TWI793379B - Part processing planning method, part processing planning system using the same, part assembly planning method, part assembly planning system using the same, and computer program product thereof - Google Patents

Part processing planning method, part processing planning system using the same, part assembly planning method, part assembly planning system using the same, and computer program product thereof Download PDF

Info

Publication number
TWI793379B
TWI793379B TW108139710A TW108139710A TWI793379B TW I793379 B TWI793379 B TW I793379B TW 108139710 A TW108139710 A TW 108139710A TW 108139710 A TW108139710 A TW 108139710A TW I793379 B TWI793379 B TW I793379B
Authority
TW
Taiwan
Prior art keywords
tolerance
parts
processing
matching
preset
Prior art date
Application number
TW108139710A
Other languages
Chinese (zh)
Other versions
TW202103091A (en
Inventor
黃一萍
黃宣諭
楊淑慧
鄒博年
蔡明城
欉振坤
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to US16/727,662 priority Critical patent/US11846932B2/en
Publication of TW202103091A publication Critical patent/TW202103091A/en
Application granted granted Critical
Publication of TWI793379B publication Critical patent/TWI793379B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Abstract

A part processing planning method includes the following steps. Firstly, a specific tolerance of a nominal size of a part is obtained. Then, a preset tolerance of each of processes is obtained. Then, using a process dimension chain establishing technique, at least one preset tolerance associated with the specification tolerance from the preset tolerances is obtained. Then, at least one preset tolerance associated with the specification tolerance is accumulated to obtain a size cumulative tolerance. Then, whether the size cumulative tolerance meets the specification tolerance is determined. Then, at least one preset tolerance associated with the specification tolerance is redistributed when the cumulative tolerance does not meet the specification tolerance, such that the size cumulative tolerance is within the specification tolerance.

Description

零件加工規劃方法、應用其之零件加工規劃系 統,零件組裝規劃方法、應用其之零件組裝規劃系統及其電腦程式產品 Parts processing planning method, part processing planning system using it System, parts assembly planning method, parts assembly planning system and its computer program products

本揭露是有關於一種加工規劃方法、應用其之加工規劃系統,一種組裝規劃方法、應用其之組裝規劃系統及其電腦程式產品,且本揭露特別是有關於一種零件加工規劃方法、應用其之零件加工規劃系統,一種零件組裝規劃方法、應用其之零件組裝規劃系統及其電腦程式產品。 This disclosure relates to a processing planning method, a processing planning system using the same, an assembly planning method, an assembly planning system using the same, and a computer program product thereof, and the disclosure is particularly related to a part processing planning method, using the same Parts processing planning system, a part assembly planning method, a part assembly planning system using it, and a computer program product thereof.

習知方法中,數個第一零件及數個第二零件在加工完成後,會量測此些第一零件及此些第二零件的尺寸,然後挑選符合規格公差的第一零件與第二零件進行組配。然而,這樣的組配方式只能應用在符合規格公差的零件,未符合規格公差的零件只能以報廢處理。 In the conventional method, after several first parts and several second parts are processed, the dimensions of these first parts and these second parts will be measured, and then the first parts that meet the specification tolerances will be selected. A part is assembled with a second part. However, such an assembly method can only be applied to parts that meet the specification tolerance, and parts that do not meet the specification tolerance can only be disposed of as scrap.

因此,獲得能夠提高適配率的方法成為本技術領域業者努力的目標之一。 Therefore, obtaining a method that can improve the adaptation rate has become one of the goals of the practitioners in this technical field.

本揭露一實施例提出一種零件加工規劃方法,由一處理器進行運算執行。零件加工規劃方法包括以下步驟。取得一零件的一公稱尺寸的一規格公差;取得數個工序個別的預設公差;使用製程尺寸鏈建立技術,於此些預設公差中,取得與規格公差相關的至少一預設公差;累加與規格公差相關的至少一預設公差,以取得一尺寸累加公差;判斷尺寸累加公差是否符合規格公差;以及,當累加公差不符合規格公差,重新分配與規格公差相關的至少一預設公差,使尺寸累加公差符合規格公差。 An embodiment of the present disclosure provides a part processing planning method, which is executed by a processor. The part processing planning method includes the following steps. Obtain a specification tolerance of a nominal dimension of a part; obtain individual preset tolerances of several processes; use process dimension chain establishment technology to obtain at least one preset tolerance related to the specification tolerance among these preset tolerances; accumulating at least one preset tolerance related to the specification tolerance to obtain a dimensional cumulative tolerance; judging whether the dimensional cumulative tolerance conforms to the specification tolerance; and, when the cumulative tolerance does not conform to the specification tolerance, reassigning at least one preset tolerance related to the specification tolerance , so that the dimension accumulation tolerance meets the specification tolerance.

本揭露另一實施例提出一種零件加工規劃系統。零件加工規劃系統包括一加工資訊取得器加工資訊取得器及一加工資訊規劃器。加工資訊取得器用以:取得一公稱尺寸的一規格公差,及取得數個工序個別的預設公差。加工資訊規劃器用以:使用製程尺寸鏈建立技術,於此些預設公差中,取得與規格公差相關的至少一預設公差;累加與規格公差相關的至少一預設公差,以取得一尺寸累加公差;判斷尺寸累加公差是否符合規格公差;以及,當累加公差不符合規格公差,重新分配與規格公差相關的至少一預設公差,使尺寸累加公差符合規格公差。 Another embodiment of the present disclosure provides a part processing planning system. The part processing planning system includes a processing information obtainer, a processing information obtainer and a processing information planner. The processing information obtainer is used to: obtain a specification tolerance of a nominal dimension, and obtain individual default tolerances of several processes. The processing information planner is used to: use the process dimension chain establishment technology to obtain at least one preset tolerance related to the specification tolerance among the preset tolerances; accumulate at least one preset tolerance related to the specification tolerance to obtain a dimensional accumulation Tolerance; judging whether the dimensional accumulation tolerance conforms to the specification tolerance; and, when the accumulation tolerance does not conform to the specification tolerance, reassigning at least one preset tolerance related to the specification tolerance so that the dimensional accumulation tolerance conforms to the specification tolerance.

本揭露另一實施例提出一種零件組裝規劃方法,由一處理器進行運算執行。零件組裝規劃方法包括以下步驟。取得數 個第一零件個別的一第一實測尺寸及數個第二零件個別的一第二實測尺寸,其中各第一零件具有相同一第一公稱尺寸及一第一規格公差,而各第二零件具有相同一第二規格公差;剔除不符合第二規格公差且無法與此些第一實測尺寸之任一者適配的第二實測尺寸之第二零件;暫時移除此些第一實測尺寸中最接近第一公稱尺寸的第一零件;以及,對未剔除的此些第二零件與未暫時移除的此些第一零件進行此些第一量測尺寸與此些第二量測尺寸的一適配分析。 Another embodiment of the present disclosure provides a component assembly planning method, which is executed by a processor. The parts assembly planning method includes the following steps. Number of acquisitions A first measured dimension of a first part and a second measured dimension of a plurality of second parts, wherein each first part has the same first nominal size and a first specification tolerance, and each of the second parts has the same first nominal size and a first specification tolerance Two parts have the same second specification tolerance; reject second parts of the second measured dimension that do not meet the second specification tolerance and cannot fit any of these first measured dimensions; temporarily remove these first measured dimensions first parts of a measured size closest to the first nominal size; A fit analysis of the second measured dimensions.

本揭露另一實施例提出一種零件組裝規劃系統。零件組裝規劃系統包括一量測尺寸取得器及一組裝規劃器。量測尺寸取得器用以取得數個第一零件個別的一第一實測尺寸及數個第二零件個別的一第二實測尺寸,其中各第一零件具有相同一第一公稱尺寸及一第一規格公差,而各第二零件具有相同一第二規格公差。組裝規劃器用以:剔除不符合第二規格公差且無法與此些第一實測尺寸之任一者適配的第二實測尺寸之第二零件;暫時移除此些第一實測尺寸中最接近第一公稱尺寸的第一零件;及,對未剔除的此些第二零件與未暫時移除的此些第一零件進行此些第一量測尺寸與此些第二量測尺寸的一適配分析。 Another embodiment of the disclosure provides a parts assembly planning system. The component assembly planning system includes a measurement dimension acquirer and an assembly planner. The measurement size obtainer is used to obtain a first actual measured size of several first parts and a second actual measured size of several second parts respectively, wherein each first part has the same first nominal size and a A first specification tolerance, and each second component has the same second specification tolerance. an assembly planner to: reject second parts of a second measured dimension that do not conform to a second specification tolerance and that do not fit any of the first measured dimensions; temporarily remove the closest of the first measured dimensions first parts of a first nominal size; and, taking the first measured dimensions and the second measured dimensions of the second parts not rejected and the first parts not temporarily removed One-fit analysis of .

本揭露另一實施例提出一種電腦程式產品。電腦程式產品用以載入於一零件加工規劃系統,以執行一零件加工規劃方法。零件加工規劃方法包括:取得一零件的一公稱尺寸的一規格公差;取得數個工序個別的預設公差;使用製程尺寸鏈建立技術,於此些預設公差中,取得與規格公差相關的至少一預設公差;累加與規 格公差相關的至少一預設公差,以取得一尺寸累加公差;判斷尺寸累加公差是否符合規格公差;以及,當累加公差不符合規格公差,重新分配與規格公差相關的至少一預設公差,使尺寸累加公差符合規格公差。 Another embodiment of the disclosure provides a computer program product. The computer program product is used to be loaded into a part processing planning system to execute a part processing planning method. The part processing planning method includes: obtaining a specification tolerance of a nominal size of a part; obtaining individual preset tolerances of several processes; using the process dimension chain establishment technology to obtain the specification tolerances related to these preset tolerances At least one preset tolerance; cumulative and gauge At least one preset tolerance related to the standard tolerance to obtain a dimensional cumulative tolerance; determine whether the dimensional cumulative tolerance meets the standard tolerance; and, when the cumulative tolerance does not meet the standard tolerance, redistribute at least one preset tolerance related to the standard tolerance, so that Dimensional add-up tolerances meet specification tolerances.

本揭露另一實施例提出一種電腦程式產品。電腦程式產品用以載入於一零件組裝規劃系統,以執行一零件組裝規劃方法。零件組裝規劃方法包括:取得數個第一零件個別的一第一實測尺寸及數個第二零件個別的一第二實測尺寸,其中各第一零件具有相同一第一公稱尺寸及一第一規格公差,而各第二零件具有相同一第二規格公差;剔除不符合第二規格公差且無法與此些第一實測尺寸之任一者適配的第二實測尺寸之第二零件;暫時移除此些第一實測尺寸中最接近第一公稱尺寸的第一零件;以及,對未剔除的此些第二零件與未暫時移除的此些第一零件進行此些第一量測尺寸與此些第二量測尺寸的一適配分析。 Another embodiment of the disclosure provides a computer program product. The computer program product is used to be loaded into a part assembly planning system to execute a part assembly planning method. The part assembly planning method includes: obtaining a first measured dimension of several first parts and a second measured dimension of several second parts, wherein each first part has the same first nominal size and a first size tolerance, and each second part has the same second size tolerance; second zero of second measured dimensions that do not meet second size tolerance and cannot fit any of these first measured dimensions temporarily remove the first parts of the first measured dimensions that are closest to the first nominal size; A fit analysis of the first measured dimensions and the second measured dimensions.

為了對本揭露之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to have a better understanding of the above and other aspects of the present disclosure, the following specific embodiments are described in detail in conjunction with the attached drawings as follows:

100:零件加工規劃系統 100: Parts processing planning system

110:輸入器 110: input device

111:設定介面 111: Setting interface

120:加工資訊取得器 120: Process information acquirer

130:加工資訊規劃器 130: Processing information planner

200:零件組裝規劃系統 200:Parts Assembly Planning System

210:量測儀器 210:Measuring instrument

220:量測尺寸取得器 220: Measuring size obtainer

230:組裝規劃器 230:Assemble the planner

T M1,U T M2,U T M3,U T M4,U T D1,U T D1',U T D2,U T D2',U T d,U :上偏差 T M 1 ,U , T M 2 ,U , T M 3 ,U , T M 4 ,U , T D 1 ,U , T D 1 ', U , T D 2 ,U , T D 2' ,U , T d, U : upper deviation

T M1,L T M2,L T M3,L T M4,L T D1,L T D1',L T D2,L T D2',L T d,L :下偏差 T M 1 ,L , T M 2 ,L , T M 3 ,L , T M 4 ,L , T D 1 ,L , T D 1 ', L , T D 2 ,L , T D 2 ',L , T d, L : lower deviation

D1:第一公稱尺寸 D1: The first nominal size

D2:第二公稱尺寸 D2: Second nominal size

d:加工預留量 d: reserved amount for processing

G1:間隙 G1: Gap

L1、L2、Ld:迴路 L1, L2, Ld: Loop

M1:第一工序 M1: the first process

M2:第二工序 M2: Second process

M3:第三工序 M3: The third process

M4:第四工序 M4: The fourth process

M1a、M2a、M3a、M4a、D1a、D1b:點 M1a, M2a, M3a, M4a, D1a, D1b: points

M1b、M2b、M3b、M4b:箭頭 M1b, M2b, M3b, M4b: Arrows

P1、P1_1、P1_2、P1_11、P1_19、P1_20:第一零件 P1, P1_1, P1_2, P1_11, P1_19, P1_20: first part

P2、P2_1~P2_4、P2_18~P2_20:第二零件 P2, P2_1~P2_4, P2_18~P2_20: Second part

S105~S160、S205~S235、S305~S325:步驟 S105~S160, S205~S235, S305~S325: steps

SB:量測基準面 SB: measuring datum

S1:第一加工面 S1: the first processing surface

S2:第二加工面 S2: Second processing surface

S3:第三加工面 S3: The third processing surface

S4:第一加工面 S4: The first processing surface

S1,P1:第一量測尺寸 S1 , P1 : the first measurement size

S1,P2:第二量測尺寸 S1 , P2 : Second measurement size

第1圖繪示依照本揭露一實施例之零件加工規劃系統的功能方塊圖。 FIG. 1 is a functional block diagram of a part processing planning system according to an embodiment of the present disclosure.

