TWI793363B - 輻射探測器以及包括其的醫學成像系統、貨物掃描或非侵入式檢查系統、全體掃描器系統、輻射電腦斷層掃描系統與電子顯微鏡 - Google Patents

輻射探測器以及包括其的醫學成像系統、貨物掃描或非侵入式檢查系統、全體掃描器系統、輻射電腦斷層掃描系統與電子顯微鏡 Download PDF

Info

Publication number
TWI793363B
TWI793363B TW108128737A TW108128737A TWI793363B TW I793363 B TWI793363 B TW I793363B TW 108128737 A TW108128737 A TW 108128737A TW 108128737 A TW108128737 A TW 108128737A TW I793363 B TWI793363 B TW I793363B
Authority
TW
Taiwan
Prior art keywords
radiation
detector
pixel
sub
voltage
Prior art date
Application number
TW108128737A
Other languages
English (en)
Other versions
TW202011046A (zh
Inventor
曹培炎
劉雨潤
Original Assignee
大陸商深圳幀觀德芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商深圳幀觀德芯科技有限公司 filed Critical 大陸商深圳幀觀德芯科技有限公司
Publication of TW202011046A publication Critical patent/TW202011046A/zh
Application granted granted Critical
Publication of TWI793363B publication Critical patent/TWI793363B/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • G01N2223/04Investigating materials by wave or particle radiation by transmission and measuring absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/053Investigating materials by wave or particle radiation by diffraction, scatter or reflection back scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/501Detectors array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/507Detectors secondary-emission detector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Theoretical Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本發明公開了一種探測器,包括:包括第一子像素和第二 子像素的像素,其中第一子像素被配置為在曝光於輻射時產生第一電信號,並且其中第二子像素被配置為在曝光於輻射時產生第二電信號;其中所述探測器被配置為在第一時間週期內基於第一電信號來確定入射在第一子像素上的輻射的粒子數量;其中所述探測器被配置為通過在第二時間週期內積分第二電信號來確定輻射的強度。本發明另公開一種包括此探測器的醫學成像系統、貨物掃描或非侵入式檢查系統、全體掃描器系統、輻射電腦斷層掃描系統與電子顯微鏡。

