TWI794271B - 玻璃系兆赫光波導及其形成方法 - Google Patents

玻璃系兆赫光波導及其形成方法 Download PDF

Info

Publication number
TWI794271B
TWI794271B TW107128724A TW107128724A TWI794271B TW I794271 B TWI794271 B TW I794271B TW 107128724 A TW107128724 A TW 107128724A TW 107128724 A TW107128724 A TW 107128724A TW I794271 B TWI794271 B TW I794271B
Authority
TW
Taiwan
Prior art keywords
thz
waveguide
cladding
core
soot
Prior art date
Application number
TW107128724A
Other languages
English (en)
Other versions
TW201919884A (zh
Inventor
明軍 李
蓋瑞理查 卓特
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW201919884A publication Critical patent/TW201919884A/zh
Application granted granted Critical
Publication of TWI794271B publication Critical patent/TWI794271B/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • G02B6/02038Core or cladding made from organic material, e.g. polymeric material with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12038Glass (SiO2 based materials)

Abstract

本文中揭示之玻璃系THz光波導(10)用以導引具有在自0.1 THz至10 THz之範圍內之THz頻率的光信號且包括被覆層(30)環繞之核心(20)。該核心具有在自30 μm至10 mm之範圍內的直徑D1且由具有折射率n1 之熔融矽石玻璃製成。該覆層由聚合物或玻璃或玻璃煙灰製成且具有折射率n2 < n1 及在自100 μm至12 mm之範圍內的外徑D2。可使用係纖維、陶瓷及煙灰系技術之擴展的製程形成該THz光波導。在實例中,該THz波導具有在100 GHz下之介電損耗Df < 0.005。

