TWI792449B - Electrolytic copper foil, and electrode and copper-clad laminate comprising the same - Google Patents

Electrolytic copper foil, and electrode and copper-clad laminate comprising the same Download PDF

Info

Publication number
TWI792449B
TWI792449B TW110127489A TW110127489A TWI792449B TW I792449 B TWI792449 B TW I792449B TW 110127489 A TW110127489 A TW 110127489A TW 110127489 A TW110127489 A TW 110127489A TW I792449 B TWI792449 B TW I792449B
Authority
TW
Taiwan
Prior art keywords
layer
copper foil
electrolytic copper
treatment
foil
Prior art date
Application number
TW110127489A
Other languages
Chinese (zh)
Other versions
TW202305187A (en
Inventor
黃慧芳
賴耀生
周瑞昌
Original Assignee
長春石油化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長春石油化學股份有限公司 filed Critical 長春石油化學股份有限公司
Priority to TW110127489A priority Critical patent/TWI792449B/en
Publication of TW202305187A publication Critical patent/TW202305187A/en
Application granted granted Critical
Publication of TWI792449B publication Critical patent/TWI792449B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Provided are an electrolytic copper foil, and an electrode and a copper-clad laminate comprising the same. The electrolytic copper foil has a temperature coefficient of resistance from 0.0012 K -1to 0.0039 K -1. With this characteristic, the thermostability of the electrolytic copper foil can be improved, thereby improving the value of subsequent applications.

Description

電解銅箔、包含其的電極和覆銅積層板Electrolytic copper foil, electrode including same, and copper-clad laminate

本創作關於一種電解銅箔,尤指一種可適用於例如鋰離子電池、印刷電路板等技術領域的電解銅箔。此外,本創作另關於一種包含前述電解銅箔之電極和覆銅積層板。This creation relates to an electrolytic copper foil, especially an electrolytic copper foil applicable to technical fields such as lithium-ion batteries and printed circuit boards. In addition, the present invention also relates to an electrode and a copper-clad laminate comprising the aforementioned electrolytic copper foil.

銅箔具有良好導電性,且相對於例如銀之貴金屬而言具有更低廉的成本,因此其不僅廣泛應用於基礎工業之外,亦為先進科技產業的重要原料;舉例而言,銅箔不僅可作為電路板各元件間的導通材料、覆銅積層板的基礎材料,應用於智慧型手機、筆記型電腦等電子產業領域,還可作為鋰離子電池的電極材料,應用於攜帶式電子裝置(portable electronic devices,PED)、電動車(electric vehicles,EV)等領域。Copper foil has good electrical conductivity and has lower cost than precious metals such as silver, so it is not only widely used in basic industries, but also an important raw material for advanced technology industries; for example, copper foil can not only As the conduction material between the components of the circuit board and the basic material of the copper-clad laminate, it is used in the electronic industry such as smart phones and notebook computers. It can also be used as an electrode material for lithium-ion batteries and is used in portable electronic devices. electronic devices, PED), electric vehicles (electric vehicles, EV) and other fields.

隨著消費者對電子、電器產品的可攜化和輕量化的要求日益嚴格,其內部使用的銅箔也隨之薄型化、細線化,故銅箔的特性與品質對於電子、電器產品的效能影響更加顯著。由於前述產品在使用過程中往往會產生熱,因此,若包含其中的銅箔的熱穩定性不佳時,容易使前述產品的性能被劣化,導致產品的使用壽命縮短。例如,若此種熱穩定性不佳之銅箔應用於鋰離子電池,將降低鋰離子電池的循環特性;若此種熱穩定性不佳之銅箔應用於印刷電路板製程中,則可能發生訊號傳遞損失過多之問題,故實有改善銅箔之熱穩定性的必要。As consumers have increasingly stringent requirements for the portability and lightweight of electronic and electrical products, the copper foil used inside is also becoming thinner and thinner. Therefore, the characteristics and quality of copper foil have great influence on the performance of electronic and electrical products. The impact is more pronounced. Since the aforementioned products tend to generate heat during use, if the thermal stability of the copper foil contained therein is not good, the performance of the aforementioned products is likely to be deteriorated, resulting in a shortened service life of the product. For example, if this kind of copper foil with poor thermal stability is used in lithium-ion batteries, it will reduce the cycle characteristics of lithium-ion batteries; if this kind of copper foil with poor thermal stability is used in the process of printed circuit boards, signal transmission may occur Because of the problem of excessive loss, it is necessary to improve the thermal stability of copper foil.