Description

輻射探測器以及包括其的醫學成像系統、貨物 掃描或非侵入式檢查系統、全體掃描器系統、輻射電腦斷層掃描系統與電子顯微鏡
本發明的公開內容涉及輻射探測器。
輻射探測器可以是用於測量輻射通量、空間分佈、光譜或其它輻射特性的器件。輻射探測器可用於多種應用。一種重要的應用是成像。輻射成像是一種射線照相技術,可用於顯示諸如人體的非均勻組成的不透明物體的內部結構。
早期用於成像的輻射探測器包括照相板和照相膠片。照相板可以是具有光敏乳劑塗層的玻璃板。雖然照相板被照相膠片所代替,由於它們(照相板)可提供較好的品質以及有極好的穩定性,在特殊情況下它們仍然可能被使用。照相膠片可以是具有光敏乳劑塗層的塑膠膜(例如,帶或片)。
在1980年代,光激發磷光板(PSP板)變為可用。PSP 板可以在其晶格中包含具有色心的磷光體材料。當PSP板曝露於輻射時,由輻射激發的電子被捕獲在色心中,直到它們被在板表面上掃描的雷射光束激發。當板被鐳射掃描時,被捕獲的受激發的電子發射光,該光由光電倍增管收集。收集的光被轉換成數位圖像。與照相板和照相膠片相比,PSP板可重複使用。
另一種輻射探測器是輻射圖像增強器。輻射圖像增強器的部件通常密封在真空中。與照相板、照相膠片和PSP板相反,輻射圖像增強器可以產生即時圖像,即不需要曝光後處理來產生圖像。輻射首先命中輸入磷光體(例如,碘化銫)並被轉換為可見光。可見光然後命中光電陰極(例如含有銫和銻化合物的薄金屬層)並導致電子的發射。發射電子的數量與入射輻射的強度成比例。發射電子通過電子光學裝置被投影到輸出磷光體上,並導致輸出磷光體產生可見光圖像。
閃爍器在某種程度上類似於輻射圖像增強器,其中閃爍器(例如,碘化鈉)吸收輻射並發出可見光,所述可見光通過合適的可見光圖像感測器進行檢測。在閃爍器中,可見光在所有方向上擴散和散射從而減小了空間解析度。減小閃爍器厚度有助於改善空間解析度但也減少了輻射的吸收。因此,閃爍器必須在吸收效率和解析度之間進行折衷。
半導體輻射探測器主要通過將輻射直接轉換為電信號來克服這一問題。半導體輻射探測器可以包含用於吸收感興趣的輻射波長的半導體層。當輻射粒子在半導體層中被吸收時,多個電荷載流子(例如,電子和空穴)產生並在電場下被掃至半導體層上的電觸點。
本發明公開了一種探測器,包括:包含第一子像素和第二子像素的一個像素,其中所述第一子像素被配置為在曝光於輻射時產生第一電信號,並且其中所述第二子像素被配置為在曝光於所述輻射時產生第二電信號;其中所述探測器被配置為在第一時間週期內,基於所述第一電信號,確定入射在所述第一子像素上的輻射粒子的數量;其中所述探測器被配置為通過在第二時間週期內積分所述第二電信號來確定所述輻射的強度。
根據實施例,所述第一時間週期和所述第二時間週期是相同的。
根據實施例,所述第一子像素鄰接所述第二子像素。
根據實施例,所述探測器被配置為基於所述第一電信號,測量入射在所述第一子像素上的所述輻射粒子的能量。
根據實施例,所述像素還包括第三子像素,所述第三子像素被配置為在曝光於所述輻射時產生第三電信號;並且其中所述探測器被配置為基於所述第三電信號,確定在第一時間週期內入射在所述第三子像素上的所述輻射的粒子數。
根據實施例,所述探測器被配置為基於第三電信號,測量入射到所述第三子像素上的所述輻射粒子的能量。
根據實施例,所述探測器被配置為確定在所述第一時間週期內入射在所述第一子像素上的輻射粒子數和入射在所述第三子像素上的輻射粒子數的總和。
根據實施例,所述像素還包括第四子像素,所述第四子像 素被配置為在曝光於所述輻射時產生第四電信號;並且其中所述探測器被配置為在所述第二時間週期內通過對所述第二電信號和所述第四電信號積分來確定所述輻射的強度。
根據實施例,所述探測器被配置為基於所述輻射粒子的能量來確定所述輻射的能量譜。
根據實施例,所述的探測器還包括被配置為積分所述第二電信號的積分器。
根據實施例,所述第一子像素和所述第二子像素被配置為平行作業。
根據實施例,所述第一子像素包含輻射吸收層和電觸點;並且其中所述第一電信號是所述電觸點的電壓。
根據實施例,所述的探測器還包括:第一電壓比較器,經配置用於將所述電壓與第一閾值進行比較;第二電壓比較器,經配置用於將所述電壓與第二閾值進行比較;計數器,經配置用於存儲所述輻射粒子的數量;控制器;其中所述控制器被配置為從所述第一電壓比較器確定所述電壓的絕對值等於或超過所述第一閾值的絕對值的時刻開始時間延遲;其中所述控制器被配置為在所述時間延遲期間啟動所述第二電壓比較器;其中所述控制器被配置為當所述第二電壓比較器確定所述電壓的絕對值等於或超過所述第二閾值的絕對值時,使得所述計數器寄存的數值增加一。
根據實施例,所述的探測器還包括電連接到電觸點的運算放大積分器。
根據實施例,所述控制器被配置為在所述時間延遲的開始或期滿時啟動所述第二電壓比較器。
根據實施例,所述控制器被配置為基於在所述時間延遲期滿時所測量的電壓值來確定所述能量。
根據實施例,所述電壓的變化率在所述時間延遲期滿時基本為零。
根據實施例,所述輻射吸收層包含二極體。
根據實施例,所述輻射吸收層包含矽、鍺、砷化鎵、碲化鎘、碲鋅鎘,或者它們的組合。
根據實施例,所述探測器不包括閃爍器。
本發明公開了一種系統,包括上述的探測器,和一個輻射源,其中所述系統經配置用於對人體、肢體或牙齒進行射線照相。
本發明公開了一種貨物掃描或非侵入式檢查(NII)系統,包括上述的探測器和一個輻射源,其中所述貨物掃描或非侵入式檢查系統(NII)被配置用於基於反向散射的輻射形成圖像。
本發明公開了一種貨物掃描或非侵入式檢查(NII)系統,包括上述的探測器和一個輻射源,其中所述貨物掃描或非侵入式檢查(NII)系統被配置用於基於透射過被檢查的物體的輻射形成圖像。
本發明公開了一種全體掃描器系統,包括上述的探測器和一個輻射源。
本發明公開了一種輻射電腦斷層掃描(放射線CT)系統,包括上述的探測器和一個輻射源。
本發明公開了一種電子顯微鏡,上述的探測器,電子源和電子光學系統。
100、100A、100B、100C:探測器
110:輻射吸收層
111:第一摻雜區
112:本徵區
113:第二摻雜區
114:離散區域
119A、119B:電觸點
120:電子器件層
121:電子系統
130:填充物材料
131:通孔
150:像素
151:子像素
151A:第一子像素
151B:第二子像素
151C:第三子像素
151D:第四子像素
161:輻射粒子能量
162:步驟
163A、163B、163C:收集器
301:第一電壓比較器
302:第二電壓比較器
305:控制開關
306:類比數位轉換器
309:積分器
310:控制器
320、320A、320B、320C、320D:計數器
701、1001、1101、1201、9011:輻射源
