TWI795707B - Content recommendation system and content recommendation method - Google Patents
Content recommendation system and content recommendation method Download PDFInfo
- Publication number
- TWI795707B TWI795707B TW110101030A TW110101030A TWI795707B TW I795707 B TWI795707 B TW I795707B TW 110101030 A TW110101030 A TW 110101030A TW 110101030 A TW110101030 A TW 110101030A TW I795707 B TWI795707 B TW I795707B
- Authority
- TW
- Taiwan
- Prior art keywords
- information
- user
- webpage
- intention
- content
- Prior art date
Links
Images
Landscapes
- Information Transfer Between Computers (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
Description
本發明涉及一種內容推薦系統與內容推薦方法,特別是涉及一種根據使用者意圖的內容推薦系統與內容推薦方法。The present invention relates to a content recommendation system and a content recommendation method, in particular to a content recommendation system and a content recommendation method based on user intentions.
大多數網頁資訊或是行動裝置的APP,多以內容資訊的點擊數量作為推薦內容的依據。不過若是使用者無法在一定時間內找到所需要的產品或服務,就會另尋他途,因而流失潛在客戶。Most webpage information or APPs for mobile devices use the number of clicks on the content information as the basis for recommending content. However, if the user cannot find the desired product or service within a certain period of time, he will find another way, thus losing potential customers.
此外,現有技術在進行內容推薦時常會將使用者進行分群,而分群時常使用RFM 模型,亦即透過Recency(上次消費的日期)、Frequency(消費頻率)、Monetary(消費金額)將使用者分群,然而該模型在面對新客戶時會因為缺乏消費紀錄而無法適用,而且現有技術亦無法判斷用戶意圖,使得推薦的效果大打折扣。In addition, the existing technology often divides users into groups when recommending content, and the RFM model is often used for grouping, that is, users are grouped by Recency (date of last consumption), Frequency (consumption frequency), and Monetary (consumption amount) , however, this model cannot be applied to new customers due to the lack of consumption records, and the existing technology cannot judge user intentions, which greatly reduces the effect of recommendation.
因此,如何提供一種可以依據使用者意圖以進行推薦內容資訊的內容推薦系統與內容推薦方法,已成為該項事業所欲解決的重要課題之一。Therefore, how to provide a content recommendation system and a content recommendation method that can recommend content information according to the user's intent has become one of the important issues to be solved by this project.
本發明所要解決的技術問題在於,針對現有技術的不足提供一種內容推薦系統,包括:一伺服器,接收一終端裝置的多個使用者意圖資訊,終端裝置包括一顯示模組,用於顯示網頁群組,網頁群組包括多個網頁資訊,每一網頁資訊至少與另一網頁資訊連接;其中,伺服器根據終端裝置提供的多個使用者意圖資訊,提供至少一使用者推薦內容。The technical problem to be solved by the present invention is to provide a content recommendation system for the deficiencies of the prior art, including: a server receiving a plurality of user intention information of a terminal device, the terminal device includes a display module for displaying web pages A group, the webpage group includes a plurality of webpage information, each webpage information is at least connected to another webpage information; wherein, the server provides at least one user recommended content according to the plurality of user intention information provided by the terminal device.
為了解決上述的技術問題,本發明所採用的其中一技術方案是提供一種內容推薦方法,包括:提供一網頁群組,其中,網頁群組包括多個網頁資訊,每一網頁資訊至少與另一網頁資訊連接;接收多個使用者意圖資訊;根據多個使用者意圖資訊以及一深度學習模型,以計算得到一使用者意圖分群資訊;以及根據使用者意圖分群資訊提供一推薦內容。In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a content recommendation method, including: providing a webpage group, wherein the webpage group includes a plurality of webpage information, and each webpage information is at least related to another Web page information connection; receiving a plurality of user intention information; calculating a user intention grouping information according to the plurality of user intention information and a deep learning model; and providing a recommended content according to the user intention grouping information.
本發明的其中一有益效果在於,本發明所提供的內容推薦系統與內容推薦方法,可以有效利用使用者在網頁群組中的網頁瀏覽軌跡資訊以及關注度資訊,精準提供使用者適當的推薦內容,即使是無消費紀錄的新客戶也適用,也可以提升使用者對於網站群組的高度興趣以及相關使用者體驗。One of the beneficial effects of the present invention is that the content recommendation system and content recommendation method provided by the present invention can effectively use the user's web browsing track information and attention information in the web page group to accurately provide users with appropriate recommended content , even for new customers with no consumption records, it can also increase users' high interest in website groups and related user experience.
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed description and drawings related to the present invention. However, the provided drawings are only for reference and description, and are not intended to limit the present invention.
以下是通過特定的具體實施例來說明本發明所公開有關“內容推薦系統與內容推薦方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。The following are specific examples to illustrate the implementation of the "content recommendation system and content recommendation method" disclosed in the present invention. Those skilled in the art can understand the advantages and effects of the present invention from the content disclosed in this specification. The present invention can be implemented or applied through other different specific embodiments, and various modifications and changes can be made to the details in this specification based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are only for simple illustration, and are not drawn according to the actual size, which is stated in advance. The following embodiments will further describe the relevant technical content of the present invention in detail, but the disclosed content is not intended to limit the protection scope of the present invention. In addition, the term "or" used herein may include any one or a combination of more of the associated listed items depending on the actual situation.
[第一實施例][first embodiment]
請參閱圖1以及圖2,圖1是本發明第一實施例的內容推薦系統的示意圖。圖2是本發明中網頁群組的示意圖。Please refer to FIG. 1 and FIG. 2 . FIG. 1 is a schematic diagram of a content recommendation system according to a first embodiment of the present invention. FIG. 2 is a schematic diagram of a web page group in the present invention.
本實施例中,內容推薦系統SYS1包括一伺服器1。伺服器1可以接收終端裝置CD的多個使用者意圖資訊。終端裝置CD至少包括一顯示模組(圖未示),用於顯示一網頁群組WPG。網頁群組WPG包括多個網頁資訊P1-P10。每一網頁資訊P1-P10至少與另一網頁資訊連接。此外,每一網頁資訊P1-P10包括多個區域資訊。也就是,每一個網頁資訊P1-P10可以分成不同區域,例如:網頁資訊P1包括第一區域資訊P11、第二區域資訊P12以及第三區域資訊P13。第一區域資訊、第二區域資訊P12以及第三區域資訊P13則是接續排列。終端裝置CD的顯示模組(圖未示)可以根據目前顯示的區域進行判斷是網頁資訊P1-P10的哪一個區域。In this embodiment, the content recommendation system SYS1 includes a
請參閱圖2,網頁群組WPG包括十個網頁資訊P1-P10。網頁資訊P1是網站的初始網頁,其他網頁資訊P2、網頁資訊P5、網頁資訊P8則是連接網頁資訊P1。也就是,每一個網頁資訊至少會連接一個另一個網頁資訊。在本實施例中,除了基礎資訊之外,可以設置初始推薦內容給使用者進行選擇。Please refer to FIG. 2 , the webpage group WPG includes ten webpage information P1-P10. The webpage information P1 is the initial webpage of the website, and the other webpage information P2, webpage information P5, and webpage information P8 are links to the webpage information P1. That is, each web page information will link at least one other web page information. In this embodiment, in addition to the basic information, initial recommended content can be set for the user to choose.
在本實施例中,伺服器1可以根據終端裝置CD提供的多個使用者意圖資訊提供至少一使用者推薦內容。使用者推薦內容是根據使用者意圖資訊提供的推薦內容。使用者推薦內容可以與初始推薦內容相同或是不相同。In this embodiment, the
使用者意圖資訊至少包括一網頁瀏覽軌跡資訊以及一關注度資訊。其中,網頁瀏覽軌跡資訊包括多個網頁資訊P1-P10的一瀏覽軌跡。關注度資訊則是至少包括每一網頁資訊P1-P10的一停留時間。The user intention information at least includes webpage browsing track information and attention degree information. Wherein, the webpage browsing trace information includes a browsing trace of a plurality of webpage information P1-P10. The attention degree information at least includes a dwell time of each web page information P1-P10.