第2圖繪示依照本揭露一實施例之設定介面的示意圖。 FIG. 2 shows a schematic diagram of a setting interface according to an embodiment of the present disclosure.

第3圖繪示依照本揭露一實施例之待規劃之第一零件的示意圖。 FIG. 3 is a schematic diagram of a first part to be planned according to an embodiment of the present disclosure.

第4圖繪示第1圖之零件加工規劃系統進行零件加工規劃方法的流程圖。 FIG. 4 shows a flow chart of the part processing planning method of the part processing planning system in FIG. 1 .

第5圖繪示依照本揭露一實施例之零件組裝規劃系統的功能方塊圖。 FIG. 5 is a functional block diagram of a component assembly planning system according to an embodiment of the present disclosure.

第6圖繪示依照本揭露一實施例之第一零件與第二零件組裝前的示意圖。 FIG. 6 shows a schematic diagram of the first part and the second part before assembly according to an embodiment of the present disclosure.

第7圖繪示第6圖之第一零件與第二零件的組裝圖。 Fig. 7 shows the assembly drawing of the first part and the second part in Fig. 6.

第8A圖繪示第6圖之數個第一零件的數個第一量測尺寸的分佈圖。 FIG. 8A shows a distribution diagram of several first measured dimensions of several first parts in FIG. 6 .

第8B圖繪示第6圖之數個第二零件的數個第二量測尺寸的分佈圖。 FIG. 8B shows a distribution diagram of several second measured dimensions of several second parts in FIG. 6 .

第9及10圖說明第5圖之零件組裝規劃系統進行零件組裝規劃方法的過程圖。 Figures 9 and 10 illustrate the process diagram of the parts assembly planning method performed by the parts assembly planning system shown in Figure 5 .

請參照第1~3圖,第1圖繪示依照本揭露一實施例之零件加工規劃系統100的功能方塊圖,第2圖繪示依照本揭露一實施例之設定介面111的示意圖,而第3圖繪示依照本揭露一實施例之待規劃之第一零件P1的示意圖。 Please refer to Figures 1-3. Figure 1 shows a functional block diagram of a part processing planning system 100 according to an embodiment of the present disclosure, and Figure 2 shows a schematic diagram of a setting interface 111 according to an embodiment of the present disclosure, and Figure 2 shows a schematic diagram of a setting interface 111 according to an embodiment of the present disclosure. FIG. 3 shows a schematic diagram of a first part P1 to be planned according to an embodiment of the present disclosure.

如第1圖所示,零件加工規劃系統100包括輸入器110、加工資訊取得器120及加工資訊規劃器130。輸入器110例如是顯示器、鍵盤、觸控面板、滑鼠或其組合,或者為其它可接 收操作者輸入資訊的裝置。輸入器110可提供設定介面111,以接收操作者的輸入。當輸入器110為顯示器時,設定介面111為輸入器110所提供的一設定畫面。加工資訊取得器120及/或加工資訊規劃器130例如是採用半導體製程形成的電路(circuit)結構。加工資訊取得器120與加工資訊規劃器130可整合成單一元件,如處理器(processor),或加工資訊取得器120與加工資訊規劃器130之至少一者可整合至處理器中。 As shown in FIG. 1 , the part processing planning system 100 includes an input device 110 , a processing information obtainer 120 and a processing information planner 130 . The input device 110 is, for example, a display, a keyboard, a touch panel, a mouse or a combination thereof, or other A device that receives operator input information. The input unit 110 can provide a setting interface 111 for receiving input from an operator. When the input device 110 is a display, the setting interface 111 is a setting screen provided by the input device 110 . The processing information acquirer 120 and/or the processing information planner 130 is, for example, a circuit structure formed by a semiconductor process. The processing information acquirer 120 and the processing information planner 130 can be integrated into a single component, such as a processor, or at least one of the processing information acquirer 120 and the processing information planner 130 can be integrated into a processor.

操作者可透過設定介面111,輸入第一零件P1的一公稱尺寸的一規格公差以及數個工序M個別的一預設公差。加工資訊取得器120用以:取得第一零件P1的公稱尺寸的規格公差;以及,取得各工序個別的預設公差。加工資訊規劃器130用以:使用製程尺寸鏈建立技術,於此些預設公差中,取得與規格公差相關的至少一預設公差;累加相關之至少一預設公差,以取得一尺寸累加公差;判斷尺寸累加公差是否符合規格公差;以及,當尺寸累加公差不符合規格公差,重新分配相關之至少一預設公差,使尺寸累加公差符合規格公差。 Through the setting interface 111 , the operator can input a specification tolerance of a nominal dimension of the first part P1 and a preset tolerance of several processes M individually. The processing information obtainer 120 is used to: obtain the specification tolerance of the nominal size of the first part P1; and obtain individual default tolerances of each process. The processing information planner 130 is used to: use the process dimensional chain establishment technology to obtain at least one preset tolerance related to the specification tolerance among the preset tolerances; accumulate the at least one preset tolerance related to obtain a dimensional accumulation tolerance ; Judging whether the dimensional accumulation tolerance meets the specification tolerance; and, when the dimensional accumulation tolerance does not meet the specification tolerance, redistribute at least one related preset tolerance so that the dimensional accumulation tolerance meets the specification tolerance.

綜上,在實際製作第一零件P1前,零件加工規劃系統100可以由一處理器進行運算執行,此處理器例如為一電腦;在運算方式上,由處理器或電腦預先規劃每個第一零件P1之公稱尺寸之預設公差,使公稱尺寸之預設公差符合設計要求(如圖面)的規格公差,如此可提高實際完成零件成品的良率。 To sum up, before the actual production of the first part P1, the part processing planning system 100 can be executed by a processor, such as a computer; The preset tolerance of the nominal size of a part P1, so that the preset tolerance of the nominal size meets the specification tolerance of the design requirements (such as the picture), so that the yield rate of the actual finished part can be improved.

在本實施例中,如第3圖所示,第一零件P1以二個公稱尺寸表示,如第一公稱尺寸D1及第二公稱尺寸D2,然本揭露實施例不限定公稱尺寸的數量及標示位置。此外,每個公稱尺寸的規格公差例如是包含上偏差及下偏差。例如,如第1圖所示,第一公稱尺寸D1的規格公差包含上偏差T D1,U 及下偏差T D1,L ,而第二公稱尺寸D2的規格公差包含上偏差T D2,U 及下偏差T D1,L 。如第1圖所示,每個預設公差例如是包含上偏差及下偏差,如第一工序M1之預設公差包含上偏差T M1,U 及下偏差T M1,L ,第二工序M2之預設公差包含上偏差T M2,U 及下偏差T M2,L ,第三工序M3之預設公差包含上偏差T M3,U 及下偏差T M3,L ,而第四工序M4之預設公差包含上偏差T M4,U 及下偏差T M4,L In this embodiment, as shown in Figure 3, the first part P1 is represented by two nominal sizes, such as the first nominal size D1 and the second nominal size D2, but the embodiment of the present disclosure does not limit the number of nominal sizes and Mark the location. In addition, the specification tolerance of each nominal dimension includes an upper deviation and a lower deviation, for example. For example, as shown in Figure 1, the specification tolerance of the first nominal dimension D1 includes the upper deviation T D 1 , U and the lower deviation T D 1 , L , while the specification tolerance of the second nominal dimension D2 includes the upper deviation T D 2 , U and lower deviation T D 1 , L . As shown in Figure 1, each preset tolerance includes upper deviation and lower deviation, for example, the preset tolerance of the first process M1 includes upper deviation T M 1 , U and lower deviation T M 1 , L , the second process The default tolerance of M2 includes upper deviation T M 2 , U and lower deviation T M 2 , L , the default tolerance of the third process M3 includes upper deviation T M 3 , U and lower deviation T M 3 , L , and the fourth The preset tolerance of the process M4 includes an upper deviation TM 4 , U and a lower deviation TM 4 , L .

在一實施例中,預設公差的上偏差例如是正偏差,而預設公差的下偏差例如是負偏差;或者,預設公差的上偏差及下偏差皆為正偏差或負偏差。此外,預設公差的上偏差的絕對值與下偏差的絕對值可相等,然亦可相異。 In one embodiment, the upper deviation of the predetermined tolerance is, for example, a positive deviation, and the lower deviation of the predetermined tolerance is, for example, a negative deviation; or, both the upper deviation and the lower deviation of the predetermined tolerance are positive deviation or negative deviation. In addition, the absolute value of the upper deviation and the lower deviation of the preset tolerance can be equal, or they can be different.

以下係以第4圖進一步舉例說明。第4圖繪示第1圖之零件加工規劃系統100進行零件加工規劃方法的流程圖。 The following is a further example in Figure 4. FIG. 4 shows a flow chart of the part processing planning method performed by the part processing planning system 100 in FIG. 1 .

在步驟S105中,加工資訊取得器120取得第一零件P1的公稱尺寸的規格公差。在本實施例中,操作者可透過設定介面111先設定第一零件P1的公稱尺寸的規格公差。例如,透過設定介面111輸入第3圖之第一公稱尺寸D1的規格公差,如上偏差T D1,U 及下偏差T D1,L ,以及第二公稱尺寸D2的規格公差,如上偏差 T D2,U 及下偏差T D2,L 。然後,加工資訊取得器120可透過設定介面111取得此些設定參數。 In step S105 , the processing information acquirer 120 acquires the specification tolerance of the nominal size of the first part P1 . In this embodiment, the operator can first set the specification tolerance of the nominal size of the first part P1 through the setting interface 111 . For example, through the setting interface 111, input the specification tolerance of the first nominal dimension D1 in Fig. 3, such as the upper deviation T D 1 , U and the lower deviation T D 1 , L , and the specification tolerance of the second nominal dimension D2, such as the upper deviation T D 2 , U and lower deviation T D 2 , L . Then, the processing information obtainer 120 can obtain these setting parameters through the setting interface 111 .

如第2圖所示,操作者更可透過設定介面111設定製作第一零件P1之各工序的加工法、機台編號、量測基準面、加工面、加工方向、加工預留量及預設公差等。加工法例如是車削、銑削、磨削或其它各種加工法。機台編號例如是可執行前述加工法的工具機,其中不同機台編號表示不同功能的工具機或相同功能但不同加工精度的工具機。量測基準面為零件在各工序的加工參考面。加工面為零件在各工序被加工的表面。加工方向可以是對加工面進行加工的刀具進給方向。加工預留量例如是進行精加工的預留量。預設公差表示工序在加工能力範圍能達成的加工精度,此與加工法、機台及/或加工路徑長度等有關。 As shown in Fig. 2, the operator can also set the processing method, machine number, measurement reference plane, processing surface, processing direction, processing reserve amount, and reservation through the setting interface 111 for each process of making the first part P1. Set tolerances, etc. The processing method is, for example, turning, milling, grinding or other various processing methods. The machine number is, for example, a machine tool that can perform the aforementioned machining method, wherein different machine numbers represent machine tools with different functions or machine tools with the same function but different machining accuracy. The measurement datum plane is the processing reference plane of the parts in each process. The processed surface is the surface of the part that is processed in each process. The machining direction may be the feed direction of the tool for machining the machining surface. The machining allowance is, for example, an allowance for finishing machining. The preset tolerance indicates the processing accuracy that the process can achieve within the processing capacity range, which is related to the processing method, machine tool and/or processing path length, etc.

在另一實施例中,加工資訊取得器120也可從網際網路或雲端的大數據資料庫中取得完成本揭露實施例之零件加工規劃方法所需的設定參數,如前述設定介面111所需要的設定值。在其它實施例中,加工資訊取得器120可從網際網路或雲端的大數據資料庫中取得完成本揭露實施例之零件加工規劃方法所需的參數,並自動顯示在設定介面111中。在此例子中,操作者可手動調整此些自動設定值。 In another embodiment, the processing information obtainer 120 can also obtain the setting parameters required to complete the part processing planning method of the disclosed embodiment from the Internet or a cloud-based big data database, as required by the aforementioned setting interface 111 set value. In other embodiments, the processing information obtainer 120 can obtain the parameters required to complete the part processing planning method of the disclosed embodiment from the Internet or a cloud-based big data database, and automatically display them in the setting interface 111 . In this example, an operator can manually adjust these automatic settings.

在步驟S110中,在透過設定介面111設定完成後,加工資訊取得器120透過設定介面111取得數個工序個別的預設公差。如第3圖所示,本揭露實施例之第一零件P1的製作係以四個 工序為例說明,如第一工序M1、第二工序M2、第三工序M3及第四工序M4,然本揭露實施例不限定工序數。視需求/加工規劃而定,工序的數量可以是二個、三個、五個或更多。 In step S110 , after the setting is completed through the setting interface 111 , the processing information acquirer 120 obtains individual preset tolerances of several processes through the setting interface 111 . As shown in Figure 3, the manufacture of the first part P1 of the embodiment of the present disclosure is based on four The process is described as an example, such as the first process M1 , the second process M2 , the third process M3 and the fourth process M4 , but the embodiment of the present disclosure does not limit the number of processes. Depending on requirements/processing planning, the number of operations can be two, three, five or more.