702、9012:物體
1002:行李
1102:人
1301:電子源
1302:樣本
1303:電子光學系統
t、t0、t01、t02、t03、t1、t2、te、tm、tr、ts:時間
I:電流
RST:復位週期
TD1:時間延遲
V:電壓
V1:第一閾值
V2:第二閾值
圖1A根據實施例示意性地示出了探測器的橫截面視圖。
圖1B根據實施例示意性地示出了探測器的詳細橫截面視圖。
圖1C根據實施例示意性地示出了探測器的可選的詳細橫截面視圖。
圖2根據實施例示意性地示出了探測器的俯視圖。
圖3根據實施例示意性地示出了探測器的方框圖。
圖4根據實施例示意性地示出了探測器的電子系統的功能框圖。
圖5和圖6分別示意性地示出了流經曝光於輻射的子像素的電觸點的電流的時間變化(上曲線)以及相對應的在電觸點上的電壓的時間變化(下曲線),該電流是由入射在輻射吸收層上的輻射粒子產生的電荷載流子導致的。
圖7-圖12各自示意性地示出了包括本發明所述的輻射探測器的系統。
圖1A根據實施例顯示了探測器100的截面示意圖。探測器100可以包括輻射吸收層110和電子器件層120(例如,特殊應用積體電路ASIC)用於處理或分析入射輻射在輻射吸收層110上產生的電信號。在一個實施例中,該探測器100不包含閃爍器。輻射吸收層110可以包含半導體材料諸如矽、鍺、砷化鎵、碲化鎘、 碲鋅鎘,或者它們的組合。該半導體可以具有相對應輻射的高的品質衰減係數。
圖1B中根據實施例顯示了探測器100的更詳細的橫截面示意圖,如圖所示,輻射吸收層110可以包含一個或多個二極體(例如,p-i-n或p-n),這些二極體是由第一摻雜區111,第二摻雜區113的一個或多個離散區域114組成。可以選擇用一個本徵區112把第二摻雜區113和第一摻雜區111分隔開來。離散區域114彼此之間可以由第一摻雜區111或本徵區112分隔。第一摻雜區111與第二摻雜區113具有相反的摻雜類型(例如,摻雜區111是p型的而摻雜區113是n型的,或著摻雜區111是n型的而摻雜區113是p型的)。在圖1B的實施例中,每個第二摻雜區113的離散區域114和第一摻雜區111以及可選的本徵區112形成一個二極體。也就是說,在圖1B的例子中,所述輻射吸收層110具有至少一個二極體以第一摻雜區111和電觸點119A為共用電極。第一摻雜區111和電觸點119A可具有離散部分。
當輻射粒子撞擊包含二極體的輻射吸收層110,輻射粒子可以被吸收並通過多種機制生成一個或多個電荷載流子。一個輻射粒子可以產生10到100000個電荷載流子。電荷載流子在電場下可以漂移至其中一個二極體的電極。該電場可以是外加電場。電觸點119B可以具有離散部分,每個離散部分和離散區域114有電接觸。在一個實施例中,單個輻射粒子入射至兩個群組中的其中一個離散區域114群組所產生的電荷載流子基本上不會被兩個不同的離散區域114群組共用(在這裡,“基本上不會共用”是指少於2%,少於0.5%,少於0.1%,或少於0.01%的這些電荷載流子會流 至和這些電荷載流子的其餘部分流至的離散區域114群組所不同的離散區域114群組)。一個離散區域114群組周圍的區域,其中基本上所有(大於95%、大於98%、或者大於99%)的由輻射粒子入射至該區域所產生的電荷載流子會流至該離散區域114群組,被稱作為和該離散區域114群組相關聯的一個像素150。也就是說少於5%、少於2%、或少於1%的這些電荷載流子會流出該像素150。一個像素150可以包含有多個子像素151。一個子像素151可以是在一個像素150中的其中一個離散區域114,其中基本上所有(大於98%、大於99.5%、大於99.9%、或者大於99.99%)的由輻射粒子入射至該子像素151所產生的電荷載流子會流至該離散區域114以及和它相連的電觸點119B。也就是說少於2%、少於0.5%、少於0.1%、或少於0.01%的這些電荷載流子會流出該子像素151。
圖1C中根據實施例顯示了探測器100的一種替代性的詳細的橫截面示意圖,如圖所示,所述輻射吸收層110可以包含電阻器但不包含二極體,該電阻器是半導體材料諸如矽、鍺、砷化鎵、碲化鎘、碲鋅鎘的。該半導體可以具有對應輻射的高的品質衰減係數。
當輻射粒子入射包含電阻器但不包含二極體的輻射吸收層110,輻射粒子可以被吸收並通過多種機制生成一個或多個電荷載流子。一個輻射粒子可能產生10到100000個電荷載流子。電荷載流子在電場作用下可以漂移至電觸點119A和119B。該電場可以是外加電場。電觸點119B可以包含離散部分。在一個實施例中,單個輻射粒子入射至電觸點119B的兩個離散部分群組中的其 中一個群組的所對應範圍產生的電荷載流子基本上不會被電觸點119B的兩個不同的離散部分群組共用(在這裡,“基本上不會共用”是指少於2%,少於0.5%,少於0.1%,或少於0.01%的這些電荷載流子會流至和這些電荷載流子的其餘部分流至的離散部分群組所不同的離散部分群組)。電觸點119B的一個離散部分群組。
周圍的區域,其中基本上所有(大於95%、大於98%、或者大於99%)的由輻射粒子入射至該區域所產生的電荷載流子會流至電觸點119B的該離散部分群組,被稱作為和電觸點119B的該離散部分群組相關聯的一個像素150。也就是說少於5%、少於2%、或少於1%的這些電荷載流子會流出該像素150。一個像素150可以包含有多個子像素151。一個子像素151可以是輻射吸收層110中的圍繞電觸點119B的其中一個離散部分的區域,其中基本上所有(大於98%、大於99.5%、大於99.9%、或者大於99.99%)的由輻射粒子入射至該子像素151所產生的電荷載流子會流至電觸點119B的該離散部分。也就是說少於2%、少於0.5%、少於0.1%、或少於0.01%的這些電荷載流子會流出該子像素151。
電子器件層120可以包括電子系統121,該電子系統121適合於處理或解釋由入射至輻射吸收層110的輻射粒子所產生的信號。所述電子系統121可以包含類比電路,諸如濾波網路、放大器、積分器和比較器,或者包含諸如微處理器和記憶體的數位電路。電子系統121可以包括一個給定像素150的子像素151所共用的元件或者專用於給定像素150的單一子像素151的部件。例如,電子系統121可以包括給定像素150的每個子像素151的專用放大器和給定像素150的所有子像素151共用的微處理器。所 述電子系統121可以通過通孔131電連接到子像素151。通孔之間的空間可以填充有填充物材料130,該填充物材料可以增強電子器件層120和輻射吸收層110連接的機械穩定性。
