TWI792898B - 電子病歷資料分析系統與電子病歷資料分析方法 - Google Patents

電子病歷資料分析系統與電子病歷資料分析方法 Download PDF

Info

Publication number
TWI792898B
TWI792898B TW111103810A TW111103810A TWI792898B TW I792898 B TWI792898 B TW I792898B TW 111103810 A TW111103810 A TW 111103810A TW 111103810 A TW111103810 A TW 111103810A TW I792898 B TWI792898 B TW I792898B
Authority
TW
Taiwan
Prior art keywords
medical record
electronic medical
record data
data analysis
generate
Prior art date
Application number
TW111103810A
Other languages
English (en)
Other versions
TW202331737A (zh
Inventor
楊宗翰
蔡佳文
劉玠均
王廷軒
鄭謙
毋文涵
Original Assignee
華碩電腦股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華碩電腦股份有限公司 filed Critical 華碩電腦股份有限公司
Priority to TW111103810A priority Critical patent/TWI792898B/zh
Priority to US17/851,069 priority patent/US20230245735A1/en
Application granted granted Critical
Publication of TWI792898B publication Critical patent/TWI792898B/zh
Publication of TW202331737A publication Critical patent/TW202331737A/zh

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/10Text processing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/10Text processing
    • G06F40/103Formatting, i.e. changing of presentation of documents
    • G06F40/106Display of layout of documents; Previewing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/279Recognition of textual entities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/30Semantic analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

本發明提出一種電子病歷資料分析系統與電子病歷資料分析方法。電子病歷資料分析系統包括儲存裝置以及處理器。儲存裝置用以儲存電子病歷資料分析模組以及後處理模組。處理器取得電子病歷資料。處理器執行電子病歷資料分析模組,以分析電子病歷資料,並且產生對應於電子病歷資料的多個疾病診斷編碼以及多個相關程度分數。處理器根據多個相關程度分數對該些疾病診斷編碼進行排序,以產生初始列表,並且執行後處理模組,以根據預設編碼規則對初始列表進行後處理。處理器根據經後處理的初始列表產生推薦列表。