如第3圖所示,以第一工序M1來說,其以量測基準面SB為基準,加工第一加工面S1,其中點M1a表示量測基準面SB,而箭頭M1b表示第一加工面S1。以第二工序M2來說,其以第一加工面S1為基準,加工第二加工面S2,其中點M2a表示第一加工面S1,而箭頭M2b表示第二加工面S2。以第三工序M3來說,其以量測基準面SB為基準,加工第三加工面S3,其中點M3a表示量測基準面SB,而箭頭M3b表示第三加工面S3。以第四工序M4來說,其以量測基準面SB為基準,加工第四加工面S4,其中點M4a表示量測基準面SB,而箭頭M4b表示第四加工面S4。其中,第三加工面S3至第四加工面S4的尺寸為加工預留量d。依照零件加工規劃,第一工序M1~第四工序M4依序執行,以依序完成第一加工面S1、第二加工面S2、第三加工面S3及第四加工面S4,其中加工完成第三加工面S3後,第一零件P1保留加工預留量d,接著在第四工序M4中切除加工預留量d,而加工出第四加工面S4。 As shown in Figure 3, taking the first process M1 as a reference, it processes the first processing surface S1 based on the measurement reference plane SB, where the point M1a represents the measurement reference plane SB, and the arrow M1b represents the first processing surface S1. Taking the second process M2 as an example, it processes the second processing surface S2 based on the first processing surface S1, wherein the point M2a represents the first processing surface S1, and the arrow M2b represents the second processing surface S2. Taking the third process M3 as an example, it processes the third processing surface S3 based on the measurement reference plane SB, wherein the point M3a represents the measurement reference plane SB, and the arrow M3b represents the third processing surface S3. Taking the fourth process M4 as an example, it processes the fourth processing surface S4 based on the measurement reference plane SB, wherein the point M4a represents the measurement reference plane SB, and the arrow M4b represents the fourth processing surface S4. Wherein, the size of the third processing surface S3 to the fourth processing surface S4 is the processing reserve d. According to the part processing plan, the first process M1 to the fourth process M4 are executed sequentially to complete the first processing surface S1, the second processing surface S2, the third processing surface S3 and the fourth processing surface S4, among which the processing is completed After the third processing surface S3, the first part P1 retains the machining allowance d, and then cuts off the machining allowance d in the fourth process M4 to process the fourth machining surface S4.

在步驟S115中,使用製程尺寸鏈建立技術,於此些預設公差中,取得與規格公差相關的至少一預設公差。在本實施例中,如第3圖所示,加工資訊規劃器130可採用迴路法,建立第一公稱尺寸D1及第二公稱尺寸D2的尺寸鏈迴路,然後依據迴路取得與規格公差相關的預設公差。 In step S115, at least one preset tolerance related to the specification tolerance is obtained among the preset tolerances by using the process dimension chain establishment technology. In this embodiment, as shown in FIG. 3 , the processing information planner 130 can use the loop method to establish a dimension chain loop of the first nominal dimension D1 and the second nominal dimension D2, and then obtain predictions related to specification tolerances according to the loop. Set tolerances.

以第一公稱尺寸D1之第一迴路L1舉例來說,如第3圖所示,從第一公稱尺寸D1之二端點D1a及D1b往上/往前行進,過程中遇到箭頭就轉彎,遇到圓點維持直行,最終於點M1a交會,而形成第一迴路L1。第一迴路L1行經過的第一工序M1及第二工序M2定義為與第一公稱尺寸D1相關的設定工序,即第一公稱尺寸D1的規格公差(T D1,U /T D1,L )與第一工序M1的預設公差(T M1,U /T M1,L )及第二工序M2的預設公差(T M2,U /T M2,L )相關。換言之,第一工序M1的預設公差(T M1,U /T M1,L )及第二工序M2的預設公差(T M2,U /T M2,L )的數值能決定第一公稱尺寸D1規劃後的公差符合或不符合規格公差。 Take the first loop L1 of the first nominal dimension D1 as an example, as shown in Figure 3, go up/forward from the two endpoints D1a and D1b of the first nominal dimension D1, and turn when encountering an arrow during the process. Keep going straight when encountering a circle, and finally meet at point M1a to form the first loop L1. The first process M1 and the second process M2 passed by the first loop L1 are defined as the setting process related to the first nominal dimension D1, that is, the specification tolerance of the first nominal dimension D1 ( T D 1 ,U / T D 1 ,L ) is related to the preset tolerance ( TM 1 , U / T M 1 , L ) of the first process M1 and the preset tolerance ( TM 2 , U / T M 2 , L ) of the second process M2. In other words, the value of the default tolerance ( TM 1 , U / T M 1 , L ) of the first process M1 and the preset tolerance ( TM 2 , U / T M 2 , L ) of the second process M2 can determine the The planned tolerance of a nominal dimension D1 meets or does not meet the specification tolerance.

以第二公稱尺寸D2之第二迴路L2舉例來說,如第3圖所示,從第二公稱尺寸D2之二端點D2a及D2b往上/往前行進,過程中遇到箭頭就轉彎,遇到圓點維持直行,最終於箭頭M4b交會,而形成第二迴路L2。第二迴路L2行經過的第四工序M4定義為與第二公稱尺寸D2相關的設定工序,即第二公稱尺寸D2的規格公差(T D2,U /T D2,L )與第四工序M4的預設公差(T M4,U /T M4,L )相關。換言之,第四工序M4的預設公差(T M4,U /T M4,L )的數值能決定第二公稱尺寸D2規劃後的公差符合或不符合規格公差。 Take the second loop L2 of the second nominal size D2 as an example, as shown in Figure 3, go up/forward from the two endpoints D2a and D2b of the second nominal size D2, and turn when encountering an arrow during the process. Keep going straight when encountering a dot, and finally meet at the arrow M4b to form the second loop L2. The fourth process M4 passed by the second loop L2 is defined as the setting process related to the second nominal dimension D2, that is, the specification tolerance ( T D 2 , U / T D 2 , L ) of the second nominal dimension D2 is related to the fourth process The preset tolerance of M4 ( TM 4 , U / TM 4 , L ) is relevant. In other words, the value of the preset tolerance ( TM 4 , U / TM 4 , L ) of the fourth process M4 can determine whether the planned tolerance of the second nominal dimension D2 meets or does not meet the specification tolerance.

在步驟S120中,加工資訊規劃器130累加與公稱尺寸之規格公差相關之預設公差,以取得一尺寸累加公差。 In step S120 , the processing information planner 130 accumulates preset tolerances related to specification tolerances of nominal dimensions to obtain a dimensional accumulation tolerance.

以第一公稱尺寸D1舉例來說,與第一公稱尺寸D1之規格公差(T D1,U /T D1,L )相關的是第一工序M1的預設公差 (T M1,U /T M1,L )及第二工序M2的預設公差(T M2,U /T M2,L ),因此加工資訊規劃器130累加相關之第一工序M1的預設公差(T M1,U /T M1,L )及第二工序M2的預設公差(T M2,U /T M2,L ),以取得第一尺寸累加公差。累加後,第一尺寸累加公差之上偏差T D1',U 等於第一工序M1之上偏差T M1,U 與第二工序M2之上偏差T M2,U 之和(即,T D1',U =T M1,U +T M2,U ),而第一尺寸累加公差之下偏差T D1',L 等於第一工序M1之下偏差T M1,L 與第二工序M2之下偏差T M2,L 之和(即,T D1',L =T M1,L +T M2,L )。 Taking the first nominal dimension D1 as an example, the specification tolerance ( T D 1 , U / T D 1 , L ) of the first nominal dimension D1 is related to the preset tolerance of the first process M1 ( T M 1 , U / T M 1 ,L ) and the default tolerance of the second process M2 ( TM 2 ,U / T M 2 ,L ), so the processing information planner 130 accumulates the relevant default tolerance of the first process M1 ( TM 1 , U / T M 1 , L ) and the preset tolerance of the second process M2 ( TM 2 , U / T M 2 , L ), to obtain the cumulative tolerance of the first dimension. After accumulation, the deviation T D 1 ′, U above the accumulative tolerance of the first dimension is equal to the sum of the deviation T M 1 , U above the first process M1 and the deviation T M 2 , U above the second process M2 (that is, T D 1 ', U = T M 1 , U + T M 2 , U ), and the deviation T D 1 ', L equal to the deviation T M 1 under the first process M1 , L and the second process The sum of deviations T M 2 ,L below M2 (ie, T D 1 ′,L = T M 1 ,L + T M 2 ,L ).

以第二公稱尺寸D2舉例來說,與第二公稱尺寸D2之規格公差(T D2,U /T D2,L )相關的是只有第四工序M4的預設公差(T M4,U /T M4,L ),因此加工資訊規劃器130以第四工序M4的預設公差(T M4,U /T M4,L )做為第二尺寸累加公差。亦即,第二尺寸累加公差之上偏差T D2',U 等於第四工序M4之上偏差T M4,U (即,T D2',U =T M4,U ),而第二尺寸累加公差之下偏差T D2',L 等於第四工序M4之下偏差T M4,L (即,T D2',L =T M4,L )。 Taking the second nominal dimension D2 as an example, the specification tolerance ( T D 2 , U / T D 2 , L ) of the second nominal dimension D2 is only the preset tolerance of the fourth process M4 ( T M 4 , U / T M 4 , L ), therefore, the processing information planner 130 uses the default tolerance ( T M 4 , U / T M 4 , L ) of the fourth process M4 as the second dimension accumulation tolerance. That is, the deviation T D 2 ′, U above the cumulative tolerance of the second dimension is equal to the deviation T M 4 , U above the fourth process M4 (that is, T D 2 ′, U = T M 4 , U ), and the second The deviation T D 2 ′,L under the accumulated size tolerance is equal to the deviation T M 4 ,L under the fourth process M4 (ie, T D 2 ′,L = T M 4 ,L ).

在步驟S125中,加工資訊規劃器130判斷尺寸累加公差是否符合規格公差,即判斷尺寸累加公差是否落於規格公差之範圍內。 In step S125 , the processing information planner 130 determines whether the dimensional accumulation tolerance meets the specification tolerance, that is, determines whether the dimensional accumulation tolerance falls within the range of the specification tolerance.

以第一尺寸累加公差舉例來說,加工資訊規劃器130判斷第一尺寸累加公差之上偏差T D1',U 是否符合第一公稱尺寸D1的規格公差之上偏差T D1,U ,以及判斷第一尺寸累加公差之下偏差T D1',L 是否符合第一公稱尺寸D1的規格公差之下偏差T D1,L Taking the cumulative tolerance of the first dimension as an example, the processing information planner 130 judges whether the deviation T D 1 ′, U above the cumulative tolerance of the first dimension complies with the deviation T D 1 , U above the specification tolerance of the first nominal dimension D1, and It is judged whether the deviation T D 1 ′, L below the accumulative tolerance of the first dimension meets the deviation T D 1 , L below the specification tolerance of the first nominal dimension D1.

以第二尺寸累加公差舉例來說,加工資訊規劃器130判斷第二尺寸累加公差之上偏差T D2',U 是否符合第二公稱尺寸D2的規格公差之上偏差T D2,U ,以及判斷第二尺寸累加公差之下偏差T D2',L 是否符合第二公稱尺寸D2的規格公差之下偏差T D2,L Taking the cumulative tolerance of the second dimension as an example, the processing information planner 130 judges whether the deviation T D 2 ′, U above the cumulative tolerance of the second dimension conforms to the deviation T D 2 , U above the specification tolerance of the second nominal dimension D2, and It is judged whether the deviation T D 2 ′, L below the accumulative tolerance of the second dimension meets the deviation T D 2 , L below the specification tolerance of the second nominal dimension D2.

若尺寸累加公差符合規格公差,流程進入步驟S135;若否,流程進入步驟S130。 If the accumulated size tolerance meets the specification tolerance, the process goes to step S135; if not, the process goes to step S130.

在步驟S130中,由於尺寸累加公差未符合規格公差,因此加工資訊規劃器130重新分配相關之預設公差,使尺寸累加公差符合規格公差。 In step S130 , since the dimensional accumulation tolerance does not meet the specification tolerance, the processing information planner 130 reassigns the relevant default tolerance so that the dimensional accumulation tolerance meets the specification tolerance.

以第一尺寸累加公差舉例來說,若第一尺寸累加公差之上偏差T D1',U 符合第一公稱尺寸D1的規格公差之上偏差T D1,U 外或第一尺寸累加公差之下偏差T D1',L 符合第一公稱尺寸D1的規格公差之下偏差T D1,L 外,表示與第一公稱尺寸D1相關的第一工序M1之預設公差及第二工序M2之預設公差可能造成第一零件P1製作完成後其第一公稱尺寸D1不合格(即,製作後零件,其第一公稱尺寸D1的公差超出規格公差範圍)。因此,加工資訊規劃器130重新分配相關之第一工序M1之預設公差及第二工序M2之預設公差,使第一尺寸累加公差符合第一公稱尺寸D1之規格公差。 Taking the cumulative tolerance of the first dimension as an example, if the deviation above the cumulative tolerance of the first dimension T D 1 ′, U conforms to the deviation T D 1 above the specification tolerance of the first nominal dimension D1 , U is outside or within the cumulative tolerance of the first dimension The lower deviation T D 1 ′, L conforms to the specification tolerance of the first nominal dimension D1. The lower deviation T D 1 , L , indicates the preset tolerance of the first process M1 and the second process M2 related to the first nominal dimension D1. The preset tolerance may cause the first nominal dimension D1 of the first part P1 to be unqualified (ie, the tolerance of the first nominal dimension D1 of the manufactured part exceeds the specification tolerance range). Therefore, the processing information planner 130 redistributes the default tolerances of the first process M1 and the second process M2 so that the cumulative tolerance of the first dimension conforms to the standard tolerance of the first nominal dimension D1.

加工資訊規劃器130可依據第一公稱尺寸D1之規格公差(T D1,U /T D1,L )重新分配與第一公稱尺寸D1相關的第一工序M1之預設公差(T M1,U /T M1,L )及第二工序M2之預設公差(T M2,U /T M2,L )。 The processing information planner 130 can redistribute the default tolerance ( T M 1 , U / T M 1 , L ) and the default tolerance of the second process M2 ( TM 2 , U / T M 2 , L ).

在其中一種分配方法中,加工資訊規劃器130可將第一公稱尺寸D1之規格公差(T D1,U /T D1,L )平均分配給第一工序M1之預設公差(T M1,U /T M1,L )及第二工序M2之預設公差(T M2,U /T M2,L )。 In one of the distribution methods, the processing information planner 130 can evenly distribute the specification tolerance ( T D 1 , U / T D 1 , L ) of the first nominal dimension D1 to the default tolerance ( T M 1 , U / T M 1 , L ) and the default tolerance of the second process M2 ( TM 2 , U / T M 2 , L ).