圖2根據實施例示意性地顯示了探測器100的俯視圖。探測器100可具有一個陣列的像素150。該陣列可以是一個矩形陣列,蜂窩狀陣列,六邊形陣列或任何其它合適的陣列。像素150中的至少其中一個包含有多個子像素。在圖2所示的示例中,像素150包括第一子像素151A,第二子像素151B,可選擇的第三子像素151C,以及可選擇的第四子像素151D。子像素可以排列成任意合適的圖案。例如,第一子像素151A鄰接第二子像素151B。子像素可以在曝光於輻射時產生電信號。例如,第一子像素151A可在曝光於輻射時產生第一電信號;第二子像素151B可在曝光於輻射時產生第二電信號。第一電信號可以是電觸點119B的電壓。探測器100可以基於第一電信號在第一時間週期上確定入射在第一子像素151A上的輻射粒子數。探測器100可基於第一電信號測量入射在第一子像素151A上的輻射粒子的能量。例如,探測器100具有類比數位轉換器(ADC),該類比數位轉換器被配置為將來自第一子像素151A的代表入射粒子的能量的類比信號轉換為數位信號。類比數位轉換器(ADC)可具有10位或更高的解析度。探測器100可以通過在第二時間週期內積分第二電信號來確定(例如,使用積分器)輻射的強度。第一時間週期和第二時間週期可以是相同的或不相同的。
第一子像素151A和第二子像素151B可以平行作業。第一時間週期和第二時間週期可以任何程度重疊或完全不重疊。例 如,第一時間週期可以在第二時間週期的期間、之前或之後開始或結束;第二時間週期可以在第一時間週期的期間、之前或之後開始或結束。第一時間週期與第二時間週期可以是相同的。子像素151A和151B可以但不必須是單獨可定址的。
如果像素150包括第三子像素151C,第三子像素151C可以在其曝光於輻射時產生第三電信號。探測器100可以基於第三電信號確定在第一時間週期上入射至第三子像素上的輻射粒子數。探測器100可以基於第三電信號測量入射至第三子像素151C上的輻射粒子的能量。
探測器100可以選擇性地包含附加(例如,10、100、1000、10000或更多)的子像素,其中探測器100可以使用這些附加的子像素產生的電信號來確定入射至這些附加的子像素上(例如,在第一時間週期)的輻射粒子數或輻射粒子的能量。探測器100可以確定入射在第一子像素151A、第三子像素151C以及可選擇的這些附加的子像素上的輻射粒子數的總和。如果探測器100能夠確定這些輻射粒子的能量,該探測器100可以確定在一定能量範圍內的輻射粒子的數目的總和。例如,探測器100可以確定入射在第一子像素151A與第三子像素151C上的分別能量為從70千電子伏特(keV)至71keV、從71keV至72keV、等的輻射粒子的總數。探測器100可以在一個時間週期內彙集這些總數到入射到探測器100上的輻射的能譜。
如果像素150包括第四子像素151D,第四子像素151D可以在其曝光於輻射時產生第四電信號。探測器100可以通過對第二個時間週期的第四電信號進行積分(例如,使用積分器)來確 定輻射強度。探測器100可以通過對第二個時間週期的第二電信號和第四電信號進行積分來確定輻射強度。
探測器100可以選擇性地包括附加的(例如,10、100、1000、10000或更多)子像素,其中探測器100可以積分附加子像素產生的電信號(例如在第二時間週期)來確定輻射的強度。探測器100可以積分這些電信號的總和或者計算這些信號的積分的總和。
圖3根據一個實施例示意性地示出了探測器100的方框圖。第一子像素151A與第三子像素151C分別測量入射到其上的多個輻射粒子的能量161。輻射粒子在步驟162中基於能量161被分配到163A、163B、163C...等多個收集器中。每個收集器163A、163B、163C...分別具有對應的計數器164A,164B和164C。當其中一個粒子被分配到收集器中時,存儲在對應的計數器的數值增加1。
圖4根據實施例示出了電子系統121的元件示意圖。電子系統121可以被用於處理或解釋來自第一子像素151A或第三子像素151C的信號。電子系統121可包括第一電壓比較器301、第二電壓比較器302、多個計數器320(例如,計數器320A、320B、320C、320D)、類比數位轉換器(ADC)306,積分器309和控制器310。
第一電壓比較器301可配置用於將電觸點119B的一個離散部分的電壓和第一閾值進行比較。第一電壓比較器301可以被配置成直接監測電壓,或者通過對在一段時間內流經二極體或電觸點的電流進行積分來計算電壓。第一電壓比較器301可以可 控地被控制器310啟動或關閉。第一電壓比較器301可以是連續比較器。即第一電壓比較器301可以被配置成持續地被啟動並持續地監測電壓。配置成連續比較器的第一電壓比較器301降低了系統121錯過入射輻射粒子所產生的信號的可能性。配置為連續比較器的第一電壓比較器301是特別適合用於當入射輻射強度較高時。第一電壓比較器301可以是鐘控比較器,其具有較低功耗的優點。配置為鐘控比較器的第一電壓比較器301可使系統121錯過由一些入射粒子所產生的信號。當入射輻射強度低時,由於兩個相繼的輻射粒子之間的時間間隔相對較長,錯過入射輻射粒子的機會較低。因此,配置為鐘控比較器的第一電壓比較器301尤其適用於當入射輻射強度較低時。第一閾值可以是入射輻射粒子在電觸點119B上可產生的最大電壓的5-10%、10%-20%、20-30%、30-40%或40-50%。所述最大電壓可能取決於入射輻射粒子的能量(比如入射輻射的波長),輻射吸收層110的材料以及其它因素。例如,第一閾值可以是50毫伏、100毫伏、150毫伏、或200毫伏。
第二電壓比較器302被配置成用於將上述電壓與第二閾值V2進行比較。第二電壓比較器302可以被配置成直接監測電壓,或者通過對在一段時間內流經二極體或電觸點119B的電流進行積分來計算電壓。第二電壓比較器302可以是連續比較器。第二電壓比較器302可以可控地被控制器310啟動或關閉。當第二電壓比較器302被關閉時,該第二電壓比較器302的功耗可以小於該第二電壓比較器302被啟動時的功耗的1%、5%、10%或20%。所述第二閾值的絕對值大於所述第一閾值的絕對值。在本發明中, 術語一個實數x的“絕對值”或“模量”,|x|是指與該實數與x符號無關的其非負數數值。即,if x
Figure 108128737-A0305-02-0016-1
0,|x|=x;if x
Figure 108128737-A0305-02-0016-2
0,|x|=-x。第二閾值可以是第一閾值的200%-300%。例如,第二閾值可以是100毫伏、150毫伏、200毫伏、250毫伏或300毫伏。第二電壓比較器302與第一電壓比較器310可以是同一部件。即,系統121可以具有一個電壓比較器,該電壓比較器可在不同的時間段將一個電壓與與兩個不同的閾值進行比較。