Description

電子病歷資料分析系統與電子病歷資料分析方法
本案是有關於一種電子病歷資料分析系統與電子病歷資料分析方法。
一般而言,醫療人員在對病人進行診斷的過程中會建立電子病歷資料,以進行相關診斷分析與紀錄。對此,由於醫療人員須手動針對當前電子病歷資料進行判斷,進而產生相對應的國際疾病分類標準(International Classification of Diseases,ICD)編碼,因此傳統的電子病歷資料分析以及建檔作業具有效率不佳且耗時的問題。並且,隨著ICD編碼的版本更新,而使得編碼數量增加且編碼規則越趨複雜,導致醫療人員須耗費更多個時間與精力在電子病歷資料分析以及建檔作業的工作上。
本發明提供一種電子病歷資料分析系統包括儲存裝置以及處理器。儲存裝置用以儲存電子病歷資料分析模組以及後處理模組。處理器耦接儲存裝置,並且取得電子病歷資料。處理器執行電子病歷資料分析模組,以分析電子病歷資料,並且產生對應於電子病歷資料的多個疾病診斷編碼以及多個相關程度分數。處理器根據多個相關程度分數對多個疾病診斷編碼進行排序,以產生初始列表,並且處理器執行後處理模組,以根據預設編碼規則對初始列表進行後處理。處理器根據經後處理的初始列表產生推薦列表。
本案另提供一種電子病歷資料分析方法包括以下步驟:取得電子病歷資料;執行電子病歷資料分析模組,以分析電子病歷資料,並且產生對應於電子病歷資料的多個疾病診斷編碼以及多個相關程度分數;根據多個相關程度分數對多個疾病診斷編碼進行排序,以產生初始列表;執行後處理模組,以根據預設編碼規則對初始列表進行後處理;以及根據經後處理的初始列表產生推薦列表。
基於上述,本案的電子病歷資料分析系統與電子病歷資料分析方法,可根據輸入的電子病歷資料的分析結果來自動產生對應的疾病診斷編碼的推薦列表,以實現便捷且可靠的醫療診斷輔助功能。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
為了使本發明之內容可以被更容易明瞭,以下特舉實施例做為本揭示確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。
請參考圖1,電子病歷資料分析系統100包括處理器110以及儲存裝置120。處理器110耦接儲存裝置120。在本實施例中,儲存裝置120可儲存電子病歷資料分析模組121、後處理模組122以及主診斷(Main diagnosis)推薦模型123。病歷資料分析模組121、後處理模組122以及主診斷(Main diagnosis)推薦模型123可集成為一種人工智慧(Artificial intelligence,AI)模型。處理器110可執行電子病歷資料分析模組121,以對電子病歷資料進行分析,並自動產生對應的多個疾病診斷編碼以及多個相關程度分數。處理器110可根據多個疾病診斷編碼以及多個相關程度分數來排列多個疾病診斷編碼,以產生列表,並且可透過執行後處理模組122以及主診斷推薦模型123來調整此列表,以產生具有多個疾病診斷編碼的最終推薦列表。
在本實施例中,所述電子病歷資料的例如包括病人的此次入院臆斷(admission diagnosis)、主訴(subjective)及/或診斷(diagnosis)等文字資訊,但本發明並不限於此。在本實施例中,所述多個疾病診斷編碼為國際疾病分類標準第十版(International Classification of Diseases 10th Revision,ICD-10)編碼,但本發明並不限於此。
在本實施例中,處理器110可例如是具有資料處理以及運算功能的中央處理單元(Central Processing Unit,CPU),或是包括其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位信號處理器(Digital Signal Processor,DSP)、影像處理器(Image Processing Unit,IPU)、圖形處理器(Graphics Processing Unit,GPU)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD)、其他類似處理裝置或這些裝置的結合。儲存裝置120可包括但不限於記憶體(memory),例如非揮發性記憶體(Non-Volatile Memory,NVM),並且可儲存有多個模型、模組、程式及/或演算法,以實現本發明的電子病歷資料分析。