例如,加工資訊規劃器130將第一公稱尺寸D1之上偏差T D1,U 之一半(即,T D1,U /2)設定給第一工序M1之預設公差之上偏差T M1,U (即,使T M1,U =T D1,U /2),且同樣將第一公稱尺寸D1之之上偏差T D1,U 之一半(即,T D1,U /2)設定給第二工序M2之預設公差之上偏差T M2,U (即,使T M2,U =T D1,U /2),以及加工資訊規劃器130將第一公稱尺寸D1之下偏差T D1,L 之一半(即,T D1,L /2)設定給第一工序M1之預設公差之下偏差T M1,L (即,使T M1,L =T D1,L /2),且同樣將第一公稱尺寸D1之下偏差T D1,L 之一半設定給第二工序M2之預設公差之下偏差T M2,L (即,使T M2,L =T D1,L /2)。 For example, the processing information planner 130 sets half of the deviation T D 1 , U above the first nominal dimension D1 (ie, T D 1 , U /2) to the deviation T M 1 above the preset tolerance of the first process M1 , U (that is, make T M 1 , U = T D 1 , U /2), and also deviate from the first nominal dimension D1 above T D 1 , half of U (that is, T D 1 , U /2 ) is set to the deviation T M 2 ,U above the default tolerance of the second process M2 (that is, make T M 2 ,U = T D 1 ,U /2), and the processing information planner 130 converts the first nominal dimension D1 The lower deviation T D 1 , half of L (that is, T D 1 , L /2) is set to the lower deviation T M 1 , L of the preset tolerance of the first process M1 (that is, T M 1 , L = T D 1 , L /2), and also set half of the deviation T D 1 , L under the first nominal dimension D1 to the deviation T M 2 , L under the preset tolerance of the second process M2 (that is, make T M 2 , L = T D 1 , L /2).

在另一種分配方法中,加工資訊規劃器130可依據第一工序M1的加工長度(即第3圖所示之點M1a至箭頭M1b之長度)與第二工序M2的加工長度(即第3圖所示之點M2a至箭頭M2b之長度)的一比例,將第一公稱尺寸D1之規格公差(T D1,U /T D1,L )依比例分配給第一工序M1之預設公差(T M1,U /T M1,L )及第二工序M2之預設公差(T M2,U /T M2,L )。以第一工序M1的加工長度與第二工序M2的加工長度的比例為3:2(本揭露實施例不以此為限)舉例來說,加工資訊規劃器130可將第一公稱尺寸D1之上偏差T D1,U 之五分之三(即,T D1,U ×3/5)設定給第一工序M1之預設公差之上偏差T M1,U (即,使T M1,U =T D1,U ×3/5),且將第一公稱尺寸D1之上偏差T D1,U 之 之五分之二(即,T D1,U ×2/5)設定給第二工序M2之預設公差之上偏差T M2,U (即,使T M2,U =T D1,U ×2/5),以及加工資訊規劃器130將第一公稱尺寸D1之下偏差T D1,L 之五分之三(即,T D1,L ×3/5)設定給第一工序M1之預設公差之下偏差T M1,L (即,使T M1,L =T D1,L ×3/5),且將第一公稱尺寸D1之下偏差T D1,L 之之五分之二(即,T D1,L ×2/5)設定給第二工序M2之預設公差之下偏差T M2,L (即,使T M2,L =T D1,L ×2/5)。 In another allocation method, the processing information planner 130 can be based on the processing length of the first process M1 (ie the length from the point M1a to the arrow M1b shown in Figure 3) and the processing length of the second process M2 (ie A ratio of the length from the point M2a to the arrow M2b shown), the specification tolerance ( T D 1 , U / T D 1 , L ) of the first nominal dimension D1 is distributed proportionally to the preset tolerance of the first process M1 ( T M 1 , U / T M 1 , L ) and the default tolerance of the second process M2 ( TM 2 , U / T M 2 , L ). Assuming that the ratio of the processing length of the first process M1 to the processing length of the second process M2 is 3:2 (the embodiment of the present disclosure is not limited thereto), for example, the processing information planner 130 can use the first nominal dimension D1 Three-fifths of the upper deviation T D 1 , U (i.e., T D 1 , U × 3/5) is set to the upper deviation T M 1 , U of the preset tolerance of the first process M1 (i.e., make T M 1 , U = T D 1 , U × 3/5), and the deviation T D 1 above the first nominal dimension D1 , two-fifths of U (ie, T D 1 , U × 2/5) is set to The deviation T M 2 , U above the default tolerance of the second process M2 (that is, make T M 2 , U = T D 1 , U × 2/5), and the processing information planner 130 converts the first nominal dimension D1 The lower deviation T D 1 , three-fifths of L (ie, T D 1 , L × 3/5) is set to the lower deviation T M 1 , L of the preset tolerance of the first process M1 (ie, make T M 1 ,L = T D 1 ,L ×3/5), and the deviation T D 1 under the first nominal dimension D1 , two-fifths of L (ie, T D 1 ,L ×2/5) is set to The deviation T M 2 ,L under the preset tolerance of the second process M2 (that is, T M 2 ,L = T D 1 ,L ×2/5).

另外,加工資訊規劃器130可採用類似或相同於前述調整方法,重新分配相關之預設公差,使第二尺寸累加公差符合規格公差,即使第二尺寸累加公差落於規格公差之範圍內。 In addition, the processing information planner 130 may adopt a similar or identical adjustment method to redistribute the relevant default tolerances, so that the second dimensional accumulation tolerance meets the specification tolerance, even if the second dimensional accumulation tolerance falls within the range of the specification tolerance.

在另一實施例中,一工序之預設公差可能與多個尺寸累加公差有關。在此情況下,變動該工序的預設公差會導致該多個尺寸累加公差連動,如此可能導致原本符合規格公差的尺寸累加公差變成不符合規格公差(即,尺寸累加公差落於規格公差之範圍外)。對此,加工資訊規劃器130可列出數個累加公差與數個規格公差的線性聯立方程式組。藉由數學上的線性代數方法,可解出符合規格公差的預設公差。 In another embodiment, the preset tolerance of a process may be related to the cumulative tolerance of multiple dimensions. In this case, changing the default tolerance of the process will cause the multiple dimension accumulation tolerances to be interlocked, which may cause the dimension accumulation tolerances that originally meet the specification tolerances to become non-compliant with the specification tolerances (that is, the dimension accumulation tolerances fall within the range of specification tolerances outside). For this, the processing information planner 130 can list several linear simultaneous equations of several cumulative tolerances and several standard tolerances. By using the linear algebra method in mathematics, the preset tolerance that meets the specification tolerance can be solved.

在步驟S135中,加工資訊取得器120透過設定介面111取得數個工序個別的加工預留量。在本實施例中,如第3圖所示,只有第三工序M3設定有加工預留量d,然此非用以限制本揭露實施例。視製程而定,數個工序之至少一者可設定有相同或不同的加工預留量。 In step S135 , the processing information obtainer 120 obtains individual processing reservation amounts of several processes through the setting interface 111 . In this embodiment, as shown in FIG. 3 , only the third process M3 is set with a processing reserve d, but this is not intended to limit the embodiment of the present disclosure. Depending on the manufacturing process, at least one of the several processes can be set with the same or different processing allowances.

在步驟S140中,加工資訊規劃器130使用製程尺寸鏈建立技術,建立如第3圖所示加工預留量d之尺寸鏈迴路,然後依據尺寸鏈迴路,於此些預設公差中,取得與加工預留量d相關的至少一預設公差。 In step S140, the processing information planner 130 uses the process dimensional chain establishment technology to establish the dimensional chain loop of the machining allowance d shown in FIG. At least one preset tolerance related to the processing allowance d.

舉例來說,如第3圖所示,從加工預留量d之右端點往右行進且從加工預留量d之左端點往上/往前行進,最終於圓點M4a交會,而形成預留量迴路Ld。預留量迴路Ld行經過的第三工序M3及第四工序M4定義為與加工預留量d相關的設定工序,即加工預留量d與第三工序M3的預設公差(T M3,U /T M3,L )及第四工序M4的預設公差(T M4,U /T M4,L )相關。換言之,第三工序M3的預設公差(T M3,U /T M3,L )及第四工序M4的預設公差(T M4,U /T M4,L )的數值能決定或判斷加工預留量d是否足夠(若不足,則規劃後的公差不符合規格公差,即規劃後的公差落於規格公差之範圍外)。 For example, as shown in Fig. 3, it travels rightward from the right end point of the processing reserve d and goes up/forward from the left end point of the processing reserve d, and finally intersects at the circle point M4a to form a predetermined Reserve loop Ld. The third process M3 and the fourth process M4 passed by the reserve amount circuit Ld are defined as the set processes related to the processing reserve d, that is, the preset tolerance between the processing reserve d and the third process M3 ( T M 3 , U / T M 3 , L ) and the preset tolerance of the fourth process M4 ( TM 4 , U / T M 4 , L ) are related. In other words, the value of the preset tolerance ( TM 3 , U / T M 3 , L ) of the third process M3 and the preset tolerance ( TM 4 , U / T M 4 , L ) of the fourth process M4 can determine or Judging whether the processing reserve d is sufficient (if insufficient, the planned tolerance does not meet the specification tolerance, that is, the planned tolerance falls outside the range of the specification tolerance).

在步驟S145中,加工資訊規劃器130累加與加工預留量d相關之預設公差,以取得一預留量累加公差。 In step S145 , the processing information planner 130 accumulates the preset tolerance related to the processing reserve d, so as to obtain a reserve accumulation tolerance.

在本實施例中,與加工預留量d相關的是第三工序M3的預設公差(T M3,U /T M3,L )及第四工序M4的預設公差(T M4,U /T M4,L ),因此加工資訊規劃器130累加相關之第三工序M3的預設公差(T M3,U /T M3,L )及第四工序M4的預設公差(T M4,U /T M4,L ),以取得預留量累加公差。累加後,預留量累加公差之上偏差T d,U 等於第三工序M3之上偏差T M3,U 與第四工序M4之上偏差T M4,U 之和(即,T d,U =T M3,U +T M4,U ),而預留量累加公差之下偏差T d,L 等於第三工序 M3之下偏差T M3,L 與第四工序M4之下偏差TM4,L之和(即,T d,L =TM3,L+TM4,L)。 In this embodiment, what is related to the processing reserve d is the preset tolerance ( TM 3 , U / T M 3 , L ) of the third process M3 and the preset tolerance ( TM 4 , L ) of the fourth process M4 U / T M 4 , L ), so the processing information planner 130 accumulates the default tolerance ( T M 3 , U / T M 3 , L ) of the relevant third process M3 and the default tolerance of the fourth process M4 ( T M 4 ,U / T M 4 ,L ), to obtain the accumulative tolerance of reserved amount. After the accumulation, the deviation T d, U above the cumulative tolerance of the reserved amount is equal to the sum of the deviation T M 3 , U above the third process M3 and the deviation T M 4 , U above the fourth process M4 ( that is, T d, U = T M 3 , U + T M 4 , U ), and the deviation T d, L below the accumulative tolerance of the reserved amount is equal to the deviation T M 3 under the third process M3 , L and the deviation T M4 below the fourth process M4 , the sum of L (ie, T d,L =T M3 , L +T M4 , L ).

在步驟S150中,加工資訊規劃器130判斷加工預留量d是否大於預留量累加公差。若是,流程進入步驟S160;若否,流程進入步驟S155。 In step S150 , the processing information planner 130 determines whether the processing reserve d is greater than the reserve accumulation tolerance. If yes, the process goes to step S160; if not, the process goes to step S155.

在步驟S160中,當第一零件P1的加工預留量d大於預留量累加公差,加工資訊規劃器130可對第一零件P1進行成本分析。在步驟S160前(如在步驟S127),加工資訊規劃器130可先使用尺寸鏈建立技術,取得與規格尺寸相關的工序,進行各工序尺寸的計算,並依據各工序尺寸進行成本分析。詳言之,第一零件P1的成本隨工序數、各工序的加工法、預設公差、機台編號等而變。加工資訊規劃器130可在加工預留量大於預留量累加公差的前提下,提出成本最小化下的加工法、預設公差及/或機台編號的變更建議。 In step S160 , when the processing reserve d of the first part P1 is greater than the accumulated tolerance of the reserve, the processing information planner 130 may perform cost analysis on the first part P1 . Before step S160 (for example, in step S127), the processing information planner 130 can first use the dimension chain establishment technology to obtain the processes related to the specifications and dimensions, calculate the dimensions of each process, and perform cost analysis based on the dimensions of each process. In detail, the cost of the first part P1 varies with the number of processes, the processing method of each process, the preset tolerance, the machine number and so on. The processing information planner 130 can propose a modification suggestion for the processing method, preset tolerance and/or machine number under the condition that the reserved amount of processing is greater than the cumulative tolerance of the reserved amount.

在步驟S155中,重新調整調整加工預留量d,使加工預留量d大於預留量累加公差。如此,加工預留量d足以讓規劃後公差(如第四加工面S4的公差)符合規格公差。 In step S155, readjust and adjust the processing reserve d, so that the processing reserve d is greater than the reserve accumulation tolerance. In this way, the machining reserve d is sufficient to allow the planned tolerance (such as the tolerance of the fourth machining surface S4 ) to meet the specification tolerance.