Description

玻璃系兆赫光波導及其形成方法
本申請案根據專利法主張2017年8月18日申請之美國臨時申請案序列號第62/547,342號之優先權權益,該美國臨時申請案之內容為本案之基礎且以全文引用方式併入本文中
本揭示案係關於光波導,且特定而言,係關於在兆赫波長下操作之玻璃系光波導及其形成方法。
光通信系統通常在具有大約1000 nm至2000 nm之波長之電磁波譜的近紅外波段下操作。其他類型之通信系統諸如蜂巢電話系統在自約3 KHz至60 GHz之電磁(electromagnetic; EM)波譜之輻射波段下操作,計劃將此範圍擴展至微波段中,其擴展至高達約300 GHz。已藉由可在大於100 GHz之頻率下操作之目前最佳技術之基於CMOS之EM輻射源及接收器的發展,部分地實現移至愈來愈高之RF及微波頻率。
EM波譜之兆赫波長範圍通常被認為在自0.1 THz (= 100 GHz)至10 THz (10,000 GHz)之範圍內,其中對應自由空間波長表示為λ0 且在自3 mm至0.03 mm之範圍內。在具有介電常數之實部εr 的介電材料中,波長λ藉由
Figure 02_image001
給定。更一般而言,介電常數表示為
Figure 02_image003
,其中εi 係介電常數之虛部或有損部分。因此,兆赫(「THz」)波導可用以限制THz光信號並將THz光信號自源位置輸送至接收器位置。對於100 GHz = 0.1 THz光信號,固體熔融矽石中之對應波長係約1.5 mm。在300 GHz = 0.3 THz處,對應波長係約0.5 mm。
大部分THz波導由金屬或塑膠製成且不由玻璃製成,此係由於大部分玻璃之傳輸在THz頻率下並非特別良好。雖然熔融矽石玻璃在THz頻率下具有相對良好傳輸,但其與金屬及塑膠相比相對易碎且因而使其難以形成商業上可行的THz波導產品。換言之,商業上可行的THz波導產品需要兼備足夠低損失之THz頻率範圍與機械穩健性,使得其可在廣範圍環境內操作達延長的時間段。
本揭示案之態樣係針對形成玻璃系THz波導之方法。可形成係以可撓式機械格式應用於熔融矽石、陶瓷、Al2 O3 或ULE材料之纖維、陶瓷及煙灰系技術之擴展的製程形成該等THz波導。在實例中,用以形成THz波導之該或該等材料具有在100 GHz下或在0.1 THz至10 THz之THz頻率範圍內之介電損耗
Figure 02_image005
本揭示案之一態樣係一種用於導引具有在自0.1 THz至10 THz之範圍內之THz頻率之光信號的THz波導。該THz波導包含:核心,其具有在自30 μm至10 mm之範圍內的直徑D1,該核心包含或組成為熔融矽石玻璃且具有折射率n1 ;及覆層,其緊密環繞該核心,該覆層包含或組成為聚合物或玻璃或玻璃煙灰且具有折射率n2 < n1 及在自100 μm至12 mm之範圍內的外徑D2。
本揭示案之另一態樣係一種THz資料傳輸系統,其包含:如上所述之THz波導且具有第一端及第二端;THz源,其可操作地耦接至該第一端;及THz接收器,其光學耦接至該第二端。
本揭示案之另一態樣係一種用於導引在自0.1 THz至10 THz之範圍內之THz頻率之THz信號的平面THz波導。該平面THz波導包含:核心,其藉由折射率n1 之熔融矽石片材界定且具有相對的第一及第二平面表面及在自30 μm至10 mm之範圍內的厚度;及覆層,其藉由分別安置成與該核心之該第一及第二平面表面緊密相鄰之第一及第二平面層界定,該第一及第二層包含聚合物或玻璃或玻璃煙灰,且具有折射率n2 < n1 ,其中該第一及第二層界定在自100 μm至12 mm之範圍內的外部尺寸D2。
本揭示案之另一態樣係一種形成可在自0.1 THz至10 THz之頻率範圍內操作之THz波導處可操作的THz波導的方法。該方法包含:用具有第二折射率n2 <n1 之預製體覆層環繞具有第一折射率n1 之熔融矽石預製體核心以形成THz波導預製體,其中該預製體覆層包含聚合物,或呈玻璃形式之熔融矽石及呈煙灰形式之熔融矽石中之至少一者;及拉製該THz波導預製體以形成該THz波導,其中該THz波導包含:a)波導核心,其由該熔融矽石預製體核心形成且具有在自30 μm至10 mm之範圍內的直徑D1,該核心包含或組成為熔融矽石玻璃且具有折射率n1 ,及b)波導覆層,其緊密環繞該波導核心且由該預製體覆層形成,該波導覆層具有在自100 μm至12mm之範圍內的外徑D2。
在以下詳細描述中闡述本發明之額外特徵及優點,且熟習此項技術者自該描述可容易地得出該等額外特徵及優點,或藉由實踐如在書面描述及其申請專利範圍以及隨附圖式中描述之實施例認識該等額外特徵及優點。應理解,前述一般描述及以下詳細描述兩者僅係例示性的,且意欲提供理解申請專利範圍之性質及特性的概述或框架。
現將詳細地參考本揭示案之各個實施例,在隨附圖式中說明該等實施例之實例。在任何可能的情況下,在整個圖式中使用相同或類似參考編號與符號指示相同或類似部分。圖式未必按比例繪製,且熟習此項技術者將認識到圖式已經簡化以說明本揭示案之關鍵態樣。
如下文闡述之申請專利範圍併入至此詳細描述中並構成此詳細描述之部分。
在一些圖中為了參考起見展示笛卡兒座標且不意欲在方向或定向上進行限制。
一般要求
第1A圖及第1B圖係如本文中揭示之THz波導10之兩個一般化實例的前正視圖,下文論述其特定實例。為了參考起見展示笛卡兒座標。亦在第1A圖中示出落在x-y平面中之徑向座標r。
THz波導10具有沿波導縱向向下(亦即,在如所示之z方向上)延伸之中心線AC。THz波導10具有具端面22及外表面24之核心區域(「核心」) 20,以及緊密環繞核心之外表面的覆層區域(「覆層」) 30,其中核心與覆層以中心線AC為中心。覆層30具有端面32及外表面34。端面22及32界定THz波導10之端面12。
核心20及覆層30可分別被稱為波導核心及波導覆層以與下文介紹及論述之預製體核心及預製體覆層區分開。
在第1A圖之實例中,核心20具有圓形剖面形狀,而覆層30具有環形或環狀剖面形狀,其中核心具有直徑D1且覆層具有外徑D2。覆層30具有環形寬度W = (D2- Dl)/2。在第1B圖之實例中,核心20具有矩形剖面形狀,而覆層30具有矩形環剖面形狀。亦可採用其他剖面形狀。
在實例中,核心20包含玻璃,且另外在實例中可僅由玻璃組成。核心20具有第一或核心介電常數ε1 。在實例中,覆層30包含玻璃且另外在實例中可僅由玻璃組成。在其他實例中,覆層30包含聚合物或僅由聚合物組成。覆層30具有第二或覆層介電常數ε2 <ε1 ,使得n1 < n2 ,其中
Figure 02_image007
且n1 係核心之折射率,而
Figure 02_image009
係覆層之折射率,且其中ε0 係自由空間之電容率。
在實例中,核心介電常數ε1 (及因此核心折射率n1 )可隨距中心線AC之距離變化而變化,例如隨第1A圖之半徑r變化而變化。核心20及覆層30之剖面形狀可分別如第1A圖及第1B圖中所示為圓或矩形,且亦可為條形或具有其他合理的剖面形狀。