有鑑於此,本創作的目的在於提升銅箔的熱穩定性,以提升其後續應用的產品的品質,使其既能適用於鋰離子電池亦能適用於印刷電路板中。In view of this, the purpose of this creation is to improve the thermal stability of copper foil, so as to improve the quality of its subsequent application products, making it suitable for both lithium-ion batteries and printed circuit boards.

為達成前述目的,本創作提供一種電解銅箔,其中,該電解銅箔的電阻溫度係數(temperature coefficient of resistance,簡稱為α值)為0.0012 K -1至0.0039 K -1To achieve the aforementioned purpose, the present invention provides an electrolytic copper foil, wherein the temperature coefficient of resistance (referred to as α value) of the electrolytic copper foil is 0.0012 K −1 to 0.0039 K −1 .

藉由調控電解銅箔的電阻溫度係數在適當的範圍中,本創作能具體提升電解銅箔之熱穩定性,進而抑制或減緩所述電解銅箔因後續產品在長期使用後所產生的熱而大幅增加電解銅箔的內電阻的問題,從而提升包含其的產品的效能。By regulating the temperature coefficient of resistance of the electrolytic copper foil in an appropriate range, the invention can specifically improve the thermal stability of the electrolytic copper foil, thereby inhibiting or slowing down the deterioration of the electrolytic copper foil due to the heat generated by subsequent products after long-term use. The problem of greatly increasing the internal resistance of electrolytic copper foil, thereby improving the performance of products containing it.

依據本創作,該電解銅箔的電阻溫度係數係指量測歷經6小時的退火處理之電解銅箔所得的電阻溫度係數,該退火處理係於持溫110°C的環境下進行。所述電解銅箔在經歷退火處理的過程後會產生微結構變化。而選擇於前述持溫的溫度和時間乃是因所述條件係用以模擬後續製程的參數條件,例如鋰離子電池的製備或是印刷電路板的製備。According to the present invention, the temperature coefficient of resistance of the electrolytic copper foil refers to the temperature coefficient of resistance obtained by measuring the electrolytic copper foil after 6 hours of annealing treatment, and the annealing treatment is carried out in an environment with a constant temperature of 110°C. The microstructure of the electrolytic copper foil undergoes annealing treatment will change. The above-mentioned temperature and time are selected because the conditions are used to simulate the parameter conditions of subsequent processes, such as the preparation of lithium-ion batteries or the preparation of printed circuit boards.

依據本創作,該電解銅箔包含一原箔。於本說明書中,該原箔主要是由硫酸及硫酸銅為主成分之水溶液作為電解液,以不溶性金屬作為陽極(dimensionally stable anode,DSA),以具有拋光表面之鈦製輥筒作為陰極輥筒(cathode drum),並於兩極間通以直流電使所述電解液中的銅離子電沉積在陰極輥筒上所形成。當所述原箔達一定厚度時,將所述原箔自陰極輥筒表面剝離並連續收卷而得;其中,所述原箔與陰極輥筒表面接觸的面稱做「輥筒面」(drum side),而將其相對的另一面稱做「沉積面」(deposited side)。According to the invention, the electrolytic copper foil includes a raw foil. In this specification, the raw foil is mainly composed of sulfuric acid and copper sulfate as the electrolyte, an insoluble metal as the anode (dimensionally stable anode, DSA), and a titanium roller with a polished surface as the cathode roller (cathode drum), and a direct current is passed between the two poles to electrodeposit copper ions in the electrolyte on the cathode drum. When the original foil reaches a certain thickness, it is obtained by peeling the original foil from the surface of the cathode roller and continuously winding it; wherein, the surface of the original foil in contact with the surface of the cathode roller is called "roller surface" ( drum side), and the opposite side is called the "deposited side".

為了提升防銹能力、維持導電性、提高銅箔與活性材料或介電材料的接著性及耐熱、耐化特性等機能,可對所述原箔實施適當的表面處理,使該電解銅箔更包括至少一表面處理層,而所述表面處理層設置於該原箔之該輥筒面和該沉積面中的至少一者上。於其中一實施態樣,當該電解銅箔包括第一表面處理層時,該第一表面處理層係設置於該沉積面或該輥筒面中的其中一者上;於另一實施態樣,當該電解銅箔同時包括第一表面處理層和第二表面處理層時,該原箔係位於該第一表面處理層和該第二表面處理層之間;即,該第一表面處理層和該第二表面處理層可分別設置於該沉積面和該輥筒面上,或者,該第一表面處理層和該第二表面處理層亦可分別設置於該輥筒面和該沉積面上。In order to improve the anti-rust ability, maintain electrical conductivity, improve the adhesion between copper foil and active materials or dielectric materials, and heat resistance and chemical resistance, the original foil can be properly treated to make the electrolytic copper foil more At least one surface treatment layer is included, and the surface treatment layer is arranged on at least one of the roller surface and the deposition surface of the raw foil. In one embodiment, when the electrolytic copper foil includes a first surface treatment layer, the first surface treatment layer is disposed on one of the deposition surface or the roller surface; in another embodiment , when the electrolytic copper foil includes both the first surface treatment layer and the second surface treatment layer, the original foil is located between the first surface treatment layer and the second surface treatment layer; that is, the first surface treatment layer and the second surface treatment layer can be arranged on the deposition surface and the roller surface respectively, or the first surface treatment layer and the second surface treatment layer can also be arranged on the roller surface and the deposition surface respectively .

