
第2a圖係為本發明之人流分析辨識系統之第一示意圖。 Figure 2a is the first schematic diagram of the people flow analysis and identification system of the present invention.
第2b圖係為本發明之人流分析辨識系統之第二示意圖。 Figure 2b is the second schematic diagram of the people flow analysis and identification system of the present invention.
第2c圖係為本發明之人流分析辨識系統之第三示意圖。 Figure 2c is the third schematic diagram of the people flow analysis and identification system of the present invention.
第2d圖係為本發明之人流分析辨識系統之第四示意圖。 Figure 2d is the fourth schematic diagram of the people flow analysis and identification system of the present invention.
第3圖係為本發明之另一實施例之人流分析辨識系統之方塊圖。 Fig. 3 is a block diagram of a people flow analysis and identification system according to another embodiment of the present invention.
第4圖係為本發明之區域人流移動系統之示意圖。 Fig. 4 is a schematic diagram of the regional people flow moving system of the present invention.
為利貴審查員瞭解本發明之發明特徵、內容與優點及其所能達成之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍。 In order for Ligui examiners to understand the inventive features, content and advantages of the present invention and the effects it can achieve, the present invention is hereby combined with the accompanying drawings and described in detail in the form of embodiments as follows, and the drawings used therein, its The subject matter is only for illustration and auxiliary description, not necessarily the true proportion and precise configuration of the present invention after implementation, so the scale and configuration relationship of the attached drawings should not be interpreted to limit the scope of rights of the present invention in actual implementation.
本發明之優點、特徵以及達到之技術方法將參照例示性實施例及所附圖式進行更詳細地描述而更容易理解,且本發明可以不同形式來實現,故不應被理解僅限於此處所陳述的實施例,相反地,對所屬技術領域具有通常知識者而言,所提供的實施例將使本揭露更加透徹與 全面且完整地傳達本發明的範疇,且本發明將僅為所附加的申請專利範圍所定義。 The advantages, features and technical methods achieved by the present invention will be described in more detail with reference to exemplary embodiments and accompanying drawings to make it easier to understand, and the present invention can be implemented in different forms, so it should not be understood as being limited to what is shown here The stated embodiments, on the contrary, are provided to make the present disclosure more thorough and relevant to those having ordinary knowledge in the art. It is intended that the scope of the present invention be fully and completely conveyed, and that the present invention shall be defined only by the appended claims.
請參閱第1圖,其係為本發明之人流分析辨識系統之方塊圖。如圖所示,此人流分析辨識系統100係適用於辨識人流資訊之一平台主機上,其中此平台主機可以包含一桌上型電腦、一工作站主機或是一筆記型電腦。此人流分析辨識系統100可包含一影像圖資單元10、一場域範圍設定單元20、一影像擷取單元30、一人像處理單元40、一顯示處理單元50,其中影像圖資單元10、場域範圍設定單元20、人像處理單元40、顯示處理單元50則可以為一軟體應用程式或是應用程式中之一副函式。