存在多種本文中揭示之減小覆層30之介電常數ε2 使得ε2 <ε1 的方法。此等方法可包括堆疊及拉製毛細管,預製體之核心鑽孔、帶式鑄造,或將煙灰擠壓至HPFS核心層上,如下文更詳細地論述。
在實例中,防護塗層40緊密環繞覆層30之外表面34。在實例中,防護塗層40包含耐環境材料之一或多個層。在實例中,防護塗層40界定防止濕氣進入覆層30之氣密密封。在另一實例中,防護塗層40可為由金屬製成之連續導電層,其可改變THz波導10之模式性質。在實例中,防護塗層40防止外部物件與覆層30及核心20實體接觸,該實體接觸可造成傳輸損耗。防護塗層40亦可由經設計為保護THz波導10免受實體機械損傷之材料(例如,聚合物)製成。在實例中,可使用雷射剝離及雷射切割製程大批量製備波導端面12。
在實例中,防護塗層40包含可在用以形成THz波導10之拉製製程期間應用之薄的非氫鍵合材料。在實例中,使用電漿濺鍍工具,繼之以應用標準聚合物緩衝塗層以提供機械保護的工具,形成防護塗層40。電漿塗佈確保至用於覆層30之玻璃材料的氣密黏附。在實例中,可使用與覆層中之SiO2 外層反應以形成表層SiC的碳電漿。在另一實例中,藉由增加源材料之氣流,可注入電漿以產生單獨外塗層SiC、或類金剛石碳(diamondlike carbon; DLC)、或氮化矽SiNx 。在實例中,親水性單層亦可被視為類似六甲基二矽氮烷(Hexamethyldisilazane; HMDS)或等效物。
在實例中,THz波導10在100 GHz下具有介電損耗Df < 0.005,且係足夠可撓的以彎曲成曲線。在另一實例中,在100 GHz下之介電損耗係Df < 0.0025。
在實例中,核心20及覆層30由以下中之至少一者形成:呈玻璃形式之熔融矽石、呈煙灰形式之熔融矽石、Al2 O3 、超低膨脹(ultralow-expansion; ULE)玻璃或ULE煙灰,例如< 10% TiO2 。此處,「ULE」意指小於3×10-8 /℃之熱膨脹係數。
若煙灰用作材料,則其可經擠壓並且部分或完全燒結以自火焰水解反應製程驅散水及剩餘有機物。若其經部分燒結,則在燒結製程期間形成之空隙可填充有低損耗蒸氣或聚合物以提供具有良好機械斷裂韌度之「玻璃纖維」。
若採用熔融矽石,則覆層30可包含微結構100,如下文更詳細地描述。在實例中,微結構100包含縱向延伸之空氣線102 (亦稱作「氣體線」或「氣孔」或「空隙」),其可經處理以達成選擇覆層介電常數ε2 。微結構100亦可經組態以減小彎曲損耗。在另一實例中,核心20可具有徑向變化之介電常數ε1 (r) (例如,徑向梯度)。在另一實例中,可使用採用熔融矽石餌棒(bait rod)加經擠壓煙灰覆層之組合。在實例中,轉爐製程可用以產生密度變化,該密度變化轉化成核心介電常數ε1 變化及因此核心折射率n1 。在另一實例中,核心20及覆層30可由實心材料即無諸如空氣線或類似凹部、空腔等之微結構製成,諸如下文在第3A圖及第3B圖中所示。
光學纖維微結構經組態以在已知為自約2 × 105 GHz (波長為1500 nm)至6 × l05 GHz (波長為500 nm)之範圍內的光頻段下操作。光子晶體光學纖維係一種此類類型之光纖。然而,THz頻率在經由材料之信號傳輸方面顯著不同於光頻段。有關在THz頻率下具有低損耗之損耗機制及材料的資訊係稀少的。另外,僅存在少數傳統上已知之在THz波長下之低損耗材料。兩個此類材料係熔融矽石及聚四氟乙烯(polytetrafluoroethylene; PTFE),其中之每一者可具有在100 GHz下約0.005或更小之介電損耗Df
令人遺憾地,使用此等兩種材料中之任一者形成商業上可行的THz波導產品係有問題的。熔融矽石玻璃係易碎的,且因此可容易破碎。PTFE很難起作用,此係由於其他材料不易黏附至其,且其在高工作溫度下在尺寸上係不穩定的。屬軟玻璃(亦即,相對高熱膨脹係數及相對低熔融溫度)類別之材料不具有在有意義距離內輸送THz信號的足夠小的介電損耗Df
本文中揭示之THz波導10使用上述理論上具有良好THz傳輸性質但其機械性質材料迄今為止阻礙其在商業上可行的THz波導產品中使用的材料,諸如玻璃及PTFE,即,具有可接受的低介電損耗Df 同時亦具有穩健機械性質的材料。
光頻光子晶體光學纖維需要經配置成規則且精確陣列之導引結構。另一方面,THz波導對週期邊界條件並非尤其敏感,且因此其製造並非如此精確。此外,特定類型之微結構光學纖維具有可使折射率分佈曲線變形,從而致使更大損耗同時亦使波導過度剛性的實心覆層。
本文中揭示之THz波導10之實施例可具有煙灰系覆層30或使用高密度毛細管形成之覆層,其中覆層被薄防護塗層40環繞。此造成覆層30具有高空氣分數。覆層30之此實例結構提供更大機械可撓性及相對低損耗。在實例中,煙灰與由聚合物諸如PTFE製成之防護塗層40共同經擠壓或依序經擠壓,使得覆層具有玻璃纖維機械性質。用於防護塗層40之聚合物可具有低於固體熔融矽石之介電常數的介電常數。
藉由呈玻璃形式或煙灰形式之超純熔融矽石材料,以及藉由用低損耗聚合物或類似材料塗佈之微結構覆層,咸信所得之THz波導之損耗(例如,在100 GHz下之介電損耗Df < 0.005或在100 GHz下之Df < 0.0025)小於先前技術THz波導。另外,在形成用以形成本文中揭示之THz波導的THz波導預製體中使用對玻璃及煙灰材料兩者之擠壓會產生機械穩健性THz波導。另外,使用熔融矽石製造之實例THz波導具有足夠低熱膨脹係數(coefficient of thermal expansion; CTE)以使得使用雷射束LB (參見第1A圖)之雷射處理可用以在THz波導10上界定至少一個端面32而不會損壞THz波導。
實例波導
第2A圖至第2D圖係採用熔融矽石核心20及覆層30之THz波導10之四個不同實例實施例的x-y剖視圖,該覆層具有呈空氣線102形式之微結構100。空氣線102界定空氣填充分數F,其係空氣線102之總剖面積除以覆層之總剖面積。
第2A圖示出覆層30之實例,其中週期性地配置空氣線102。空氣線102具有直徑DM。較佳地,氣孔直徑DM遠小於THz波長λ,例如小於0.5λ。在此條件下,覆層30之折射率n2 係基於空氣填充分數F之氧化矽及空氣之折射率的加權平均值,且因此小於核心折射率n1 。高折射率核心20及低折射率覆層30界定其中藉由全內反射導引THz波的波導。對於對覆層折射率n2 之平均效應,空氣線102之週期性配置係不必需的,即,亦可使用非週期性或準週期性或隨機配置。此外,空氣線102不需要具有相同直徑或相同形狀。第2B圖說明實例THz波導10,其中覆層30具有大小及形狀不同之空氣線102的隨機配置。
為得到足夠低覆層折射率n2 ,空氣線102之直徑DM較佳地小於0.2λ,且更佳地小於0.1λ。空氣填充分數F較佳地大於2%,或更佳地大於5%,且甚至更佳地大於10%。
核心折射率n1 相對於覆層之平均折射率n2 之折射率改變的百分比表示為
Figure 02_image011
,且較佳地大於0.5%,更佳地大於2%,且甚至更佳地大於5%。