在本實施例中,電子病歷資料分析系統100可例如是集成在桌上型電腦(Desktop Computer)、個人電腦(Personal Computer,PC)或平板電腦(Tablet PC)中來實現之,但本發明並不限於此。在一實施例中,儲存裝置120可例如是設置在雲端伺服器中,並且可由醫療人員所操作的電腦裝置的處理器110來執行儲存在儲存裝置120中的相關模型及模組。另外,電子病歷資料分析系統100還可包括輸入裝置以及通訊裝置,而本發明並不加以限制。所述輸入裝置可用於接收由醫療人員輸入的電子病歷資料,並且所述通訊裝置可用於連線病歷資料庫,以使電子病歷資料分析系統100可取得歷史電子病歷資料來訓練相關模型及模組。
參考圖1及圖2,在一實施例中,電子病歷資料分析系統100執行如以下步驟S210~S250。在本實施例中,醫療人員可輸入病人的當前電子病歷資料至電子病歷資料分析系統100。在步驟S210,處理器110取得電子病歷資料。在步驟S220,處理器110執行電子病歷資料分析模組121,以分析電子病歷資料,並且產生對應於電子病歷資料的多個疾病診斷碼以及多個相關程度分數。在本實施例中,這些相關程度分數分別代表著這些疾病診斷碼與此份電子病歷資料之間的相關程度(或信心值)。在步驟S230,處理器110根據多個相關程度分數對多個疾病診斷編碼進行排序,以產生初始列表。處理器110可先將具有較高相關程度分數至具有較低相關程度分數的這些疾病診斷碼依序排列,以產生初始列表。
在步驟S240,處理器110執行後處理模組122,以根據預設編碼規則對初始列表進行後處理。在本實施例中,預設編碼規則可例如是指ICD-10的特定編碼規則。處理器110可根據ICD-10的特定編碼規則來重新排列此初始列表中的多個疾病診斷碼的排列順序。在步驟S250,處理器110根據經後處理的初始列表產生推薦列表。在本實施例中,處理器110可例如根據此病人的歷史病歷資料,來調整經後處理的初始列表中的多個疾病診斷碼的排列順序,以產生最終的推薦列表,並由顯示裝置顯示此推薦列表。並且,醫療人員可透過操作輸入裝置來選擇此推薦列表中的某一疾病診斷碼,以獲得病人本次就醫的最相關的主診斷資訊。
因此,本案的電子病歷資料分析系統100以及電子病歷資料分析方法,可自動分析當前欲進行醫療診斷的病人的電子病歷資料,以即時產生對應的疾病診斷碼,進而可實現便捷的醫療診斷的輔助功能。
請參考圖3,本實施例進一步說明電子病歷資料的分析流程。在本實施例中,電子病歷資料分析系統的處理器(例如圖1的電子病歷資料分析系統100及處理器110)可執行電子病歷資料分析模組310、後處理模組320以及主診斷推薦模型330,並且可取得電子病歷資料301以及國際疾病分類標準資料302,其中國際疾病分類標準資料302可例如是ICD-10的各編碼的相關疾病診斷文字。
在本實施例中,電子病歷資料分析模組310包括文字分析模型311、病人基本模型312、疾病診斷碼特徵模型313、注意力機制(attention-based model)模型314以及電子醫療紀錄特徵編碼轉換模型315。在本實施例中,文字分析模型311可先對電子病歷資料301進行自然語言分析處理(Natural Language Processing,NLP),以辨識電子病歷資料301的病歷文字欄位中的各個詞、文字及/或句子的語意。在本實施例中,文字分析模型311可產生多個病歷特徵參數303,並且提供這些病歷特徵參數303至注意力機制模型314。此外,本實施例的文字分析模型311還可搭配長文檔轉換器(The Long-Document Transformer,Longformer)來實現,以有效提升文字分析模型311可處理的文字長度。