在其中一種調整調整加工預留量d的方法中,不管預留量累加公差的上偏差T d,U 與下偏差T d,L 為正或負,將加工預留量d之值設定成等於或大於上偏差T d,U 之絕對值與下偏差T d,L 之絕對值中的最大者。舉例來說,若預留量累加公差的上偏差T d,L 及下偏差T d,U 分別為+0.2及-0.2,則加工資訊規劃器130將加工預留量d之值設定成等於或大於-0.2的絕對值,即設成0.2。若預留量 累加公差的上偏差T d,U 及下偏差T d,L 分別為-0.2及-0.5,則加工資訊規劃器130將加工預留量d之值設定成等於或大於-0.5的絕對值,即設成0.5。此外,當預留量累加公差的上偏差與下偏差之任一者都不為負,如皆為正偏差,則加工資訊規劃器130將加工預留量d之值設定成大於0之值。舉例來說,若預留量累加公差的上偏差及下偏差分別為+0.5及+0.2,則加工資訊規劃器130將加工預留量d之值設定成大於0.5即可,如0.6、0.7或更大值。 In one of the methods of adjusting the processing reserve d, regardless of whether the upper deviation T d, U and the lower deviation T d, L of the accumulated tolerance of the reserve are positive or negative, the value of the processing reserve d is set equal to Or greater than the maximum of the absolute value of the upper deviation T d, U and the absolute value of the lower deviation T d, L. For example, if the upper deviation T d, L and the lower deviation T d, U of the accumulative tolerance of the reserved amount are +0.2 and -0.2 respectively, then the processing information planner 130 sets the value of the reserved amount d to be equal to or The absolute value greater than -0.2 is set to 0.2. If the upper deviation T d, U and the lower deviation T d, L of the cumulative tolerance of the reserve amount are -0.2 and -0.5 respectively, then the processing information planner 130 sets the value of the processing reserve d to be equal to or greater than -0.5 The absolute value is set to 0.5. In addition, when neither the upper deviation nor the lower deviation of the reserved amount accumulative tolerance is negative, if both are positive deviations, then the processing information planner 130 sets the value of the processing reserved amount d to a value greater than 0. For example, if the upper deviation and the lower deviation of the cumulative tolerance of the reserved amount are +0.5 and +0.2 respectively, then the processing information planner 130 can set the value of the reserved amount d to be greater than 0.5, such as 0.6, 0.7 or greater value.

在步驟S160中,當第一零件P1的各公稱尺寸的累加公差都符合規格公差,加工資訊規劃器130可對第一零件P1進行成本分析。在步驟S160前(如在步驟S152),加工資訊規劃器130可先使用尺寸鏈建立技術,取得與規格尺寸相關的工序,進行各工序尺寸的計算,並依據各工序尺寸進行成本分析。詳言之,第一零件P1的成本隨工序數、各工序的加工法、預設公差、機台編號等而變。加工資訊規劃器130可在第一零件P1的各公稱尺寸的累加公差都符合規格公差的前提下,提出成本最小化下的加工法、預設公差及/或機台編號的變更建議。在一實施例中,可在尺寸累加公差符合規格公差(步驟S125的結果「是」)以及加工預留量d大於預留量累加公差(步驟S150的結果「是」)的前提下,進行成本分析,然亦可二者中其中一者成立的前提下進行成本分析。 In step S160 , when the accumulated tolerances of the nominal dimensions of the first part P1 all meet the specification tolerance, the processing information planner 130 can perform cost analysis on the first part P1 . Before step S160 (for example, in step S152 ), the processing information planner 130 can use the dimensional chain establishment technology to obtain the processes related to the specifications and dimensions, calculate the dimensions of each process, and perform cost analysis based on the dimensions of each process. In detail, the cost of the first part P1 varies with the number of processes, the processing method of each process, the preset tolerance, the machine number and so on. The processing information planner 130 can propose a cost-minimizing processing method, preset tolerances and/or machine number changes on the premise that the accumulated tolerances of the nominal dimensions of the first part P1 meet the specification tolerances. In one embodiment, under the premise that the cumulative size tolerance meets the specification tolerance (the result of step S125 is "Yes") and the processing reserve d is greater than the cumulative tolerance of the reserved amount (the result of step S150 is "Yes"), the cost However, the cost analysis can also be carried out on the premise that one of the two is established.

雖然前述實施例之第一零件P1係以二個公稱尺寸為例說明,然在其它實施例中,第一零件P1的公稱尺寸可以是一個或二個以上,如三個、四個等任意數量。此外,本揭露實施例之 第一零件P1的結構不受第3圖所限制,視設計而定,第一零件P1可以具有不同於第3圖的結構。此外,在另一實施例中,第3圖之相同結構的第一零件P1,其工序數、各工序的加工方向、各工序的加工長度及/或加工預留量等都可視需求進行不同規劃,不受前述實施例所限制。在另一實施例中,若無需求,也可省略加工預留量。 Although the first part P1 in the foregoing embodiment is described as an example with two nominal sizes, in other embodiments, the first part P1 may have one or more than two nominal sizes, such as three, four, etc. any amount. In addition, the embodiment of the present disclosure The structure of the first part P1 is not limited by FIG. 3 . Depending on the design, the first part P1 may have a structure different from that in FIG. 3 . In addition, in another embodiment, for the first part P1 with the same structure as shown in Figure 3, the number of processes, the processing direction of each process, the processing length of each process and/or the reserved amount for processing, etc. can be different according to requirements. Planning is not limited by the foregoing embodiments. In another embodiment, if there is no need, the processing reserve may also be omitted.

綜上,本揭露實施例之零件加工規劃方法係採用處理器(例如為一電腦)進行運算執行。在運算中,零件加工規劃系統100先建立製程尺寸線迴路,於公稱尺寸的迴路中,找出與公稱尺寸相關的預設公差,並在累加與公稱尺寸相關的預設公差後,判斷累加公差值是否符合規格公差。運算中,各工序的預設公差係可調整的,以使各累加公差符合所有規格公差。此運算過程必須處理大量數據,以人為方式不可能完成,因此必須藉由處理器(例如為一電腦)來進行運算方能執行。 To sum up, the part processing planning method of the disclosed embodiment uses a processor (for example, a computer) to perform calculations and execute. In the calculation, the part processing planning system 100 first establishes the process dimension line loop, finds out the preset tolerance related to the nominal size in the loop of the nominal size, and judges the cumulative tolerance after accumulating the preset tolerance related to the nominal size. Whether the difference is within the specification tolerance. During calculation, the preset tolerances of each process can be adjusted so that each accumulated tolerance complies with all specification tolerances. This calculation process must process a large amount of data, which is impossible to complete manually, so it must be performed by a processor (such as a computer) to perform calculations.

請參照第5~8圖,第5圖繪示依照本揭露一實施例之零件組裝規劃系統200的功能方塊圖,第6圖繪示依照本揭露一實施例之第一零件P1與第二零件P2組裝前的示意圖,第7圖繪示第6圖之第一零件P1與第二零件P2的組裝圖,第8A圖繪示第6圖之數個第一零件P1的數個第一量測尺寸S1,P1的分佈圖,而第8B圖繪示第6圖之數個第二零件P2的數個第二量測尺寸S1,P2的分佈圖。 Please refer to Figures 5 to 8. Figure 5 shows a functional block diagram of the parts assembly planning system 200 according to an embodiment of the present disclosure, and Figure 6 shows the first part P1 and the second part according to an embodiment of the present disclosure. The schematic diagram of part P2 before assembly, Figure 7 shows the assembly drawing of the first part P1 and the second part P2 in Figure 6, and Figure 8A shows the number of the first parts P1 in Figure 6 A distribution diagram of a first measurement dimension S1 , P1 , and FIG. 8B shows a distribution diagram of a plurality of second measurement dimensions S1 , P2 of a plurality of second parts P2 in FIG. 6.

在本實施例之零件組裝規劃方法中,係以成品的數個第一零件P1及數個第二零件P2做為規劃對象,不只讓在規格公 差範圍內的第一零件P1與第二零件P2適配,也讓在規格公差範圍外的第一零件P1與第二零件P2的一些或甚至全部適配,增加整體的適配率。 In the parts assembly planning method of this embodiment, several first parts P1 and several second parts P2 of the finished product are used as planning objects, not only in the specifications Fit the first part P1 and the second part P2 within the tolerance range, and also fit some or even all of the first part P1 and the second part P2 outside the specification tolerance range, increasing the overall fit Rate.

零件組裝規劃系統200包括量測儀器210、量測尺寸取得器220及組裝規劃器230。量測儀器210用以量測第一零件P1及第二零件P2的尺寸值。量測儀器210例如是各種能夠量測第一零件P1之尺寸值的儀器,如游標卡尺、分厘卡、三次元量測儀或其它接觸式或非接觸式量測儀。量測尺寸取得器220及/或組裝規劃器230例如是採用半導體製程形成的電路結構(circuit)。量測尺寸取得器220與組裝規劃器230可整合成單一元件,如處理器(processor),或量測尺寸取得器220與組裝規劃器230之至少一者可整合至一處理器中。 The component assembly planning system 200 includes a measuring instrument 210 , a measurement dimension obtainer 220 and an assembly planner 230 . The measuring instrument 210 is used for measuring the dimensional values of the first part P1 and the second part P2. The measuring instrument 210 is, for example, various instruments capable of measuring the dimensional value of the first part P1, such as a vernier caliper, a minute card, a three-dimensional measuring instrument, or other contact or non-contact measuring instruments. The measurement dimension obtainer 220 and/or the assembly planner 230 is, for example, a circuit structure (circuit) formed by a semiconductor process. The measurement dimension obtainer 220 and the assembly planner 230 can be integrated into a single component, such as a processor, or at least one of the measurement dimension obtainer 220 and the assembly planner 230 can be integrated into a processor.

以下係以第9及10圖說明第5圖之零件組裝規劃系統200進行零件組裝規劃方法的過程圖。 The following is a process diagram illustrating the parts assembly planning method performed by the parts assembly planning system 200 in FIG. 5 with FIGS. 9 and 10 .

首先,量測儀器210實際量測數個第一零件P1個別的第一量測尺寸S1,P1及數個第二零件P2個別的第二量測尺寸S1,P2。第一量測尺寸S1,P1與第二量測尺寸S1,P2為互相組配的尺寸。第8A圖的縱軸表示數個第一零件P1的編號,如P1_1~P1_20,由下而上依序編號,而橫軸表示第一零件的第一量測尺寸S1,P1,其以由小到大的順序,沿橫軸的正軸向排列。第8B圖的縱軸表示數個第二零件P2的編號,如P2_1~P2_20,由下而上依序編號,而橫軸表示第二零件P2的第二量測尺寸S1,P2,其 以由小到大的順序,沿橫軸的正軸向排列。如第8A及8B圖所示,本揭露實施例之第一零件P1的數量及第二零件P2的數量各以20個為例說明(第8A及8B圖的點數量各為20),然本揭露實施例不限定第一零件P1的數量及第二零件P2的數量,其可以少於或多於20個。 Firstly, the measuring instrument 210 actually measures the individual first measurement dimensions S1 , P1 of the plurality of first parts P1 and the individual second measurement dimensions S1 , P2 of the plurality of second parts P2 . The first measurement dimensions S1 , P1 and the second measurement dimensions S1 , P2 are dimensions that are combined with each other. The vertical axis of Fig. 8A represents the numbers of several first parts P1, such as P1_1~P1_20, which are numbered sequentially from bottom to top, while the horizontal axis represents the first measurement dimensions S1 and P1 of the first parts, which are represented by Arranged along the positive axis of the horizontal axis in order from small to large. The vertical axis of Figure 8B represents the numbering of several second parts P2, such as P2_1~P2_20, which are numbered sequentially from bottom to top, while the horizontal axis represents the second measurement dimensions S1 and P2 of the second part P2, which Arrange along the positive axis of the horizontal axis in ascending order. As shown in Figures 8A and 8B, the number of the first part P1 and the number of the second parts P2 in the embodiment of the present disclosure are each 20 as an example (the number of points in Figures 8A and 8B is 20 each), However, the embodiment of the present disclosure does not limit the number of the first parts P1 and the number of the second parts P2, which may be less than or more than 20.

如第8A及8B圖所示,各第一零件P1具有相同的第一公稱尺寸及第一規格公差,而各第二零件P2具有相同的第二公稱尺寸及第二規格公差。數個第一量測尺寸S1,P1的分佈如第8A圖所示,而數個第二量測尺寸S1,P2的分佈如第8B圖所示,圖式的一個點表示一個零件。如第8A圖所示,第一零件P1的數量以20個為例,其中第一零件P1_1、P1_2、P1_19及P1_20(如4個)之第一量測尺寸S1,P1不符合第一規格公差,其餘第一零件P1(如16個)之第一量測尺寸S1,P1符合第一規格公差。如第8B圖所示,第二零件P2的數量以20個為例,其中第二零件P2_1~P2_4以及P2_18~P2_20(如7個)之第二量測尺寸S1,P2不符合第二規格公差,其餘第二零件P2(如13個)之第二量測尺寸S1,P2符合第二規格公差。符合第一規格公差的數個第一零件P1與符合第二規格公差的數個第二零件P2係可適配,即各第一規格公差的第一零件P1皆能與符合第二規格公差的任一個第二零件P2適配。 As shown in Figures 8A and 8B, each first part P1 has the same first nominal size and first specification tolerance, and each second part P2 has the same second nominal size and second specification tolerance. The distribution of several first measurement dimensions S1 , P1 is shown in FIG. 8A, and the distribution of several second measurement dimensions S1 , P2 is shown in FIG. 8B. A point in the diagram represents a part. As shown in Figure 8A, the number of the first part P1 is 20 as an example, and the first measurement dimensions S1 and P1 of the first parts P1_1, P1_2, P1_19 and P1_20 (such as 4) do not conform to the first Specification tolerance, the first measurement dimensions S1 and P1 of the remaining first parts P1 (such as 16 pieces) conform to the first specification tolerance. As shown in Figure 8B, the number of second parts P2 is 20 as an example, and the second measurement dimensions S1 and P2 of the second parts P2_1~P2_4 and P2_18~P2_20 (such as 7 pieces) do not meet the second Specification tolerance, the second measurement dimensions S1 and P2 of the remaining second parts P2 (such as 13 pieces) conform to the second specification tolerance. A plurality of first parts P1 conforming to the tolerance of the first specification and a plurality of second parts P2 conforming to the tolerance of the second specification can be adapted, that is, the first parts P1 of each first specification tolerance can be matched with the second part P1 conforming to the tolerance of the second specification. Any second part P2 fits within specification tolerances.