Please refer to Fig. 1, which is a block diagram of the crowd analysis and identification system of the present invention. As shown in the figure, the people flow analysis and identification system 100 is applicable to a platform host for identifying people flow information, wherein the platform host can include a desktop computer, a workstation host or a notebook computer. The people flow analysis and identification system 100 may include an image data unit 10, a field range setting unit 20, an
在本實施例中,影像圖資單元10可以為一資料庫應用程式,其可用以事先儲存一第一場域A之平面地圖11。場域範圍設定單元20則可用以輸入此第一場域A之範圍資訊21,其中此輸入之方式可以使用電腦週邊來加以輸入,例如鍵盤、滑鼠等,而此範圍資訊21則可以包含坐標、攤位名稱、地址或是地標資訊。
In this embodiment, the image map unit 10 can be a database application program, which can be used to store a
在本實施例中,影像擷取單元30可以為連接至平台主機之一攝影機,其可用以擷取第一場域A之一區域影像31,可以理解的是,此區域影像31可以由多個攝影機所拍攝的影像結合而成,其目的是在於將儘可能地擴大區域影像31所能涵蓋的範圍。
In this embodiment, the
當產生區域影像31後,人像處理單元40可從此區域影像31內擷取相對應所述範圍資訊21之一目標範圍影像41,其擷取方式可以透過將區域影像31中預先劃分為多個子區域,而每一子區域將會對應到一唯一之範圍資訊,例如坐標位置等,如此一來,透過所設定的範圍資
訊21,便可以從區域影像31中擷取出對應之目標範圍影像41。之後,此人像處理單元40可利用一人群計數演算法以產生此目標範圍影像41內之至少一標註點42,其中每一個標註點42係代表此第一場域A中之一人類。
After the
值得一提的是,本發明所使用之人群計數演算法可以基於檢測方法或是迴歸方法,前者的演算法包含了SVM、boosting和隨機森林等方法,其係利用整體或部份身體的檢測來統計人群的數量,而後者的演算法則是先提取低階特徵,再利用迴歸模型,如線性迴歸、分段線性迴歸或高斯過程迴歸等方法以學習低階特徵到人群數的對映關係,由於該些演算法屬於人群計數領域之先前技術,本發明將不對其進行贅述,其相關介紹可由網路資源獲得,例如https://www.gushiciku.cn/pl/2xTE/zh-tw。 It is worth mentioning that the crowd counting algorithm used in the present invention can be based on a detection method or a regression method. The former algorithm includes methods such as SVM, boosting and random forest, which use the detection of the whole or part of the body to The number of people is counted, while the latter algorithm first extracts low-level features, and then uses regression models, such as linear regression, piecewise linear regression, or Gaussian process regression, to learn the mapping relationship between low-level features and the number of people. These algorithms belong to the prior art in the field of crowd counting, and will not be described in detail in the present invention, and related introductions can be obtained from network resources, such as https://www.gushiciku.cn/pl/2xTE/zh-tw .
接著,可再由顯示處理單元50利用一二維仿射轉換(affine transformation)演算法(或稱六參數轉換演算法)以轉換此目標範圍影像41內之所有標註點42至平面地圖11上,使此平面地圖11上呈現對應該些標註點42之至少一人潮分布點51,最後將此平面地圖11及人潮分布點51顯示在一顯示螢幕52上以供使用者進行觀看。
Then, a two-dimensional affine transformation (affine transformation) algorithm (or called a six-parameter transformation algorithm) can be used by the display processing unit 50 to transform all the
值得一提的是,此二維仿射轉換演算法係指在幾何中,對一個向量空間進行一次線性轉換並接上一個平移,轉換為另一個向量空間之演算方法,在本實施例中,本發明即使用此演算法將三維空間之目標範圍影像41之標註點42來轉換至二維空間上,使其在平面地圖11上產生相對應位置之人潮分布點51。由於該演算法係為影像處理領域中具有
通常知識者所熟知,故本發明將不對其進行敘述,相關內容可參閱網路資源,如維基百科或Google等。