網頁瀏覽軌跡資訊是使用者在網頁群組WPG中的多個網頁資訊P1-P10進行觀看的軌跡。例如,使用者首先從網頁資訊P1開始瀏覽,接著點擊進入網頁資訊P2,接著進入網頁資訊P3,再進入網頁資訊P4。此時,使用者的網頁瀏覽軌跡資訊就是:「網頁資訊P1、網頁資訊P2、網頁資訊P3、網頁資訊P4」。其他網頁瀏覽軌跡資訊WP2則可以是「網頁資訊P1、網頁資訊P8、網頁資訊P9、網頁資訊P10」。The webpage browsing track information is the track of the user viewing the plurality of webpage information P1-P10 in the webpage group WPG. For example, the user starts to browse from the webpage information P1 first, then clicks to enter the webpage information P2, then enters the webpage information P3, and then enters the webpage information P4. At this time, the user's webpage browsing track information is: "webpage information P1, webpage information P2, webpage information P3, webpage information P4". Other webpage browsing track information WP2 can be "webpage information P1, webpage information P8, webpage information P9, webpage information P10".
進一步地說,網頁瀏覽軌跡資訊還可以將使用者觀看網頁資訊P1-P10的不同區域一併考量,例如網頁資訊P1的多個區域資訊P11-P13。例如先從第一區域資訊P11開始瀏覽,接著是第三區域資訊P13,然後是第二區域資訊P12。在其他實施例中,可以利用終端裝置CD的一視線追蹤技術,追蹤使用者的視線,以更精確地獲得使用者在網頁群組WPG中的瀏覽軌跡。Furthermore, the webpage browsing track information can also consider the different regions where the user viewed the webpage information P1-P10, for example, the multiple regions information P11-P13 of the webpage information P1. For example, start browsing from the first area information P11, then the third area information P13, and then the second area information P12. In other embodiments, a gaze tracking technology of the terminal device CD may be used to track the user's gaze, so as to more accurately obtain the user's browsing track in the webpage group WPG.
關注度資訊則是至少包括使用者在各網頁資訊P1-P10的停留時間及瀏覽次數。此外,關注度資訊還可以包括使用者對於各網頁資訊P1-P10的點擊資訊。例如,在網頁資訊P3進行點擊。The attention degree information at least includes the user's stay time and number of visits on each webpage information P1-P10. In addition, the attention degree information may also include user's click information on each webpage information P1-P10. For example, click on the webpage information P3.
請參閱圖3、圖4以及圖5,圖3是本發明的內容推薦系統利用深度學習模型計算關注度資訊的示意圖。圖4是本發明的內容推薦系統利用深度學習模型計算使用者意圖分群資訊的示意圖。圖5是本發明的內容推薦系統利用深度學習模型計算使用者意圖分群資訊的另一示意圖。Please refer to FIG. 3 , FIG. 4 and FIG. 5 . FIG. 3 is a schematic diagram of the content recommendation system of the present invention calculating attention information using a deep learning model. FIG. 4 is a schematic diagram of calculating user intention grouping information by the content recommendation system of the present invention using a deep learning model. FIG. 5 is another schematic diagram of the content recommendation system of the present invention using a deep learning model to calculate user intention grouping information.
接著,伺服器1會根據使用者對網頁群組WPG的各網頁資訊P1-P10的網頁瀏覽軌跡資訊以及關注度資訊,通過一深度學習模型,計算得到一使用者意圖分群資訊。伺服器1再根據使用者意圖分群資訊以及多個內容資訊提供使用者推薦內容。其中,使用者意圖分群資訊可以包括一低階意圖資訊、一中階意圖資訊以及一高階意圖資訊。低階意圖資訊為「只瀏覽網站,不具有明顯購買意圖」;中階意圖資訊為「具有購買產品或服務的意圖,但是購買品項不確定」;高階意圖資訊為「具有明確購買預定產品或是預定服務的意圖」。也就是本發明係根據使用者瀏覽網頁資訊的各種行為以及使用者資訊,判斷使用者購買產品或服務的意圖。Then, the
在本實施例中,是利用一必要資訊以及一非必要資訊進行深度學習模型的計算,以得到先前所述的關注度資訊。其中,該深度學習模型例如但不限於為一循環網路模型(Recurrent neural network,RNN)、一時間循環網路模型中的長短期記憶模型(Long Short-Term Memory,LSTM)或一時間循環網路模型中的雙向長短期記憶模型(Bidirectional Long Short-Term Memory,BiLSTM)。In this embodiment, a necessary information and a non-essential information are used to perform the calculation of the deep learning model, so as to obtain the aforementioned attention degree information. Wherein, the deep learning model is, for example but not limited to, a cyclic network model (Recurrent neural network, RNN), a long short-term memory model (Long Short-Term Memory, LSTM) in a time cyclic network model, or a time cyclic network model The bidirectional long short-term memory model (Bidirectional Long Short-Term Memory, BiLSTM) in the road model.
如圖3所示,必要資訊包括:網頁資訊P1-P10的頁面類型、使用者瀏覽各網頁資訊P1-P10的停留時間長度或比例、觀看次數或比例、觀看日期等。非必要資訊則是包括:使用者資訊中的性別、公司、國家等資訊。本發明之推薦系統是藉由循環網路模型計算不同網頁資訊之間的關係,例如:網頁資訊P1與網頁資訊P2,其在此稱之關注度資訊,例如用戶常在網頁資訊P1 與網頁資訊P1 之間來回觀看其關注度會是趨近於1。內容推薦系統SYS1的伺服器1則會認定網頁資訊P1與網頁資訊P1有強烈關係。反之,若用戶看網頁資訊P1卻都不曾看過網頁資訊P2,則其兩者之間的關注度資訊會是0,則會認定網頁資訊P1與網頁資訊P1是沒有關係,圖中是以循環網路模型進行計算每一個網頁資訊P1-P10的關注度資訊。As shown in FIG. 3 , the necessary information includes: the page types of web page information P1-P10, the length or ratio of the user's stay when browsing each web page information P1-P10, the number or ratio of views, and the viewing date. Non-essential information includes: gender, company, country and other information in user information. The recommender system of the present invention calculates the relationship between different webpage information by means of a cyclic network model, for example: webpage information P1 and webpage information P2, which are referred to as attention information here, for example, users often use webpage information P1 and webpage information Watching back and forth between P1 and its attention will be close to 1. The
此外,本實施例中,網頁資訊P1-P10的頁面類型可以預先被設定不同的權重以進行深度學習模型的計算。也就是,每一個網頁資訊P1-P10都會對應一個預定權重。每一個網頁資訊P1-P10對應的預定權重可以相同或是不相同。在本實施例中,作為網頁群組WPG的初始網頁資訊的網頁資訊P1所對應的預定權重是最低的。因為初始網頁多數不會包括產品資訊或是服務資訊。在其他實施例中,作為初始網頁的網頁資訊P1可以設置推薦產品內容或是推薦服務內容,提供給使用者進行瀏覽,以提高使用者的購買意圖。每一個網頁資訊P1-P10的預定權重是可以根據網頁資訊P1-P10的設置位置進行設定,預定權重也可以根據每一個網頁資訊P1-P10所包括的產品內容或是服務內容進行設定。在本實施例中,網頁資訊P1-P10的設置位置是在網頁群組WPG的初始位置,也就是入口網頁資訊,網頁資訊P1的預定權重則可以設成0.1。不過,若是網頁資訊P1中的推薦內容被點閱時,網頁資訊P1的預定權重則可以進行微幅調整,例如調整為0.2。當網頁資訊設置位置是網頁群組WPG的中間位置時,例如:網頁資訊P2-P3、網頁資訊P5-P6等,網頁資訊P2-P3以及網頁資訊P5-P6的預定權重則可以設置為0.3-0.4。當一個預定網頁資訊的產品內容或是服務內容具有較高價值時,例如網頁資訊P5中包括一最新推出的產品或是服務,網頁資訊P5的預定權重則可以進行調高。In addition, in this embodiment, the page types of the web page information P1-P10 can be preset with different weights for the calculation of the deep learning model. That is, each webpage information P1-P10 corresponds to a predetermined weight. The predetermined weights corresponding to each webpage information P1-P10 can be the same or different. In this embodiment, the predetermined weight corresponding to the webpage information P1 which is the initial webpage information of the webpage group WPG is the lowest. Because most of the initial web pages will not include product information or service information. In other embodiments, the web page information P1 as the initial web page can be provided with recommended product content or recommended service content for users to browse, so as to increase the user's purchase intention. The predetermined weight of each webpage information P1-P10 can be set according to the setting position of the webpage information P1-P10, and the predetermined weight can also be set according to the product content or service content included in each webpage information P1-P10. In this embodiment, the webpage information P1-P10 is set at the initial location of the webpage group WPG, that is, the entry webpage information, and the predetermined weight of the webpage information P1 can be set to 0.1. However, if the recommended content in the webpage information P1 is clicked on, the predetermined weight of the webpage information P1 can be slightly adjusted, for example adjusted to 0.2. When the webpage information setting position is the middle position of the webpage group WPG, for example: webpage information P2-P3, webpage information P5-P6, etc., the predetermined weight of webpage information P2-P3 and webpage information P5-P6 can be set to 0.3- 0.4. When the product content or service content of a predetermined webpage information has high value, for example, the webpage information P5 includes a newly launched product or service, the reservation weight of the webpage information P5 can be increased.
