TWI792920B - Method for manufacturing metallic glass thin film - Google Patents
Method for manufacturing metallic glass thin film Download PDFInfo
- Publication number
- TWI792920B TWI792920B TW111105461A TW111105461A TWI792920B TW I792920 B TWI792920 B TW I792920B TW 111105461 A TW111105461 A TW 111105461A TW 111105461 A TW111105461 A TW 111105461A TW I792920 B TWI792920 B TW I792920B
- Authority
- TW
- Taiwan
- Prior art keywords
- plated
- target
- sputtering
- metallic glass
- sputtering chamber
- Prior art date
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
本發明係關於一種薄膜之製造方法,尤其是指一種金屬玻璃薄膜之製造方法。The invention relates to a method for manufacturing a thin film, in particular to a method for manufacturing a metallic glass thin film.
一般來說,鋯-銅基金屬玻璃相對於鋁基、鎳基、鈦基有較好的玻璃成形能力(Glass forming ability, GFA),同時也是目前領域內被研究最多的組合,其提高機械強度、硬度、耐腐蝕的特性,加上良好的生物相容性,吸引許多研究者致力於鋯-銅基非晶材料的開發。研究結果顯示,鋯-銅金屬玻璃在寬範圍的元素組成中都有良好的玻璃成形能力。Generally speaking, zirconium-copper-based metallic glasses have better glass forming ability (GFA) than aluminum-based, nickel-based, and titanium-based metallic glasses. , hardness, corrosion resistance, and good biocompatibility have attracted many researchers to devote themselves to the development of zirconium-copper-based amorphous materials. The results show that zirconium-copper metallic glasses exhibit good glass-forming capabilities over a wide range of elemental compositions.
許多研究也證實,在鋯-銅金屬玻璃中添加第三種元素,例如:鋁元素的添加可改善薄膜熱穩定性、鉭元素的添加有利於增加硬度與楊氏模量、鎢元素的添加能大幅度提升硬度與升高玻璃轉換溫度與高溫結晶溫度,鈦元素的加入可擁有較高的腐蝕抗性、良好的電化學穩定性以及低的細胞毒性、氮元素的添加可以提高薄膜硬度,以及減緩金屬表面氧化的速度。Many studies have also confirmed that the addition of a third element in zirconium-copper metallic glass, for example: the addition of aluminum can improve the thermal stability of the film, the addition of tantalum is beneficial to increase the hardness and Young's modulus, and the addition of tungsten can improve the thermal stability of the film. Greatly increase the hardness and increase the glass transition temperature and high temperature crystallization temperature. The addition of titanium can have higher corrosion resistance, good electrochemical stability and low cytotoxicity. The addition of nitrogen can improve the hardness of the film, and Slow down the rate of metal surface oxidation.
在現有技術中,鋯銅鈦金屬玻璃已被研究出擁有寬範圍的玻璃成形能力,曾有文獻在腐蝕的方面提及此材料的優勢,但研究提升鋯銅鈦金屬玻璃薄膜的機械性質或抗菌性方面的文獻卻十分有限。In the prior art, zirconium-copper-titanium metallic glass has been researched to have a wide range of glass forming capabilities. There have been literatures mentioning the advantages of this material in terms of corrosion, but studies have improved the mechanical properties or antibacterial properties of zirconium-copper-titanium metallic glass films. The literature on sexuality is very limited.
有鑒於在先前技術中,鋯銅鈦金屬玻璃經研究已被證實具有寬範圍的玻璃成形能力,且相較於其他組成之金屬玻璃薄膜具有較高的抗腐蝕性,但對於機械性質或抗菌性的研究卻寥寥無幾;緣此,本發明的主要目的在於提供一種金屬玻璃薄膜之製造方法,可以製造出具有抗菌效果之金屬玻璃薄膜。Whereas in the prior art, zirconium-copper-titanium metallic glass has been researched and proved to have a wide range of glass forming capabilities, and has higher corrosion resistance than metallic glass films of other compositions, but the mechanical properties or antibacterial properties However, there are very few researches; therefore, the main purpose of the present invention is to provide a method for manufacturing metallic glass films, which can produce metallic glass films with antibacterial effects.
本發明為解決先前技術之問題,所採用的必要技術手段是提供一種金屬玻璃薄膜之製造方法,包含以下步驟(A)至步驟(F)。步驟(A)是製備一高功率脈衝磁控濺鍍系統,高功率脈衝磁控濺鍍系統具有一濺鍍腔室;步驟(B)是將一鋯靶材、一鈦靶材與一銅靶材分別設置於濺鍍腔室中;步驟(C)是製備一待鍍物,並將待鍍物放置於濺鍍腔室中;步驟(D)是對濺鍍腔室進行抽氣,藉以在濺鍍腔室中形成一類真空環境;步驟(E)將一氬氣通入濺鍍腔室中;步驟(F)是將鋯靶材、鈦靶材與銅靶材利用一高功率脈衝磁控濺鍍製程共濺鍍在待鍍物之表面沉積形成一金屬玻璃薄膜,其中鋯靶材與鈦靶材之濺鍍功率比為1:0.2~1,鋯靶材與銅靶材之濺鍍功率比為1:0.1~0.3,鈦靶材之功率介於1kW~5kW,藉以使金屬玻璃薄膜之化學計量比為Zr:Cu:Ti=30~45:20~60:5~30。In order to solve the problems of the prior art, the necessary technical means adopted by the present invention is to provide a method for manufacturing a metallic glass film, which includes the following steps (A) to (F). Step (A) is to prepare a high-power pulse magnetron sputtering system, the high-power pulse magnetron sputtering system has a sputtering chamber; step (B) is to prepare a zirconium target, a titanium target and a copper target The materials are respectively arranged in the sputtering chamber; the step (C) is to prepare an object to be plated, and place the object to be plated in the sputtering chamber; the step (D) is to exhaust the sputtering chamber, so as to A type of vacuum environment is formed in the sputtering chamber; step (E) passes an argon gas into the sputtering chamber; step (F) uses a high-power pulsed magnetron to zirconium target, titanium target and copper target Sputtering process Co-sputtering deposits a metallic glass film on the surface of the object to be plated, in which the sputtering power ratio of the zirconium target and the titanium target is 1:0.2~1, and the sputtering power of the zirconium target and the copper target The ratio is 1:0.1~0.3, the power of the titanium target is between 1kW~5kW, so that the stoichiometric ratio of the metallic glass film is Zr:Cu:Ti=30~45:20~60:5~30.