It is worth mentioning that this two-dimensional affine transformation algorithm refers to the calculation method of performing a linear transformation on a vector space in geometry, followed by a translation, and transforming it into another vector space. In this embodiment, The present invention uses this algorithm to convert the
透過上述之方式,本發明可以將對一地區進行影像擷取並,並進一步地將辨識其中一標的區域的人潮分布,再將此人潮辨識的結果轉換到一平面地圖,透過此方式,對於此標的區域中的人流便可以有效的進行掌握。更甚者,在一較佳實施例中,顯示處理單元50可在平面地圖11上利用不同顏色以呈現人潮分布點51在不同位置上之一分布密度,例如當分布密度過高時,則在該位置之人潮分布點51顯示紅色以當作警示,更進一步地,當此分布密度53大於一警示門檻值時,此顯示處理單元50便可發出一警示通知訊息以通知旁人,而此種應用可以實施在具承載人數限制之吊橋、電梯上,或是具有群聚人數上限之場域中,可有效防止因人數過量而造成之工安意外或傷亡等。
Through the above-mentioned method, the present invention can capture images of an area, and further identify the distribution of crowds in a target area, and then convert the result of crowd identification into a planar map. In this way, for this The flow of people in the target area can be effectively controlled. What's more, in a preferred embodiment, the display processing unit 50 can use different colors on the
請參閱第2a圖~第2d圖,其係為本發明之人流分析辨識系統之示意圖,並請一併參閱第1圖。如圖所示,第2a圖係顯示本發明影像圖資單元10中所儲存之一第一場域A之平面地圖11,使用者可以利用場域範圍設定單元20輸入此第一場域A之範圍資訊211、212、213、214,以設定其所想要觀察人流的範圍大小。
Please refer to Figures 2a to 2d, which are schematic diagrams of the people flow analysis and identification system of the present invention, and please also refer to Figure 1. As shown in the figure, Figure 2a shows a
第2b圖係顯示由影像擷取單元30所擷取第一場域A之一區域影像31,並可以從此區域影像31內擷取相對應所述範圍資訊211、212、213、214所圍成之一目標範圍影像41。
Figure 2b shows an
第2c圖係顯示由人像處理單元40利用一人群計數演算法來產生此目標範圍影像41內之標註點42,其中每一標註點42即表示出現
在此目標範圍影像41中之一人像。最後再由顯示處理單元50利用二維仿射轉換演算法將此目標範圍影像41內之所有標註點42轉換到平面地圖11上,以形成平面地圖上的人潮分布點51並供使用者進行觀看,其示意圖即如第2d圖所示。
Figure 2c shows that the portrait processing unit 40 uses a crowd counting algorithm to generate the
請參閱第3圖,其係為本發明之另一實施例之人流分析辨識系統之方塊圖,並請參閱第1圖。本實施例之人流分析辨識系統100可應用在一平台主機上,其除了包含如上所述的影像圖資單元10、場域範圍設定單元20、影像擷取單元30、人像處理單元40及顯示處理單元50之外,其更可以包含一人流顯示單元60以及人流影像串接單元70,其中此人流顯示單元60及人流影像串接單元70均可為一軟體應用程式或是軟體應用程式中之一副函式。
Please refer to FIG. 3, which is a block diagram of a people flow analysis and identification system according to another embodiment of the present invention, and please refer to FIG. 1. The people flow analysis and recognition system 100 of this embodiment can be applied on a platform host, which includes the image data unit 10, field range setting unit 20,
進一步的說明,如上所述,顯示處理單元50可轉換目標範圍影像41內之標註點42至平面地圖11上,而使平面地圖11上呈現對應該些標註點42之所有人潮分布點51,而人流顯示單元60則可以擷取顯示處理單元50在一時間區間內所連續產生之該些人潮分布點51,並依時間順序顯示該些人潮分布點51,進而在顯示螢幕52之平面地圖11上產生一第一人流移動分布61。
Further explanation, as mentioned above, the display processing unit 50 can convert the
舉例來說,人流顯示單元60可以在1小時內每隔5分鐘擷取該平面地圖11及該些人潮分布點51,如此一來便可以產生12張之連續影像,人流顯示單元60可以以2~3秒之間隔連續播放此12張連續影像,如此一來,使用者便能透過一動態影像來看到目標範圍影像41內之人流移動,進而加深使用者觀看時之印象。
For example, the people flow display unit 60 can capture the