具體而言,若用戶A的使用者意圖資訊為:進入入口網頁後停留一段時間,接著點擊進入網頁群組WPG中的消費型電子商品網頁,再分別點擊進入更下層的家電類、筆記型電腦類及行動電話類等商品網頁,並頻繁地在消費型電子商品網頁與更下層的商品網頁之間來回切換,即使用戶在各網頁之停留時間的比重無明顯差異,亦沒有將相關商品放入購物車,此類「只瀏覽網頁,無法明顯辨別商品購買意圖」的行為仍能被本發明察覺且歸類為「低階意圖」。Specifically, if user A's user intention information is: enter the portal webpage and stay for a period of time, then click to enter the consumer electronics product webpage in the webpage group WPG, and then click to enter the lower-level home appliances and notebook computers respectively. products such as electronics and mobile phones, and frequently switch back and forth between consumer electronics product pages and lower-level product pages. Shopping cart, this kind of behavior of "only browsing the webpage, unable to clearly distinguish the purchase intention of the product" can still be detected by the present invention and classified as "low-level intention".
用戶B的使用者意圖資訊若是:從入口網頁點擊進入消費型電子商品網頁後,接著不斷在不同品牌之行動電話類商品網頁間來回點擊,雖然各網頁之停留時間的比重無明顯差異,亦沒有將相關商品放入購務車,但是已能縮小用戶B的興趣範圍在行動電話類商品,只是仍無法確認品牌或型號,此類「具有購買產品或是服務的意圖,但是未有確切的目標產品或服務」的行為仍能被本發明察覺且歸類為「中階意圖」。User B’s user intention information is: After clicking from the entrance webpage to enter the consumer electronics product webpage, and then continuously clicking back and forth between different brands of mobile phone product webpages, although there is no significant difference in the proportion of the dwell time of each webpage, there is no difference. Put related products into the shopping cart, but user B’s interest range has been narrowed down to mobile phone products, but the brand or model cannot be confirmed. This type of product has the intention of purchasing products or services, but does not have an exact target The behavior of "product or service" can still be detected by the present invention and classified as "intermediate intent".
而用戶C的使用者意圖資訊若是: 從入口網頁進入消費型電子商品網頁後再點擊行動電話類商品網頁,接著在行動電話類商品之某品牌的某型號網頁之停留時間比重明顯多於其他網頁,雖然最終亦沒有將相關商品放入購務車,但是以能進一步縮小用戶C的興趣範圍為某品牌的某型號行動電話,此類「具有明確購買產品或是服務的意圖」的行為能被本發明察覺且歸類為「高階意圖」。The user intention information of user C is: enter the consumer electronics product webpage from the entrance webpage and then click on the mobile phone product webpage, and then spend more time on the webpage of a certain brand and model of mobile phone products than other webpages , although the relevant products were not put into the shopping cart in the end, but to further narrow the scope of interest of user C to a certain model of mobile phone of a certain brand, this kind of behavior of "having a clear intention to purchase products or services" can be recognized The present invention detects and classifies as "higher order intent".
因此,雖然用戶A、用戶B、用戶C均未將商品放入購物車,但是本實施例的內容推薦系統SYS1則可以將其進行分群以利於後續的產品推薦。其中,關注度資訊可以通過下列公式進行計算:Therefore, although user A, user B, and user C have not put the product into the shopping cart, the content recommendation system SYS1 of this embodiment can group them to facilitate subsequent product recommendation. Among them, attention information can be calculated by the following formula:
DL(NIN, UNIN , PW, PN) = ATT (公式1)DL(NIN, UNIN , PW, PN) = ATT (Equation 1)
其中,NIN是必要資訊。UNIN則是非必要資訊。PW是網頁資訊的預定權重。PN則是網頁瀏覽次數,DL函數是根據一深度學習模型進行計算。Among them, NIN is necessary information. UNIN is non-essential information. PW is a predetermined weight of web page information. PN is the number of page views, and the DL function is calculated according to a deep learning model.
如圖4所示,則是利用網頁瀏覽軌跡資訊以及關注度資訊進行深度學習模型的計算,以計算得到使用者意圖分群資訊全連接層深度學習模型包括輸入層、多個隱藏層以及輸出層。其中瀏覽每個網頁均包含至少一個商品類型,假設用戶瀏覽特價商品網頁中之家用型網路儲存裝置,則特價商品與家用型產品各增加一次瀏覽次數,而模型的輸入層就是網頁瀏覽軌跡資訊以及關注度,例如但不限於瀏覽家用型產品網頁之時間及次數、瀏覽企業型產品網頁之時間及次數、瀏覽配件型產品網頁之時間及次數、以及產品與當前頁面間之關注度。輸出層則係使用者意圖各分群之機率向量,取最高者機率為該用使用之意圖,例如使用者意圖之機率向量為(C1, C2 ,C3)= (0.3, 0.7, 0.8) 則選C3 :其中 C1 為只瀏覽網站,不具有明顯購買意圖; C2為具有購買產品或服務的意圖,但是購買品項不確定; C3 為明確購買預定產品或是預定服務的意圖。圖5則是將圖4的深度學習模型轉換成流程圖進行呈現。As shown in Figure 4, the deep learning model is calculated using web browsing track information and attention information to calculate user intention grouping information. The fully connected layer deep learning model includes an input layer, multiple hidden layers, and an output layer. Each web page browsed contains at least one product type. Assuming that the user browses the home-use network storage device in the special offer page, the number of visits for the special offer and the home-use product will be increased by one each, and the input layer of the model is the web page browsing track information And the degree of attention, such as but not limited to the time and frequency of browsing home product webpages, the time and frequency of enterprise product webpage browsing, the time and frequency of accessory product webpage browsing, and the degree of attention between the product and the current page. The output layer is the probability vector of each group of user intentions, and the highest probability is taken as the intention of the application. For example, the probability vector of user intentions is (C1, C2 ,C3)= (0.3, 0.7, 0.8), then choose C3 : Among them, C1 refers to only browsing the website without obvious purchase intention; C2 refers to the intention to purchase products or services, but the purchase items are uncertain; C3 refers to the definite intention to purchase predetermined products or predetermined services. Fig. 5 is to convert the deep learning model in Fig. 4 into a flowchart for presentation.