依據本創作,該第一表面處理層具有相反於該原箔的第一處理面;該第二表面處理層具有相反於該原箔的第二處理面。According to the present invention, the first surface treatment layer has a first treatment surface opposite to the original foil; the second surface treatment layer has a second treatment surface opposite to the original foil.

應說明的是,電解銅箔的二表面係指電解銅箔的最外側之二表面;於其中一實施態樣,當該原箔後續未再進行表面處理時,電解銅箔的二表面分別為該原箔的輥筒面和沉積面;於另一實施態樣,當該原箔的沉積面與輥筒面皆實施有表面處理時,電解銅箔的二表面分別為所述第一表面處理層和第二表面處理層之外表面,即該第一處理面和該第二處理面;於又一實施態樣,當該沉積面實施有表面處理、該輥筒面未實施表面處理時,電解銅箔之二表面分別為該第一處理面及該輥筒面;於再一實施態樣,當該輥筒面實施有表面處理、該沉積面未實施表面處理時,電解銅箔之二表面分別為該第一處理面及該沉積面。It should be noted that the two surfaces of the electrolytic copper foil refer to the two outermost surfaces of the electrolytic copper foil; in one embodiment, when the original foil is not subjected to subsequent surface treatment, the two surfaces of the electrolytic copper foil are The roller surface and the deposition surface of the original foil; in another embodiment, when the deposition surface and the roller surface of the original foil are both surface treated, the two surfaces of the electrolytic copper foil are respectively the first surface treatment layer and the outer surface of the second surface treatment layer, that is, the first treatment surface and the second treatment surface; in yet another embodiment, when the deposition surface is subjected to surface treatment and the roller surface is not subjected to surface treatment, The two surfaces of the electrolytic copper foil are the first treated surface and the roller surface; The surfaces are respectively the first treatment surface and the deposition surface.

依據本創作,在不悖離本創作之精神下,本領域技術人員可視需求對該沉積面和/或該輥筒面上實施粗化處理、覆銅處理、鈍化處理、防銹處理、矽烷耦合處理等任一種或兩種以上的表面處理,進而使所述第一表面處理層和所述第二表面處理層可各自獨立包括粗化層、覆銅層、鎳層、鋅層、防銹層、和矽烷耦合處理層中至少一子層,但不限於此。所述粗化層、覆銅層、鎳層、鋅層、防銹層、和矽烷耦合處理層皆可概稱為子層。所述第一表面處理層和第二表面處理層可為相同或不同之子層的集合。According to this creation, without departing from the spirit of this creation, those skilled in the art can implement roughening treatment, copper coating treatment, passivation treatment, antirust treatment, silane coupling on the deposition surface and/or the roller surface according to the needs Any one or two or more surface treatments such as treatment, so that the first surface treatment layer and the second surface treatment layer can independently include a roughening layer, a copper clad layer, a nickel layer, a zinc layer, and an antirust layer , and at least one sublayer in the silane coupling treatment layer, but not limited thereto. The roughening layer, copper clad layer, nickel layer, zinc layer, anti-rust layer, and silane coupling treatment layer can all be collectively referred to as sub-layers. The first surface treatment layer and the second surface treatment layer may be a collection of the same or different sub-layers.