另外,在本實施例中亦包含了人流影像串接單元70,其係用以串接另一區域人流移動系統200,其中此區域人流移動系統200係用以顯示一第二場域B中之一第二人流移動分布201,而此第二場域B可包含所述第一場域A或獨立於所述第一場域A,前者表示第一場域A係為第二場域B中之一子區域,而後者則表示第一場域A及第二場域B分別位於不同位置之區域,而本發明之技術特徵則可透過人流影像串接單元70來顯示出在此兩種場域間之人流移動情況。
In addition, this embodiment also includes a people flow image concatenation unit 70, which is used to connect another area people flow moving
詳細地說,此區域人流移動系統200可包含如本發明之人流分析辨識系統或是透過其他方式所建置而成之人流移動系統。以第4圖為例,此區域人流移動系統200係表示花蓮縣之人流移動,其產生之方式可以透過辨識使用者攜帶的電信設備來加以計算產生,其可以透過在不同時間區段之所在位置而知使用者在花蓮縣內之移動位置,進而造成人流之移動。值得一提的是,此區域人流移動系統200之位置辨識方式並不以此為限,其亦可以為本發明所提出之人流分析辨識系統或是利用其他辨識物品而產生人流計算之系統。
In detail, the regional people flow moving
在本實施例中,第二場城B係包含第一場域A,其中花蓮縣可設定為第二場域B,而花蓮縣的光復車站則可設定為第一場域A,顯示處理單元50除了可透過人流影像串接單元70來顯示區域人流移動系統200之第二人流移動分布201,使用者也可以進一步地點選此地圖中的光復車站,進而由人流影像串接單元70串接顯示光復車站之平面地圖,以供使用者進一步對此第一場域A進行如上所述之人流分析辨識程序,而由
於此人流分析辨識程序之內容已於上述實施例所揭露,故此處不再進行贅述。
In this embodiment, the second field city B includes the first field A, in which Hualien County can be set as the second field B, and Hualien County’s Guangfu Station can be set as the first field A, and the display processing unit 50 In addition to displaying the second people flow
透過以上可以得知,本發明之人流分析辨識系統的確可以解決習知技藝中所長久存在的問題,其可透過影像擷取及影像處理的方式以精準辨識出一區域範圍內之人數及其人流變化,進而產生一較為公平且公正之人群數字,再者,對於特定場域需要嚴格規範人數上限時,本發明之辨識系統可以立即地顯示出此特定場域之人數,進而立即採取最適當之措施,以符合該特定場域之需求。另外,除了對於特定場域內之人流分析之外,本發明亦可以串接到其他場域的人流移動系統,而使得人流移動之觀察更為全面。 From the above, it can be seen that the people flow analysis and identification system of the present invention can indeed solve the long-standing problems in the prior art. It can accurately identify the number of people and their flow of people in an area through image capture and image processing. Changes, thereby producing a more fair and just crowd number, moreover, when it is necessary to strictly regulate the upper limit of the number of people in a specific field, the identification system of the present invention can immediately display the number of people in the specific field, and then immediately take the most appropriate Measures to meet the needs of the specific field. In addition, in addition to analyzing the flow of people in a specific field, the present invention can also be connected to the flow of people moving systems in other fields, so that the observation of flow of people in a more comprehensive manner.
以上所述之實施例僅係為說明本發明之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。 The above-described embodiments are only to illustrate the technical ideas and characteristics of the present invention, and its purpose is to enable those skilled in this art to understand the content of the present invention and implement it accordingly, and should not limit the patent scope of the present invention. That is to say, all equivalent changes or modifications made according to the spirit disclosed in the present invention should still be covered by the patent scope of the present invention.