如第6及7圖所示,第一零件P1以第一量測尺寸S1,P1與第二零件P2之第二量測尺寸S1,P2組裝後,第一量測尺寸S1,P1與第二量測尺寸S1,P2之間具有一組配值,組配值必須符合一組裝 規格,方表示第一零件P1與第二零件P2係適配。若組配值不組裝規格,表示第一零件P1與第二零件P2非適配。在本實施例中,組配值以間隙G1為例說明。在其它實施例中,組配值可以是軸外徑尺寸與孔軸內徑尺寸的干涉量或鬆配量。當組配值為軸外徑尺寸與孔軸內徑尺寸時,若組配值不符合組裝規格,可能表示軸無法插入孔,或軸與孔組裝後過鬆或過緊。 As shown in Figures 6 and 7, after the first part P1 is assembled with the first measurement dimensions S1 , P1 and the second measurement dimensions S1 and P2 of the second part P2, the first measurement dimensions S1 , P1 and There is a set of matching values between the second measurement dimensions S1 and P2 , and the matching values must meet an assembly specification, which means that the first part P1 and the second part P2 are compatible. If the combination value is not the assembly specification, it means that the first part P1 and the second part P2 are not compatible. In this embodiment, the configuration value is described by taking the gap G1 as an example. In other embodiments, the combination value may be an interference amount or a loose fit amount between the outer diameter of the shaft and the inner diameter of the bore shaft. When the combination value is the shaft outer diameter size and the hole shaft inner diameter size, if the combination value does not meet the assembly specification, it may mean that the shaft cannot be inserted into the hole, or the shaft and hole are assembled too loose or too tight.

在步驟S205中,量測尺寸取得器220取得量測儀器210所量測的尺寸值。例如,量測儀器210可將所量測的尺寸值自動傳送給量測尺寸取得器220;或者,可採用手動輸入方式,將量測儀器210所量測的尺寸輸入至一設定介面(未繪示),然後量測尺寸取得器220透過此設定介面取得量測儀器210所量測的尺寸值。 In step S205 , the measured dimension acquirer 220 acquires the dimension value measured by the measuring instrument 210 . For example, the measuring instrument 210 can automatically transmit the measured dimension value to the measuring dimension acquirer 220; or, a manual input method can be used to input the dimension measured by the measuring instrument 210 into a setting interface (not shown). display), and then the measured dimension acquirer 220 acquires the dimension value measured by the measuring instrument 210 through the setting interface.

在步驟S210中,組裝規劃器230剔除不符合第二規格公差且無法與此些第一量測尺寸S1,P1之任一者適配的第二量測尺寸S1,P2之第二零件P2。 In step S210, the assembly planner 230 rejects the second part P2 of the second measurement dimension S1 , P2 that does not conform to the second specification tolerance and cannot fit any of the first measurement dimensions S1 , P1 .

在本實施例中,組裝規劃器230例如是採用排序法,將數個第一量測尺寸S1,P1由小到大依序排列(數個第一量測尺寸S1,P1的分布如第8A圖所示),且將數個第二量測尺寸S1,P2由小到大依序排列(數個第二量測尺寸S1,P2的分布如第8B圖所示)。然後,以第一量測尺寸S1,P1與第一公稱尺寸之差異最大者(如第8A圖之第一零件P1_20)做為基準,判斷所有的第二零件P2的每一者與第一零件P1_20是否可適配。若結果是第8B圖中不符合第二規格公差的第二零件P2_1~P2_3無法與第一零件P1_20適配,則組裝規 劃器230剔除第二零件P2_1~P2_3。換言之,組裝規劃器230以獲得最大之組配值(如獲得第7圖之最大的間隙G1)為前提下,嘗試找出全部第二零件P2中無法與任一個第一零件P1適配的第二零件P2。若有,則組裝規劃器230剔除此個或此些無法適配(無裝配意義)的第二零件P2。在另一實施例中,組裝規劃器230可計算數個第一量測尺寸S1,P1而取得一第一標準差,且計算數個第二量測尺寸S1,P2而取得一第二標準差。然後以+/-3σ(標準差)之外的區域中,搜尋出完全無法與第一零件適配的第二零件。 In this embodiment, the assembly planner 230, for example, adopts a sorting method to arrange the several first measurement dimensions S1 , P1 in order from small to large (the distribution of the several first measurement dimensions S1 , P1 is as shown in Section 8A As shown in the figure), and arrange several second measurement dimensions S1 , P2 in order from small to large (the distribution of several second measurement dimensions S1 , P2 is shown in Figure 8B). Then, the difference between the first measured dimension S1 , P1 and the first nominal dimension (such as the first part P1_20 in Fig. 8A) is used as a benchmark to determine the difference between each of all the second parts P2 and the first nominal size. Whether a part P1_20 is adaptable. If the result is that the second parts P2_1 - P2_3 in FIG. 8B that do not meet the tolerance of the second specification cannot fit the first part P1_20 , then the assembly planner 230 rejects the second parts P2_1 - P2_3 . In other words, under the premise of obtaining the maximum assembly value (for example, obtaining the maximum gap G1 in FIG. 7 ), the assembly planner 230 tries to find out that all the second parts P2 cannot be matched with any one of the first parts P1 The second part P2. If there is, the assembly planner 230 rejects this or these second parts P2 that cannot be adapted (meaningless for assembly). In another embodiment, the assembly planner 230 can calculate several first measured dimensions S1 , P1 to obtain a first standard deviation, and calculate several second measured dimensions S1 , P2 to obtain a second standard deviation . Then, in the region outside +/-3σ (standard deviation), search for the second part that cannot fit the first part at all.

此外,雖然上述實施例係以第一零件為基準下搜尋完全無法與第一零件適配的第二零件,然此非用以限制本揭露實施例。在另一實施例中,也可以第二零件為基準下搜尋完全無法與第二零件適配的第一零件。 In addition, although the above embodiment uses the first part as the reference to search for the second part that cannot match the first part at all, this is not intended to limit the embodiments of the present disclosure. In another embodiment, the second part can also be used as a reference to search for the first part that cannot match the second part at all.

在步驟S215中,組裝規劃器230暫時移除此些第一量測尺寸S1,P1中最接近第一公稱尺寸的至少一第一零件P1。在本實施例中,如第8A圖所示,第一零件P1_11為此些第一零件P1中最接近第一公稱尺寸的第一零件P1。本揭露實施例保留此最佳尺寸(即,最接近第一公稱尺寸)的第一零件P1,可增加其餘較差尺寸的第一零件P1與此些第二零件P2的組裝適配率。在另一實施例中,組裝規劃器230可暫時移除此些第一量測尺寸S1,P1中最接近第一公稱尺寸的前數個第一零件P1,如二個、三個或更多。 In step S215, the assembly planner 230 temporarily removes at least one first part P1 that is closest to the first nominal size among the first measured dimensions S1, P1 . In this embodiment, as shown in FIG. 8A , the first part P1_11 is the first part P1 closest to the first nominal size among the first parts P1 . The embodiment of the present disclosure retains the first part P1 with the optimal size (that is, the closest to the first nominal size), which can increase the assembly fit rate of the remaining first parts P1 with poorer sizes and these second parts P2 . In another embodiment, the assembly planner 230 may temporarily remove the first several first parts P1 closest to the first nominal size among the first measured dimensions S1 , P1 , such as two, three or more many.

在步驟S220中,組裝規劃器230對未剔除的此些第二零件P2與未暫時移除的此些第一零件P1進行此些第一量測尺寸S1,P1與 此些第二量測尺寸S1,P2的一適配分析。在本實施例中,如第8A圖所示,組裝規劃器230對第二零件P2_1~P2_3以外的數個第二零件P2(即未剔除的第二零件P2,包含符合第二規格公差的第二零件P2及不符合第二規格公差的第二零件,如P2_4及P2_18~P2_20)與第一零件P1_11以外的數個第一零件P1(即未暫時移除的第一零件P1,包含符合第一規格公差的第一零件P1及不符合第一規格公差的第一零件,如P1_1、P1_2、P1_19、P1_20)進行第一量測尺寸S1,P1與第二量測尺寸S1,P2的適配分析。 In step S220, the assembly planner 230 performs the first measurement dimensions S1 , P1 and the second measurements on the second parts P2 that are not rejected and the first parts P1 that are not temporarily removed. One-fit analysis of measuring dimensions S1 and P2 . In this embodiment, as shown in FIG. 8A, the assembly planner 230 includes several second parts P2 other than the second parts P2_1~P2_3 (that is, the second parts P2 that are not rejected, including those that meet the second specification. Tolerance of the second part P2 and second parts that do not meet the tolerances of the second specification, such as P2_4 and P2_18~P2_20) and several first parts P1 other than the first part P1_11 (that is, the first part that has not been temporarily removed A part P1, including the first part P1 conforming to the tolerance of the first specification and the first part not meeting the tolerance of the first specification, such as P1_1, P1_2, P1_19, P1_20) for the first measurement of dimension S1 , P1 and the first dimension 2. Adaptive analysis of measurement dimensions S1 and P2 .

在步驟S225中,組裝規劃器230依據適配分析的結果,判斷未剔除的此些第二零件P2與未暫時移除的此些第一零件P1是否能完全適配。在本實施例中,未剔除的此些第二零件P2的數量為17個,未暫時移除的此些第一零件P1的數量為19個。在適配分析後,若可獲得17個(取數量最小者)組裝參數值皆符合組裝規格的適配組合,表示能完全適配,則流程結束。若不能完全適配,則流程進入步驟S230。 In step S225 , the assembly planner 230 judges whether the unrejected second parts P2 and the untemporarily removed first parts P1 are fully compatible according to the matching analysis result. In this embodiment, the number of the second parts P2 that are not rejected is 17, and the number of the first parts P1 that are not temporarily removed is 19. After the fit analysis, if 17 fit combinations (take the smallest number) whose assembly parameter values all meet the assembly specification can be obtained, it means that the fit is complete, and the process ends. If not fully adapted, the process goes to step S230.

在步驟S230中,組裝規劃器230判斷暫時被移除的第一零件P1是否已全部參與過適配分析。在本實施例中,暫時被移除的第一零件P1_11尚未參與適配分析,因此,流程進入步驟S235。若暫時被移除的第一零件P1已全部參與過適配分析,則流程結束。 In step S230 , the assembly planner 230 determines whether all the temporarily removed first parts P1 have participated in the fitting analysis. In this embodiment, the temporarily removed first part P1_11 has not yet participated in the matching analysis, so the process goes to step S235. If all the temporarily removed first parts P1 have participated in the fitting analysis, the process ends.

在步驟S235中,組裝規劃器230以暫時移除之第一零件P1_11取代未暫時移除的此些第一零件P1之被取代者。在一實施例中,此被取代者係不符合第一規格公差之此些第一零件 P1中與第一公稱尺寸之差異最大者。例如,如第8A圖所示,第一零件P1_20為未被剔除之此些第一零件P1中,第一量測尺寸S1,P1不符合第一規格公差且與第一公稱尺寸之差異最大者(差異愈大,表示公差愈差)。因此,組裝規劃器230以暫時移除之第一零件P1_11取代第二零件P2_20。然後,流程回到步驟S220,重新執行適配分析。若暫時被移除的第一零件P1的數量大於一個,則組裝規劃器230重複步驟220~S230,直到所有暫時移除的第一零件P1都參與過適配分析。 In step S235 , the assembly planner 230 replaces the replaced ones of the first parts P1 that are not temporarily removed with the temporarily removed first parts P1_11 . In one embodiment, the replaced one is the one with the largest difference from the first nominal dimension among the first parts P1 that do not comply with the first specification tolerance. For example, as shown in FIG. 8A, the first part P1_20 is among the first parts P1 that have not been rejected, the first measured dimensions S1 , P1 do not meet the first specification tolerance and are different from the first nominal size The largest (the greater the difference, the worse the tolerance). Therefore, the assembly planner 230 replaces the second part P2_20 with the temporarily removed first part P1_11. Then, the flow returns to step S220, and the adaptation analysis is performed again. If the number of temporarily removed first parts P1 is greater than one, the assembly planner 230 repeats steps 220 - S230 until all temporarily removed first parts P1 have participated in the fitting analysis.

以下係以第10圖說明依照本揭露實施例之適配分析(如第9圖之步驟S220)的其中一實施例,然本揭露實施例之適配分析不受第10圖之流程所限。 FIG. 10 is used below to illustrate one embodiment of the fitting analysis (such as step S220 in FIG. 9 ) according to the embodiment of the present disclosure, but the fitting analysis of the embodiment of the present disclosure is not limited by the process shown in FIG. 10 .

在步驟S305中,組裝規劃器230對未剔除的此些第二零件P2與未暫時移除的此些第一零件P1進行此些第一量測尺寸S1,P1與此些第二量測尺寸S1,P2的適配分析,以獲得數個第一適配組合,其中各第一適配組合包含彼此適配之一個第一零件P1與一個第二零件P2。各第一適配組合完全不同,即各第一適配組合的第一零件P1未重複組配,而各第一適配組合的第二零件P2未重複組配。如前述,本實施例之第一適配組合的數量例如是以17個為例說明。 In step S305, the assembly planner 230 performs the first measurement dimensions S1 , P1 and the second measurements on the unrejected second parts P2 and the untemporarily removed first parts P1 The matching analysis of the dimensions S1 and P2 is performed to obtain several first matching combinations, wherein each first matching combination includes a first part P1 and a second part P2 that are matched to each other. Each first matching combination is completely different, that is, the first part P1 of each first matching combination is not repeatedly assembled, and the second part P2 of each first matching combination is not repeatedly assembled. As mentioned above, the number of the first matching combinations in this embodiment is, for example, 17 for illustration.

在步驟S310中,組裝規劃器230取得此些第一適配組合之一第一組配綜合值。在本實施例中,組裝規劃器230取得每個第一適配組合的一組配值,且計算數個組配值(如前述,17 個)的一平均值,並以此平均值做為第一組配綜合值。或者,組裝規劃器230取出數個組配值的最大者、最小者或其它參考值,並以此最大者、最小者或其它參考值做為第一組配綜合值。 In step S310 , the assembly planner 230 obtains a first combination integrated value of the first matching combination. In this embodiment, the assembly planner 230 obtains a set of matching values of each first matching combination, and calculates several matching values (as mentioned above, 17 ), and use this average as the first group to match the comprehensive value. Alternatively, the assembly planner 230 takes out the maximum, minimum or other reference value of several assembly values, and uses the maximum, minimum or other reference value as the first assembly comprehensive value.