第一電壓比較器301或第二電壓比較器302可包含一個或多個運算放大器或者任何其它合適的電路。第一電壓比較器301或第二電壓比較器302可具有高運行速度使得系統121可以在入射輻射粒子高輻照量的情況下運行。然而,具有高運行速度通常是以功率消耗為代價的。
計數器320可以是軟體元件(例如,存儲在電腦記憶體中的數值)或者硬體部件(例如,積體電路4017IC或7490IC)。每個計數器320與一個能量範圍的收集器相關聯。例如,計數器320A可與70至71keV的收集器相關聯,計數器320B可與71至72keV的收集器相關聯,計數器320C可與72至73keV的收集器相關聯,計數器320D可與用於73至74keV的收集器相關聯。當由類比數位轉換器(ADC)306確定入射輻射粒子的能量屬於一個與計數器320相關聯的收集器時,該計數器320中記錄的數值增加1。
控制器310可以是硬體元件,例如微控制器和微處理器。控制器310被配置為從第一電壓比較器301確定所述電壓的絕對值等於或大於第一閾值的絕對值的時刻開始啟用時間延遲(例如, 所述電壓的絕對值從低於第一閾值的絕對值的值增加至一個等於或高於第一閾值的絕對值的值)。這裡使用絕對值是因為電壓可以是負的或正的,取決於使用了二極體的陰極或陽極的電壓或者哪個電觸點被使用了。控制器310可以被配置為在第一電壓比較器301確認所述電壓的絕對值等於或大於第一閾值的絕對值之前,使得第二電壓比較器302、計數器320和任何其它第一電壓比較器301不需要使用的電路保持處於非啟動狀態。時間延遲可能在電壓穩定之後終止,電壓穩定即指電壓的變化率基本為零。短語“電壓變化率基本為零”意味著電壓的時間變化小於0.1%每納秒(0.1%/ns)。短語“電壓變化率基本上是非零”意味著電壓的時間變化至少為0.1%每納秒(0.1%/ns)。
控制器310可被配置為在時間延遲期間(包括開始和停用)啟動第二電壓比較器。在一個實施例中,控制器310被配置為在時間延遲開始時啟動第二電壓比較器。術語"啟動"意味著使所述元件進入工作狀態(例如,通過發送諸如電壓脈衝或邏輯電平等信號,通過提供電源等)。術語"停用"意味著使所述元件進入非運行狀態(例如,通過發送諸如電壓脈衝或邏輯電平等信號,通過切斷電源等)。工作狀態相較於非運行狀態可具有較高(例如,10倍以上,100倍以上,1000倍以上)的功耗。控制器310本身可以處於非啟動狀態,直到第一電壓比較器301的輸出電壓絕對值等於或超過第一閾值的絕對值時啟動控制器310。
控制器310可被配置為使得其中一個計數器320存儲的數值增加1,如果第二電壓比較器302在時間延遲期間內確定電壓 的絕對值等於或超過第二閾值的絕對值以及輻射粒子能量屬於該計數器320相關聯的收集器。
控制器310經配置可以使類比數位轉換器(ADC)306在時間延遲期滿時對電壓進行數位化,並基於電壓來確定輻射粒子的能量屬於哪個收集器。
控制器310可被配置為將電觸點119B連接到電接地,來重定電壓並且對累積在電觸點119B上的任何電荷載流子進行放電。在一個實施例中,電觸點119B在時間延遲的期滿之後連接到電接地。在一個實施例中,電觸點119B在有限的復位時長內與電接地連接。控制器310可以通過積分器309內的控制開關305來將電觸點119B連接到電接地。所述開關可以是諸如場效應電晶體(FET)的電晶體。
在一個實施例中,系統121沒有類比濾波網路(例如,電阻-電容電路)。在一個實施例中,系統121沒有類比電路。
類比數位轉換器(ADC)306可以將其測量的電壓作為類比或數位信號供給給控制器310。類比數位轉換器(ADC)可以是逐次逼近寄存器(SAR)型類比數位轉換器(也稱為逐次逼近類比數位轉換器)。逐次逼近寄存器型模數轉換(SAR ADC)在最終收斂類比信號為數位輸出之前通過對所有可能的量化電平進行二進位搜索來數位化類比信號。SAR ADC可具有四個主要子電路:採樣和保持電路以獲取輸入電壓(Vin);內部數位類比轉換器(DAC),其經配置提供給類比電壓比較器一個與逐次逼近寄存器的數位碼輸出相等的類比電壓;類比電壓比較器,將Vin與內部數位類比轉換器(DAC)的輸出進行比較並輸出與SAR的比較結果; SAR,經配置為內部DAC提供Vin的近似數位碼。可以對SAR進行初始化,使得最高有效位元(MSB)等於數字1。將該碼輸入到內部DAC中,然後它將該數位碼(Vref/2)的等同的類比信號提供給比較器用於與Vin進行比較。如果該類比電壓超過Vin,則比較器使得SAR復位該位;否則,該位保持為1。然後將SAR的下一位設置為1並完成相同的測試,繼續進行此二進位搜索直到測試了SAR中的每一位。最後所得到的碼是Vin的數位近似並且在數位化結束時由SAR輸出。
電子系統121可以包括電連接到電觸點119B的積分器309,其中積分器309被配置成在第二時間週期上將來自第二子像素151B的電觸點119B或者第四子像素151D的電觸點119B的電信號進行積分。積分器309可包含在運算放大器的回饋路徑中的電容器。所述運算放大器被配置為所謂的電容互阻抗放大器(CITA)。電容互阻抗放大器通過抑制運算放大器飽和從而具有高的動態範圍,並通過限制信號通路中的頻寬來提高信噪比。來自電觸點的電荷載流子在一段時間("積分週期")內累積在電容器上。積分週期結束後,電容電壓被類比數位轉換器(ADC)306採樣再由重定開關重定。積分器309可以包括直接連接到電觸點119B的電容器。
圖5示意性地示出了流過第一子像素151A或第三子像素151C的電觸點119B的電流的時間變化(上曲線)以及相對應的在電觸點119B上的電壓的時間變化(下曲線),該電流是由入射在包含電觸點119B的子像素上的輻射粒子產生的電荷載流子導致的。電壓可以是電流相對於時間的積分。在時間t0,輻射粒子 擊中二極體或電阻,電荷載流子開始在像素150中產生,電流開始流過電觸點119B,而且電觸點119B的電壓絕對值開始上升。在時間t1,第一電壓比較器301確定該電壓的絕對值等於或超過第一閾值V1的絕對值,控制器310啟動時間延遲TD1,並且控制器310可能在時間延遲TD1開始時終止第一電壓比較器301。如果控制器310在t1之前處於非啟動狀態,則控制器310在t1被啟動。在時間延遲TD1期間,控制器310啟動第二電壓比較器302。術語“期間”在此是指在時間延遲的開始和終止(即結束)以及之間的任何時間。例如,控制器310可在TD1終止時啟動第二電壓比較器302。如果在TD1期間,第二電壓比較器302在時間t2確定電壓絕對值等於或超過第二閾值V2的絕對值,控制器310會等待代穩定電壓穩定下來。電壓在時間te穩定,即當由輻射粒子產生的所有電荷載流子流出輻射吸收層110時。在時間ts,時間延遲TD1期滿。在時間te之時或之後,控制器310使電壓計306對電壓進行數位化並決定輻射粒子的能量屬於哪個能量收集器。然後,控制器310使得暫存於計數器320上的與該能量收集器相對應的數值增加1。在圖5的實例中,時間ts在時間te之後;即TD1結束在所有輻射粒子產生的電荷載流子流出輻射吸收層110之後。如果時間te不能容易地被測量,TD1可以根據經驗來選擇以允許有足夠的時間來收集幾乎全部的由一個輻射粒子產生的電荷載流子但又不至於太長而冒險使得有另一個輻射粒子射入。即,TD1可以根據經驗選擇,使得在實驗上時間ts在時間te之後。時間ts也不一定在時間te之後,因為控制器310一旦達到V2就可以忽略TD1,並等待時間te。所述電壓與由暗電流對該電壓的貢獻之間的 差異的變化率因此在te處基本為零。控制器310可被配置為在TD1期滿或t2時或者其間的任何時間停用第二電壓比較器302。