本發明為解決先前技術之問題,所採用的另一必要技術手段是提供一種金屬玻璃薄膜之製造方法,包含以下步驟(A)至步驟(F)。步驟(A)是製備一高功率脈衝磁控濺鍍系統,高功率脈衝磁控濺鍍系統具有一濺鍍腔室;步驟(B)是將一鋯靶材、一鈦靶材、一銅靶材與一鋁靶材分別設置於濺鍍腔室中;步驟(C)是製備一待鍍物,並將待鍍物放置於濺鍍腔室中;步驟(D)是對濺鍍腔室進行抽氣,藉以在濺鍍腔室中形成一類真空環境;步驟(E)將一氬氣通入濺鍍腔室中;步驟(F)是將鋯靶材、鈦靶材、銅靶材與鋁靶材利用一高功率脈衝磁控濺鍍製程 共濺鍍在待鍍物之表面沉積形成一金屬玻璃薄膜,其中鋯靶材與鈦靶材之濺鍍功率比為1:0.2,鋯靶材與銅靶材之濺鍍功率比為1:0.3,鋯靶材與鋁靶材之濺鍍功率比為1:0.06~0.26,鈦靶材之功率介於1kW~5kW,藉以使金屬玻璃薄膜之化學計量比為Zr:Cu:Ti:Al=25~35:45~55:5~10:5~20。 In order to solve the problems of the prior art, another necessary technical means adopted by the present invention is to provide a method for manufacturing a metallic glass film, which includes the following steps (A) to (F). Step (A) is to prepare a high-power pulse magnetron sputtering system, the high-power pulse magnetron sputtering system has a sputtering chamber; step (B) is to prepare a zirconium target, a titanium target, a copper target material and an aluminum target are respectively arranged in the sputtering chamber; step (C) is to prepare an object to be plated, and place the object to be plated in the sputtering chamber; step (D) is to carry out the sputtering chamber Evacuation, so as to form a kind of vacuum environment in the sputtering chamber; step (E) passes an argon gas into the sputtering chamber; step (F) is to combine zirconium target material, titanium target material, copper target material and aluminum The target uses a high-power pulsed magnetron sputtering process to deposit a metallic glass film on the surface of the object to be plated by co-sputtering. The sputtering power ratio of the zirconium target and the titanium target is 1:0.2, and the zirconium target and the titanium target are 1:0.2. The sputtering power ratio of the copper target is 1:0.3, the sputtering power ratio of the zirconium target and the aluminum target is 1:0.06~0.26, and the power of the titanium target is between 1kW~5kW, so as to make the chemical The metering ratio is Zr:Cu:Ti:Al=25~35:45~55:5~10:5~20.
本發明為解決先前技術之問題,所採用的另一必要技術手段是提供一種金屬玻璃薄膜之製造方法,包含以下步驟(A)至步驟(F)。步驟(A)是製備一高功率脈衝磁控濺鍍系統,高功率脈衝磁控濺鍍系統具有一濺鍍腔室;步驟(B)是將一鋯靶材、一鈦靶材、一銅靶材與一鋁靶材分別設置於濺鍍腔室中;步驟(C)是製備一待鍍物,並將待鍍物放置於濺鍍腔室中;步驟(D)是對濺鍍腔室進行抽氣,藉以在濺鍍腔室中形成一類真空環境;步驟(E)將一氬氣與一氮氣通入濺鍍腔室中;步驟(F)是將鋯靶材、鈦靶材、銅靶材與鋁靶材利用一高功率脈衝磁控濺鍍製程共濺鍍在待鍍物之表面沉積形成一金屬玻璃薄膜,其中鋯靶材與鈦靶材之濺鍍功率比為1:0.2,鋯靶材與銅靶材之濺鍍功率比為1:0.3,鋯靶材與鋁靶材之濺鍍功率比為1:0.06~0.26,鈦靶材之功率介於1kW~5kW,藉以使金屬玻璃薄膜之化學計量比為Zr:Cu:Ti:Al:N=5~20:40~55:1~5:5~20:15~30。In order to solve the problems of the prior art, another necessary technical means adopted by the present invention is to provide a method for manufacturing a metallic glass film, which includes the following steps (A) to (F). Step (A) is to prepare a high-power pulse magnetron sputtering system, the high-power pulse magnetron sputtering system has a sputtering chamber; step (B) is to prepare a zirconium target, a titanium target, a copper target material and an aluminum target are respectively arranged in the sputtering chamber; step (C) is to prepare an object to be plated, and place the object to be plated in the sputtering chamber; step (D) is to carry out the sputtering chamber Evacuation, so as to form a kind of vacuum environment in the sputtering chamber; step (E) pass an argon gas and a nitrogen gas into the sputtering chamber; step (F) is to put the zirconium target, titanium target, copper target Co-sputtering metal and aluminum targets are deposited on the surface of the object to be plated by a high-power pulse magnetron sputtering process to form a metallic glass film, in which the sputtering power ratio of zirconium targets and titanium targets is 1:0.2, zirconium The sputtering power ratio of target and copper target is 1:0.3, the sputtering power ratio of zirconium target and aluminum target is 1:0.06~0.26, and the power of titanium target is between 1kW~5kW, so as to make metallic glass The stoichiometric ratio of the film is Zr:Cu:Ti:Al:N=5~20:40~55:1~5:5~20:15~30.
如上所述,由於本發明之金屬玻璃薄膜之製造方法,主要是利用高功率脈衝磁控濺鍍系統來進行濺鍍製程,進而在待鍍物上濺鍍形成金屬玻璃薄膜,使金屬玻璃薄膜因其組成具有抗菌性。As mentioned above, because the manufacturing method of the metallic glass film of the present invention mainly utilizes the high-power pulse magnetron sputtering system to carry out the sputtering process, and then forms the metallic glass film by sputtering on the object to be plated, so that the metallic glass film is Its composition is antibacterial.
本發明所採用的具體實施例,將藉由以下之實施例及圖式作進一步之說明。The specific embodiments adopted by the present invention will be further described by the following embodiments and drawings.
請參閱第一圖,第一圖係顯示本發明之金屬玻璃薄膜之製造方法所應用之高功率脈衝磁控濺鍍系統之平面示意圖。如第一圖所示,本發明第一較佳實施例所提供之一種金屬玻璃薄膜之製造方法是應用於一高功率脈衝磁控濺鍍系統100,高功率脈衝磁控濺鍍系統100具有一濺鍍腔室SC,且濺鍍腔室SC內設有一旋轉平台RT、一鋯靶材ZrTG、一鈦靶材TiTG、一銅靶材CuTG以及一鋁靶材AlTG,鋯靶材ZrTG、鈦靶材TiTG、銅靶材CuTG與鋁靶材AlTG是以旋轉平台RT為中心而環繞地設置。Please refer to the first figure. The first figure is a schematic plan view of a high-power pulsed magnetron sputtering system used in the manufacturing method of the metallic glass thin film of the present invention. As shown in the first figure, the manufacturing method of a metallic glass film provided by the first preferred embodiment of the present invention is applied to a high-power pulse
承上所述,鋯靶材ZrTG、鈦靶材TiTG、銅靶材CuTG與鋁靶材AlTG分別電性連結於一高功率脈衝磁控電源供應器TGPS1、一高功率脈衝磁控電源供應器TGPS2、一高功率脈衝磁控電源供應器TGPS3與一高功率脈衝磁控電源供應器TGPS4,而高功率脈衝磁控電源供應器TGPS1、TGPS2、TGPS3與TGPS4之型號例如為Hüttinger 4002 G2或Melec SPIK 3000A。Based on the above, zirconium target ZrTG, titanium target TiTG, copper target CuTG and aluminum target AlTG are respectively electrically connected to a high-power pulsed magnetron power supply TGPS1 and a high-power pulsed magnetron power supply TGPS2 , A high-power pulse magnetron power supply TGPS3 and a high-power pulse magnetron power supply TGPS4, and the models of the high-power pulse magnetron power supply TGPS1, TGPS2, TGPS3 and TGPS4 are, for example, Hüttinger 4002 G2 or Melec SPIK 3000A .