根據圖5所示,可以得到下列公式:According to Figure 5, the following formula can be obtained:
ML(WT, ATT) = UIN1 (公式2)ML(WT, ATT) = UIN1 (Equation 2)
其中,UIN1是使用者意圖資訊。WT是網頁瀏覽軌跡資訊,包括使用者瀏覽網頁的順序。ATT則是關注度資訊,關注度資訊包括:每一個網頁資訊的停留時間、瀏覽次數、預定權重,ML函數是以一監督式機器學習來計算用戶意圖資訊。Wherein, UIN1 is user intent information. WT is web browsing track information, including the order in which users browse web pages. ATT is attention information. Attention information includes: the dwell time of each web page information, the number of views, and the predetermined weight. The ML function uses a supervised machine learning to calculate user intention information.
請參閱圖6以及圖7,圖6是本發明的內容推薦系統的功能方塊圖。圖7是本發明內容推薦系統根據使用者意圖分群資訊提供使用者推薦內容的示意圖。Please refer to FIG. 6 and FIG. 7, FIG. 6 is a functional block diagram of the content recommendation system of the present invention. FIG. 7 is a schematic diagram of the content recommendation system of the present invention providing user recommended content according to user intention grouping information.
終端裝置CD會首先顯示網頁群組WPG。如先前所述,網頁群組WPG會首先顯示一初始推薦內容以提供使用者參考,其中該初始推薦內容例如但不限於一熱賣產品或服務、一促銷產品或服務、或一最新產品或服務。終端裝置CD會將使用者資訊、使用者瀏覽網頁群組WPG的網頁瀏覽軌跡資訊以及關注度資訊傳送到伺服器1。The terminal device CD will firstly display the web page group WPG. As mentioned above, the webpage group WPG will first display an initial recommended content for user reference, wherein the initial recommended content is for example but not limited to a hot product or service, a promotional product or service, or a newest product or service. The terminal device CD will send the user information, the webpage browsing track information and attention degree information of the user browsing webpage group WPG to the
在本實施例中,終端裝置CD包括一終端通訊模組(圖未示)。終端通訊模組(圖未示)可以是一有線通訊模組或是一無線通訊模組。In this embodiment, the terminal device CD includes a terminal communication module (not shown). The terminal communication module (not shown in the figure) can be a wired communication module or a wireless communication module.
伺服器1則是包括一分析模組11、一儲存模組12以及一通訊模組13。分析模組11電性連接儲存模組12以及通訊模組13。The
終端裝置CD可以是一桌上型電腦、一筆記型電腦、一智能手機、一平板電腦或是一穿戴式電子裝置。The terminal device CD can be a desktop computer, a notebook computer, a smart phone, a tablet computer or a wearable electronic device.
分析模組11是一中央處理器(CPU)、特殊應用積體電路(ASIC)或是一微處理器(MCU)。儲存模組12是一快閃記憶體、一唯讀記憶體、一可規化唯讀記憶體、一電可改寫唯讀記憶體、一可擦可規化唯讀記憶體或是一電可擦可規化唯讀記憶體。The
通訊模組13可以包括一有線通訊單元(圖未示)以及一無線通訊單元(圖未示)。有線通訊單元(圖未示)也可以獨立設置以與其他資料庫進行連接。當通訊模組13是一無線通訊單元時,通訊模組13可以是一Wi-Fi通訊單元、一藍牙通訊單元、一紫蜂通訊單元(Zigbee)、一LoRa通訊單元、一Sigfox通訊單元或是一NB-IoT通訊單元。The
伺服器1通過通訊模組13接收到使用者資訊、使用者瀏覽網頁群組WPG的網頁瀏覽軌跡資訊以及關注度資訊傳送到伺服器1,伺服器1會進一步利用分析模組11對使用者資訊、使用者瀏覽網頁群組WPG的網頁瀏覽軌跡資訊以及關注度資訊,利用一深度學習模型計算關注度資訊。The
此時,終端裝置CD首先會將使用者登錄資訊傳送到伺服器1。也就是,終端裝置CD會將使用者是否登錄網頁群組WPG的資訊傳送到伺服器1,例如:已登錄(新會員)、已登錄(舊會員)、未登錄。At this time, the terminal device CD will firstly send the user login information to the
進而伺服器1的分析模組11會將網頁瀏覽軌跡資訊與關注度資訊利用一類神經模型計算使用者意圖分群資訊。伺服器1的分析模組11會進一步根據使用者意圖分群資訊以及多個內容資訊,提供一使用者推薦內容到終端裝置CD進行顯示。內容資訊可以包括產品資訊或服務資訊。Furthermore, the
在本實施例中,使用者意圖資訊可以簡化為下列公式進行計算:In this embodiment, the user intention information can be simplified into the following formula for calculation:
ML(WT , ATT , URD)= UIN2 (公式3)ML(WT , ATT , URD)= UIN2 (Equation 3)
其中,UIN2是使用者意圖資訊。WT是網頁瀏覽軌跡資訊,包括使用者瀏覽網頁的順序。ATT則是關注度資訊。關注度資訊包括:每一個網頁資訊的停留時間、瀏覽次數、預定權重。URD則是使用者登錄資訊。ML函數是以一監督式機器學習之一來計算用戶意圖資訊。Wherein, UIN2 is user intent information. WT is web browsing track information, including the order in which users browse web pages. ATT is attention information. The attention information includes: the dwell time of each web page information, the number of views, and the predetermined weight. URD is the user login information. The ML function is one of supervised machine learning to calculate user intent information.
當使用者看到顯示的使用者推薦內容時,終端裝置CD的網頁群組WPG可以根據使用者是否點擊使用者推薦內容或是點擊不喜歡使用者推薦內容,傳送一使用者喜好資訊至伺服器1。使用者喜好資訊是使用者對於使用者推薦內容的喜好或是點擊與否的資訊。伺服器1的分析模組11會進一步將使用者登錄資訊、使用者喜好資訊、網頁瀏覽軌跡資訊以及關注度資訊進行深度學習等深度學習模型進行計算,再次計算使用者意圖分群資訊。接著,伺服器1會根據再次計算得到的使用者意圖分群資訊與多個內容資訊,再提供一個使用者推薦內容。伺服器1的分析模組11會利用通訊模組13,將再次提供的使用者推薦內容傳送到終端裝置CD以進行顯示,再次將計算得到使用者推薦內容提供給使用者。When the user sees the displayed user recommended content, the web page group WPG of the terminal device CD can send a user preference information to the server according to whether the user clicks on the user recommended content or clicks on the dislike user recommended
伺服器1的分析模組11可以每一預定時間區間就進行一次使用者推薦內容的計算。在每一預定時間區間中,使用者的網頁瀏覽軌跡資訊以及關注度資訊都會有所改變,因此使用者推薦內容也會因應而調整。預定時間區間可以根據實際需求進行調整,在本發明中不做限制。The
在本實施例中,使用者推薦內容可以根據不同使用者意圖資訊提供對應的推薦內容。例如:當使用者意圖資訊是高階意圖資訊時,分析模組則可以根據使用者選取的產品內容或服務內容提供搭配使用者選取的產品內容或服務內容的不同產品內容以及服務內容,以進一步提供高價值產品或服務。In this embodiment, the user recommended content may provide corresponding recommended content according to different user intention information. For example: when the user intent information is high-level intent information, the analysis module can provide different product content and service content matching the product content or service content selected by the user according to the product content or service content selected by the user, so as to further provide High value product or service.