第2C圖示出其中空氣線102界定隨半徑變化之空氣填充分數F (亦即,F = F(r))的實例,其中密度隨半徑r逐漸增加。此有效地形成覆層30之梯度折射率(graded-index; GRIN)分佈曲線,其可針對高頻寬多方式傳輸經最佳化。
第2D圖示出其中覆層30具有相對大空氣線102,即,DM >> λ,諸如DM > 10λ之實例,在相鄰空氣線之間具有間隙G。若空氣線102之直徑DM遠大於波長λ,則THz波導100實際上具有空氣覆層。為避免在此情況下之隧穿損耗,相鄰空氣線102之間的間隙G應儘可能小,且較佳地小於波長λ。
第3A圖係採用固體氧化矽核心20及低折射率材料覆層30及環繞覆層之薄防護塗層40之實例THz波導10的剖視圖。用於覆層30之實例材料係低密度氧化矽,諸如氧化矽煙灰。覆層折射率n2 可為恆定的(第3A圖)或徑向成梯度,使得外部部分界定覆層30 (第3B圖)。用於覆層30之另一實例材料是低折射率聚合物材料,諸如聚甲基戊烯(polymethylpentene; TPX)、聚乙烯(polyethylene; PE)及聚四氟乙烯(polytetrafluoroethylene; PTFE或Teflon)。當聚合物用於覆層30時,不需要防護塗層40。由於THz波大部分在氧化矽核心20中導引,因此THz波導10與完全由聚合物材料製成之類似波導相比具有較低損耗且更穩定。
在實例中,THz波導10不具有金屬,且核心20與覆層30之間的折射率差△n界定波導性質。如上所述,在空氣中具有頻率f=100GHz之信號將需要尺寸為3mm或更小之波導,此取決於特定介電常數梯度,及信號之總的可接受損耗。雖然本文中提出之THz波導10的組態看起來類似於光學頻率波導結構,但構造材料係不同的且因此特定介電常數徑向變化係不同的。
第3C圖係印刷電路板組件之正視圖,其包含具有條形組態之實例THz波導10。核心20係平面的且包含具有各別頂部平面外表面24A及底部平面外表面24B的熔融矽石片材,而藉由分別安置成與核心之頂部平面外表面及底部平面外表面緊密相鄰的第一平面層30A及第二平面層30B,形成覆層30。核心20具有厚度D1,而覆層30界定外部尺寸(亦即,外部厚度)D2。在實例中,厚度D1在自30μm至10mm之範圍內,而外部尺寸D2在自100μm至12mm之範圍內。
在實例中,藉由將煙灰層帶式鑄造至熔融矽石片材之頂部平面外表面24A及底部平面外表面24B,形成覆層30之第一平面層30A及第二平面層30B。在實例中,熔融矽片材可由可自購得美國紐約康寧市之Corning公司之Corning® HPFS®玻璃製成。第3C圖之THz波導10示出為包括延伸穿過第一及第二包覆層30A且穿過核心20之導電特徵110,其可用以傳輸及接收THz信號116。在實例中,第3C圖之平面THz波導10可受包括與導電特徵110電接觸之電觸點122的印刷電路板(printed circuit board; PCB) 120支撐。在實例中,PCB 120經組態(例如,經由THz源及接收器IC,未示出)以使用導電特徵110傳輸及接收THz信號116。在實例中,導電特徵110軸向隔開距離L,其中L ≤ 20 mm。L之最大距離表示THz信號116可在THz波導10內在軸向方向上自一個導電特徵110至另一導電特徵例如自源至接收器(參見第10圖)行進之實例實際距離。
製造THz波導之方法
在一個實例中,可藉由堆疊及拉製方法製造本文中揭示之THz波導10。首先參考第4A圖,製造具有所要形狀例如圓形或六角形的核心玻璃棒220。如上所述,玻璃核心棒220可包含或組成為熔融矽石。核心玻璃棒220界定預製體核心且具有外表面222。
現在參考第4B圖,製備具有所要內徑及外徑之玻璃管224。
現在參考第4C圖,在製備核心玻璃棒220及玻璃管224之後,圍繞核心玻璃棒繞外表面22堆疊玻璃管以形成核心及管總成230。
現在參考第4D圖,將核心及管總成230插入至大玻璃套管240中以製造可用以形成THz波導10之預製體300。玻璃管224及玻璃套管240界定預製體覆層。預製體300及本文中論述之類似預製體在下文中被稱作「THz波導預製體」300。THz波導預製體300可諸如如下文結合第9圖所述經由習知纖維拉製塔使用此項技術中已知之技術拉製成THz波導10。
現在參考第5A圖至第5C圖之剖視圖描述用於製造可用以形成在覆層30中具有空氣線102之THz波導10之THz波導預製體300的方法。首先,參考第5A圖,形成核心玻璃棒220。然後,參考第5B圖,使用例如外部氣相沉積方法將玻璃煙灰250沉積至核心玻璃棒220上,以界定煙灰坯料260。接著使用已知技術燒結在中心具有核心玻璃棒220之煙灰坯料260,以形成如第5C圖中所示之THz波導預製體300,其中玻璃煙灰250變成經燒結(或部分燒結)玻璃252。在實例中,在爐中在自1300℃至1500℃之範圍內之溫度下藉由氣氛例如空氣、N2 、O2 、Ar、SO2 、Kr執行燒結。在燒結製程期間在玻璃煙灰250中陷獲氣體以形成具有諸如第5C圖之近距插圖II中示出之隨機分佈之氣泡302。可使用習知拉製塔及習知拉製技術將具有隨機氣泡之THz波導預製體300拉製至THz波導10上。在拉製製程期間,隨機分佈之氣泡縱向拉伸成上文所論述之覆層30中之隨機分佈之空氣線或氣體線102。
製造具有具空氣線102之覆層30之THz波導10的另一方法係首先製造具有核心區段20C及覆層區段30C之習知玻璃預製體300C,如第6A圖中所示。接著,可在覆層30C中使用機械鑽孔製程形成呈環形組態之圓筒形孔洞310,如第6B圖中所示。孔洞310之環界定環繞中心核心區段20C之低折射率覆層區段30C。在類似實例中,可在覆層30C燒結成玻璃之前在第5B圖之玻璃煙灰250中鑽第6B圖之孔洞結構。
在另一實例方法中,可藉由使用習知拉製塔將純氧化矽THz波導預製體300拉製成纖維,製造具有純氧化矽核心20及低折射率(亦即,n2 < n1 )聚合物覆層30之THz波導10纖維。在纖維離開拉製爐並冷卻至約室溫之後,接著將液體聚合物材料塗佈至纖維上且接著使用UV光源進行固化,以形成低折射率聚合物覆層30,其中氧化矽玻璃纖維界定核心20。由於THz波大部分在氧化矽核心20中經導引,因此THz波導與具有聚合物核心之THz波導相比可具有較低損耗且更穩定。
用於製造THz波導預製體之另一方法係使用煙灰擠壓製程,如第7A圖及第7B圖中示意性地說明。可藉由OVD製程產生氧化矽煙灰並收集為煙灰粉末。接著,使煙灰粉末與水、有機溶劑及黏合劑混合以形成煙灰糊漿SP。接著,將煙灰糊漿SP饋送至擠壓機器(未示出)並且將其推動穿過壓鑄模320以形成孔洞結構330,如第7A圖中所示。接著,將經擠壓孔洞結構330切割成具有所要長度之區段以形成煙灰糊漿預製體。煙灰漿料預製體經乾燥並且用化學品諸如氯進行清潔並在爐中燒結以形成玻璃THz波導預製體300,如第7B圖中所示。