此外,高功率脈衝磁控濺鍍系統100還設有一氬氣供應源GC1、一氮氣供應源GC2、一第一質量流量控制器(Mass Flow Controller)MFC1、一第二質量流量控制器MFC2以及一真空幫浦組件VA。氬氣供應源GC1是透過第一質量流量控制器MFC1連通至濺鍍腔室SC,進而受第一質量流量控制器MFC1控制氬氣流通入濺鍍腔室SC之流量,氮氣供應源GC2則是透過第二質量流量控制器MFC2連通至濺鍍腔室SC,進而受第二質量流量控制器MFC2控制氮氣流通入濺鍍腔室SC之流量。In addition, the high-power pulsed
請繼續參閱第二圖,第二圖係顯示本發明第一較佳實施例所提供之金屬玻璃薄膜之製造方法之步驟流程圖。如第一圖與第二圖所示,金屬玻璃薄膜之製造方法包含以下步驟S101至步驟S108。Please continue to refer to the second figure. The second figure is a flow chart showing the steps of the manufacturing method of the metallic glass film provided by the first preferred embodiment of the present invention. As shown in the first figure and the second figure, the manufacturing method of the metallic glass film includes the following steps S101 to S108.
步驟S101是製備一具有一濺鍍腔室SC之高功率脈衝磁控濺鍍系統100。Step S101 is to prepare a high power pulsed
步驟S102是將一鋯(Zr)靶材ZrTG、一鈦(Ti)靶材TiTG與一銅(Cu)靶材CuTG分別設置於濺鍍腔室SC中。其中,雖然在第一圖中,濺鍍腔室SC還設有一鋁(Al)靶材AlTG,但由於本實施例中不需要使用到鋁靶材AlTG,因此實務上可以不設置鋁靶材AlTG,或者是讓電性連結鋁靶材AlTG之高功率脈衝磁控電源供應器TGPS4不運作。In step S102 , a zirconium (Zr) target ZrTG, a titanium (Ti) target TiTG and a copper (Cu) target CuTG are respectively placed in the sputtering chamber SC. Wherein, although in the first figure, the sputtering chamber SC is also provided with an aluminum (Al) target material AlTG, but since the aluminum target material AlTG is not needed in this embodiment, it is not necessary to set the aluminum target material AlTG in practice. , or make the high-power pulsed magnetron power supply TGPS4 electrically connected to the aluminum target AlTG not operate.
步驟S103是製備一待鍍物200,並將待鍍物200放置於濺鍍腔室SC中;其中,待鍍物200例如為304不繡鋼(SUS304)、鉬壓延片(Molybdenum sheet) 或矽晶片(Silicon wafer),但不限於此。Step S103 is to prepare an object to be plated 200, and place the object to be plated 200 in the sputtering chamber SC; wherein, the object to be plated 200 is, for example, 304 stainless steel (SUS304), molybdenum rolled sheet (Molybdenum sheet) or silicon Chip (Silicon wafer), but not limited to this.
步驟S104是對濺鍍腔室SC進行抽氣,藉以在濺鍍腔室SC中形成一類真空環境;其中,類真空環境是指氣壓極低至趨近於真空,在本實施例中,高功率脈衝磁控濺鍍系統100所使用之真空幫浦組件VA包含有機械幫浦與魯氏幫浦,機械幫浦可使濺鍍腔室SC內之壓力降低至5×10-2torr的低真空壓力,而魯氏幫浦可使濺鍍腔室SC內之壓力降低至3×10-6torr的高真空壓力。Step S104 is to evacuate the sputtering chamber SC, so as to form a type of vacuum environment in the sputtering chamber SC; wherein, the vacuum-like environment means that the air pressure is extremely low to close to vacuum. In this embodiment, high power The vacuum pump component VA used in the pulsed
步驟S105 是將一氬氣通入濺鍍腔室SC中;其中,本實施例僅將氬氣通入濺鍍腔室SC中,而氮氣供應源GC2則關閉不供應氮氣。Step S105 is to pass an argon gas into the sputtering chamber SC; wherein, in this embodiment, only argon gas is passed into the sputtering chamber SC, and the nitrogen gas supply source GC2 is turned off and no nitrogen gas is supplied.
步驟S106 是在濺鍍腔室SC內施加電場,使氬氣解離形成氬離子,並利用氬離子轟擊待鍍物200;其中,利用氬離子轟擊待鍍物200是為了清除附著於待鍍物200上之細小粉塵。Step S106 is to apply an electric field in the sputtering chamber SC to dissociate the argon gas to form argon ions, and use the argon ions to bombard the
步驟S107 是利用鈦靶材TiTG對待鍍物200進行離子轟擊;其中,利用鈦靶材TiTG對待鍍物200進行離子轟擊主要是用於對待鍍物200之表面進行清潔,以增加待鍍物200的附著性。Step S107 is to use the titanium target material TiTG to carry out ion bombardment on the object to be plated 200; wherein, to use the titanium target material TiTG to carry out ion bombardment on the object to be plated 200 is mainly used to clean the surface of the object to be plated 200 to increase the surface area of the object to be plated 200 adhesion.
步驟S108 是將鋯靶材ZrTG、鈦靶材TiTG與銅靶材CuTG利用一高功率脈衝磁控濺鍍製程在待鍍物200之表面沉積形成一金屬玻璃薄膜(圖未示);其中,鋯靶材ZrTG與鈦靶材TiTG之濺鍍功率比為1:0.2~1,鋯靶材ZrTG與銅靶材CuTG之濺鍍功率比為1:0.1~0.3,鈦靶材TiTG之功率介於1kW~5kW,藉以使金屬玻璃薄膜之化學計量比為Zr:Cu:Ti=30~45:20~60:5~30。Step S108 is to deposit zirconium target material ZrTG, titanium target material TiTG and copper target material CuTG on the surface of the object to be plated 200 by a high-power pulsed magnetron sputtering process to form a metallic glass film (not shown); wherein, zirconium The sputtering power ratio of target ZrTG and titanium target TiTG is 1:0.2~1, the sputtering power ratio of zirconium target ZrTG and copper target CuTG is 1:0.1~0.3, and the power of titanium target TiTG is between 1kW ~5kW, so that the stoichiometric ratio of the metallic glass film is Zr:Cu:Ti=30~45:20~60:5~30.
承上所述,在本實施例中,高功率脈衝磁控濺鍍製程的詳細製程參數如下表一所示。Based on the above, in this embodiment, the detailed process parameters of the high-power pulsed magnetron sputtering process are shown in Table 1 below.