在本實施例中,病人基本模型312可分析電子病歷資料301,以判斷相關基礎醫療術語。病人基本模型312可產生多個病人基本特徵參數304,並且提供至注意力機制模型314。在本實施例中,疾病診斷碼特徵模型313可分析國際疾病分類標準資料302。疾病診斷碼特徵模型313可產生多個診斷編碼特徵參數305(一種疾病診斷編碼可例如對應於多個特徵參數),並且提供至注意力機制模型314。在本實施例中,注意力機制模型314可根據多個病歷特徵參數303、多個診斷編碼特徵參數305以及多個病人基本特徵參數304將這些疾病診斷編碼分別標註在電子病歷資料301中的多個對應位置。在本實施例中,注意力機制模型314可比對多個病歷特徵參數303以及多個診斷編碼特徵參數305的相似度,並且比對多個病歷特徵參數303以及多個病人基本特徵參數304的相似度。值得注意的是,電子病歷資料分析系統還可包括顯示裝置。電子病歷資料分析系統可透過顯示裝置顯示電子病歷資料301,並且利用標籤嵌入法(label embedding)以及文章嵌入法(document embedding)在電子病歷資料301中標註(highlight)對應於多個病歷特徵參數303的多個文字或句子,以讓醫療人員可透過顯示裝置直覺地關注電子病歷資料301中被標註的重點詞、文字/或句子。
在本實施例中,電子醫療紀錄特徵編碼轉換模型315可根據注意力機制模型314的判斷結果計算對應於多個疾病診斷編碼的多個相關程度分數。電子病歷資料分析系統可根據多個疾病診斷編碼以及多個相關程度分數進行排序,以產生初始列表。在本實施例中,後處理模組320可根據預設編碼規則(ICD-10的特定編碼規則)以及電子病歷資料301中的病人資訊來重新編排初始列表。在本實施例中,主診斷推薦模型330可例如根據此病人的歷史病歷資料,來調整經後處理的初始列表306中的多個疾病診斷碼的排列順序,以產生推薦列表307。如此一來,醫療人員可例如透過操作輸入裝置選擇由顯示裝置所顯示推薦列表中的某一疾病診斷碼,以使電子病歷資料分析系統的處理器可立即讀取對應於此某一疾病診斷碼的主診斷資訊,而可立即獲得病人本次就醫的最相關的主診斷資訊。
圖4是本發明的一實施例的注意力機制(Attention mechanism)的實施示意圖。參考圖3及圖4,本實施例進一步說明注意力機制的實施方式。在本實施例中,電子病歷資料分析系統的處理器(例如圖1的電子病歷資料分析系統100及處理器110)可將電子病歷資料301輸入至文字分析模型311,以使文字分析模型311產生多個病歷特徵參數303_1~303_N,其中N為正整數。病歷特徵參數303_1~303_N可例如是電子病歷資料301中的多個詞、文字及/或句子(Token)的特徵。
在本實施例中,注意力機制模型314可包括病人表示(Patient Representation)模型3141(Label-wise Document Attention layer)以及標籤表示(Label Representation)模型3142(Document Attention layer)。病人表示模型3141可比對病歷特徵參數303_1~303_N與多個病人基本特徵參數304的相似度,以產生多個第一評定特徵308(或稱病例評定特徵)。標籤表示模型3142可比對病歷特徵參數303_1~303_N與基於國際疾病分類標準資料302所產生對應於不同診斷編碼的多個診斷編碼特徵參數305_1~305_M的相似度,以產生多個第二評定特徵309_1~309_M(或稱多個疾病診斷編碼評定特徵),其中M為正整數。
在本實施例中,電子醫療紀錄特徵編碼轉換模型315可根據多個第一評定特徵308以及多個第二評定特徵309_1~309_M計算對應於多個疾病診斷編碼的多個相關程度分數。對此,電子醫療紀錄特徵編碼轉換模型可例如執行如以下公式(1),以對於多個第一評定特徵308所對應的logit icd函數以及多個第二評定特徵309_1~309_M所對應的logit doc函數進行sigmoid公式運算,以取得數值為0~1之間的相關程度分數
Figure 02_image001
(或稱信心值,並可由百分比的方式表示之)。
Figure 02_image003
……..公式(1)
圖5是本發明的一實施例的模型訓練的流程圖。參考圖3以及圖5,電子病歷資料分析系統可預先執行以下步驟S510至步驟S560,以進行各模型訓練。在步驟S510,電子病歷資料分析系統可取得多個歷史電子病歷資料以及多個疾病診斷編碼。在本實施例中,電子病歷資料分析系統可連線至病歷資料庫,以取得多個歷史電子病歷資料以及對應的多個疾病診斷編碼。所述多個歷史電子病歷資料可例如包括出入院診斷資料、手術紀錄資料、SOAP(主觀描述(Subjective)、客觀描述(Objective)、評估(Assessment)和計畫(Plan))資料、病史資料與病程資料等。