就粗化處理而言,可視需求使該輥筒面或該沉積面中之至少一者進行粗化處理,亦可使任一子層的外表面進行粗化處理。經粗化處理所得之表面具有微細凹凸起伏的形狀,所述形狀可為球狀、針狀、或板狀,但不限於此。所述粗化處理可列舉使用例如銅、鎳、鉻、或鋅等金屬離子進行一次電沉積之粗化處理,形成單層結構的粗化層,或將不同種類的金屬離子依序進行電沉積之粗化處理,形成多層結構的粗化層;另外,亦可採用機械磨損或化學微蝕刻等方式進行粗化處理,但不限於此。As for the roughening treatment, at least one of the roller surface or the deposition surface may be subjected to roughening treatment as required, and the outer surface of any sublayer may also be subjected to roughening treatment. The surface obtained by the roughening treatment has a fine concave-convex shape, and the shape may be spherical, needle-like, or plate-like, but not limited thereto. The roughening treatment can include a roughening treatment using metal ions such as copper, nickel, chromium, or zinc to conduct a single electrodeposition to form a single-layer roughened layer, or sequentially electrodeposit different types of metal ions The roughening treatment forms a multilayer structure roughening layer; in addition, mechanical abrasion or chemical microetching can also be used for roughening treatment, but not limited thereto.

在一些實施例中,在悖離本創作之精神下,本領域技術人員還可視需求於所述粗化層之外表面上再進行覆銅處理,使所述第一、第二表面處理層更進一步包括覆銅層。In some embodiments, without departing from the spirit of the present invention, those skilled in the art may also perform copper cladding treatment on the outer surface of the roughened layer as required, so as to make the first and second surface treatment layers more It further includes a copper clad layer.

就鈍化處理而言,可視需求使該原箔的輥筒面或沉積面中的至少一者進行鈍化處理,亦可使任一子層的外表面進行鈍化處理,例如可於所述粗化層的外表面或所述覆銅層的外表面進行鈍化處理。具體而言,可選用鋅或鋅合金進行鈍化處理,以得到所述第一、第二表面處理層中的鋅層;另外,亦可選用鎳或鎳合金進行鈍化處理,以得到所述第一、第二表面處理層中的鎳層。經鈍化處理所得之鈍化層可提高所述電解銅箔的耐化學性。As far as passivation treatment is concerned, at least one of the roller surface or the deposition surface of the original foil may be subjected to passivation treatment as required, and the outer surface of any sub-layer may also be subjected to passivation treatment, for example, the roughened layer may be Passivation treatment is performed on the outer surface of or the outer surface of the copper clad layer. Specifically, zinc or zinc alloy can be selected for passivation treatment to obtain the zinc layer in the first and second surface treatment layers; in addition, nickel or nickel alloy can also be selected for passivation treatment to obtain the first , the nickel layer in the second surface treatment layer. The passivation layer obtained through passivation treatment can improve the chemical resistance of the electrolytic copper foil.