表一:第一實施例之高功率脈衝磁控濺鍍製程參數。
如上所述,在本發明第一較佳實施例中,鋯靶材ZrTG、鈦靶材TiTG與銅靶材CuTG之靶材功率的高功率脈衝磁控濺鍍製程參數(以下簡稱製程參數)共有五組(#1~#5),而製程參數#1~#5產生的金屬玻璃薄膜的化學計量比如下表二所示。As mentioned above, in the first preferred embodiment of the present invention, the high-power pulse magnetron sputtering process parameters (hereinafter referred to as process parameters) of the target power of the zirconium target ZrTG, titanium target TiTG and copper target CuTG share Five groups (#1~#5), and the stoichiometric ratio of metallic glass films produced by process parameters #1~#5 are shown in Table 2 below.
表二:第一實施例所製成之金屬玻璃薄膜的化學計量比。
表三:第一實施例所製成之金屬玻璃薄膜的表面粗糙度。
如上所述,製程參數#1~#5的金屬玻璃薄膜的平均表面粗糙度值皆低於1.5nm,顯示出非常平滑的表面。As mentioned above, the average surface roughness values of the metallic glass films with process parameters #1 to #5 are all lower than 1.5nm, showing a very smooth surface.
表四:第一實施例所製成之金屬玻璃薄膜的機械性質。
如上所述,製程參數#1~#5的硬度無明顯變化;其中由於Ti金屬莫氏硬度為6;Cu金屬莫氏硬度為3,製程參數#1的Ti元素比例高於Cu;製程參數#5的Cu元素比例則遠高於Ti,因此可推斷金屬玻璃薄膜之#1與#5些微的硬度差異是因Cu與Ti的成分多寡所導致。此外,由硬度和楊氏係數算出之H/E值是抗塑性變形能力,可以發現所有金屬玻璃薄膜的H/E值均小於0.1以下,顯示當薄膜受擠壓時,會於局部產生塑變流。As mentioned above, the hardness of process parameters #1~#5 has no obvious change; since the Mohs hardness of Ti metal is 6; the Mohs hardness of Cu metal is 3, the proportion of Ti element in process parameter #1 is higher than that of Cu; process parameter # The Cu element ratio of 5 is much higher than that of Ti, so it can be inferred that the slight difference in hardness between #1 and #5 of the metallic glass film is caused by the composition of Cu and Ti. In addition, the H/E value calculated from the hardness and Young's modulus is the ability to resist plastic deformation. It can be found that the H/E value of all metallic glass films is less than 0.1, indicating that when the film is squeezed, plastic deformation will occur locally flow.
表五:第一實施例所製成之金屬玻璃薄膜在3.5 wt.%NaCl水溶液中測試之腐蝕測試數據。
其中,E corr為開路電壓,I corr為短路電流,βa為陽極曲線塔弗斜率,βc為陰極曲線塔弗斜率,R p為極化電阻。此外,由表四之數據可知,製程參數#1所製成之金屬玻璃薄膜,其防腐蝕效果優於作為對照組之不鏽鋼(SUS304)。 Among them, E corr is the open circuit voltage, I corr is the short-circuit current, βa is the Taffer slope of the anode curve, βc is the Taffer slope of the cathode curve, and R p is the polarization resistance. In addition, it can be seen from the data in Table 4 that the metal glass film made by process parameter #1 has better anti-corrosion effect than the stainless steel (SUS304) used as the control group.
表六:不同時間下所量測之金屬玻璃薄膜的水接觸角。
如上所述,所有製程參數#1~#5的金屬玻璃薄膜的疏水性皆優於對照組之SUS304與TiN,其中製程參數#2擁有最佳的疏水性,30分鐘後接觸角仍接近90度,顯示極為疏水的表面。As mentioned above, the hydrophobicity of the metal glass films of all process parameters #1~#5 is better than that of the control group SUS304 and TiN, and the process parameter #2 has the best hydrophobicity, and the contact angle is still close to 90 degrees after 30 minutes , showing an extremely hydrophobic surface.
表七:SUS304、金屬玻璃薄膜與TiN薄膜之粗糙度、水接觸角以及抗菌率之比較。
如上所述,金屬玻璃薄膜對比無鍍覆任何薄膜的304不鏽鋼與TiN薄膜擁有較佳的抗菌能力,其中製程參數#3抗菌率最佳達86%,金屬玻璃薄膜主要是基於以下兩種抗菌機制而具有抗菌性: (1)物理方面,金屬玻璃薄膜有光滑的表面與良好的疏水能力,改善原本較粗糙的304不鏽鋼表面,有效降低細菌黏附最終減少大腸桿菌的群落數量。(2)化學方面,含銅之金屬玻璃薄膜的銅離子具有抗菌效果,若細菌黏附在表面上,銅離子會從表面釋放並與細胞膜進行相互作用,細胞則必須洩漏溶質進而降解DNA的質體,導致細菌無法繼續繁殖。As mentioned above, the metallic glass film has better antibacterial ability than the 304 stainless steel and TiN film without any coating, and the best antibacterial rate of process parameter #3 is 86%. The metallic glass film is mainly based on the following two antibacterial mechanisms And it has antibacterial properties: (1) Physically, the metallic glass film has a smooth surface and good hydrophobicity, which can improve the original rough surface of 304 stainless steel, effectively reduce bacterial adhesion and finally reduce the number of colonies of E. coli. (2) In terms of chemistry, the copper ions of the copper-containing metallic glass film have an antibacterial effect. If bacteria adhere to the surface, the copper ions will be released from the surface and interact with the cell membrane, and the cell must leak solutes to degrade the plastid of DNA. , resulting in the inability of bacteria to reproduce.
請繼續參閱第三圖,第三圖係顯示本發明第一較佳實施例所提供之金屬玻璃薄膜之製造方法,其中有關待鍍物之詳細製備步驟之步驟流程圖。如第二圖與第三圖所示,上述之步驟S103還可進一步包含以下步驟S1031至步驟S1036。Please continue to refer to the third figure, the third figure is a flow chart showing the manufacturing method of the metallic glass film provided by the first preferred embodiment of the present invention, wherein the detailed preparation steps of the object to be plated are involved. As shown in the second and third figures, the above step S103 may further include the following steps S1031 to S1036.
步驟S1031是製備待鍍物200,步驟S1032 是將附著於待鍍物200之油脂清除,步驟S1033是利用純水清洗待鍍物200,步驟S1034是將待鍍物200吹乾,步驟S1035是將待鍍物200放置於烘箱烘乾,步驟S1036是在一有效時限內將待鍍物200放置於濺鍍腔室SC中。Step S1031 is to prepare the object to be plated 200, step S1032 is to remove the grease attached to the object to be plated 200, step S1033 is to clean the object to be plated 200 with pure water, step S1034 is to dry the object to be plated 200, and step S1035 is to dry the object to be plated 200. The object to be plated 200 is placed in an oven for drying, and step S1036 is to place the object to be plated 200 in the sputtering chamber SC within an effective time limit.