時間te處的電壓與由輻射粒子產生的電荷載流子的量成比例,與輻射粒子的能量有關。控制器310可經配置基於類比數位轉換器(ADC)306的輸出來來確定輻射粒子的能量應屬於的收集器。
在TD1到期或由類比數位轉換器(ADC)進行數位化之後,以較後者為准,控制器310在復位週期RST將電觸點119B連接到電接地使得累積在電觸點119B上的電荷載流子流向地並重定電壓。在重定週期RST之後,系統121準備好檢測另一個入射的輻射粒子。暗指,在圖5的例子中的系統121可以處理的入射粒子的速率限於1/(TD1+RST)。如果第一電壓比較器301已經被停用,控制器310可以在RST期滿之前的任何時間啟動它。如果控制器310已經被停用,它可以在RST期滿之前被啟動。
圖6示意性地示出了流過第二子像素151B(或第四子像素151D)的電觸點119B的電流的時間變化(上曲線)。該電流是由入射在包含電觸點119B的子像素151B(或151D)上的輻射粒子產生的電荷載流子導致的。圖6還示意性地示出了相對應的在電觸點119B上的電壓的時間變化(下曲線)。電壓可以是電流相對於時間的積分。在時間t0,第一個輻射粒子命中第二子像素151B(或第四子像素151D),電荷載流子在輻射吸收層110中產生,電流開始從電觸點119B開始流動,並且電觸點119B的電壓的絕對值開始增加。在時間t01,第二個輻射粒子命中第二子像素151B(或第四子像素151D),更多的電荷載流子在輻射吸收層110 中產生,更多的電流從電觸點119B流出,電觸點119B的電壓的絕對值進一步增大。在積分週期期間(t0到t1),更多的輻射粒子可以命中第二子像素151B(或第四子像素151D)。在圖6的示例中,在時間t02和t03,額外兩個輻射粒子分別命中第二子像素151B(或第四子像素151D),電觸點119B的電壓經一步增加。電流在t0到t1的週期內被積分。
在t1後,電觸點119B的電壓被測量,該電壓代表入射到第二子像素151B(或第四子像素151D)上的輻射的強度。電觸點119B可在復位週期RST連接到點接地來使得累積在電觸點119B上的電荷載流子流向地並重定電壓。
圖7示意性地示出了一種包括本發明所述的探測器100的系統。該系統可用於醫學成像,例如胸部輻射射線照相、腹部輻射射線照相、牙科輻射射線照相等。該系統包括輻射源701。輻射源701發出的輻射穿透物體702(例如,諸如胸部、肢體、腹部、口腔等人體部位)並因物體702內部結構(例如,骨骼、肌肉、脂肪、器官和牙齒,等)有不同程度的衰減,以及被投射到探測器100。探測器100通過檢測輻射的強度分佈而產生圖像。
圖8示意性地示出了一種包括本發明所述的探測器100的貨物掃描或非侵入性檢查(NII)系統。該系統可用於檢查和識別運輸系統中的貨物,例如運輸集裝箱、車輛、船舶、行李等。該系統包括輻射源9011。從輻射源9011發射的輻射可以經物體9012反向散射(例如,運輸集裝箱、車輛、船舶等)並投射到探測器100。物體9012的不同的內部結構可以不同地反向散射輻射。探測器 100通過檢測反向散射輻射的強度分佈和/或反向散射輻射粒子的能量來形成圖像。
圖9示意性地示出了另一種包括本發明所述的探測器100的貨物掃描或非侵入性檢查(NII)系統。該系統可用於公共運輸站和機場的行李檢查。該系統包括輻射源1001。輻射源1001發射的輻射可以穿透一件行李1002,通過行李箱所含內容有不同的程度衰減並投射到探測器100。探測器100通過檢測透射輻射的強度分佈而形成圖像。該系統可以揭示行李的內容並識別在公共交通中禁止的物品,例如槍支、麻醉劑(毒品)、利器,可燃物等。
圖10示意性地示出了一種包括本發明所述的探測器100的全體掃描器系統。全體掃描器系統可以以安全檢查為目的用於檢測人身體上的物體,不需物理性地去除衣物或進行物理接觸。全體掃描器系統能夠檢測非金屬物體。全體掃描器系統包括輻射源1101。從輻射源1101發射的輻射可以由被檢測人1102以及其身上的物體反向散射,並投射到探測器100。物體和人體可能對輻射進行不同的反向散射。探測器100通過檢測反向散射輻射的強度分佈來形成圖像。探測器100和輻射源1101可被配置為以線性方向或旋轉方向來對人掃描。
圖11示意性地示出了一種包括本發明所述的探測器100的輻射電腦斷層掃描(放射線CT)系統。放射線CT系統使用電腦處理的輻射來產生掃描物件的特定區域的斷層圖像(虛擬“切片”)。斷層圖像可以以診斷和治療目的用於各種醫學學科中,或用於探傷檢驗、故障分析、計量、組裝分析和逆向工程。放射線CT 系統包括本發明所述的探測器100和輻射源1201。探測器100和輻射源1201可被構造成沿一個或多個圓形或螺旋路徑同步旋轉。
圖12示意性地示出了包括本發明所述的探測器100的電子顯微鏡。電子顯微鏡包括被配置為發射電子的電子源1301(也稱為電子槍)。電子源1301可具有各種發射機制,例如熱離子、光電陰極、冷發射或等離子體源。發射的電子通過電子光學系統1303,該電子光學系統1303可以被配置成塑形、加速或聚焦電子。然後電子到達樣本1302並且圖像探測器可因其形成圖像。電子顯微鏡可以包括本發明所述的探測器100,用於執行能量色散輻射光譜技術(EDS)。EDS是用於樣品的元素分析或化學表徵的分析技術。當電子入射到樣品上時,它們引起來自樣品的特徵輻射的發射。入射電子可以激發樣品中原子的內殼中的電子,從該內殼中發射出電子同時在該電子原來的位置產生空穴。來自較外層的能量較高的殼的電子填充該空穴,並且能量較高的殼和能量較低的殼之間的能量差可以以輻射形式釋放。從樣品發射的輻射的數量和能量可以通過探測器100測量。
儘管本發明公開了各種方面和實施例,其他方面和實施例對於本領域內技術人員將變得明顯。本發明公開的各種方面和實施例是為了說明目的而不是限制性的,其真正範圍和精神由申請專利範圍指示。
100:探測器
150:像素
151A:第一子像素
151B:第二子像素
151C:第三子像素
151D:第四子像素