在步驟S315中,組裝規劃器230對未剔除的此些第二零件P2與未暫時移除的此些第一零件P1進行第一量測尺寸S1,P1與第二量測尺寸S1,P2的適配分析,並獲得數個第二適配組合,其中各第二適配組合包含彼此適配之第一零件P1與第二零件P2,各第二適配組合完全不同,且此些第二適配組合與此些第一適配組合不完全一樣。 In step S315, the assembly planner 230 conducts the first measurement dimension S1 , P1 and the second measurement dimension S1 of the second parts P2 that are not rejected and the first parts P1 that are not temporarily removed . The matching analysis of P2 , and several second matching combinations are obtained, wherein each second matching combination includes the first part P1 and the second part P2 that are matched with each other, and each second matching combination is completely different, and The second matching combinations are not exactly the same as the first matching combinations.

在步驟S320中,組裝規劃器230取得此些第二適配組合之一第二組配綜合值。如前述,本實施例之第一適配組合的數量例如是以17個為例說明。各第二適配組合由一個第一零件P1與一個第二零件P2組合而成。在本實施例中,組裝規劃器230取得每個第二適配組合的一組配值,且計算數個組配值(例如前述的17個)的一平均值,並以此平均值做為第二組配綜合值。或者,組裝規劃器230取出數個組配值的最大者、最小者或其它參考值,並以此最大者、最小者或其它參考值做為第二組配綜合值。 In step S320 , the assembly planner 230 obtains a second assembly comprehensive value of the second matching combination. As mentioned above, the number of the first matching combinations in this embodiment is, for example, 17 for illustration. Each second matching combination is composed of a first part P1 and a second part P2. In this embodiment, the assembly planner 230 obtains a group of matching values of each second matching combination, and calculates an average value of several grouping values (such as the aforementioned 17), and uses the average value as The second group matches the composite value. Alternatively, the assembly planner 230 takes out the maximum, minimum or other reference value of several assembly values, and uses the maximum, minimum or other reference value as the second assembly comprehensive value.

在步驟S325中,組裝規劃器230以第一組配綜合值與第二組配綜合值之最佳者所對應的此些第一適配組合或此些第二適配組合做為一最佳適配選擇。第一組配綜合值及第二組配綜合值皆符合組裝規格內。前述最佳者例如是符合組裝規格之第一組配綜合值及第二組配綜合值中最接近組裝規格中的一最適者(或最佳者)的組配綜合值,其中的最適者例如是組裝規格之範圍的中間值。 In step S325, the assembly planner 230 uses the first matching combination or the second matching combination corresponding to the best of the first combination comprehensive value and the second combination comprehensive value as an optimal Fit selection. Both the integrated value of the first assembly and the integrated value of the second assembly are within the assembly specifications. The above-mentioned optimal one is, for example, an assembly comprehensive value that is closest to an optimum (or best) of the assembly specifications among the first assembly comprehensive value and the second assembly comprehensive value that meet the assembly specification, and the most suitable one is, for example, is the middle value of the range of assembly specifications.

然後,在一實際組裝過程,組裝者可依據前述最佳適配選擇,組配此些第一零件P1與此些第二零件P2。 Then, in an actual assembly process, the assembler can assemble the first parts P1 and the second parts P2 according to the aforementioned best fit selection.

此外,雖然組裝規劃器230以取得二個組配綜合值(二個疊代)為例說明,然在其它實施例中,組裝規劃器230可以取得更多個組配綜合值(更多疊代),然後從此些組配綜合值中最佳者所對應的數個適配組合做為一最佳適配選擇。或者,若在第一次疊代中第一零件P1與第二零件P2能完全適配,則組裝規劃器230可以第一次取得的組配綜合值所對應的數個適配組合做為一最佳適配選擇。 In addition, although the assembly planner 230 is illustrated by obtaining two assembly integrated values (two iterations), in other embodiments, the assembly planner 230 can obtain more assembly integrated values (more iterations) ), and then select the best matching combination from the matching combinations corresponding to the best combination value. Or, if the first part P1 and the second part P2 can be fully adapted in the first iteration, then the assembly planner 230 can make several matching combinations corresponding to the integrated assembly value obtained for the first time. for a best fit option.

雖然前數實施例之零件組裝規劃方法係以二個零件的適配分析為例說明,然在另一實施例中,也可同時進行三個或更多零件的適配分析。雖然前數實施例之二零件的組配尺寸係以一組(如第一量測尺寸S1,P1與第二量測尺寸S1,P2之組配)為例說明,然在另一實施例中,二零件也可同時進行多組的組配尺寸的適配分析。本揭露實施例不限定適配的零件數量及/或任二零件的組配尺寸的組數。 Although the part assembly planning method in the previous embodiments is described by taking the matching analysis of two parts as an example, in another embodiment, the matching analysis of three or more parts can also be performed at the same time. Although the assembly dimensions of the two parts of the first number of embodiments are described as an example (such as the combination of the first measurement dimensions S1 , P1 and the second measurement dimensions S1 , P2 ), in another embodiment Among them, the two parts can also carry out the matching analysis of multiple sets of assembly dimensions at the same time. The embodiments of the present disclosure do not limit the number of matching parts and/or the number of sets of assembly sizes of any two parts.

綜上,在本實施例之零件組裝規劃方法中,係以成品的數個第一零件及數個第二零件做為規劃對象,不只讓在規格公差範圍內的第一零件與第二零件適配,也讓在規格公差範圍外的第一零件與第二零件部分或甚至全部適配,增加整體的適配率。此外,在量測尺寸後,第9及10圖之組裝規劃步驟皆由處理器(例如為一電腦)進行運算完成。此運算過程必須處理大量數據,以 人為方式不可能完成,因此必須藉由處理器(例如為一電腦)運算方能執行。 To sum up, in the parts assembly planning method of this embodiment, several first parts and several second parts of the finished product are used as planning objects, and not only the first parts and the second parts within the specification tolerance range The matching of the two parts also allows the first part outside the tolerance range of the specification to be partly or even completely matched with the second part, so as to increase the overall matching rate. In addition, after the dimensions are measured, the assembly planning steps in Figures 9 and 10 are all completed by a processor (for example, a computer). This operation process must deal with a large amount of data, in order to It is impossible to do it artificially, so it must be executed by a processor (such as a computer).

綜上所述,雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露。本揭露所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾。因此,本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 To sum up, although the present disclosure has been disclosed above with embodiments, it is not intended to limit the present disclosure. Those with ordinary knowledge in the technical field to which this disclosure belongs may make various changes and modifications without departing from the spirit and scope of this disclosure. Therefore, the scope of protection of this disclosure should be defined by the scope of the appended patent application.

S105~S160:步驟 S105~S160: steps

Claims (18)