就防銹處理而言,可視需求使該原箔的輥筒面或沉積面中之至少一者進行防銹處理,亦可使任一子層的外表面進行防銹處理,例如可於所述粗化層的外表面、所述覆銅層的外表面或所述鈍化層(例如鋅層或鎳層)的外表面進行防銹處理。其中,防銹處理可列舉使用唑類化合物(azole)等的有機防銹處理,使得所述防銹層為有機防銹層;或使用含鉻原料等的無機防銹處理,使所述防銹層為如鉻層之無機防銹層。具體而言,所述防銹處理的施加方式可使用任何已知的方式施加,舉例而言,可使用浸漬塗布、噴塗、電鍍等方法使防銹元素附著於欲施加的表面上。就唑類化合物而言,可列舉三唑(triazole)、苯並三唑(benzotriazole)、甲苯基三唑(tolyltriazole)、羧基苯並三唑(carboxybenzotriazole)、經氯取代之苯並三唑(chloro-substituted benzotriazole)、3-胺基-1,2,4-三唑(3-amino-1,2,4-triazole)、4-胺基-1,2,4-三唑(4-amino-1,2,4-triazole)、或該等的衍生物等三唑類化合物;噻唑(thiazole)、異噻唑(isothiazole)、2-胺基-4-甲基噻唑(2-amino-4-methylthiazole)、或該等的衍生物等噻唑類化合物;及咪唑(imidazole)、1-甲基-2-巰基咪唑(2-mercapto-1-methylimidazole)、1-(β-羥乙基)-2-甲基咪唑(1-(2-hydroxyethyl)-2-methylimidazole)、1-(β-氯乙基)-2-甲基咪唑(1-(2-chloroethyl)-2-methylimidazole)、2-胺基苯並咪唑(2-aminobenzimidazole)、或該等的衍生物等咪唑類化合物,有機防銹處理亦可使用一種以上的前述唑類化合物來進行。就含鉻原料而言,通常是指使用鉻酸(chromic(VI) acid)、氧化鉻、鉻酸鹽(chromate)或重鉻酸鹽(dichromate(VI))等能產生三價鉻或六價鉻的含鉻原料;在一些實施例中,含鉻原料為三氧化鉻(CrO 3)。 As far as antirust treatment is concerned, at least one of the roller surface or the deposition surface of the original foil may be subjected to antirust treatment, and the outer surface of any sublayer may also be subjected to antirust treatment, for example, it can be described in The outer surface of the roughened layer, the outer surface of the copper-clad layer or the outer surface of the passivation layer (such as a zinc layer or a nickel layer) is subjected to anti-rust treatment. Among them, the antirust treatment can include organic antirust treatment using azole compounds (azole), etc., so that the antirust layer is an organic antirust layer; or inorganic antirust treatment using chromium-containing raw materials, etc., to make the antirust layer The layer is an inorganic antirust layer such as a chromium layer. Specifically, the anti-rust treatment can be applied in any known way, for example, methods such as dip coating, spray coating, and electroplating can be used to attach the anti-rust elements to the surface to be applied. As far as azole compounds are concerned, triazole, benzotriazole, tolyltriazole, carboxybenzotriazole, chlorine-substituted benzotriazole (chloro -substituted benzotriazole), 3-amino-1,2,4-triazole (3-amino-1,2,4-triazole), 4-amino-1,2,4-triazole (4-amino- 1,2,4-triazole), or their derivatives and other triazole compounds; thiazole, isothiazole, 2-amino-4-methylthiazole (2-amino-4-methylthiazole ), or their derivatives and other thiazole compounds; and imidazole (imidazole), 1-methyl-2-mercaptoimidazole (2-mercapto-1-methylimidazole), 1-(β-hydroxyethyl)-2- Methylimidazole (1-(2-hydroxyethyl)-2-methylimidazole), 1-(β-chloroethyl)-2-methylimidazole (1-(2-chloroethyl)-2-methylimidazole), 2-amino For imidazole compounds such as benzimidazole (2-aminobenzimidazole) or their derivatives, the organic antirust treatment can also be performed using one or more of the aforementioned azole compounds. As far as chromium-containing raw materials are concerned, it usually refers to the use of chromic acid (chromic (VI) acid), chromium oxide, chromate (chromate) or dichromate (dichromate (VI)) to produce trivalent chromium or hexavalent chromium A chromium-containing feedstock of chromium; in some embodiments, the chromium-containing feedstock is chromium trioxide (CrO 3 ).

就矽烷耦合處理而言,可視需求使該原箔的輥筒面或沉積面中之至少一者進行矽烷耦合處理,亦可使任一子層的外表面進行矽烷耦合處理,例如可於所述粗化層的外表面、所述覆銅層的外表面、所述鈍化層的外表面、或所述防銹層的外表面進行矽烷耦合處理,進而得到所述表面處理層中的矽烷耦合處理層。所述矽烷耦合劑可包括,但不限於以下述化學式表示之群組:Y-(R’) n-Si(OR) 3,其中Y係選自於縮水甘油基(環氧基)、胺基、環氧環己基、脲基、胺基甲酸酯基、丙二酸酯基、羧基、巰基、氰基、乙醯氧基、丙烯醯氧基、甲基丙烯醯氧基、氯甲基苯基、吡啶基、乙烯基、二烷基胺基、苯基烷氨基及咪唑基所組成的群組;n為整數0或1;R’係伸甲基、伸乙基、伸丙基、或經乙基或丙基取代之伸苯基,其中該伸苯基中的苯環與Y相連接;以及R係甲基、乙基、或碳數為3至6的直鏈或支鏈的烷基;具體而言,所述矽烷耦合劑可使用環氧基矽烷(epoxy-based silane)、胺基矽烷(amino-based silane)、甲基丙烯醯氧基矽烷(methacryloxy-based silane)、乙烯基矽烷(vinyl-based silane)、巰基矽烷(mercapto-based silane);矽烷耦合處理也可使用一種以上的矽烷耦合劑來進行。 As far as the silane coupling treatment is concerned, at least one of the roller surface or the deposition surface of the original foil can be subjected to silane coupling treatment, and the outer surface of any sublayer can also be subjected to silane coupling treatment. The outer surface of the roughened layer, the outer surface of the copper clad layer, the outer surface of the passivation layer, or the outer surface of the anti-rust layer is subjected to silane coupling treatment, and then the silane coupling treatment in the surface treatment layer is obtained. layer. The silane coupling agent may include, but not limited to, the group represented by the following chemical formula: Y-(R') n -Si(OR) 3 , wherein Y is selected from glycidyl (epoxy), amine , epoxycyclohexyl, ureido, urethane, malonate, carboxyl, mercapto, cyano, acetyloxy, acryloxy, methacryloxy, chloromethylbenzene A group consisting of base, pyridyl, vinyl, dialkylamino, phenylalkylamino and imidazolyl; n is an integer of 0 or 1; R' is methyl, ethyl, propyl, or A phenylene group substituted by an ethyl or propyl group, wherein the phenylene ring in the phenylene group is connected to Y; and R is a methyl group, an ethyl group, or a straight-chain or branched chain alkane with 3 to 6 carbons Specifically, the silane coupling agent can use epoxy-based silane, amino-based silane, methacryloxy-based silane, vinyl Silane (vinyl-based silane), mercapto-based silane (mercapto-based silane); silane coupling treatment can also use more than one silane coupling agent.