承上所述,當待鍍物200為304不繡鋼或鉬壓延片時,步驟S1032例如是先將待鍍物200以鹼性溶液進行300秒的超音波震盪,使待鍍物200之表面的油脂去除,之後再將待鍍物200放入純水槽進行超音波震盪10秒鐘,而在超音波震盪的過程中,鹼性溶液與純水的溫度都維持在60℃;然而,當待鍍物200為矽晶片時。步驟S1032例如是利用乙醇來將待鍍物200表面之油脂擦拭去除。步驟S1034例如是在待鍍物200從上述之純水槽拿出來時,利用氣槍噴氣的方式來將待鍍物200吹乾。步驟S1035例如是將吹乾後待鍍物200放入預熱70℃之烘箱,並在烘箱內烘乾10分鐘,以確保完全沒有水份殘留於待鍍物200之表面。步驟S1036中之有效時限例如為1小時,主要是避免待鍍物200離開烘箱後,在開放的環境下放置過久而受到汙染。Based on the above, when the object to be plated 200 is 304 stainless steel or molybdenum rolled sheet, step S1032 is, for example, firstly subject the object to be plated 200 to ultrasonic vibration for 300 seconds with an alkaline solution to make the surface of the object to be plated 200 Remove the grease, and then put the object to be plated 200 into the pure water tank for 10 seconds of ultrasonic vibration, and in the process of ultrasonic vibration, the temperature of the alkaline solution and pure water are maintained at 60 °C; however, when the When the
請繼續參閱第四圖,第四圖係顯示本發明第二較佳實施例所提供之金屬玻璃薄膜之製造方法之步驟流程圖。如第一圖至第四圖所示,本發明第二較佳實施例所提供之一種金屬玻璃薄膜之製造方法同樣是應用於上述之高功率脈衝磁控濺鍍系統100,且第二較佳實施例之金屬玻璃薄膜之製造方法包含以下步驟S201至步驟S208。Please continue to refer to the fourth figure. The fourth figure is a flow chart showing the steps of the method for manufacturing the metallic glass film provided by the second preferred embodiment of the present invention. As shown in the first figure to the fourth figure, the manufacturing method of a metallic glass film provided by the second preferred embodiment of the present invention is also applied to the above-mentioned high-power pulse
步驟S201是製備一具有一濺鍍腔室SC之高功率脈衝磁控濺鍍系統100。Step S201 is to prepare a high power pulsed
步驟S202是將一鋯靶材ZrTG、一鈦靶材TiTG、一銅靶材CuTG與一鋁靶材AlTG分別設置於濺鍍腔室SC中。In step S202 , a zirconium target ZrTG, a titanium target TiTG, a copper target CuTG and an aluminum target AlTG are respectively placed in the sputtering chamber SC.
步驟S203是製備一待鍍物200,並將待鍍物200放置於濺鍍腔室SC中;其中,步驟S203實務上也可更進一步的細分為如第三圖所示之步驟S1031至步驟S1036。Step S203 is to prepare an object to be plated 200, and place the object to be plated 200 in the sputtering chamber SC; wherein, step S203 can also be further subdivided into steps S1031 to S1036 as shown in the third figure in practice .
步驟S204是對濺鍍腔室SC進行抽氣,藉以在濺鍍腔室SC中形成一類真空環境。Step S204 is to evacuate the sputtering chamber SC to form a kind of vacuum environment in the sputtering chamber SC.
步驟S205是將一氬氣通入濺鍍腔室SC中。Step S205 is to pass an argon gas into the sputtering chamber SC.
步驟S206是在濺鍍腔室SC內施加電場,使氬氣解離形成氬離子,並利用氬離子轟擊待鍍物。Step S206 is to apply an electric field in the sputtering chamber SC to dissociate the argon gas to form argon ions, and bombard the object to be plated with the argon ions.
步驟S207是利用鈦靶材對待鍍物進行離子轟擊。Step S207 is to use the titanium target to bombard the object to be plated with ions.
步驟S208是將鋯靶材ZrTG、鈦靶材TiTG、銅靶材CuTG與鋁靶材AlTG利用一高功率脈衝磁控濺鍍製程在待鍍物200之表面沉積形成一金屬玻璃薄膜(圖未示);其中,鋯靶材ZrTG與鈦靶材TiTG之濺鍍功率比為1:0.2,鋯靶材ZrTG與銅靶材CuTG之濺鍍功率比為1:0.3,鋯靶材ZrTG與鋁靶材AlTG之濺鍍功率比為1:0.06~0.26,鈦靶材TiTG之功率介於1kW~5kW,藉以使金屬玻璃薄膜之化學計量比為Zr:Cu:Ti:Al=25~35:45~55:5~10:5~20。Step S208 is to deposit zirconium target material ZrTG, titanium target material TiTG material, copper target material CuTG material and aluminum target material AlTG material on the surface of the object to be plated 200 by a high-power pulsed magnetron sputtering process to form a metallic glass film (not shown in the figure) ); Among them, the sputtering power ratio of the zirconium target ZrTG and the titanium target TiTG is 1:0.2, the sputtering power ratio of the zirconium target ZrTG and the copper target CuTG is 1:0.3, the zirconium target ZrTG and the aluminum target The sputtering power ratio of AlTG is 1:0.06~0.26, and the power of the titanium target TiTG is between 1kW~5kW, so that the stoichiometric ratio of the metallic glass film is Zr:Cu:Ti:Al=25~35:45~55 :5~10: 5~20.
承上所述,在本實施例中,高功率脈衝磁控濺鍍製程的詳細製程條件如下表八所示。Based on the above, in this embodiment, the detailed process conditions of the high-power pulsed magnetron sputtering process are shown in Table 8 below.
表八:第二實施例之高功率脈衝磁控濺鍍製程參數。
如上所述,在本發明第二較佳實施例中,鋯靶材ZrTG、鈦靶材TiTG、銅靶材CuTG與鋁靶材AlTG之靶材功率的控制條件共有五組製程參數#6~#10,而這五組製程參數#6~#10所產生的金屬玻璃薄膜的化學計量比如下表九所示。As mentioned above, in the second preferred embodiment of the present invention, there are five sets of process parameters #6~# for controlling the target power of the zirconium target ZrTG, titanium target TiTG, copper target CuTG and aluminum target AlTG 10, and the stoichiometric ratios of the metallic glass films produced by these five sets of process parameters #6~#10 are shown in Table 9 below.
表九:第二實施例所製成之金屬玻璃薄膜的化學計量比。
表十:第二實施例所製成之金屬玻璃薄膜的表面粗糙度。
如上所述,製程參數#6~#10的金屬玻璃薄膜的平均表面粗糙度值皆低於1.2nm,優於上述第一實施例之製程參數#1~#5的金屬玻璃薄膜的粗糙度(介於1.3至1.5nm),由此可知,加入Al元素之後,能使金屬玻璃薄膜的平均表面粗糙度下降。As mentioned above, the average surface roughness values of the metal glass films with process parameters #6~#10 are all lower than 1.2nm, which is better than the roughness of the metal glass films with process parameters #1~#5 in the first embodiment ( From 1.3 to 1.5nm), it can be seen that the average surface roughness of the metallic glass film can be reduced after the addition of Al element.
表十一:第二實施例所製成之金屬玻璃薄膜的機械性質。
如上所述,製程參數#6~#10之金屬玻璃薄膜的硬度無明顯變化,與上述第一實施例之製程參數#1~#5之金屬玻璃薄膜的硬度基本相同。As mentioned above, the hardness of the metallic glass films with process parameters #6 to #10 has no significant change, which is basically the same as the hardness of the metallic glass films with process parameters #1 to #5 in the first embodiment.