Claims (26)

  1. 一種探測器,包括:包含第一子像素和第二子像素的一個像素,其中所述第一子像素被配置為在曝光於輻射時產生第一電信號,並且其中所述第二子像素被配置為在曝光於所述輻射時產生第二電信號,其中所述探測器被配置為在第一時間週期內,基於所述第一電信號,確定入射在所述第一子像素上的輻射粒子的數量,其中所述探測器被配置為通過在第二時間週期內積分所述第二電信號來確定所述輻射的強度。
  2. 如申請專利範圍第1項所述的探測器,其中所述第一時間週期和所述第二時間週期是相同的。
  3. 如申請專利範圍第1項所述的探測器,其中所述第一子像素鄰接所述第二子像素。
  4. 如申請專利範圍第1項所述的探測器,其中所述探測器被配置為基於所述第一電信號,測量入射在所述第一子像素上的所述輻射粒子的能量。
  5. 如申請專利範圍第1項所述的探測器,其中所述像素更包括第三子像素,所述第三子像素被配置為在曝光於所述輻射時產生第三電信號,並且其中所述探測器被配置為基於所述第三電信號,確定在第一時間週期內入射在所述第三子像素上的輻射粒子的數量。
  6. 如申請專利範圍第5項所述的探測器,其中所述探測器被配置為基於第三電信號,測量入射到所述第三子像素上的所述輻射粒子的能量。
  7. 如申請專利範圍第5項所述的探測器,其中所述探測器被配置為確定在所述第一時間週期內入射在所述第一子像素上的所述輻射粒子的數量和入射在所述第三子像素上的所述輻射粒子的數量的總和。
  8. 如申請專利範圍第1項所述的探測器,其中所述像素更包括第四子像素,所述第四子像素被配置為在曝光於所述輻射時產生第四電信號,並且其中所述探測器被配置為在所述第二時間週期內通過對所述第二電信號和所述第四電信號積分來確定所述輻射的強度。
  9. 如申請專利範圍第4項所述的探測器,其中所述探測器被配置為基於所述輻射粒子的能量來確定所述輻射的能量譜。
  10. 如申請專利範圍第1項所述的探測器,更包括被配置為積分所述第二電信號的積分器。
  11. 如申請專利範圍第1項所述的探測器,其中所述第一子像素和所述第二子像素被配置為平行作業。
  12. 如申請專利範圍第4項所述的探測器,其中所述第一子像素包含輻射吸收層和電觸點,並且其中所述第一電信號是所述電觸點的電壓。
  13. 如申請專利範圍第12項所述的探測器,更包括:第一電壓比較器,經配置用於將所述電壓與第一閾值進行比較;第二電壓比較器,經配置用於將所述電壓與第二閾值進行比較;計數器,經配置用於存儲所述輻射粒子的數量;以及 控制器,其中所述控制器被配置為從所述第一電壓比較器確定所述電壓的絕對值等於或超過所述第一閾值的絕對值的時刻開始時間延遲,其中所述控制器被配置為在所述時間延遲期間啟動所述第二電壓比較器,其中所述控制器被配置為當所述第二電壓比較器確定所述電壓的絕對值等於或超過所述第二閾值的絕對值時,使得所述計數器寄存的數值增加一。
  14. 如申請專利範圍第13項所述的探測器,更包括電連接到所述電觸點的運算放大積分器。
  15. 如申請專利範圍第13項所述的探測器,其中所述控制器被配置為在所述時間延遲的開始或期滿時啟動所述第二電壓比較器。
  16. 如申請專利範圍第13項所述的探測器,其中所述控制器被配置為基於在所述時間延遲期滿時所測量的電壓值來確定所述能量。
  17. 如申請專利範圍第13項所述的探測器,其中所述電壓的變化率在所述時間延遲期滿時基本為零。
  18. 如申請專利範圍第12項所述的探測器,其中所述輻射吸收層包含二極體。
  19. 如申請專利範圍第12項所述的探測器,其中所述輻射吸收層包含矽、鍺、砷化鎵、碲化鎘、碲鋅鎘或者它們的組合。
  20. 如申請專利範圍第1項所述的探測器,其中所述探測 器不包括閃爍器。
  21. 一種醫學成像系統,包括如申請專利範圍第1項所述的探測器,和一個輻射源,其中所述醫學成像系統經配置用於對人體、肢體或牙齒進行射線照相。
  22. 一種貨物掃描或非侵入式檢查(NII)系統,包括如申請專利範圍第1項所述的探測器和一個輻射源,其中所述貨物掃描或非侵入式檢查系統(NII)被配置用於基於反向散射的輻射形成圖像。
  23. 一種貨物掃描或非侵入式檢查(NII)系統,包括如申請專利範圍第1項所述的探測器和一個輻射源,其中所述貨物掃描或非侵入式檢查(NII)系統被配置用於基於透射過被檢查的物體的輻射形成圖像。
  24. 一種全體掃描器系統,包括如申請專利範圍第1項所述的探測器和一個輻射源。
  25. 一種輻射電腦斷層掃描(放射線CT)系統,包括如申請專利範圍第1項所述的探測器和一個輻射源。
  26. 一種電子顯微鏡,包括如申請專利範圍第1項所述的探測器,電子源和電子光學系統。
TW108128737A 2018-09-07 2019-08-13 輻射探測器以及包括其的醫學成像系統、貨物掃描或非侵入式檢查系統、全體掃描器系統、輻射電腦斷層掃描系統與電子顯微鏡 TWI793363B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/CN2018/104600 2018-09-07
PCT/CN2018/104600 WO2020047839A1 (en) 2018-09-07 2018-09-07 A radiation detector