較佳的,在進行表面處理前,該原箔還可先進行酸洗步驟,使該原箔的輥筒面和沉積面更乾淨,有助於進行後續的表面處理程序。Preferably, before the surface treatment, the raw foil can be pickled to make the roller surface and deposition surface of the raw foil cleaner, which is helpful for subsequent surface treatment procedures.

依據本創作,電解銅箔的表面型態是影響電解銅箔與包含活性材料或介電材料的層體的接著強度的重要因素之一。較佳的,該第一處理面的粗糙度曲線要素的平均高度(Rc)為0.34微米(μm)至9.72 μm。其中,Rc是依據JIS B 0601:2013標準方法量測所得,其表示在評估長度上的粗糙度曲線要素的高度平均值。According to the present invention, the surface morphology of the electrolytic copper foil is one of the important factors affecting the bonding strength between the electrolytic copper foil and the layer containing active materials or dielectric materials. Preferably, the average height (Rc) of the roughness curve elements of the first treatment surface is 0.34 μm to 9.72 μm. Wherein, Rc is measured according to the JIS B 0601:2013 standard method, which represents the average height of the roughness curve elements on the evaluation length.

較佳的,該第二處理面的Rc為0.34 μm至9.72 μm。Preferably, the Rc of the second treated surface is 0.34 μm to 9.72 μm.

當電解銅箔的外表面(即第一處理面和/或第二處理面)的Rc分別在前述範圍中,所述電解銅箔的外表面可提供適當的空間容納活性材料或樹脂層,使得所述外表面能提供更佳的錨定作用(anchor effect),故所述電解銅箔能具有優異的剝離強度。When the Rc of the outer surface of the electrolytic copper foil (that is, the first treatment surface and/or the second treatment surface) is respectively in the aforementioned range, the outer surface of the electrolytic copper foil can provide an appropriate space to accommodate the active material or resin layer, so that The outer surface can provide a better anchor effect, so the electrolytic copper foil can have excellent peel strength.

當該第一表面處理層包括防銹層時,該第一處理面的Rc可為前述範圍;較佳的,該第一處理面的Rc為0.34 μm至1.63 μm;更佳的,該第一處理面的Rc為0.39 μm至1.50 μm。當該第二表面處理層包括防銹層時,該第二處理面的Rc亦可為前述範圍;較佳的,該第二處理面的Rc為0.34 μm至1.63 μm;更佳的,該第二處理面的Rc為0.39 μm至1.50 μm。When the first surface treatment layer includes an anti-rust layer, the Rc of the first treatment surface can be in the aforementioned range; preferably, the Rc of the first treatment surface is 0.34 μm to 1.63 μm; more preferably, the first treatment surface The Rc of the treated surface is 0.39 μm to 1.50 μm. When the second surface treatment layer includes an anti-rust layer, the Rc of the second treatment surface can also be in the aforementioned range; preferably, the Rc of the second treatment surface is 0.34 μm to 1.63 μm; more preferably, the second treatment surface The Rc of the two treated surfaces is 0.39 μm to 1.50 μm.

當該第一表面處理層包括粗化層時,該第一處理面的Rc可為前述範圍;較佳的,該第一處理面的Rc為0.38 μm至9.72 μm;更佳的,該第一處理面的Rc為0.42 μm至8.91 μm。當該第二表面處理層包括粗化層時,該第二處理面的Rc可為前述範圍;較佳的,該第二處理面的Rc為0.38 μm至9.72 μm;更佳的,該第二處理面的Rc為0.42 μm至8.91 μm。When the first surface treatment layer includes a roughened layer, the Rc of the first treatment surface can be in the aforementioned range; preferably, the Rc of the first treatment surface is 0.38 μm to 9.72 μm; more preferably, the first treatment surface The Rc of the treated surface is 0.42 μm to 8.91 μm. When the second surface treatment layer includes a roughened layer, the Rc of the second treatment surface can be in the aforementioned range; preferably, the Rc of the second treatment surface is 0.38 μm to 9.72 μm; more preferably, the second treatment surface The Rc of the treated surface is 0.42 μm to 8.91 μm.