表十二:不同時間下所量測之金屬玻璃薄膜的水接觸角。
如上所述,製程參數#6~#10之金屬玻璃薄膜的疏水性皆優於SUS304與TiN,其中製程參數#10之金屬玻璃薄膜擁有最佳的疏水性,30分鐘後接觸角接近104.19度,疏水性優於上述第一實施例之未摻入Al元素的金屬玻璃薄膜(製程參數#1~#5)。As mentioned above, the hydrophobicity of metallic glass films with process parameters #6~#10 is better than SUS304 and TiN, and the metallic glass film with process parameter #10 has the best hydrophobicity, and the contact angle is close to 104.19 degrees after 30 minutes. Hydrophobicity is better than that of the metallic glass film not doped with Al in the above-mentioned first embodiment (process parameter #1~#5).
表十三:SUS304、金屬玻璃薄膜與TiN薄膜之粗糙度、水接觸角以及抗菌率之比較。
如上所述,製程參數#10之金屬玻璃薄膜抗微生物率最佳達99%;其中,本實施例之金屬玻璃薄膜(製程參數#6~#10)所具有的抗菌機制主要是透過光滑的表面與良好的疏水性來有效降低細菌黏附最終減少大腸桿菌的群落數量,且由於銅離子本身具有抗菌效果,而鋁奈米顆粒的存在還能攻擊並殺死微生物細胞,甚至於銅離子與鋁離子的釋放會與細胞膜進行相互作用,導致細菌被殺死而無法繼續繁殖。As mentioned above, the antimicrobial rate of the metallic glass film of process parameter #10 is the best at 99%. Among them, the antimicrobial mechanism of the metallic glass film of this embodiment (process parameter #6~#10) is mainly through the smooth surface With good hydrophobicity to effectively reduce bacterial adhesion and ultimately reduce the number of E. coli colonies, and because copper ions themselves have antibacterial effects, the presence of aluminum nanoparticles can also attack and kill microbial cells, even copper ions and aluminum ions The release of the bacteria interacts with the cell membrane, causing the bacteria to be killed and unable to reproduce.
請繼續參閱第五圖,第五圖係顯示本發明第三較佳實施例所提供之金屬玻璃薄膜之製造方法之步驟流程圖。如第一圖至第五圖所示,本發明第三較佳實施例所提供之一種金屬玻璃薄膜之製造方法同樣是應用於上述之高功率脈衝磁控濺鍍系統100,且第三較佳實施例之金屬玻璃薄膜之製造方法包含以下步驟S301至步驟S308。Please continue to refer to the fifth figure. The fifth figure is a flow chart showing the steps of the method for manufacturing the metallic glass film according to the third preferred embodiment of the present invention. As shown in the first figure to the fifth figure, the manufacturing method of a metallic glass film provided by the third preferred embodiment of the present invention is also applied to the above-mentioned high-power pulse
步驟S301是製備一具有一濺鍍腔室SC之高功率脈衝磁控濺鍍系統100。Step S301 is to prepare a high power pulsed
步驟S302是將一鋯靶材ZrTG、一鈦靶材TiTG、一銅靶材CuTG與一鋁靶材AlTG分別設置於濺鍍腔室SC中。In step S302 , a zirconium target ZrTG, a titanium target TiTG, a copper target CuTG and an aluminum target AlTG are respectively placed in the sputtering chamber SC.
步驟S303是製備一待鍍物200,並將待鍍物200放置於濺鍍腔室SC中;其中,步驟S303實務上也可更進一步的細分為如第三圖所示之步驟S1031至步驟S1036。Step S303 is to prepare an object to be plated 200, and place the object to be plated 200 in the sputtering chamber SC; wherein, step S303 can also be further subdivided into steps S1031 to S1036 as shown in the third figure in practice .
步驟S304是對濺鍍腔室SC進行抽氣,藉以在濺鍍腔室SC中形成一類真空環境。Step S304 is to evacuate the sputtering chamber SC to form a kind of vacuum environment in the sputtering chamber SC.
步驟S305是將一氬氣與一氮氣通入濺鍍腔室SC中。其中,氮氣是以5sccm至25sccm之流量通入濺鍍腔室SC中。Step S305 is to pass an argon gas and a nitrogen gas into the sputtering chamber SC. Wherein, the nitrogen gas is passed into the sputtering chamber SC at a flow rate of 5 sccm to 25 sccm.
步驟S306是在濺鍍腔室SC內施加電場,使氬氣解離形成氬離子,並利用氬離子轟擊待鍍物。Step S306 is to apply an electric field in the sputtering chamber SC to dissociate the argon gas to form argon ions, and bombard the object to be plated with the argon ions.
步驟S307是利用鈦靶材對待鍍物進行離子轟擊。Step S307 is to use the titanium target to bombard the object to be plated with ions.
步驟S308是將鋯靶材ZrTG、鈦靶材TiTG、銅靶材CuTG與鋁靶材AlTG利用一高功率脈衝磁控濺鍍製程在待鍍物200之表面沉積形成一金屬玻璃薄膜(圖未示);其中,鋯靶材ZrTG與鈦靶材TiTG之濺鍍功率比為1:0.2,鋯靶材ZrTG與銅靶材CuTG之濺鍍功率比為1:0.3,鋯靶材ZrTG與鋁靶材AlTG之濺鍍功率比為1:0.06~0.26,鈦靶材TiTG之功率介於1kW~5kW,藉以使金屬玻璃薄膜之化學計量比為Zr:Cu:Ti:Al:N=5~20:40~55:1~5:5~20:15~30。Step S308 is to deposit zirconium target material ZrTG, titanium target material TiTG material, copper target material CuTG material and aluminum target material AlTG material on the surface of the object to be plated 200 by a high-power pulsed magnetron sputtering process to form a metallic glass film (not shown in the figure) ); Among them, the sputtering power ratio of the zirconium target ZrTG and the titanium target TiTG is 1:0.2, the sputtering power ratio of the zirconium target ZrTG and the copper target CuTG is 1:0.3, the zirconium target ZrTG and the aluminum target The sputtering power ratio of AlTG is 1:0.06~0.26, and the power of the titanium target TiTG is between 1kW~5kW, so that the stoichiometric ratio of the metallic glass film is Zr:Cu:Ti:Al:N=5~20:40 ~55:1~5:5~20:15~30.
承上所述,在本實施例中,高功率脈衝磁控濺鍍製程的詳細製程條件如下表十四所示。Based on the above, in this embodiment, the detailed process conditions of the high-power pulsed magnetron sputtering process are shown in Table 14 below.
表十四:第三實施例之高功率脈衝磁控濺鍍製程參數。
如上所述,在本發明第三較佳實施例中,鋯靶材ZrTG、鈦靶材TiTG、銅靶材CuTG與鋁靶材AlTG之靶材功率的控制條件共有五組製程參數#11~#15,而這五組所產生的金屬玻璃薄膜的化學計量比如下表十五所示。As mentioned above, in the third preferred embodiment of the present invention, there are five sets of process parameters #11~# for controlling the target power of the zirconium target ZrTG, titanium target TiTG, copper target CuTG and aluminum target AlTG 15, and the stoichiometric ratios of the metallic glass films produced by these five groups are shown in Table 15 below.