在另一實例中,可藉由在低於完全形成緻密化玻璃所需溫度TG 的溫度TC 下固結氧化矽煙灰,製造用於覆層30之低密度氧化矽材料。如此形成之低密度氧化矽材料在本文中被稱為固結玻璃。在實例中,玻璃形成溫度TG 係約1500℃。可藉由使用多個熱緻密化步驟使多孔氧化矽煙灰成梯度,或製程變體或藉由部分地固結以驅散水從而致使煙灰顆粒橋接或頸縮的帶式鑄造,界定梯度密度覆層30。
第8圖係在溫度TC < TG 下形成之實例玻璃煙灰材料中之經燒結煙灰對未經燒結煙灰之分數FSS對照煙灰材料之介電常數ε1 的曲線圖。第8圖之曲線圖示出自上述部分燒結製程獲得之資料,其中煙灰材料之介電常數ε1 具有自針對空氣之
Figure 02_image015
開始至針對固體梯度之介電常數,因此高純度熔融矽石之介電常數ε1 = 3.895。
拉製製程
如上文所論述,可使用拉製製程形成THz波導10。第9圖係用於使用THz波導預製體300形成THz波導10之實例拉製系統500之示意圖。拉製系統500可包含用於加熱THz波導預製體300之拉製爐503。THz波導預製體通常具有與所要THz波導10相同之相對形狀,但要大得多,例如大25倍至100倍。THz波導預製體300之組態及各個拉製參數(拉製速度、溫度、張力、冷卻速率等)支配THz波導10之最終形態。
在製造製程中,經拉製THz波導預製體300離開拉製爐503且具有一般形式之所要THz波導10但為一個長的連續THz波導結構10L。在長THz波導結構10L離開拉製爐503之後,可使用非接觸式感測器506A及506B量測其尺寸。可藉由此項技術中已知之任何適合的張力應用機構將張力應用於長THz波導結構10L。
在量測長THz波導結構10L之尺寸之後,THz波導結構可穿過提供對導管緩慢冷卻的冷卻機構508。在一個實施例中,冷卻機構508填充有以比在環境溫度下之空氣中冷卻導管緩慢之速率促進導管冷卻的氣體。
一旦長THz波導結構10L離開冷卻機構508,其便可被切割成選擇長度以界定如所示之最終THz波導10,或者其可纏繞在線軸(未示出)上。
在實例中,可藉由執行使用THz波導預製體300之第一拉製製程以形成中間大小的玻璃預製體,且接著使用第二拉製製程再拉製中間大小的玻璃預製體以形成THz波導10,從而製造THz波導10。
應用
第10圖係包括如本文中揭示之THz波導10以及THz源610及THz接收器620之實例高速THz傳輸系統600的示意圖。在實例中,THz源610及THz接收器620各自包括積體電路(integrated circuit; IC) THz振盪器616,諸如矽CMOS THz振盪器晶片。在實例中,THz源610及THz接收器620可包括各別喇叭天線612及622,其可操作地相對於各別光學系統614及624安置。THz信號116經由THz波導10自THz源610傳輸至THz接收器620,在實例中,具有長度L ≤ 10 m,其中最大長度L表示對THz信號116在THz波導上之傳輸的實際限制。
THz信號116可具有數位或類比格式。對於數位格式,尤其易於接通及關斷THz源610。亦可採用使用零差或外差法之習知類比調變格式。
矽CMOS THz振盪器616可在高於傳統雷射之溫度環境下用於資料通信。特定地,CMOS THz振盪器616通常額定為功能可靠性高達150℃,而VCSEL雷射通常限於85℃。因此,第10圖之THz傳輸系統600之CMOS THz源/接收器組合非常適合在相對高溫環境中諸如在資料中心中緊挨著熱切換ASIC或在汽車中之晶片至晶片通信。
對熟習此項技術者將顯而易見的是,可在不偏離如在隨附申請專利範圍中定義之本揭示案之精神或範疇的情況下對如本文中所描述之本揭示案的較佳實施例做出各種修改。因此,本揭示案涵蓋在所附申請專利範圍及其等效物之範疇內提供之修改及變化。
10‧‧‧THz波導10L‧‧‧長的連續THz波導結構12‧‧‧波導端面20‧‧‧核心/核心區域20C‧‧‧核心區段22‧‧‧端面24‧‧‧外表面24A‧‧‧別頂部平面外表面24B‧‧‧底部平面外表面30‧‧‧覆層30A‧‧‧第一平面層30B‧‧‧第二平面層30C‧‧‧覆層區段32‧‧‧端面40‧‧‧薄防護塗層/防護塗層100‧‧‧THz波導102‧‧‧空氣線110‧‧‧導電特徵116‧‧‧THz信號120‧‧‧印刷電路板122‧‧‧電觸點220‧‧‧玻璃核心棒222‧‧‧外表面224‧‧‧玻璃管230‧‧‧管總成240‧‧‧玻璃套管250‧‧‧玻璃煙灰252‧‧‧經燒結(或部分燒結)玻璃260‧‧‧煙灰坯料300‧‧‧THz波導預製體300C‧‧‧習知玻璃預製體302‧‧‧氣泡310‧‧‧圓筒形孔洞/孔洞320‧‧‧壓鑄模330‧‧‧經擠壓孔洞結構500‧‧‧拉製系統503‧‧‧拉製爐506A‧‧‧非接觸式感測器506B‧‧‧非接觸式感測器508‧‧‧冷卻機構600‧‧‧高速THz傳輸系統610‧‧‧THz源612‧‧‧喇叭天線614‧‧‧光學系統616‧‧‧矽CMOS THz振盪器620‧‧‧THz接收器622‧‧‧喇叭天線624‧‧‧光學系統AC‧‧‧中心線D1‧‧‧直徑D2‧‧‧外徑DM‧‧‧直徑G‧‧‧間隙L‧‧‧距離LB‧‧‧雷射束W‧‧‧環形寬度SP‧‧‧煙灰糊漿ε1‧‧‧介電常數FSS‧‧‧分數
包括隨附圖式係為了提供進一步理解,且隨附圖式併入於本說明書中且構成本說明書之部分。該等圖式說明一或多個實施例),且與詳細描述一起解釋各個實施例之原理及操作。因而,將自以下結合隨附圖式進行之詳細描述更完整地理解本揭示案,在隨附圖式中:
第1A圖及第1B圖係本文中揭示之THz波導之兩個一般化實例的前正視圖;
第2A圖至第2D圖係採用熔融矽石核心及微結構覆層之THz波導之四個不同實例實施例的x-y剖視圖;第3A圖係採用固體氧化矽核心、低密度氧化矽覆層及環繞覆層之薄防護塗層之實例THz波導的剖視圖;第3B圖類似於第3A圖且說明梯度折射率覆層之實例;第3C圖係印刷電路板組件之正視圖,其包含支撐於印刷電路板上之實例條形THz波導且示出可用以經由THz波導發送及接收THz信號的導電特徵;第4A圖至第4D圖說明使用堆疊製程形成THz波導預製體之實例方法;第5A圖至第5C圖係說明使用燒結製程形成THz波導預製體之實例方法的剖視圖;第6A圖及第6B圖說明使用鑽孔製程形成THz波導預製體之實例方法;第7A圖及第7B圖說明經由壓鑄模擠壓煙灰糊漿以形成煙灰結構,且接著將煙灰結構切割成區段並燒結經擠壓煙灰結構區段,從而形成THz波導預製體的實例方法;第8圖係玻璃煙灰材料中之經燒結煙灰對未燒結煙灰之分數FSS對照煙灰材料之介電常數ε1的曲線圖,其說明煙灰材料之介電常數可如何隨分數FSS變化;第9圖係可用以自如本文中揭示之THz波導預製體形成THz波導之實例拉製系統的示意圖;及
第10圖係採用如本文中揭示之THz波導之實例高速THz傳輸系統的示意圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
10‧‧‧THz波導
12‧‧‧波導端面
20‧‧‧核心/核心區域
22‧‧‧端面
24‧‧‧外表面
30‧‧‧覆層
32‧‧‧端面
40‧‧‧薄防護塗層/防護塗層
AC‧‧‧中心線
D1‧‧‧直徑
D2‧‧‧外徑
LB‧‧‧雷射束
W‧‧‧環形寬度