在步驟S520,電子病歷資料分析系統可取得對應於多個疾病診斷編碼的多個文字敘述,並且透過文字分析模型311產生用於代表多個疾病診斷編碼及其相互關係的多個標籤嵌入(label embedding)。在本實施例中,電子病歷資料分析系統可取得例如是ICD-10的全部疾病診斷編碼及其相關的疾病診斷描述,並且透過文字分析模型311進行語意辨識而產生用於代表多個疾病診斷編碼及其相互關係的多個標籤嵌入。
在步驟S530,電子病歷資料分析系統可經由多個歷史電子病歷資料的多個病歷文字欄位訓練文字分析模型311。在本實施例中,電子病歷資料分析系統可訓練以醫療領域為主線任務的基於變換器的雙向編碼器表示(Bidirectional Encoder Representations from Transformers,BERT)的文字分析模型311,並且可透過機器學習的知識提煉(knowledge distillation)技術,以實現可透過更小的BERT模型來學習醫療知識,而使文字分析模型311可達到降低系統需求、加速運算及更理想的概括化文字理解能力。
在步驟S540,電子病歷資料分析系統可透過病人基本模型312分析多個歷史電子病歷資料,以產生多個病人基本特徵參數。在步驟S550,電子病歷資料分析系統可透過注意力機制模型314以及電子醫療紀錄特徵編碼轉換模型315產生對應於多個歷史電子病歷資料的多個編碼順序。在本實施例中,注意力機制模型314以及電子醫療紀錄特徵編碼轉換模型315可根據前述取得的特徵參數執行如上述圖4實施例所說明注意力機制的相關運算,以產生對應於多個歷史電子病歷資料的多個編碼順序。
在步驟S560,電子病歷資料分析系統可經由多個歷史電子病歷資料的多個就醫原因以及多個編碼順序訓練主診斷推薦模型330。如此一來,經訓練後的主診斷推薦模型330能有效地調整經後處理的初始列表306中的多個疾病診斷碼的排列順序,以產生對應於醫療人員當前輸入的電子病歷資料301的正確的推薦列表307。
另外,本發明的電子病歷資料分析系統還根據使用者回饋(user feedback loop)來更新與優化上述各個模組與模型,以持續訓練更符合使用者體驗的模組與模型。例如,電子病歷資料分析系統可將醫療人員每次輸入的電子醫療病歷資料、分析結果以及主診斷選擇結果來更新歷史電子病歷資料(作為新的訓練資料),以持續訓練上述各個模組與模型。
綜上所述,本發明的電子病歷資料分析系統以及電子病歷資料分析方法,可根據輸入的電子病歷資料的分析結果來自動產生對應的疾病診斷編碼的推薦列表並於電子病歷資料上進行標註,以讓醫療人員可透過顯示裝置所顯示的此推薦列表以及標註後的電子病歷資料來即時且直覺地獲知病人的此次診斷的主診斷資訊以及重點病歷資訊。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100:電子病歷資料分析系統 110:處理器 120:儲存裝置 121、310:電子病歷資料分析模組 122、320:後處理模組 123、330:主診斷推薦模型 301:電子病歷資料 302:國際疾病分類標準資料 303、303_1~303_N:病歷特徵參數 304:病人基本特徵參數 305、305_1~305_M:診斷編碼特徵參數 306:初始列表 307:推薦列表 308:第一評定特徵 309_1~309_M:第二評定特徵 311:文字分析模型 312:病人基本模型 313:疾病診斷碼特徵模型 314:注意力機制模型 315:電子醫療紀錄特徵編碼轉換模型 S210~S250、S510~S560:步驟
圖1是本發明的一實施例的電子病歷資料分析系統的示意圖。 圖2是本發明的一實施例的電子病歷資料分析方法的流程圖。 圖3是本發明的一實施例的電子病歷資料的分析示意圖。 圖4是本發明的一實施例的注意力機制的實施示意圖。 圖5是本發明的一實施例的模型訓練的流程圖。
100:電子病歷資料分析系統
110:處理器
120:儲存裝置
121:電子病歷資料分析模組
122:後處理模組
123:主診斷推薦模型