當使用者意圖資訊是高階意圖資訊時,且使用者選取的是一網路儲存伺服器(Network Attached Storage,NAS),內容推薦系統1可以提供一高速無線網卡(Wi-Fi 6)的相關商品,或是雲端儲存服務內容,以提升網路儲存伺服器的服務內容。When the user intention information is high-level intention information, and the user selects a network storage server (Network Attached Storage, NAS), the
當使用者意圖資訊是中階意圖資訊時,即使用者具有購買產品或是服務的意圖,但是購買品項不明確。此時,內容推薦系統1可以提供與網頁瀏覽軌跡資訊中包括的產品內容或服務內容類似的產品或服務給使用者。以網路儲存伺服器為例,網頁瀏覽軌跡資訊包括規格屬於中階的網路儲存伺服器,此時,內容推薦系統1可以提供給使用者一包括高階規格以及中階規格的網路儲存伺服器的使用者推薦內容給使用者。也就是,當使用者意圖資訊是一中階意圖資訊時,使用者無法從瀏覽過的網頁資訊中決定購買哪一種產品內容或是服務內容,內容推薦系統1則會提供使用者範圍較為寬廣的產品內容或是服務內容以進行選擇。When the user intention information is middle-level intention information, that is, the user has the intention to purchase a product or service, but the purchase item is not clear. At this time, the
當使用者意圖資訊是一低階意圖資訊時,即內容推薦系統1可以將網頁群組WPG中的多個產品內容或是服務內容,依據規格高低、價格高低、產品類型或是服務類型提供使用者推薦內容給客戶。此外,內容推薦系統1也可以隨機方式將網頁群組WPG中的多個產品內容或是服務內容進行推薦。When the user intention information is a low-level intention information, that is, the
也就是,內容推薦系統1會根據不同類型的使用者意圖資訊提供不同的使用者推薦內容。That is, the
此外,伺服器1會將對應於使用者的使用者登錄資訊、使用者喜好資訊、網頁瀏覽軌跡資訊以及關注度資訊等,儲存在儲存模組12中。也就是,為使用者建立資料庫檔案,作為改善使用者體驗以及提供更佳服務的基礎。In addition, the
請參閱圖8,圖8是本發明內容推薦系統根據使用者意圖分群資訊提供使用者推薦內容的另一示意圖。Please refer to FIG. 8 . FIG. 8 is another schematic diagram of the content recommendation system of the present invention providing user recommended content according to user intention grouping information.
圖8的內容推薦系統與圖7的內容推薦系統類似,伺服器1還可以收集使用者的第一使用者資訊進一步地強化使用者意圖分群資訊的分析精準程度。第一使用者資訊是使用者在網頁群組WPG內提供的各類身分資料,例如照片、個人資料等。此外,第一使用者資訊還可以包括其他合作網站或是合作團體的資料以及其他資料庫中去識別化的資訊,如年齡、興趣、居住地等,透過向提供大數據資料的電信業者購買去識別化的用戶資訊(A用戶、40歲男性、育有兩子、喜歡汽車,從事高科技產業),與公司內部的用戶資料匹配後,找到相似度高者(B用戶、40歲男性、從事高科技產業),合理推測B可能也喜歡車子,進而讓產品推薦更精準。同理,也可進行以產品為準的推薦。例如,針對某產品的目標族群做推播,只要進站的用戶符合此族群輪廓就推薦該商品給他。The content recommendation system in FIG. 8 is similar to the content recommendation system in FIG. 7 , and the
伺服器1會根據第一使用者資訊、使用者登錄資訊、網頁瀏覽軌跡資訊以及關注度資訊,通過深度學習模型,計算得到使用者意圖分群資訊。接著,伺服器1的分析模組11則會根據使用者意圖分群資訊以及多個內容資訊提供使用者推薦內容,並將使用者推薦內容傳送到終端裝置CD進行顯示。The
請參閱圖9,圖9是本發明內容推薦系統根據使用者意圖分群資訊提供使用者推薦內容的另一示意圖。Please refer to FIG. 9 . FIG. 9 is another schematic diagram of the content recommendation system of the present invention providing user recommended content according to user intention grouping information.
圖9的內容推薦系統與圖7的內容推薦系統類似,伺服器1還可以再加入一使用者行為分析資訊以進一步地提高使用者推薦內容的多樣性。The content recommendation system in FIG. 9 is similar to the content recommendation system in FIG. 7 , and the
伺服器1就會根據使用者登錄資訊、網頁瀏覽軌跡資訊以及關注度資訊,通過深度學習模型,計算得到使用者意圖分群資訊。接著,伺服器1的分析模組11則會根據使用者行為分析資訊、使用者意圖分群資訊以及多個內容資訊提供使用者推薦內容,並將使用者推薦內容傳送到終端裝置CD進行顯示。使用者行為分析資訊是根據多個使用者行為進行分析所得到的資訊,例如:網頁群組WPG中的多個內容資訊中較常被加購的產品或服務,或是當使用者對特定類型產品或服務有較高購買意願時,有較高交易成功機率的產品或服務。也就是,使用者行為分析資訊是經過使用者行為分析後的內容資訊。伺服器1的分析模組11會將這些產品或服務加入使用者推薦內容中,一同提供給使用者。
請參閱圖10,圖10是本發明內容推薦系統根據使用者意圖分群資訊提供使用者推薦內容的另一示意圖。Please refer to FIG. 10 . FIG. 10 is another schematic diagram of the content recommendation system of the present invention providing user recommended content according to user intention grouping information.
圖10的內容推薦系統與圖7的內容推薦系統類似,伺服器1可以同時加入使用者的第一使用者資訊以及使用者行為分析資訊,以進一步地強化使用者意圖分群資訊的分析精準程度以及使用者推薦內容的多樣性。The content recommendation system in FIG. 10 is similar to the content recommendation system in FIG. 7. The
在本實施例中,伺服器1會根據第一使用者資訊、使用者登錄資訊、網頁瀏覽軌跡資訊以及關注度資訊,通過深度學習模型,計算得到使用者意圖分群資訊。接著,伺服器1的分析模組11則會根據使用者意圖分群資訊以及多個內容資訊提供使用者推薦內容,並將使用者推薦內容傳送到終端裝置CD進行顯示。In this embodiment, the
伺服器的分析模組11根據使用者行為分析資訊,使用者意圖分群資訊以及多個內容資訊提供使用者推薦內容,並將使用者推薦內容傳送到終端裝置CD進行顯示。The
使用者行為分析資訊是經過使用者行為分析後的內容資訊。伺服器1的分析模組11會將使用者行為分析資訊相關的產品或服務加入使用者推薦內容中,一同提供給使用者。User behavior analysis information is content information after user behavior analysis. The
[第二實施例][Second embodiment]
請參閱圖11,圖11是本發明第二實施例的內容推薦方法的流程圖。在本實施例中的內容推薦方法,適用於先前所述的內容推薦系統SYS1,其結構與功能在此不做贅述。Please refer to FIG. 11 . FIG. 11 is a flowchart of a content recommendation method according to a second embodiment of the present invention. The content recommendation method in this embodiment is applicable to the content recommendation system SYS1 mentioned above, and its structure and functions will not be repeated here.