表十五:第三實施例所製成之金屬玻璃薄膜的化學計量比。
表十六:第三實施例所製成之金屬玻璃薄膜的表面粗糙度。
如上所述,製程參數#11~#15的金屬玻璃薄膜的的平均表面粗糙度值介於1.4-4.2nm之間,粗糙度均高於未通氮氣的第二實施例之金屬玻璃薄膜,顯示加入N元素之後,會影響薄膜表面粗糙度。As mentioned above, the average surface roughness of the metal glass films with process parameters #11~#15 is between 1.4-4.2nm, and the roughness is higher than that of the metal glass film of the second embodiment without nitrogen gas, showing After adding N element, it will affect the surface roughness of the film.
表十七:第三實施例所製成之金屬玻璃薄膜的機械性質。
如上所述,製程參數#11~#18的硬度無明顯變化,與上述第二實施例之金屬玻璃薄膜(製程參數#6~#10)的硬度基本相同。#11~#15之金屬玻璃薄膜與第二實施例未與氮氣反應之金屬玻璃薄膜(#6~#10)相比,硬度從6.5 GPa提升至7.6 GPa,提升約1GPa,而在氮氣通量達20sccm、氮氬比為12.5%後,氮氣對薄膜硬度不再起到作用。As mentioned above, the hardness of the process parameters #11~#18 has no significant change, which is basically the same as the hardness of the metallic glass film (process parameters #6~#10) of the second embodiment above. Compared with the metallic glass films (#6~#10) that did not react with nitrogen gas in the second embodiment, the hardness of the metallic glass films #11~#15 increased from 6.5 GPa to 7.6 GPa, an increase of about 1GPa. After reaching 20sccm and the ratio of nitrogen to argon is 12.5%, nitrogen no longer has an effect on the hardness of the film.
表十八:不同時間下所量測之金屬玻璃薄膜的水接觸角。
如上所述,以#11之金屬玻璃薄膜擁有最佳的疏水性,30分鐘後接觸角接近98.5度,且#11~#15之金屬玻璃薄膜在三秒鐘所測量的接觸角值在115.9°至97.9°之間,因此皆為疏水材料。As mentioned above, #11 metallic glass film has the best hydrophobicity, the contact angle is close to 98.5° after 30 minutes, and the contact angle value of #11~#15 metallic glass film measured in three seconds is 115.9° to 97.9°, so they are all hydrophobic materials.
表十九:SUS304、金屬玻璃薄膜與TiN薄膜之粗糙度、水接觸角以及抗菌率之比較。
如上所述,#11之金屬玻璃薄膜的AR為85.5%,其原因可能是Rmax較大,大腸桿菌有較大的機會黏附在擁有較大起伏的表面。#12之金屬玻璃薄膜的培養結果發現殘存78顆菌落,但仍有優異的抗微生物效果,AR值達94.5%。#13、#14與#15之金屬玻璃薄膜的抗微生物率達99.3%以上,尤其#15之金屬玻璃薄膜在培養40小時後並未發現任何大腸桿菌菌落在瓊脂上存活。As mentioned above, the AR of #11 metallic glass film is 85.5%. The reason may be that the Rmax is larger, and E. coli has a greater chance to adhere to the surface with larger fluctuations. The culture results of the metal glass film of #12 found that 78 colonies remained, but it still had excellent antimicrobial effect, with an AR value of 94.5%. The antimicrobial rate of #13, #14 and #15 metallic glass films is above 99.3%, especially #15 metallic glass film did not find any E. coli colonies survived on the agar after 40 hours of cultivation.
在實務上,在透過電子顯微鏡進行觀察時,會發現#13、#14與#15之金屬玻璃薄膜的表面會有柱狀結構的產生,而柱狀結構的產生會有助於金屬離子的釋放,進而相對的提升抗菌效果。In practice, when observed through an electron microscope, it will be found that the surface of the metallic glass films #13, #14 and #15 will have a columnar structure, and the columnar structure will help the release of metal ions , and then relatively enhance the antibacterial effect.
綜上所述,本發明之金屬玻璃薄膜之製造方法主要是利用高功率脈衝磁控濺鍍系統進行高功率脈衝磁控濺鍍製程,藉以將鋯、鈦及銅等金屬在待鍍物之表面沉積形成金屬玻璃薄膜,而透過高功率脈衝磁控濺鍍製程的條件控制,可以使金屬玻璃薄膜的化學計量比控制在Zr:Cu:Ti=30~45:20~60:5~30之區間內,進而使金屬玻璃薄膜具有較佳的抗菌性。To sum up, the manufacturing method of the metallic glass thin film of the present invention mainly uses a high-power pulse magnetron sputtering system to carry out a high-power pulse magnetron sputtering process, so that metals such as zirconium, titanium and copper are deposited on the surface of the object to be plated. Metallic glass film is deposited and formed, and the stoichiometric ratio of the metallic glass film can be controlled in the range of Zr:Cu:Ti=30~45:20~60:5~30 through the condition control of the high-power pulsed magnetron sputtering process In this way, the metal glass film has better antibacterial properties.
承上所述,本發明之金屬玻璃薄膜之製造方法還可進一步利用高功率脈衝磁控濺鍍系統將鋯、鈦、銅及鋁等金屬在待鍍物之表面沉積形成金屬玻璃薄膜,並使金屬玻璃薄膜的化學計量比控制在Zr:Cu:Ti:Al=25~35:45~55:5~10:5~20之區間內,以藉由鋁離子之釋放來更加提升抗菌性。此外,本發明之金屬玻璃薄膜之製造方法除了可進一步利用高功率脈衝磁控濺鍍系統將鋯、鈦、銅及鋁等金屬在待鍍物之表面沉積形成金屬玻璃薄膜外,還可以透過通入氮氣的方式,並使金屬玻璃薄膜的化學計量比控制在Zr:Cu:Ti:Al:N=5~20:40~55:1~5:5~20:15~30之區間內,而由於氮氬比低於6.2%時,可以讓金屬玻璃薄膜之表面產生柱狀結構,進而有利於金屬離子的釋放,相對的提升抗菌效果。Based on the above, the manufacturing method of the metallic glass film of the present invention can further utilize a high-power pulsed magnetron sputtering system to deposit metals such as zirconium, titanium, copper and aluminum on the surface of the object to be plated to form a metallic glass film, and make the metallic glass film The stoichiometric ratio of the metallic glass film is controlled within the range of Zr:Cu:Ti:Al=25~35:45~55:5~10:5~20, so as to further enhance the antibacterial property through the release of aluminum ions. In addition, the manufacturing method of the metallic glass thin film of the present invention can further utilize the high-power pulse magnetron sputtering system to deposit metals such as zirconium, titanium, copper and aluminum on the surface of the object to be plated to form a metallic glass thin film. The way of nitrogen gas is introduced, and the stoichiometric ratio of the metallic glass film is controlled within the range of Zr:Cu:Ti:Al:N=5~20:40~55:1~5:5~20:15~30, and When the nitrogen-argon ratio is lower than 6.2%, a columnar structure can be formed on the surface of the metal glass film, which is conducive to the release of metal ions and relatively improves the antibacterial effect.
藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。Through the above detailed description of the preferred embodiments, it is hoped that the characteristics and spirit of the present invention can be described more clearly, and the scope of the present invention is not limited by the preferred embodiments disclosed above. On the contrary, the intention is to cover various changes and equivalent arrangements within the scope of the patent application for the present invention.
100:高功率脈衝磁控濺鍍系統 200:待鍍物 SC:濺鍍腔室 RT:旋轉平台 ZrTG:鋯靶材 TiTG:鈦靶材 CuTG:銅靶材 AlTG:鋁靶材 TGPS1,TGPS2,TGPS3,TGPS4:高功率脈衝磁控電源供應器 GC1:氬氣供應源 GC2:氮氣供應源 MFC1:第一質量流量控制器 MFC2:第二質量流量控制器 VA:真空幫浦組件 S101 -S108,S1031-S1036,S201-S208,S301-S308:步驟 100: High power pulse magnetron sputtering system 200: object to be plated SC: sputtering chamber RT: Rotating Platform ZrTG: Zirconium target TiTG: Titanium target CuTG: copper target AlTG: aluminum target TGPS1, TGPS2, TGPS3, TGPS4: high power pulse magnetron power supply GC1: Argon supply source GC2: Nitrogen supply source MFC1: First mass flow controller MFC2: Second mass flow controller VA: vacuum pump assembly S101-S108,S1031-S1036,S201-S208,S301-S308: steps
第一圖係顯示本發明之金屬玻璃薄膜之製造方法所應用之高功率脈衝磁控濺鍍系統之平面示意圖; 第二圖係顯示本發明第一較佳實施例所提供之金屬玻璃薄膜之製造方法之步驟流程圖; 第三圖係顯示本發明第一較佳實施例所提供之金屬玻璃薄膜之製造方法,其中有關待鍍物之詳細製備步驟之步驟流程圖; 第四圖係顯示本發明第二較佳實施例所提供之金屬玻璃薄膜之製造方法之步驟流程圖;以及 第五圖係顯示本發明第三較佳實施例所提供之金屬玻璃薄膜之製造方法之步驟流程圖。 The first figure shows a schematic plan view of a high-power pulsed magnetron sputtering system used in the manufacturing method of the metallic glass thin film of the present invention; The second figure is a flow chart showing the steps of the manufacturing method of the metallic glass film provided by the first preferred embodiment of the present invention; The 3rd figure shows the manufacturing method of the metallic glass thin film provided by the first preferred embodiment of the present invention, wherein the detailed preparation steps of the relevant object to be plated is a flow chart of the steps; The fourth figure is a flow chart showing the steps of the manufacturing method of the metallic glass film provided by the second preferred embodiment of the present invention; and The fifth figure is a flow chart showing the steps of the manufacturing method of the metallic glass film provided by the third preferred embodiment of the present invention.
S101-S108:步驟 S101-S108: Steps
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111105461A TWI792920B (en) | 2022-02-15 | 2022-02-15 | Method for manufacturing metallic glass thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111105461A TWI792920B (en) | 2022-02-15 | 2022-02-15 | Method for manufacturing metallic glass thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI792920B true TWI792920B (en) | 2023-02-11 |
TW202334457A TW202334457A (en) | 2023-09-01 |
Family
ID=86689145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111105461A TWI792920B (en) | 2022-02-15 | 2022-02-15 | Method for manufacturing metallic glass thin film |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI792920B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100354448C (en) * | 2004-07-02 | 2007-12-12 | 大连理工大学 | Cu base Cu-Zr-Ti group block non-crystal alloy |
CN109371365A (en) * | 2018-12-10 | 2019-02-22 | 浙江大学 | The Zr-Cu-Al-Ti glassy metal film of controllable reflectivity |
CN110565061A (en) * | 2019-09-27 | 2019-12-13 | 宁波丽成真空科技有限公司 | environment-friendly process for directly plating easy-to-oxidize metal film |
-
2022
- 2022-02-15 TW TW111105461A patent/TWI792920B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100354448C (en) * | 2004-07-02 | 2007-12-12 | 大连理工大学 | Cu base Cu-Zr-Ti group block non-crystal alloy |
CN109371365A (en) * | 2018-12-10 | 2019-02-22 | 浙江大学 | The Zr-Cu-Al-Ti glassy metal film of controllable reflectivity |
CN110565061A (en) * | 2019-09-27 | 2019-12-13 | 宁波丽成真空科技有限公司 | environment-friendly process for directly plating easy-to-oxidize metal film |
Non-Patent Citations (1)
Title |
---|
網路文獻 陳薆如 高功率脈衝磁控濺鍍製備鋯鈦矽及鋯鈮鐵金屬玻璃薄膜對體內/體外收物相容性評估 國立台北科技大學 2019年7月 * |
Also Published As
Publication number | Publication date |
---|---|
TW202334457A (en) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zaporojtchenko et al. | Physico-chemical and antimicrobial properties of co-sputtered Ag–Au/PTFE nanocomposite coatings | |
CA2134217C (en) | Anti-microbial coating for medical devices | |
US5837275A (en) | Anti-microbial materials | |
US8541101B2 (en) | Coating, article coated with coating, and method for manufacturing article | |
CN113174571B (en) | Ultra-microcrystalline titanium diboride composite coating and preparation method and application thereof | |
Ren et al. | Reactive magnetron co-sputtering of Ti-xCuO coatings: Multifunctional interfaces for blood-contacting devices | |
TWI792920B (en) | Method for manufacturing metallic glass thin film | |
CN108690952B (en) | Vacuum plating sterilization film | |
CN111876735B (en) | Preparation method of wear-resistant and antibacterial Cr-Mo-Ag-Si-C-N multi-element composite film | |
JPH0456111B2 (en) | ||
CN112941463A (en) | Nano multilayer oxynitride corrosion-resistant protective coating on titanium alloy surface and preparation method and application thereof | |
CN114574786B (en) | Ternary amorphous alloy film and preparation method thereof | |
CN109023265A (en) | CrN/CrNiN nano laminated coating and preparation method thereof, nano laminated coating and the preparation method and application thereof | |
CN102691036A (en) | Antibacterial film coating member and its preparation method | |
CN115011926A (en) | Ti-based medical antibacterial nano composite coating and preparation method thereof | |
CN110777330B (en) | Corrosion-resistant and wear-resistant protective coating and preparation method and application thereof | |
CN102453849A (en) | Coating component and preparation method thereof | |
CN109112481B (en) | Hard ceramic coating with antibacterial and corrosion-resistant properties and preparation method thereof | |
CN114990481A (en) | Self-adaptive nano multilayer film for intelligently assembling root-shaped capillary diffusion channel and preparation method and application thereof | |
CN102453876A (en) | Coated part and preparation method thereof | |
Lin et al. | Deposition and properties of Mo–N films | |
Santos et al. | Antimicrobial silver coating using PVD-PECVD system | |
CN114934256B (en) | Coating, preparation method of coating and substrate material | |
CN117127149A (en) | Amorphous alloy film and preparation method and application thereof | |
CN116288203B (en) | Corrosion-resistant antibacterial biomedical composite coating and preparation method thereof |