一般而言,除了銅離子的來源外,電解液中所包含的其他的有機添加劑、離子或使用的電流密度大小都可能會影響電流分布、電解時的銅箔沉積厚度分布,進而影響所得到的原箔的表面性質。具體而言,該有機添加劑可為具有巰基(mercapto group)、雙硫結構(disulfide)或磺酸基(sulfonate)的含硫化合物、低分子量的凝膠、羥乙基纖維素(hydroxyethyl cellulose,HEC)或聚乙二醇(polyethylene glycol,PEG),但不限於此;舉例而言,該含硫化合物可包括聚二硫二丙烷磺酸鈉(bis(3-sulfopropyl) disulfide,SPS)、3-巰基-1-丙磺酸鈉鹽(3-mercapto-1-propanesulfonic acid sodium salt,MPS)、N,N-二甲基二硫甲醯胺丙烷磺酸鈉(3-N,N-dimethylaminodithiocarbamoyl-1-propanesulfonic acid sodium salt,DPS)、3-硫-異硫脲丙基磺酸(3-(amidinothio)-1-propanesulfonic acid,UPS)或3-(苯並噻唑-2巰基)丙磺酸鈉鹽(3-(benzothiazolyl-2-mercapto)-propyl-sulfonic acid, sodium salt,ZPS),但不限於此。舉例而言,該低分子量的凝膠可包括明膠(gelatin),但不限於此。具體而言,該離子可為鉻(Cr)、鎢(W)、銀(Ag)、鈰(Ce)、鉬(Mo)、鈦(Ti)、鎳(Ni)、鋅(Zn)、鈷(Co)、碲(Te)的離子,但不限於此。Generally speaking, in addition to the source of copper ions, other organic additives, ions or current density used in the electrolyte may affect the current distribution, the copper foil deposition thickness distribution during electrolysis, and then affect the obtained The surface properties of the original foil. Specifically, the organic additive can be sulfur-containing compounds with mercapto group, disulfide or sulfonate, low molecular weight gel, hydroxyethyl cellulose (HEC ) or polyethylene glycol (polyethylene glycol, PEG), but not limited thereto; Mercapto-1-propanesulfonic acid sodium salt (3-mercapto-1-propanesulfonic acid sodium salt, MPS), N,N-dimethyldithioamide propanesulfonate (3-N,N-dimethylaminodithiocarbamoyl-1 -propanesulfonic acid sodium salt, DPS), 3-thio-isothiourea propyl sulfonic acid (3-(amidinothio)-1-propanesulfonic acid, UPS) or 3-(benzothiazole-2 mercapto)propanesulfonic acid sodium salt (3-(benzothiazolyl-2-mercapto)-propyl-sulfonic acid, sodium salt, ZPS), but not limited thereto. For example, the low molecular weight gel may include gelatin, but is not limited thereto. Specifically, the ions can be chromium (Cr), tungsten (W), silver (Ag), cerium (Ce), molybdenum (Mo), titanium (Ti), nickel (Ni), zinc (Zn), cobalt ( Co), tellurium (Te) ions, but not limited thereto.

本創作另提供一種用於鋰離子電池的電極,其包含前述的電解銅箔、至少一種黏著劑及至少一種活性物質。所述電解銅箔係適合作為集電體使用,在電解銅箔的一側或兩側塗覆有一層或多層包含活性物質和黏著劑的活性材料以製成電極。所述電極可作為鋰離子電池的負極亦可作為正極;較佳的,該電極為負極。The invention further provides an electrode for a lithium-ion battery, which includes the aforementioned electrolytic copper foil, at least one adhesive, and at least one active material. The electrolytic copper foil is suitable for use as a collector, and one or both sides of the electrolytic copper foil are coated with one or more active materials including active substances and binders to form electrodes. The electrode can be used as a negative electrode of a lithium ion battery or as a positive electrode; preferably, the electrode is a negative electrode.

具體而言,該黏著劑可包括聚偏二氟乙烯(poly-1,1-difluoroethene,PVDF)、聚丙烯酸(poly(acrylic acid))、羧甲基纖維素(carboxymethyl cellulose,CMC)、苯乙烯丁二烯橡膠(styrene butadiene rubber,SBR)、聚醯亞胺(polyimide,PI)、聚乙烯醇(poly vinyl alcohol,PVA)或其組合,但並非僅限於此。Specifically, the adhesive may include polyvinylidene fluoride (poly-1,1-difluoroethene, PVDF), polyacrylic acid (poly(acrylic acid)), carboxymethyl cellulose (carboxymethyl cellulose, CMC), styrene Butadiene rubber (Styrene butadiene rubber, SBR), polyimide (polyimide, PI), polyvinyl alcohol (poly vinyl alcohol, PVA) or a combination thereof, but not limited thereto.