Claims (39)

  1. 一種用於導引具有在自0.1兆赫(THz)至10THz之範圍內之一THz頻率之光信號的THz波導,其包含:一核心,其具有在自30μm至10mm之範圍內的一直徑D1,該核心包含熔融矽石玻璃且具有一折射率n1;及一覆層(cladding),其緊密環繞該核心,該覆層包含玻璃煙灰(glass soot)且具有一折射率n2(n2<n1)及在自100μm至12mm之範圍內的一外徑D2。
  2. 如請求項1所述之THz波導,其中該核心及該覆層各自另外包含以下中之至少一者:呈玻璃形式之熔融矽石、呈煙灰形式之熔融矽石、Al2O3、一超低膨脹(ULE)玻璃及一ULE煙灰,其中該ULE玻璃及該ULE煙灰各自具有小於3×10-8/℃之一熱膨脹係數。
  3. 如請求項2所述之THz波導,其中一中心線沿著該核心之一中心縱向向下延伸且其中該覆層具有具隨著距該中心線之距離增加而減小之一梯度的一折射率。
  4. 如請求項1所述之THz波導,其中該覆層包 含微結構。
  5. 如請求項4所述之THz波導,其中該微結構包含空氣線。
  6. 如請求項5所述之THz波導,其中空氣線係經隨機配置,其中該THz頻率對應於一THz波長λ,且其中該等空氣線具有一直徑DM<0.2λ。
  7. 如請求項5所述之THz波導,其中該等空氣線具有大於2%之一空氣填充分數。
  8. 如請求項5所述之THz波導,其中該THz頻率對應於一THz波長λ,且其中該等空氣線具有一直徑DM>10λ。
  9. 如請求項1所述之THz波導,其中該核心具有一圓形剖面形狀且該覆層具有一環形剖面形狀。
  10. 如請求項1所述之THz波導,其另外包含安置於該覆層上方且氣密密封該覆層之一防護塗層。
  11. 如請求項10所述之THz波導,其中該防護塗層由以下中之至少一者製成:一金屬、碳化矽、類金剛石碳及氮化矽。
  12. 如請求項1所述之THz波導,其中該核心及該覆層界定在100GHz之一頻率下之一介電損耗Df<0.005。
  13. 如請求項12所述之THz波導,其中在 100G Hz下,該介電損耗Df<0.0025。
  14. 一種THz資料傳輸系統,其包含:如請求項1所述之THz波導且具有一第一端及一第二端;一THz源,其可操作地耦接至該第一端;及一THz接收器,其光學耦接至該第二端。
  15. 如請求項14所述之THz資料傳輸系統,其中該THz源及該THz接收器分別包含第一及第二積體電路THz振盪器。
  16. 一種用於導引在自0.1兆赫(THz)至10THz之範圍內之一THz頻率之THz信號的平面THz波導,其包含:一核心,其藉由折射率n1之一熔融矽石片材界定且具有相對的第一及第二平面表面及在自30μm至10mm之範圍內的一厚度;及一覆層,其藉由分別安置成與該核心之該第一及第二平面表面緊密相鄰之第一及第二平面層界定,該第一及第二平面層包含玻璃煙灰,且具有一折射率n2(n2<n1),其中該第一及第二平面層界定在自100μm至12mm之範圍內的一外部尺寸D2。
  17. 如請求項16所述之平面THz波導,其中該覆層之該第一及第二平面層包含固結玻璃煙灰或至 少部分地燒結的玻璃煙灰。
  18. 一種印刷電路板組件,包含:如請求項16所述之平面THz波導;一印刷電路板,該平面THz波導被支撐在該印刷電路板上;及導電特徵,其穿過該覆層及該核心且與該印刷電路板可操作地接觸以產生及接收該等THz信號。
  19. 如請求項18所述之印刷電路板組件,其中該等導電特徵軸向隔開一距離L
    Figure 107128724-A0305-02-0029-1
    20mm。
  20. 一種形成可在自0.1兆赫(THz)至10THz之一頻率範圍內操作的一THz波導處可操作之一THz波導的方法,其包含以下步驟:用具有一第二折射率n2(n2<n1)之一預製體覆層環繞具有一第一折射率n1之一熔融矽石預製體核心以形成一THz波導預製體,其中該預製體覆層包含呈煙灰形式之熔融矽石;及拉製該THz波導預製體以形成該THz波導,其中該THz波導包含:a)一波導核心,其由該熔融矽石預製體核心形成且具有在自30μm至10mm之範圍內的一直徑D1,該核心包含熔融矽石玻璃且具有一折射率n1,及b)波導覆層,其緊密環繞該波導核心且由該 預製體覆層形成,該波導覆層具有在自100μm至12mm之範圍內的外徑D2。
  21. 如請求項20所述之方法,其另外包含以下步驟:在該波導覆層上方形成一防護塗層。
  22. 如請求項21所述之方法,其中該形成該防護塗層之步驟包括以下步驟:執行沉積碳化矽、氮化矽及類金剛石碳中之至少一者以界定該防護塗層的一電漿製程。
  23. 如請求項21所述之方法,其中該防護塗層包含一金屬。
  24. 如請求項21所述之方法,其中該防護塗層形成一氣密密封。
  25. 如請求項20所述之方法,其中該熔融矽石預製體核心係藉由一熔融矽石棒界定且其中該預製體覆層包含環繞該熔融矽石棒之熔融矽石毛細管。
  26. 如請求項20所述之方法,其中該預製體覆層係藉由在一熔融矽石棒之一外部部分中鑽縱向孔洞來界定,且其中該熔融矽石棒之一內部部分界定該預製體核心。
  27. 如請求項20所述之方法,其中預製體核心係藉由具有一外表面之一熔融矽石棒界定,且其中該預製體覆層係藉由在該熔融矽石之該外表面上沉積多 孔氧化矽煙灰且接著熱處理該多孔氧化矽煙灰而形成。
  28. 如請求項27所述之方法,其中熱處理該多孔氧化矽煙灰之步驟包含以下步驟:至少部分地燒結該多孔氧化矽煙灰以形成氧化矽玻璃。
  29. 如請求項27所述之方法,其中熱處理該多孔氧化矽煙灰之步驟包含以下步驟:在低於用於該多孔氧化矽煙灰之一玻璃形成溫度的一溫度下固結該多孔氧化矽煙灰。
  30. 如請求項27所述之方法,其中熱處理該多孔氧化矽煙灰之步驟經執行以使得該第二折射率n2具有一徑向梯度。
  31. 如請求項27所述之方法,其中使用一擠壓製程沉積該多孔氧化矽煙灰。
  32. 如請求項27所述之方法,其中使用一帶式鑄造製程沉積該多孔氧化矽煙灰。
  33. 如請求項27所述之方法,其中該多孔氧化矽煙灰在經熱處理之後包含微結構。
  34. 如請求項33所述之方法,其中該等微結構包含空氣線。
  35. 如請求項34所述之方法,其中空氣線係經隨機配置,其中該THz頻率對應於一THz波長λ, 且其中該等空氣線具有一直徑DM<0.2λ。
  36. 如請求項34所述之方法,其中該THz頻率對應於一THz波長λ,且其中該等空氣線具有一直徑DM>10λ。
  37. 如請求項20所述之方法,其另外包含以下步驟:執行對該THz波導之雷射處理以界定該THz波導之至少一個端面。
  38. 如請求項20所述之方法,其中該核心及該覆層界定在100GHz之一頻率下之一介電損耗Df<0.005。
  39. 如請求項38所述之方法,其中該核心及該覆層界定在100GHz之一頻率下之一介電損耗Df<0.0025。
TW107128724A 2017-08-18 2018-08-17 玻璃系兆赫光波導及其形成方法 TWI794271B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762547342P 2017-08-18 2017-08-18
US62/547,342 2017-08-18