本實施例的內容推薦方法包括下列步驟:The content recommendation method in this embodiment includes the following steps:
提供一網頁群組(步驟S110);providing a webpage group (step S110);
接收多個使用者意圖資訊(步驟S120);Receive a plurality of user intention information (step S120);
根據所述多個使用者資訊以及一深度學習模型,以計算得到一使用者意圖分群資訊(步驟S130);According to the plurality of user information and a deep learning model, a user intention grouping information is calculated (step S130);
根據所述使用者意圖分群資訊,提供一推薦內容(步驟S140)。According to the user intention grouping information, a recommended content is provided (step S140 ).
在步驟S110中,內容推薦系統SYS1包括一伺服器1。伺服器1可以接收終端裝置CD的多個使用者意圖資訊。終端裝置CD至少包括一顯示模組(圖未示),用於顯示一網頁群組WPG。網頁群組WPG包括多個網頁資訊P1-P10。每一網頁資訊P1-P10至少與另一網頁資訊連接。此外,每一網頁資訊P1-P10包括多個區域資訊。也就是,每一個網頁資訊P1-P10可以分成不同區域,例如:第一區域、第二區域以及第三區域。第一區域、第二區域以及第三區域則是接續排列。終端裝置CD的顯示模組(圖未示)可以根據目前顯示的區域進行判斷是網頁資訊P1-P10的哪一個區域。In step S110 , the content recommendation system SYS1 includes a
進一步地說,網頁瀏覽軌跡資訊還可以將使用者觀看網頁資訊P1-P10的不同區域一併考量,例如網頁資訊P1的多個區域資訊P11-P13。例如先從第一區域資訊P11開始觀看,接著看第三區域資訊P13,然後觀看第二區域資訊P12。在其他實施例中,可以利用終端裝置CD的一視線追蹤技術,追蹤使用者的視線,以更精確地獲得使用者在網頁群組WPG中的瀏覽軌跡。Furthermore, the webpage browsing track information can also consider the different regions where the user viewed the webpage information P1-P10, for example, the multiple regions information P11-P13 of the webpage information P1. For example, start viewing from the first area information P11, then view the third area information P13, and then view the second area information P12. In other embodiments, a gaze tracking technology of the terminal device CD may be used to track the user's gaze, so as to more accurately obtain the user's browsing track in the webpage group WPG.
請參閱圖2,網頁群組WPG包括十個網頁資訊P1-P10。網頁資訊P1是網站的初始網頁,其他網頁資訊P2、網頁資訊P5、網頁資訊P8則是連接網頁資訊P1。也就是,每一個網頁資訊至少會連接一個另一個網頁資訊。在本實施例中,除了基礎資訊之外,可以設置初始推薦內容給使用者進行選擇。Please refer to FIG. 2 , the webpage group WPG includes ten webpage information P1-P10. The webpage information P1 is the initial webpage of the website, and the other webpage information P2, webpage information P5, and webpage information P8 are links to the webpage information P1. That is, each web page information will link at least one other web page information. In this embodiment, in addition to the basic information, initial recommended content can be set for the user to choose.
在步驟S120中,使用者意圖資訊至少包括一網頁瀏覽軌跡資訊以及一關注度資訊。其中,網頁瀏覽軌跡資訊包括多個網頁資訊P1-P10的一瀏覽軌跡。關注度資訊則是至少包括每一網頁資訊P1-P10的一停留時間。In step S120, the user intention information at least includes web browsing track information and attention degree information. Wherein, the webpage browsing trace information includes a browsing trace of a plurality of webpage information P1-P10. The attention degree information at least includes a dwell time of each web page information P1-P10.
網頁瀏覽軌跡資訊是使用者在網頁群組WPG中的多個網頁資訊P1-P10進行觀看的軌跡。例如,使用者首先從網頁資訊P1開始瀏覽,接著點擊進入網頁資訊P2,接著進入網頁資訊P3,再進入網頁資訊P4。此時,使用者的網頁瀏覽軌跡資訊WP1就是:「網頁資訊P1、網頁資訊P2、網頁資訊P3、網頁資訊P4」。其他網頁瀏覽軌跡資訊WP2則可以是「網頁資訊P1、網頁資訊P8、網頁資訊P9、網頁資訊P10」。The webpage browsing track information is the track of the user viewing the plurality of webpage information P1-P10 in the webpage group WPG. For example, the user starts to browse from the webpage information P1 first, then clicks to enter the webpage information P2, then enters the webpage information P3, and then enters the webpage information P4. At this time, the user's webpage browsing track information WP1 is: "webpage information P1, webpage information P2, webpage information P3, webpage information P4". Other webpage browsing track information WP2 can be "webpage information P1, webpage information P8, webpage information P9, webpage information P10".
關注度資訊則是至少包括使用者在各網頁資訊P1-P10的停留時間。例如,在網頁資訊P1停留30秒進行瀏覽。在網頁資訊P2停留1分鐘進行瀏覽。在網頁資訊P3以及網頁資訊P4分別停留5分鐘進行瀏覽。此外,關注度資訊還可以包括使用者對於各網頁資訊P1-P10的點擊資訊。例如,在網頁資訊P3進行點擊。The attention degree information at least includes the user's stay time on each web page information P1-P10. For example, stay on the webpage information P1 for 30 seconds to browse. Stay on page information P2 for 1 minute to browse. Stay on the webpage information P3 and the webpage information P4 for 5 minutes respectively to browse. In addition, the attention degree information may also include user's click information on each webpage information P1-P10. For example, click on the webpage information P3.
在步驟S130中,伺服器1會根據使用者對網頁群組WPG的各網頁資訊P1-P10的網頁瀏覽軌跡資訊以及關注度資訊,通過一深度學習模型,計算得到一使用者意圖分群資訊。伺服器1再根據使用者意圖分群資訊以及多個內容資訊提供使用者推薦內容。In step S130, the
在本實施例中,是利用一必要資訊以及一非必要資訊進行深度學習模型的計算,以得到先前所述的關注度資訊。例如:循環網路模型(Recurrent neural network,RNN)、時間循環網路模型中的長短期記憶模型(Long Short-Term Memory,LSTM)或是時間循環網路模型中的雙向長短期記憶模型(Bidirectional Long Short-Term Memory,BiLSTM)。In this embodiment, a necessary information and a non-essential information are used to perform the calculation of the deep learning model, so as to obtain the aforementioned attention degree information. For example: Recurrent neural network (RNN), long short-term memory model (Long Short-Term Memory, LSTM) in time recurrent network model, or bidirectional long short-term memory model (Bidirectional Long Short-Term Memory, BiLSTM).
如圖3所示,必要資訊包括:網頁資訊P1-P10的頁面類型、每一網頁資訊P1-P10的停留時間或是觀看日期。非必要資訊則是包括:使用者資訊中的性別、公司、國家等資訊。圖3中是以循環網路模型進行計算每一個網頁資訊P1-P10的關注度資訊。此外,本實施例中,網頁資訊P1-P10的頁面類型可以預先被設定不同的權重以進行深度學習模型的計算。As shown in FIG. 3 , the necessary information includes: the page type of the webpage information P1-P10, the stay time or viewing date of each webpage information P1-P10. Non-essential information includes: gender, company, country and other information in user information. In FIG. 3 , the attention degree information of each web page information P1-P10 is calculated by using a cycle network model. In addition, in this embodiment, the page types of the web page information P1-P10 can be preset with different weights for the calculation of the deep learning model.