100:人流分析辨識系統 100: People flow analysis and identification system
10:影像圖資單元 10: Image and data unit
11:平面地圖 11: Plane map
20:場域範圍設定單元 20: field range setting unit
21:範圍資訊 21: Scope information
30:影像擷取單元 30: Image capture unit
31:區域影像 31: Regional image
40:人像處理單元 40:Portrait processing unit
41:目標範圍影像 41: target range image
42:標註點 42: Dimension point
50:顯示處理單元 50: display processing unit
51:人潮分布點 51: crowd distribution point
52:顯示螢幕 52: display screen
A:第一場域 A: The first field
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110145623A TWI796033B (en) | 2021-12-07 | 2021-12-07 | People flow analysis and identification system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110145623A TWI796033B (en) | 2021-12-07 | 2021-12-07 | People flow analysis and identification system |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI796033B true TWI796033B (en) | 2023-03-11 |
TW202324192A TW202324192A (en) | 2023-06-16 |
Family
ID=86692225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110145623A TWI796033B (en) | 2021-12-07 | 2021-12-07 | People flow analysis and identification system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI796033B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190213392A1 (en) * | 2018-01-11 | 2019-07-11 | Beijing Kuangshi Technology Co., Ltd. | Face spatial positioning method, face spatial positioning system, and non-transitory computer-readable recording medium |
TW202036375A (en) * | 2018-11-09 | 2020-10-01 | 香港商阿里巴巴集團服務有限公司 | Method and device for real-time statistical analysis of pedestrian flow in open space |
CN112333431A (en) * | 2020-10-30 | 2021-02-05 | 深圳市商汤科技有限公司 | Scene monitoring method and device, electronic equipment and storage medium |
CN113642362A (en) * | 2020-05-11 | 2021-11-12 | 广东毓秀科技有限公司 | Crowd density estimation method for intelligent escape in dense place |
-
2021
- 2021-12-07 TW TW110145623A patent/TWI796033B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190213392A1 (en) * | 2018-01-11 | 2019-07-11 | Beijing Kuangshi Technology Co., Ltd. | Face spatial positioning method, face spatial positioning system, and non-transitory computer-readable recording medium |
TW202036375A (en) * | 2018-11-09 | 2020-10-01 | 香港商阿里巴巴集團服務有限公司 | Method and device for real-time statistical analysis of pedestrian flow in open space |
CN113642362A (en) * | 2020-05-11 | 2021-11-12 | 广东毓秀科技有限公司 | Crowd density estimation method for intelligent escape in dense place |
CN112333431A (en) * | 2020-10-30 | 2021-02-05 | 深圳市商汤科技有限公司 | Scene monitoring method and device, electronic equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
TW202324192A (en) | 2023-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10354144B2 (en) | Video camera scene translation | |
Pan et al. | Enriching geometric digital twins of buildings with small objects by fusing laser scanning and AI-based image recognition | |
Aghaei et al. | Single image human proxemics estimation for visual social distancing | |
Bouma et al. | Real-time tracking and fast retrieval of persons in multiple surveillance cameras of a shopping mall | |
CA2913432A1 (en) | System and method for identifying, analyzing, and reporting on players in a game from video | |
CN109740444A (en) | Flow of the people information displaying method and Related product | |
WO2020114116A1 (en) | Pedestrian detection method based on dense crowds, and storage medium and processor | |
Kumar et al. | Automatic Face Mask Detection Using Deep Learning-Based Mobile-Net Architecture | |
Franz et al. | Real-time collaborative reconstruction of digital building models with mobile devices | |
Zhao et al. | Image-based crowd stability analysis using improved multi-column convolutional neural network | |
CN114494427B (en) | Method, system and terminal for detecting illegal behaviors of person with suspension arm going off station | |
CN113536997B (en) | Intelligent security system and method based on image recognition and behavior analysis | |
TWI796033B (en) | People flow analysis and identification system | |
Kim et al. | Augmenting aerial earth maps with dynamic information | |
CN113096135A (en) | Group target spatialization method based on cooperation of multiple cameras and GIS (geographic information System) | |
US20240185449A1 (en) | Estimation Of Human Locations In Two-Dimensional Coordinates Using Machine Learning | |
Junayed et al. | Automated physical distance estimation and crowd monitoring through surveillance video | |
Alqatawneh et al. | Employing of Object Tracking System in Public Surveillance Cameras to Enforce Quarantine and Social Distancing Using Parallel Machine Learning Techniques. | |
CN115719469A (en) | Target identification method and device, equipment and storage medium | |
CN107025450B (en) | Heat map generation method | |
TWI808336B (en) | Image display method and image monitoring system | |
CN116758488B (en) | Stadium crowd positioning method, device, equipment and medium | |
Sulaiman et al. | Human motion analysis using virtual reality | |
Junayed et al. | A deep-learning based automated COVID-19 physical distance measurement system using surveillance video | |
Fu et al. | Crowd counting via head detection and motion flow estimation |