Publications (2)

Publication Number Publication Date
TW201919884A TW201919884A (zh) 2019-06-01
TWI794271B true TWI794271B (zh) 2023-03-01

Family

ID=63643055

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107128724A TWI794271B (zh) 2017-08-18 2018-08-17 玻璃系兆赫光波導及其形成方法

Country Status (6)

Country Link
US (1) US11467334B2 (zh)
EP (1) EP3669218A1 (zh)
KR (1) KR20200038519A (zh)
CN (1) CN111051939B (zh)
TW (1) TWI794271B (zh)
WO (1) WO2019036706A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158083B (zh) * 2020-01-14 2021-10-15 华东师范大学 可弯曲的金属介质空芯太赫兹波导的制备方法
WO2021187972A1 (en) * 2020-03-19 2021-09-23 Petroliam Nasional Berhad (Petronas) Optical fiber based distributed electromagnetic sensor and method of fabrication thereof
CN111736256B (zh) * 2020-07-23 2022-05-20 西安邮电大学 一种2-5THz宽频六边形多孔纤芯超高双折射太赫兹光纤
CN112670692B (zh) * 2020-12-07 2022-01-25 电子科技大学 一种整体不可扭型太赫兹软波导结构及其制备方法
CN112993505B (zh) * 2021-02-24 2022-05-03 电子科技大学 太赫兹无跳丝共面波导单片及系统级电路低插损封装结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050242287A1 (en) * 2004-04-30 2005-11-03 Hosain Hakimi Optical terahertz generator / receiver
US20090097809A1 (en) * 2007-06-26 2009-04-16 Corporation De L'ecole Polytechnique De Montreal Ferroelectric all-polymer hollow bragg fibers for terahertz guidance