Publications (2)

Publication Number Publication Date
TW202011046A TW202011046A (zh) 2020-03-16
TWI793363B true TWI793363B (zh) 2023-02-21

Family

ID=69722092

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108128737A TWI793363B (zh) 2018-09-07 2019-08-13 輻射探測器以及包括其的醫學成像系統、貨物掃描或非侵入式檢查系統、全體掃描器系統、輻射電腦斷層掃描系統與電子顯微鏡

Country Status (5)

Country Link
US (1) US11096638B2 (zh)
EP (1) EP3847481B1 (zh)
CN (1) CN112601981B (zh)
TW (1) TWI793363B (zh)
WO (1) WO2020047839A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12111431B2 (en) 2020-11-24 2024-10-08 National University Corporation Shizuoka University Radiation detector and radiation imaging device including same
WO2024031595A1 (en) * 2022-08-12 2024-02-15 Shenzhen Xpectvision Technology Co., Ltd. Radiation detecting systems with measurement results adjusted according to radiation source intensities
WO2024168452A1 (en) * 2023-02-13 2024-08-22 Shenzhen Xpectvision Technology Co., Ltd. Imaging systems and corresponding operation methods for elimination of effects of dark currents

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100111248A1 (en) * 2007-02-27 2010-05-06 Koninklijke Philips Electronics N. V. Apparatus, imaging device and method for counting x-ray photons
EP2198324A2 (en) * 2007-09-27 2010-06-23 Koninklijke Philips Electronics N.V. Processing electronics and method for determining a count result, and detector for an x-ray imaging device
US20100181494A1 (en) * 2008-11-20 2010-07-22 Detlef Mattern Reducing the widening of a radiation beam

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10357187A1 (de) * 2003-12-08 2005-06-30 Siemens Ag Verfahren zum Betrieb eines zählenden Strahlungsdetektors mit verbesserter Linearität
US7606347B2 (en) * 2004-09-13 2009-10-20 General Electric Company Photon counting x-ray detector with overrange logic control
US7488945B2 (en) * 2005-11-30 2009-02-10 General Electric Company Subpixel routing and processing for an imaging system or the like
CN101918860A (zh) * 2007-11-06 2010-12-15 皇家飞利浦电子股份有限公司 间接辐射检测器
JP5670739B2 (ja) * 2007-12-20 2015-02-18 コーニンクレッカ フィリップス エヌ ヴェ 放射線感知型の検出器アレー及び放射線を感知する方法
CA2650066A1 (en) * 2009-01-16 2010-07-16 Karim S. Karim Photon counting and integrating pixel readout architecture with dynamic switching operation
US8405038B2 (en) * 2009-12-30 2013-03-26 General Electric Company Systems and methods for providing a shared charge in pixelated image detectors
TWI461725B (zh) * 2011-08-02 2014-11-21 Vieworks Co Ltd 輻射成像系統
US8994867B2 (en) * 2013-03-15 2015-03-31 Samsung Electronics Co., Ltd. Image sensor, operating method thereof, and device including the image sensor
JP6325650B2 (ja) * 2013-04-24 2018-05-16 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光検出器画素アレイを有する放射線検出装置、pet撮像システム、光フォトン加算方法、及び光フォトン加算方法のステップを実行するためのコンピュータプログラム
US10539691B2 (en) * 2015-06-10 2020-01-21 Shenzhen Xpectvision Technology Co., Ltd. Detector for X-ray fluorescence
US10393891B2 (en) * 2016-05-03 2019-08-27 Redlen Technologies, Inc. Sub-pixel segmentation for semiconductor radiation detectors and methods of fabricating thereof
WO2019148477A1 (en) * 2018-02-03 2019-08-08 Shenzhen Xpectvision Technology Co., Ltd. An endoscope
CN112449685B (zh) * 2018-07-12 2023-08-01 深圳帧观德芯科技有限公司 辐射检测器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100111248A1 (en) * 2007-02-27 2010-05-06 Koninklijke Philips Electronics N. V. Apparatus, imaging device and method for counting x-ray photons
EP2198324A2 (en) * 2007-09-27 2010-06-23 Koninklijke Philips Electronics N.V. Processing electronics and method for determining a count result, and detector for an x-ray imaging device
US20100181494A1 (en) * 2008-11-20 2010-07-22 Detlef Mattern Reducing the widening of a radiation beam

Also Published As

Publication number Publication date
CN112601981A (zh) 2021-04-02
CN112601981B (zh) 2023-07-18
EP3847481A4 (en) 2022-03-30
EP3847481B1 (en) 2023-11-29
EP3847481A1 (en) 2021-07-14
WO2020047839A1 (en) 2020-03-12
TW202011046A (zh) 2020-03-16
US11096638B2 (en) 2021-08-24
US20210161488A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US11013479B2 (en) Semiconductor X-ray detector
TWI802553B (zh) X射線成像系統、x射線系統、貨物掃描或非侵入性檢查(nii)系統、全身掃描儀系統、x射線計算斷層攝影(x射線ct)系統、電子顯微鏡及x射線成像方法
CN112639532B (zh) 一种具有不同取向的辐射检测器的图像传感器
US11096638B2 (en) Radiation detector
CN113286546B (zh) 一种具有不同方向辐射检测器的成像系统
CN113543711A (zh) 一种具有校准模式的图像传感器
TWI788320B (zh) 輻射檢測器、用於檢測輻射之系統、使用輻射檢測器之設備及分配記憶體之方法
TWI804522B (zh) 輻射檢測器、用於補償暗雜訊的系統、貨物掃描或者非侵入式檢查(nii)系統、全身掃描器系統、電腦斷層掃描(ct)系統、電子顯微鏡及使用輻射檢測器的方法
TW201827813A (zh) 能識別和管理電荷共享的x射線檢測器
TWI819171B (zh) 圖像感測器及圖像感測系統
US11784194B2 (en) Radiation detector
CN111226137A (zh) 用于x射线荧光的检测器