如圖4所示,則是利用網頁瀏覽軌跡資訊以及關注度資訊進行全連接層深度學習模型的計算,以計算得到使用者意圖分群資訊全連接層深度學習模型包括輸入層、多個隱藏計算層以及輸出層。輸入層就是網頁瀏覽軌跡資訊以及關注度。輸出層則是使用者意圖分群資訊。其中,使用者意圖分群資訊可以包括:一低階意圖資訊、一中階意圖資訊以及一高階意圖資訊。低階意圖資訊是:只瀏覽網站,不具有明顯購買意圖。中階意圖資訊是:具有購買產品或是服務的意圖,但是購買品項不明確。高階意圖資訊是:具有明確購買預定產品或是預定服務的意圖。As shown in Figure 4, the full-connection layer deep learning model is calculated using web browsing track information and attention information to calculate user intention grouping information. The full-connection layer deep learning model includes an input layer and multiple hidden computing layers. and the output layer. The input layer is web browsing track information and attention. The output layer is user intention grouping information. Wherein, the user intention grouping information may include: a low-level intention information, a middle-level intention information and a high-level intention information. Low-level intention information is: only browsing the website, without obvious purchase intention. Intermediate intention information is: there is an intention to purchase a product or service, but the purchase item is not clear. The high-level intention information is: there is a definite intention to purchase a predetermined product or predetermined service.
在步驟S140中,終端裝置CD會首先顯示網頁群組WPG。如先前所述,網頁群組WPG會首先顯示初始推薦內容以提供使用者參考。終端裝置CD會將使用者資訊、使用者瀏覽網頁群組WPG的網頁瀏覽軌跡資訊以及關注度資訊傳送到伺服器1。在本實施例中,終端裝置CD包括一終端通訊模組(圖未示)。終端通訊模組(圖未示)可以是一有線通訊模組或是一無線通訊模組。In step S140, the terminal device CD will firstly display the web page group WPG. As mentioned earlier, the webpage group WPG will firstly display initial recommended content to provide user reference. The terminal device CD will send the user information, the webpage browsing track information and attention degree information of the user browsing webpage group WPG to the
伺服器1則是包括一分析模組11、一儲存模組12以及一通訊模組13。分析模組11電性連接儲存模組12以及通訊模組13。The
伺服器1通過通訊模組13接收到使用者資訊、使用者瀏覽網頁群組WPG的網頁瀏覽軌跡資訊以及關注度資訊傳送到伺服器1,伺服器1會進一步利用分析模組11對使用者資訊、使用者瀏覽網頁群組WPG的網頁瀏覽軌跡資訊以及關注度資訊進行計算。也就是,伺服器1的分析模組11會利用使用者資訊以及網頁瀏覽軌跡資訊,利用一深度學習模型計算關注度資訊。The
此時,終端裝置CD首先會將使用者登錄資訊傳送到伺服器1。也就是,終端裝置CD會將使用者是否登錄網頁群組WPG的資訊傳送到伺服器1,例如:已登錄(新會員)、已登錄(舊會員)、未登錄。At this time, the terminal device CD will firstly send the user login information to the
進而伺服器1的分析模組11會將網頁瀏覽軌跡資訊與關注度資訊利用一類神經模型計算使用者意圖分群資訊。伺服器1的分析模組11會進一步根據使用者意圖分群資訊以及多個內容資訊,提供一使用者推薦內容到終端裝置CD進行顯示。內容資訊可以包括產品資訊或服務資訊。Furthermore, the
當使用者看到顯示的使用者推薦內容時,終端裝置CD的網頁群組WPG可以根據使用者是否點擊使用者推薦內容或是點擊不喜歡使用者推薦內容,傳送一使用者喜好資訊至伺服器1。使用者喜好資訊是使用者對於使用者推薦內容的喜好或是點擊與否的資訊。伺服器1的分析模組11會進一步將使用者登錄資訊、使用者喜好資訊、網頁瀏覽軌跡資訊以及關注度資訊進行深度學習等深度學習模型進行計算,再次計算使用者意圖分群資訊。接著,伺服器1會根據再次計算得到的使用者意圖分群資訊與多個內容資訊,再提供一個使用者推薦內容。伺服器1的分析模組11會利用通訊模組13,將再次提供的使用者推薦內容傳送到終端裝置CD以進行顯示,再次將計算得到使用者推薦內容提供給使用者。When the user sees the displayed user recommended content, the web page group WPG of the terminal device CD can send a user preference information to the server according to whether the user clicks on the user recommended content or clicks on the dislike user recommended
伺服器1的分析模組11可以每一預定時間區間就進行一次使用者推薦內容的計算。在每一預定時間區間中,使用者的網頁瀏覽軌跡資訊以及關注度資訊都會有所改變,因此使用者推薦內容也會因應而調整。預定時間區間可以根據實際需求進行調整,在本發明中不做限制。The
此外,伺服器1會將對應於使用者的使用者登錄資訊、使用者喜好資訊、網頁瀏覽軌跡資訊以及關注度資訊等,儲存在儲存模組12中。也就是,為使用者建立資料庫檔案,作為改善使用者體驗以及提供更佳服務的基礎。In addition, the
此外,伺服器1還可以收集使用者的第一使用者資訊進一步地強化使用者意圖分群資訊的分析精準程度。第一使用者資訊是使用者在網頁群組WPG內提供的各類身分資料,例如照片、個人資料等。此外,第一使用者資訊還可以包括其他合作網站或是合作團體的資料以及其他資料庫中沒有隱私權疑慮的資訊。In addition, the
也就是,伺服器1會根據第一使用者資訊、使用者登錄資訊、網頁瀏覽軌跡資訊以及關注度資訊,通過深度學習模型,計算得到使用者意圖分群資訊。接著,伺服器1的分析模組11則會根據使用者意圖分群資訊以及多個內容資訊提供使用者推薦內容,並將使用者推薦內容傳送到終端裝置CD進行顯示。That is, the
再者,伺服器1還可以再加入一使用者行為分析資訊以進一步地提高使用者推薦內容的豐富程度。使用者行為分析資訊是根據多個使用者行為進行分析所得到的內容資訊,例如:網頁群組WPG中的多個內容資訊中較常被加購的產品或服務,或是當使用者對特定類型產品或服務有較高購買意願時,有較高交易成功機率的產品或服務。也就是,使用者行為分析資訊是經過使用者行為分析後的內容資訊。伺服器1的分析模組11會將這些產品或服務加入使用者推薦內容中,一同提供給使用者。Furthermore, the
也就是,伺服器1就會根據使用者登錄資訊、網頁瀏覽軌跡資訊以及關注度資訊,通過深度學習模型,計算得到使用者意圖分群資訊。接著,伺服器1的分析模組11則會根據使用者行為分析資訊、使用者意圖分群資訊以及多個內容資訊提供使用者推薦內容,並將使用者推薦內容傳送到終端裝置CD進行顯示。也就是,伺服器1的分析模組11會將相關於使用者行為分析資訊的產品或服務加入使用者推薦內容中,一同提供給使用者。That is, the
再者,伺服器1還可以同時加入使用者的第一使用者資訊以進一步地強化使用者意圖分群資訊的分析精準程度。此外,伺服器的分析模組11還會根據使用者行為分析資訊,使用者意圖分群資訊以及多個內容資訊提供使用者推薦內容,並將使用者推薦內容傳送到終端裝置CD進行顯示。Furthermore, the
使用者行為分析資訊是經過使用者行為分析後的內容資訊。伺服器1的分析模組11會將使用者行為分析資訊相關的產品或服務加入使用者推薦內容中,一同提供給使用者。User behavior analysis information is content information after user behavior analysis. The
此時,伺服器1是根據第一使用者資訊、使用者行為分析資訊、使用者登錄資訊、網頁瀏覽軌跡資訊以及關注度資訊,通過深度學習模型,計算得到使用者意圖分群資訊。At this time, the
[實施例的有益效果][Advantageous Effects of Embodiment]
本發明的其中一有益效果在於,本發明所提供的內容推薦系統與內容推薦方法,可以有效利用使用者在網頁群組中的網頁瀏覽軌跡資訊以及關注度資訊,精準提供使用者適當的推薦內容,可以提升使用者對於網站群組的高度興趣以及相關使用者體驗。One of the beneficial effects of the present invention is that the content recommendation system and content recommendation method provided by the present invention can effectively use the user's web browsing track information and attention information in the web page group to accurately provide users with appropriate recommended content , which can increase the user's high interest in the website group and related user experience.