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3814499A (en) 1973-05-11 1974-06-04 Bell Telephone Labor Inc Optical cable including a plurality of single material fibers
US3932162A (en) * 1974-06-21 1976-01-13 Corning Glass Works Method of making glass optical waveguide
DE69917776D1 (de) 1998-06-09 2004-07-08 Crystal Fibre As Birkerod Faser mit photonischer bandlücke
WO2000065386A1 (en) 1999-04-23 2000-11-02 Massachusetts Institute Of Technology All-dielectric coaxial waveguide
US6418258B1 (en) 2000-06-09 2002-07-09 Gazillion Bits, Inc. Microstructured optical fiber with improved transmission efficiency and durability
KR100390642B1 (ko) 2001-06-08 2003-07-07 학교법인 포항공과대학교 테라헤르츠파 전송을 위한 플라스틱 광결정 섬유 및 그제조 방법
US6870987B2 (en) * 2002-08-20 2005-03-22 Lnl Technologies, Inc. Embedded mode converter
US7315678B2 (en) * 2004-12-13 2008-01-01 California Institute Of Technology Method and apparatus for low-loss signal transmission
US7440671B2 (en) 2006-05-19 2008-10-21 Asahi Glass Company, Limited Optical waveguide
US7409132B2 (en) 2006-07-27 2008-08-05 National Taiwan University Plastic waveguide for terahertz wave
US8175437B2 (en) 2008-02-07 2012-05-08 Corning Incorporated Microstructured transmission optical fiber
TWI483454B (zh) 2008-11-28 2015-05-01 Univ Nat Taiwan 傳遞兆赫波的波導
US8686813B2 (en) * 2009-08-29 2014-04-01 Northrop Grumman Systems Corporation Monolithically integrated active electronic circuit and waveguide structure for terahertz frequencies
US9040919B2 (en) * 2010-10-25 2015-05-26 Thomas E. Darcie Photomixer-waveguide coupling tapers
CN102162876A (zh) * 2011-05-23 2011-08-24 天津理工大学 一种可调的光子晶体光纤太赫兹波导
JP6034616B2 (ja) * 2011-09-09 2016-11-30 キヤノン株式会社 導波路及びその製造方法、ならびに電磁波分析装置
CN102338905B (zh) 2011-09-23 2013-01-23 江苏大学 一种传输太赫兹波的光纤
CN102354017B (zh) 2011-09-23 2013-05-08 江苏大学 一种太赫兹传输光纤
US9306263B2 (en) 2013-03-19 2016-04-05 Texas Instruments Incorporated Interface between an integrated circuit and a dielectric waveguide using a dipole antenna and a reflector
EP2958187B1 (en) 2014-05-28 2016-12-21 Spinner GmbH Flexible, bendable and twistable terahertz waveguide
CN106450627B (zh) 2015-08-06 2022-05-10 泰连公司 介电波导管

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050242287A1 (en) * 2004-04-30 2005-11-03 Hosain Hakimi Optical terahertz generator / receiver
US20090097809A1 (en) * 2007-06-26 2009-04-16 Corporation De L'ecole Polytechnique De Montreal Ferroelectric all-polymer hollow bragg fibers for terahertz guidance

Also Published As

Publication number Publication date
KR20200038519A (ko) 2020-04-13
US20200174180A1 (en) 2020-06-04
EP3669218A1 (en) 2020-06-24
WO2019036706A1 (en) 2019-02-21
US11467334B2 (en) 2022-10-11
CN111051939A (zh) 2020-04-21
CN111051939B (zh) 2023-09-19
TW201919884A (zh) 2019-06-01

Similar Documents

Publication Publication Date Title
TWI794271B (zh) 玻璃系兆赫光波導及其形成方法
EP1297368B1 (en) Method of manufacturing a plastic photonic crystal fiber for terahertz wave transmission
JPH10282348A (ja) 中空導波路およびその製造方法
US9440879B2 (en) Graphene coated optic fibers
WO2003052473A1 (en) Ring structures in optical fibres
EP1988065B1 (en) Apparatus for carrying out plasma chemical vapour deposition and method of manufacturing an optical preform
WO2020157768A1 (en) Method for manufacturing an optical fibre and the optical fibre thereof
JP5384679B2 (ja) 光ファイバ母材を製造する方法及び光ファイバ母材
Ibrahim et al. Design a Novel Top as Based Suspended Core Single Mode Photonic Crystal Fiber Optics Communications
JP2004020836A (ja) 光ファイバ及びその製造方法
EP3918386A1 (en) Ultra-low loss optical fiber
Fakhruldeen et al. An overview of photonic crystal fiber (PCF)
US20050220432A1 (en) Photonic crystal fiber capable of single-mode transmission and preform thereof
Liu et al. Transmission and confocal imaging characteristics of bendable ABS/Ag-coated hollow waveguide at low THz band
Islam et al. Low loss topas based porous core single mode photonic crystal fiber for THz communications
JPH09159845A (ja) 中空導波路およびその製造方法並びに光伝送方法
KR20160094247A (ko) 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체 및 그 제조 방법, 그리고 이를 이용한 펄스 레이저 장치, 그리고 이를 이용한 펄스 레이저
Yu et al. A new generation of plastic optical fibers and its functional exploiting
Ristic et al. Coating of Glass Microspheres
JP2003315588A (ja) ガラス中空光ファイバの製造方法
JP5702850B2 (ja) 光ファイバ母材
Chaudhuri et al. High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers
Yu et al. A NEW GENERATION OF POLYMER OPTICAL FIBERS
AU2002347207A1 (en) Ring structures in optical fibres