Claims (18)

  1. 一種電子病歷資料分析系統,包括:一儲存裝置,用以儲存一電子病歷資料分析模組以及一後處理模組;以及一處理器,耦接該儲存裝置,並且取得一電子病歷資料,其中該處理器執行該電子病歷資料分析模組,以分析該電子病歷資料,並且產生對應於該電子病歷資料的多個疾病診斷編碼以及多個相關程度分數;其中該處理器根據該些相關程度分數對該些疾病診斷編碼進行排序,以產生一初始列表,並且該處理器執行該後處理模組,以根據一預設編碼規則對該初始列表進行後處理,其中該處理器根據經後處理的該初始列表產生一推薦列表,其中該電子病歷資料分析模組包括:一文字分析模型,用以分析該電子病歷資料,以產生多個病歷特徵參數;一疾病診斷編碼特徵模型,用以分析一國際疾病分類標準資料,以產生多個診斷編碼特徵參數;一病人基本模型,用以分析該電子病歷資料,以產生多個病人基本特徵參數;以及一注意力機制模型,用以根據該些病歷特徵參數、該些診斷編碼特徵參數以及該些病人基本特徵參數將該些疾病診斷編碼分別標註在該電子病歷資料中的多個對應位置。
  2. 如請求項1所述的電子病歷資料分析系統,其中該注意力機制模型還用以比對該些病歷特徵參數以及該些病人基本特徵參數的相似度,以產生多個第一評定特徵,並且比對該些病歷特徵參數以及該些診斷編碼特徵參數的相似度,以產生多個第二評定特徵,其中該電子病歷資料分析模組還包括:一電子醫療紀錄特徵編碼轉換模型,用以根據該些第一評定特徵產生多個第一評定分數,根據該些第二評定特徵產生多個第二評定分數,並且根據該些第一評定分數以及該些第二評定分數計算對應於該些疾病診斷編碼的該些相關程度分數。
  3. 如請求項1所述的電子病歷資料分析系統,其中該處理器預先經由多個歷史電子病歷資料的多個病歷文字欄位訓練該文字分析模型。
  4. 如請求項3所述的電子病歷資料分析系統,其中該文字分析模型包括一長文檔轉換器(The Long-Document Transformer,Longformer)。
  5. 如請求項3所述的電子病歷資料分析系統,其中該電子病歷資料分析模組還包括:一主診斷推薦模型,用以根據該經後處理的初始列表產生該推薦列表。
  6. 如請求項5所述的電子病歷資料分析系統,其中該處理器預先經由該些歷史電子病歷資料的個別的一就醫原因以及一編碼順序訓練該主診斷推薦模型。
  7. 如請求項6所述的電子病歷資料分析系統,其中該處理器將該電子病歷資料以及該些疾病診斷編碼更新至該些歷史電子病歷資料中。
  8. 如請求項1所述的電子病歷資料分析系統,其中該處理器根據一選擇指令,從該推薦列表選擇該些疾病診斷編碼的其中之一,並且根據些疾病診斷編碼的其中之一取得對應的一主診斷資訊。
  9. 如請求項1所述的電子病歷資料分析系統,其中該些疾病診斷編碼為國際疾病分類標準第十版(International Classification of Diseases 10th Revision,ICD-10)編碼。
  10. 一種電子病歷資料分析方法,經由一電腦載入一電子病歷資料分析模組以及一後處理模組後執行,該電子病歷資料分析方法包括:取得一電子病歷資料;執行該電子病歷資料分析模組,以分析該電子病歷資料,並且產生對應於該電子病歷資料的多個疾病診斷編碼以及多個相關程度分數;根據該些相關程度分數對該些疾病診斷編碼進行排序,以產生一初始列表;執行該後處理模組,以根據一預設編碼規則對該初始列表進行後處理;以及根據經後處理的該初始列表產生一推薦列表, 其中執行該電子病歷資料分析模組,以分析該電子病歷資料的步驟包括:透過一文字分析模型分析該電子病歷資料,以產生多個病歷特徵參數;透過一疾病診斷編碼特徵模型分析一國際疾病分類標準資料,以產生多個診斷編碼特徵參數;透過一病人基本模型分析該電子病歷資料,以產生多個病人基本特徵參數;以及透過一注意力機制模型根據該些病歷特徵參數、該些診斷編碼特徵參數以及該些病人基本特徵參數將該些疾病診斷編碼分別標註在該電子病歷資料中的多個對應位置。
  11. 如請求項10所述的電子病歷資料分析方法,其中執行該電子病歷資料分析模組,以分析該電子病歷資料的步驟還包括:透過該注意力機制模型比對該些病歷特徵參數以及該些病人基本特徵參數的相似度,以產生多個第一評定特徵,並且比對該些病歷特徵參數以及該些診斷編碼特徵參數的相似度,以產生多個第二評定特徵;以及透過一電子醫療紀錄特徵編碼轉換模型根據該些第一評定特徵產生多個第一評定分數,根據該些第二評定特徵產生多個第二評定分數,並且根據該些第一評定分數以及該些第二評定分數計算對應於該些疾病診斷編碼的該些相關程度分數。
  12. 如請求項10所述的電子病歷資料分析方法,還包括:預先經由多個歷史電子病歷資料的多個病歷文字欄位訓練該文字分析模型。
  13. 如請求項12所述的電子病歷資料分析方法,其中該文字分析模型包括一長文檔轉換器(The Long-Document Transformer,Longformer)。
  14. 如請求項12所述的電子病歷資料分析方法,其中根據經後處理的該初始列表產生該推薦列表的步驟包括:透過一主診斷推薦模型根據該經後處理的初始列表產生該推薦列表。
  15. 如請求項14所述的電子病歷資料分析方法,還包括:預先經由該些歷史電子病歷資料的多個就醫原因以及多個編碼順序訓練該主診斷推薦模型。
  16. 如請求項15所述的電子病歷資料分析方法,還包括:將該電子病歷資料以及該些疾病診斷編碼更新至該些歷史電子病歷資料中。
  17. 如請求項10所述的電子病歷資料分析方法,還包括:根據一選擇指令,從該推薦列表選擇該些疾病診斷編碼的其 中之一,並且根據些疾病診斷編碼的其中之一取得對應的一主診斷資訊。
  18. 如請求項10所述的電子病歷資料分析方法,其中該些疾病診斷編碼為國際疾病分類標準第十版(International Classification of Diseases 10th Revision,ICD-10)編碼。
TW111103810A 2022-01-28 2022-01-28 電子病歷資料分析系統與電子病歷資料分析方法 TWI792898B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111103810A TWI792898B (zh) 2022-01-28 2022-01-28 電子病歷資料分析系統與電子病歷資料分析方法
US17/851,069 US20230245735A1 (en) 2022-01-28 2022-06-28 Electronic medical record data analysis system and electronic medical record data analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111103810A TWI792898B (zh) 2022-01-28 2022-01-28 電子病歷資料分析系統與電子病歷資料分析方法