一種零件加工規劃方法,由一處理器進行運算執行,該零件加工規劃方法包括:取得一零件的一公稱尺寸的一規格公差;取得複數個工序個別的預設公差;使用製程尺寸鏈建立技術,於該些預設公差中,採用迴路法,取得與該規格公差相關的至少一該預設公差;累加與該規格公差相關的該至少一預設公差,以取得一尺寸累加公差;判斷該尺寸累加公差是否符合該規格公差;以及當該累加公差不符合該規格公差,重新分配與該規格公差相關的至少一該預設公差,使該尺寸累加公差符合該規格公差。 A part processing planning method, which is executed by a processor. The part processing planning method includes: obtaining a specification tolerance of a nominal size of a part; obtaining individual preset tolerances of a plurality of processes; using the process dimension chain establishment technology , among the preset tolerances, adopt the loop method to obtain at least one preset tolerance related to the specification tolerance; accumulate the at least one preset tolerance related to the specification tolerance to obtain a size accumulation tolerance; judge the whether the cumulative tolerance of size conforms to the specification tolerance; and when the cumulative tolerance does not conform to the specification tolerance, redistribute at least one of the preset tolerances related to the specification tolerance so that the cumulative tolerance of size conforms to the specification tolerance. 如請求項1所述之零件加工規劃方法,更包括:取得一加工預留量;以及使用製程尺寸鏈建立技術,於該些預設公差中,取得與該加工預留量相關的至少一預設公差;累加與該加工預留量相關的該至少一預設公差,以取得一預留量累加公差;判斷該加工預留量是否大於該預留量累加公差;以及當該加工預留量不大於該預留量累加公差,重新調整該加工預留量,使該加工預留量大於該預留量累加公差。 The part processing planning method as described in claim 1 further includes: obtaining a processing reserve; and using the process dimension chain establishment technology to obtain at least one reservation related to the processing reserve among the preset tolerances Setting a tolerance; accumulating the at least one preset tolerance related to the processing reserved amount to obtain a reserved amount cumulative tolerance; judging whether the processing reserved amount is greater than the reserved amount cumulative tolerance; and when the processing reserved amount If it is not greater than the accumulated tolerance of the reserved amount, readjust the reserved amount for processing so that the reserved amount for processing is greater than the accumulated tolerance for the reserved amount. 如請求項2所述之零件加工規劃方法,更包括: 將該加工預留量之值設定成等於該上偏差之絕對值與該下偏差之絕對值中的最大者。 The part processing planning method as described in claim 2 further includes: The value of the processing reserve is set equal to the maximum of the absolute value of the upper deviation and the absolute value of the lower deviation. 如請求項2所述之零件加工規劃方法,更包括:判斷該預留量累加公差的一上偏差與一下偏差之任一者是否為負;以及當該預留量累加公差的該上偏差與該下偏差之任一者都不為負,將該加工預留量之值設定成大於0之值。 The part processing planning method as described in claim 2 further includes: judging whether any one of the upper deviation and the lower deviation of the accumulated tolerance of the reserved amount is negative; and when the upper deviation and the lower deviation of the accumulated tolerance of the reserved amount are None of the lower deviations is negative, and the value of the processing reserve is set to a value greater than 0. 一種零件加工規劃系統,包括:一加工資訊取得器,用以:取得一公稱尺寸的一規格公差;及取得複數個工序個別的預設公差;以及一加工資訊規劃器,用以:使用製程尺寸鏈建立技術,於該些預設公差中,採用迴路法,取得與該規格公差相關的至少一該預設公差;累加與該規格公差相關的該至少一預設公差,以取得一尺寸累加公差;判斷該尺寸累加公差是否符合該規格公差;以及當該累加公差不符合該規格公差,重新分配與該規格公差相關的該至少一預設公差,使該尺寸累加公差符合該規格公差。 A parts processing planning system, including: a processing information obtainer, used to: obtain a specification tolerance of a nominal size; and obtain individual default tolerances of a plurality of processes; and a processing information planner, used to: use the process size Chain building technology, using a loop method among the preset tolerances to obtain at least one preset tolerance related to the specification tolerance; accumulating the at least one preset tolerance related to the specification tolerance to obtain a size cumulative tolerance ; judging whether the cumulative tolerance of the size conforms to the specification tolerance; and when the cumulative tolerance does not conform to the specification tolerance, redistribute the at least one preset tolerance related to the specification tolerance so that the cumulative tolerance of the size conforms to the specification tolerance. 如請求項5所述之零件加工規劃系統,其中該加工資訊取得器更用以:取得一加工預留量;該加工規劃器更用以: 使用製程尺寸鏈建立技術,於該些預設公差中,取得與該加工預留量相關的至少一預設公差;累加與該加工預留量相關的該至少一預設公差,以取得一預留量累加公差;判斷該加工預留量是否大於該預留量累加公差;以及當該加工預留量不大於該預留量累加公差,重新調整該加工預留量,使該加工預留量大於該預留量累加公差。 The part processing planning system as described in claim 5, wherein the processing information obtainer is further used to: obtain a processing reserve; the processing planner is further used to: Using the process dimension chain establishment technology, among the preset tolerances, at least one preset tolerance related to the processing allowance is obtained; the at least one preset tolerance related to the processing allowance is accumulated to obtain a preset The cumulative tolerance of reserved amount; judging whether the reserved amount for processing is greater than the accumulated tolerance for the reserved amount; and when the reserved amount for processing is not greater than the accumulated tolerance for the reserved amount, readjust the reserved amount for processing so that It is greater than the reserved amount accumulative tolerance. 如請求項6所述之零件加工規劃系統,其中該加工規劃器更用以:將該加工預留量之值設定成等於或大於該上偏差之絕對值與該下偏差之絕對值中的最大者。 The part processing planning system as described in claim 6, wherein the processing planner is further used to: set the value of the processing reserve to be equal to or greater than the maximum of the absolute value of the upper deviation and the absolute value of the lower deviation By. 如請求項6所述之零件加工規劃系統,其中該加工規劃器更用以:判斷該預留量累加公差的一上偏差與一下偏差之任一者是否為負;以及當該預留量累加公差的該上偏差與該下偏差之任一者都不為負,將該加工預留量之值設定成大於0之值。 The part processing planning system as described in claim 6, wherein the processing planner is further used to: judge whether any one of the upper deviation and the lower deviation of the accumulated tolerance of the reserved amount is negative; and when the accumulated amount of reserved Neither the upper deviation nor the lower deviation of the tolerance is negative, and the value of the processing reserve is set to a value greater than 0. 一種零件組裝規劃方法,由一處理器進行運算執行,且包括:取得複數個第一零件個別的一第一實測尺寸及複數個第二零件個別的一第二實測尺寸,其中各該第一零件具有相同一第一公 稱尺寸及一第一規格公差,而各該第二零件具有相同一第二規格公差;剔除不符合該第二規格公差且無法與該些第一實測尺寸之任一者適配的該第二實測尺寸之該第二零件;暫時移除該些第一實測尺寸中最接近該第一公稱尺寸的該第一零件;以及對未剔除的該些第二零件與未暫時移除的該些第一零件進行該些第一量測尺寸與該些第二量測尺寸的一適配分析。 A part assembly planning method, which is executed by a processor, and includes: obtaining a first measured size of a plurality of first parts and a second measured size of a plurality of second parts, wherein each of the first parts A part has the same first male said size and a first specification tolerance, and each of the second parts has the same second specification tolerance; the first part that does not meet the second specification tolerance and cannot fit any of the first measured dimensions is eliminated The second part of the actual measured size; temporarily remove the first part of the first measured size closest to the first nominal size; and the second parts that are not rejected and not temporarily removed Perform a fitting analysis of the first measured dimensions and the second measured dimensions of the first parts. 如請求項9所述之零件組裝規劃方法,其中於對未剔除的該些第二零件與未暫時移除的該些第一零件進行該些第一量測尺寸與該些第二量測尺寸的該適配分析之步驟包括:對未剔除的該些第二零件與未暫時移除的該些第一零件進行該些第一量測尺寸與該些第二量測尺寸的該適配分析,以獲得複數個第一適配組合,其中各該第一適配組合包含彼此適配之該第一零件與該第二零件,且各該第一適配組合完全不同;取得該些第一適配組合之一第一組配綜合值;對未剔除的該些第二零件與未暫時移除的該些第一零件進行該些第一量測尺寸與該些第二量測尺寸的該適配分析,並獲得複數個第二適配組合,其中各該第二適配組合包含彼此適配之該第一零件與該第二零件,各該第二適配組合完全不同,且該些第二適配組合與該些第一適配組合不完全一樣;取得該些第二適配組合之一第二組配綜合值;以及 以該第一組配綜合值與該第二組配綜合值之最佳者所對應的該些第一適配組合或該些第二適配組合做為一最佳適配選擇。 The part assembly planning method as described in claim 9, wherein the first measured dimensions and the second quantities are performed on the second parts that are not rejected and the first parts that are not temporarily removed The step of the matching analysis of the measured dimensions includes: performing the matching of the first measured dimensions and the second measured dimensions on the second parts that are not rejected and the first parts that are not temporarily removed The matching analysis is to obtain a plurality of first matching combinations, wherein each of the first matching combinations includes the first part and the second part that are matched with each other, and each of the first matching combinations is completely different ; Obtain a first combination comprehensive value of one of the first matching combinations; perform the first measured dimensions and the The matching analysis of the second measured dimensions, and obtain a plurality of second matching combinations, wherein each of the second matching combinations includes the first part and the second part that are matched to each other, and each of the first matching The two matching combinations are completely different, and the second matching combinations are not exactly the same as the first matching combinations; obtaining a second combination comprehensive value of the second matching combinations; and The first matching combinations or the second matching combinations corresponding to the best of the first matching comprehensive value and the second matching comprehensive value are used as a best matching selection. 如請求項9所述之零件組裝規劃方法,其中於對未剔除的該些第二零件與未暫時移除的該些第一零件進行該些第一量測尺寸與該些第二量測尺寸的該適配分析之步驟中,當未剔除的該些第二零件與未暫時移除的該些第一零件無法完全適配時,該零件組裝規劃方法更包括:以暫時移除之該第一零件取代未暫時移除的該些第一零件之一被取代者;以及重新執行該適配分析。 The part assembly planning method as described in claim 9, wherein the first measured dimensions and the second quantities are performed on the second parts that are not rejected and the first parts that are not temporarily removed In the step of the matching analysis of dimension measurement, when the second parts that are not eliminated and the first parts that are not temporarily removed cannot be completely matched, the part assembly planning method further includes: temporarily moving except that the first part replaces a replacee of the first parts that were not temporarily removed; and re-executing the fitting analysis. 如請求項11所述之零件組裝規劃方法,其中在以暫時移除之該第一零件取代未暫時移除的該些第一零件之該被取代者之步驟中,該被取代者係不符合該第一規格公差之該些第一零件中與該第一公稱尺寸之差異最大者。 The parts assembly planning method as described in claim 11, wherein in the step of replacing the first parts that are not temporarily removed with the temporarily removed first part, the replaced person is Among the first parts that do not comply with the first specification tolerance, the one that differs the most from the first nominal dimension. 一種零件組裝規劃系統,包括:一量測尺寸取得器,用以取得複數個第一零件個別的一第一實測尺寸及複數個第二零件個別的一第二實測尺寸,其中各該第一零件具有相同一第一公稱尺寸及一第一規格公差,而各該第二零件具有相同一第二規格公差;一組裝規劃器,用以:剔除不符合該第二規格公差且無法與該些第一實測尺寸之任一者適配的該第二實測尺寸之該第二零件; 暫時移除該些第一實測尺寸中最接近該第一公稱尺寸的該第一零件;及對未剔除的該些第二零件與未暫時移除的該些第一零件進行該些第一量測尺寸與該些第二量測尺寸的一適配分析。 A part assembly planning system, comprising: a measuring dimension obtainer, used to obtain a first actual measured dimension of a plurality of first parts and a second actual measured dimension of a plurality of second parts respectively, wherein each of the first A part has the same first nominal size and a first specification tolerance, and each of the second parts has the same second specification tolerance; an assembly planner, used to: reject the second specification tolerance that does not meet and cannot the second part of the second measured dimension fitted to any of the first measured dimensions; Temporarily removing the first part which is closest to the first nominal size among the first measured dimensions; A fitting analysis of the first measurement dimension and the second measurement dimensions. 如請求項13所述之零件組裝規劃系統,其中該組裝規劃器更用以:對未剔除的該些第二零件與未暫時移除的該些第一零件進行該些第一量測尺寸與該些第二量測尺寸的該適配分析,以獲得複數個第一適配組合,其中各該第一適配組合包含彼此適配之該第一零件與該第二零件,且各該第一適配組合完全不同;取得該些第一適配組合之一第一組配綜合值;對未剔除的該些第二零件與未暫時移除的該些第一零件進行該些第一量測尺寸與該些第二量測尺寸的該適配分析,並獲得複數個第二適配組合,其中各該第二適配組合包含彼此適配之該第一零件與該第二零件,各該第二適配組合完全不同,且該些第二適配組合與該些第一適配組合不完全一樣;取得該些第二適配組合之一第二組配綜合值;以及以該第一組配綜合值與該第二組配綜合值之最佳者所對應的該些第一適配組合或該些第二適配組合做為一最佳適配選擇。 The parts assembly planning system as described in claim 13, wherein the assembly planner is further used to: perform the first measurements on the second parts that are not rejected and the first parts that are not temporarily removed the matching analysis of dimensions and the second measured dimensions to obtain a plurality of first matching combinations, wherein each of the first matching combinations includes the first part and the second part matching each other, And each of the first matching combinations is completely different; obtain a first matching comprehensive value of one of the first matching combinations; for the second parts that are not eliminated and the first parts that are not temporarily removed performing the matching analysis of the first measured dimensions and the second measured dimensions, and obtaining a plurality of second matching combinations, wherein each of the second matching combinations includes the first parts matched with each other Each of the second matching combinations is completely different from the second part, and the second matching combinations are not exactly the same as the first matching combinations; obtaining a second set of one of the second matching combinations matching comprehensive value; and the first matching combination or the second matching combination corresponding to the best of the first matching comprehensive value and the second matching comprehensive value as a best matching choose. 如請求項13所述之零件組裝規劃系統,其中當未剔除的該些第二零件與未暫時移除的該些第一零件無法完全適配時,該組裝規劃器更用以: 以暫時移除之該第一零件取代未暫時移除的該些第一零件之一被取代者;以及重新執行該適配分析。 The parts assembly planning system as described in claim 13, wherein when the second parts that are not rejected and the first parts that are not temporarily removed cannot be completely matched, the assembly planner is further used to: replacing one of the replaced ones of the first parts not temporarily removed with the temporarily removed first part; and re-performing the fitting analysis. 如請求項15所述之零件組裝規劃系統,其中該被取代者係不符合該第一規格公差之該些第一零件中與該第一公稱尺寸之差異最大者。 The part assembly planning system according to claim 15, wherein the replaced part is the one with the largest difference from the first nominal size among the first parts that do not meet the first specification tolerance. 一種電腦程式產品,用以載入於一零件加工規劃系統,以執行一零件加工規劃方法,該零件加工規劃方法包括:取得一零件的一公稱尺寸的一規格公差;取得複數個工序個別的預設公差;使用製程尺寸鏈建立技術,於該些預設公差中,採用迴路法,取得與該規格公差相關的至少一該預設公差;累加與該規格公差相關的該至少一預設公差,以取得一尺寸累加公差;判斷該尺寸累加公差是否符合該規格公差;以及當該累加公差不符合該規格公差,重新分配與該規格公差相關的至少一該預設公差,使該尺寸累加公差符合該規格公差。 A computer program product for loading into a part processing planning system to execute a part processing planning method, the part processing planning method includes: obtaining a specification tolerance of a nominal size of a part; obtaining a plurality of processes Individual preset tolerances; using the process dimension chain establishment technology, among these preset tolerances, adopting the loop method to obtain at least one preset tolerance related to the specification tolerance; accumulating the at least one preset tolerance related to the specification tolerance Setting a tolerance to obtain a cumulative tolerance of a dimension; judging whether the cumulative tolerance of the dimension conforms to the specification tolerance; The cumulative tolerance matches the specification tolerance. 一種電腦程式產品,用以載入於一零件組裝規劃系統,以執行一零件組裝規劃方法,該零件組裝規劃方法包括:取得複數個第一零件個別的一第一實測尺寸及複數個第二零件個別的一第二實測尺寸,其中各該第一零件具有相同一第一公 稱尺寸及一第一規格公差,而各該第二零件具有相同一第二規格公差;剔除不符合該第二規格公差且無法與該些第一實測尺寸之任一者適配的該第二實測尺寸之該第二零件;暫時移除該些第一實測尺寸中最接近該第一公稱尺寸的該第一零件;以及對未剔除的該些第二零件與未暫時移除的該些第一零件進行該些第一量測尺寸與該些第二量測尺寸的一適配分析。 A computer program product, used to be loaded into a part assembly planning system to execute a part assembly planning method, the part assembly planning method includes: obtaining a first measured size and a plurality of individual first parts of a plurality of first parts A second measured dimension of each of the second parts, wherein each of the first parts has the same first dimension said size and a first specification tolerance, and each of the second parts has the same second specification tolerance; the first part that does not meet the second specification tolerance and cannot fit any of the first measured dimensions is eliminated The second part of the actual measured size; temporarily remove the first part of the first measured size closest to the first nominal size; and the second parts that are not rejected and not temporarily removed Perform a fitting analysis of the first measured dimensions and the second measured dimensions of the first parts.
TW108139710A 2019-07-05 2019-11-01 Part processing planning method, part processing planning system using the same, part assembly planning method, part assembly planning system using the same, and computer program product thereof TWI793379B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/727,662 US11846932B2 (en) 2019-07-05 2019-12-26 Part processing planning method, part processing planning system using the same, part assembly planning method, part assembly planning system using the same, and computer program product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962870829P 2019-07-05 2019-07-05
US62/870,829 2019-07-05

Publications (2)

Publication Number Publication Date
TW202103091A TW202103091A (en) 2021-01-16
TWI793379B true TWI793379B (en) 2023-02-21

Family

ID=75234540

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108139710A TWI793379B (en) 2019-07-05 2019-11-01 Part processing planning method, part processing planning system using the same, part assembly planning method, part assembly planning system using the same, and computer program product thereof

Country Status (1)

Country Link
TW (1) TWI793379B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710355A (en) * 2009-12-17 2010-05-19 同济大学 Actual-condition tolerance modeling method based on Jacobian spinors
US20100185310A1 (en) * 2007-06-06 2010-07-22 Mitsubishi Electric Corporation Program creation apparatus, numerical control apparatus, program creation method
TW201423458A (en) * 2012-12-11 2014-06-16 Inventec Corp An analysis of dimensional chain processing method and its system
CN105302988A (en) * 2015-11-13 2016-02-03 沈阳黎明航空发动机(集团)有限责任公司 Dimension chain determination method based on mapping software

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100185310A1 (en) * 2007-06-06 2010-07-22 Mitsubishi Electric Corporation Program creation apparatus, numerical control apparatus, program creation method
CN101710355A (en) * 2009-12-17 2010-05-19 同济大学 Actual-condition tolerance modeling method based on Jacobian spinors
TW201423458A (en) * 2012-12-11 2014-06-16 Inventec Corp An analysis of dimensional chain processing method and its system
CN105302988A (en) * 2015-11-13 2016-02-03 沈阳黎明航空发动机(集团)有限责任公司 Dimension chain determination method based on mapping software

Also Published As

Publication number Publication date
TW202103091A (en) 2021-01-16

Similar Documents

Publication Publication Date Title
Petković et al. Application of the performance selection index method for solving machining MCDM problems
CN108121295B (en) Prediction model establishing method, related prediction method and computer program product
CN110222454B (en) Process design method for milling precision consistency
CN110328558B (en) Milling titanium alloy surface appearance characteristic consistency distribution process control method
WO2008056563A1 (en) Designing method for roller bearing and crowning
Lu et al. Concurrent tolerance design for manufacture and assembly with a game theoretic approach
TWI793379B (en) Part processing planning method, part processing planning system using the same, part assembly planning method, part assembly planning system using the same, and computer program product thereof
CN111931340A (en) Tolerance management system and management method
Pop et al. Improving product quality by implementing ISO/TS 16949
CN115033800A (en) Knowledge graph-based numerical control machining cutter recommendation method
US11846932B2 (en) Part processing planning method, part processing planning system using the same, part assembly planning method, part assembly planning system using the same, and computer program product thereof
CN108088407A (en) Perspective pattern deviation correction method and system
WO2021174900A1 (en) Machine tool precision analysis method and apparatus, precision measurer, and machine tool machining method
CN106294930B (en) A kind of mechanism kinematic precision reliability distribution method considering abrasion
US8244500B2 (en) Method of adjusting wafer processing sequence
Sahali et al. New approach for robust multi-objective optimization of turning parameters using probabilistic genetic algorithm
Khalimonenko et al. Method of calculating intermediate diametral sizes and allowances for designing technology of manufacture of details
Pompeev et al. Precision dimensional analysis in CAD design of reliable technologies
JP2008121876A (en) Roller bearing
CN103608737B (en) The adaptive machining method of melting blade
CN114952434A (en) Machine tool grinding control method with high yield
Hirogaki et al. Decision methodology of end-milling conditions using data-mining
CN112034786A (en) Integral annular case numerical control machining optimization method based on surface roughness control
JP2009104584A (en) Metal mold generation system, material generation system, three-dimensional shape material generation method, computer program, and recording medium
Thimm et al. Optimal process plans for manufacturing and tolerance charting