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。The content disclosed above is only a preferred feasible embodiment of the present invention, and does not therefore limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.
SYS1:內容推薦系統 1:伺服器 CD:終端裝置 S110-S140:步驟 WP1, WP2:瀏覽軌跡 P1-P10:網頁資訊 P11:第一區域資訊 P12:第二區域資訊 P13:第三區域資訊 11:分析模組 12:儲存模組 13:通訊模組 WPG:網頁群組 SYS1: Content Recommendation System 1: Server CD: terminal device S110-S140: Steps WP1, WP2: Browse track P1-P10: Web page information P11: Information of the first region P12: Second area information P13: Third Region Information 11: Analysis module 12: Storage module 13: Communication module WPG: Web Page Group
圖1是本發明第一實施例的內容推薦系統的示意圖。FIG. 1 is a schematic diagram of a content recommendation system according to a first embodiment of the present invention.
圖2是本發明中網頁群組的示意圖。FIG. 2 is a schematic diagram of a web page group in the present invention.
圖3是本發明的內容推薦系統利用深度學習模型計算關注度資訊的示意圖。FIG. 3 is a schematic diagram of calculating attention degree information by the content recommendation system of the present invention using a deep learning model.
圖4是本發明的內容推薦系統利用深度學習模型計算使用者意圖分群資訊的示意圖。FIG. 4 is a schematic diagram of calculating user intention grouping information by the content recommendation system of the present invention using a deep learning model.
圖5是本發明的內容推薦系統利用深度學習模型計算使用者意圖分群資訊的另一示意圖。FIG. 5 is another schematic diagram of the content recommendation system of the present invention using a deep learning model to calculate user intention grouping information.
圖6是本發明的內容推薦系統的功能方塊圖。Fig. 6 is a functional block diagram of the content recommendation system of the present invention.
圖7是本發明內容推薦系統根據使用者意圖分群資訊提供使用者推薦內容的示意圖。FIG. 7 is a schematic diagram of the content recommendation system of the present invention providing user recommended content according to user intention grouping information.
圖8是本發明內容推薦系統根據使用者意圖分群資訊提供使用者推薦內容的另一示意圖。FIG. 8 is another schematic diagram of the content recommendation system of the present invention providing user recommended content according to user intention grouping information.
圖9是本發明內容推薦系統根據使用者意圖分群資訊提供使用者推薦內容的另一示意圖。FIG. 9 is another schematic diagram of the content recommendation system of the present invention providing user recommended content according to user intention grouping information.
圖10是本發明內容推薦系統根據使用者意圖分群資訊提供使用者推薦內容的另一示意圖。FIG. 10 is another schematic diagram of the content recommendation system of the present invention providing user recommended content according to user intention grouping information.
圖11是本發明第二實施例的內容推薦方法的流程圖。Fig. 11 is a flow chart of the content recommendation method according to the second embodiment of the present invention.
SYS1:內容推薦系統 SYS1: Content Recommendation System
1:伺服器 1: Server
CD:終端裝置 CD: terminal device
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110101030A TWI795707B (en) | 2021-01-12 | 2021-01-12 | Content recommendation system and content recommendation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110101030A TWI795707B (en) | 2021-01-12 | 2021-01-12 | Content recommendation system and content recommendation method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202228048A TW202228048A (en) | 2022-07-16 |
TWI795707B true TWI795707B (en) | 2023-03-11 |
Family
ID=83436918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110101030A TWI795707B (en) | 2021-01-12 | 2021-01-12 | Content recommendation system and content recommendation method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI795707B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI846658B (en) * | 2024-01-04 | 2024-06-21 | 臺灣中小企業銀行股份有限公司 | System for generating personalized finance needs pages based on browsing records and method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9230212B2 (en) * | 2012-02-02 | 2016-01-05 | Peel Technologies, Inc. | Content based recommendation system |
TW201822104A (en) * | 2016-12-09 | 2018-06-16 | 香港商阿里巴巴集團服務有限公司 | Intelligent recommendation method and system |
CN109214418A (en) * | 2018-07-25 | 2019-01-15 | 百度在线网络技术(北京)有限公司 | The method for digging and device, computer equipment and readable medium that user is intended to |
CN110287415A (en) * | 2019-06-26 | 2019-09-27 | 海南车智易通信息技术有限公司 | A kind of content recommendation method, device and calculate equipment |
CN110335126A (en) * | 2019-07-16 | 2019-10-15 | 芜湖储吉信息技术股份有限公司 | A kind of automobile industry big data obtains objective method |
-
2021
- 2021-01-12 TW TW110101030A patent/TWI795707B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9230212B2 (en) * | 2012-02-02 | 2016-01-05 | Peel Technologies, Inc. | Content based recommendation system |
TW201822104A (en) * | 2016-12-09 | 2018-06-16 | 香港商阿里巴巴集團服務有限公司 | Intelligent recommendation method and system |
CN109214418A (en) * | 2018-07-25 | 2019-01-15 | 百度在线网络技术(北京)有限公司 | The method for digging and device, computer equipment and readable medium that user is intended to |
CN110287415A (en) * | 2019-06-26 | 2019-09-27 | 海南车智易通信息技术有限公司 | A kind of content recommendation method, device and calculate equipment |
CN110335126A (en) * | 2019-07-16 | 2019-10-15 | 芜湖储吉信息技术股份有限公司 | A kind of automobile industry big data obtains objective method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI846658B (en) * | 2024-01-04 | 2024-06-21 | 臺灣中小企業銀行股份有限公司 | System for generating personalized finance needs pages based on browsing records and method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW202228048A (en) | 2022-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210133817A1 (en) | Information Recommendation Method and Apparatus | |
US10909608B2 (en) | Merchant recommendations associated with a persona | |
CN109559208B (en) | Information recommendation method, server and computer readable medium | |
US10007936B1 (en) | Product review platform based on social connections | |
US11354584B2 (en) | Systems and methods for trend aware self-correcting entity relationship extraction | |
US10095771B1 (en) | Clustering and recommending items based upon keyword analysis | |
US10423999B1 (en) | Performing personalized category-based product sorting | |
US11132733B2 (en) | Personalized recommendations for unidentified users based on web browsing context | |
CN113792176A (en) | Image evaluation | |
CN105894332A (en) | Commodity recommendation method, device and system based on user behavior analysis | |
US20150066586A1 (en) | Evaluation calculating device, evaluation calculating method, and recording medium | |
CN106062743A (en) | Systems and methods for keyword suggestion | |
US20150278915A1 (en) | Recommendation system for non-fungible assets | |
KR20100092852A (en) | System for recommending goods based on preference, and method thereof | |
TWI795707B (en) | Content recommendation system and content recommendation method | |
US20240177194A1 (en) | Real time bidding engine with radius insights | |
KR101320093B1 (en) | Method and device for producing advertisements | |
US20150186972A1 (en) | Summarization and personalization of big data method and apparatus | |
US20130117071A1 (en) | Techniques for providing perceived quality metric analysis | |
US9542497B2 (en) | Information processing apparatus, information processing method, and information processing program | |
JP5869931B2 (en) | Recommendation item detection program, apparatus and method for detecting items to be criticized by critics | |
US20180165741A1 (en) | Information providing device, information providing method, information providing program, and computer-readable storage medium storing the program | |
Nalchigar et al. | A large-scale study of online shopping behavior | |
US11922475B1 (en) | Summarization and personalization of big data method and apparatus | |
CN110020136A (en) | Object recommendation method and relevant device |