Publications (2)

Publication Number Publication Date
TWI792898B true TWI792898B (zh) 2023-02-11
TW202331737A TW202331737A (zh) 2023-08-01

Family

ID=86689139

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111103810A TWI792898B (zh) 2022-01-28 2022-01-28 電子病歷資料分析系統與電子病歷資料分析方法

Country Status (2)

Country Link
US (1) US20230245735A1 (zh)
TW (1) TWI792898B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230317279A1 (en) * 2022-03-31 2023-10-05 Quantiphi Inc Method and system for medical diagnosis using graph embeddings

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201232464A (en) * 2011-01-31 2012-08-01 Yuekang Healthcare Man Consultants Inc Online integrating system for anamnesis
US20200350072A1 (en) * 2018-08-06 2020-11-05 Mirr Llc Diagnositic and treatmetnt tool and method for electronic recording and indexing patient encounters for allowing instant search of patient history
CN112183026A (zh) * 2020-11-27 2021-01-05 北京惠及智医科技有限公司 Icd编码方法、装置、电子设备和存储介质
CN113779179A (zh) * 2021-09-29 2021-12-10 北京雅丁信息技术有限公司 一种基于深度学习和知识图谱的icd智能编码的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090177494A1 (en) * 2008-01-04 2009-07-09 Dunlop Lorna W Patient management method and system
US9971848B2 (en) * 2014-06-04 2018-05-15 Nuance Communications, Inc. Rich formatting of annotated clinical documentation, and related methods and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201232464A (en) * 2011-01-31 2012-08-01 Yuekang Healthcare Man Consultants Inc Online integrating system for anamnesis
US20200350072A1 (en) * 2018-08-06 2020-11-05 Mirr Llc Diagnositic and treatmetnt tool and method for electronic recording and indexing patient encounters for allowing instant search of patient history
CN112183026A (zh) * 2020-11-27 2021-01-05 北京惠及智医科技有限公司 Icd编码方法、装置、电子设备和存储介质
CN113779179A (zh) * 2021-09-29 2021-12-10 北京雅丁信息技术有限公司 一种基于深度学习和知识图谱的icd智能编码的方法

Also Published As

Publication number Publication date
US20230245735A1 (en) 2023-08-03
TW202331737A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
US20210034813A1 (en) Neural network model with evidence extraction
US11670420B2 (en) Drawing conclusions from free form texts with deep reinforcement learning
CN109933785A (zh) 用于实体关联的方法、装置、设备和介质
CN109933647A (zh) 确定描述信息的方法、装置、电子设备和计算机存储介质
CN112541056B (zh) 医学术语标准化方法、装置、电子设备及存储介质
CN110427486B (zh) 身体病况文本的分类方法、装置及设备
CN113707299A (zh) 基于问诊会话的辅助诊断方法、装置及计算机设备
CN116821373A (zh) 基于图谱的prompt推荐方法、装置、设备及介质
Ravikumar et al. Machine learning model for clinical named entity recognition
CN116010586A (zh) 一种健康建议的生成方法、装置、设备及存储介质
TWI792898B (zh) 電子病歷資料分析系統與電子病歷資料分析方法
CN112199958A (zh) 概念词序列生成方法、装置、计算机设备及存储介质
CN116860935A (zh) 基于提示词问答交互的内容管理方法、装置、设备及介质
CN113297852B (zh) 一种医学实体词的识别方法和装置
CN113704481B (zh) 一种文本处理方法、装置、设备及存储介质
CN114300127A (zh) 问诊处理方法、装置、设备及存储介质
US12087442B2 (en) Methods and systems for confirming an advisory interaction with an artificial intelligence platform
US11783244B2 (en) Methods and systems for holistic medical student and medical residency matching
CN116720525A (zh) 基于问诊数据的疾病辅助分析方法、装置、设备及介质
CN116757193A (zh) 基于对比学习的多轮对话生成方法、装置、设备及介质
CN111415750A (zh) 一种基于规则的用户信息结构化和快速检索的方法及系统
CN116522944A (zh) 基于多头注意力的图片生成方法、装置、设备及介质
Gao et al. Accuracy analysis of triage recommendation based on CNN, RNN and RCNN models
CN115456069A (zh) 医嘱分类模型的训练方法、装置、电子设备及存储介质
US20220165430A1 (en) Leveraging deep contextual representation, medical concept representation and term-occurrence statistics in precision medicine to rank clinical studies relevant to a patient