所述活性物質可使該電極得到良好的循環特性;舉例而言,活性物質可為含碳物質、含矽物質、矽碳複合物、金屬、金屬氧化物、金屬合金或聚合物,其中較佳為含碳物質或含矽物質,但並非僅限於此。具體而言,所述含碳物質可為非石墨碳(non-graphitizing carbon)、焦炭(coke)、石墨(graphite)、玻璃狀碳(glasslike carbon)、碳纖維(carbon fiber)、活性碳(activated carbon)、炭黑(carbon black)或高聚煅燒物,但不限於此;其中,焦炭包括瀝青焦炭、針狀焦炭或石油焦炭等;所述高聚煅燒物係藉由於適當溫度燒製酚醛樹脂(phenol-formaldehyde resin)或呋喃樹脂(furan resin)等高聚合物以便被碳酸化所得。所述含矽物質具有與鋰離子一起形成合金之優異能力及從合金鋰提取鋰離子的優異能力,而且,當含矽物質用於形成鋰離子二次電池,可以實現具有大能量密度的二次電池;含矽物質可與鈷(Co)、鐵(Fe)、錫(Sn)、鎳(Ni)、銅(Cu)、錳(Mn)、鋅(Zn)、銦(In)、銀(Ag)、鈦(Ti)、鍺(Ge)、鉍(Bi)、銻(Sb)、鉻(Cr)、釕(Ru)、鉬(Mo)或其組合併用,形成合金材料。所述金屬或金屬合金之元素可選自於下列所組成之群組:鈷、鐵、錫、鎳、銅、錳、鋅、銦、銀、鈦、鍺、鉍、銻、鉻、釕及鉬,但不限於此。所述金屬氧化物的實例係三氧化二鐵、四氧化三鐵、二氧化釕、二氧化鉬和三氧化鉬,但不限於此。所述聚合物的實例係聚乙炔(polyacetylene)和聚吡咯(polypyrrole),但並非僅限於此。The active material can enable the electrode to obtain good cycle characteristics; for example, the active material can be a carbon-containing material, a silicon-containing material, a silicon-carbon composite, a metal, a metal oxide, a metal alloy or a polymer, among which preferably It is a carbon-containing substance or a silicon-containing substance, but not limited thereto. Specifically, the carbonaceous substance may be non-graphitizing carbon, coke, graphite, glasslike carbon, carbon fiber, activated carbon ), carbon black (carbon black) or high-polymer calcined products, but not limited thereto; wherein, coke includes pitch coke, needle coke or petroleum coke, etc.; phenol-formaldehyde resin) or furan resin (furan resin) and other high polymers to be obtained by carbonation. The silicon-containing substance has an excellent ability to form an alloy with lithium ions and an excellent ability to extract lithium ions from the alloy lithium. Moreover, when the silicon-containing substance is used to form a lithium-ion secondary battery, a secondary battery with a large energy density can be realized. Batteries; silicon-containing substances can be combined with cobalt (Co), iron (Fe), tin (Sn), nickel (Ni), copper (Cu), manganese (Mn), zinc (Zn), indium (In), silver (Ag ), titanium (Ti), germanium (Ge), bismuth (Bi), antimony (Sb), chromium (Cr), ruthenium (Ru), molybdenum (Mo) or combinations thereof to form an alloy material. The elements of the metal or metal alloy may be selected from the group consisting of cobalt, iron, tin, nickel, copper, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium, ruthenium and molybdenum , but not limited to this. Examples of the metal oxide are ferric oxide, ferric oxide, ruthenium dioxide, molybdenum dioxide, and molybdenum trioxide, but are not limited thereto. Examples of such polymers are polyacetylene and polypyrrole, but not limited thereto.

此外,在不影響本創作之用於鋰離子電池的電極的效果之情況下,還可以視不同使用需求,於該電極中添加其他輔助添加劑,例如氫氧化鋰(LiOH)、草酸(H 2C 2O 4)等,但並非僅限於此。 In addition, without affecting the effect of the electrode used in lithium-ion batteries of this creation, other auxiliary additives can be added to the electrode, such as lithium hydroxide (LiOH), oxalic acid (H 2 C 2 O 4 ), etc., but not limited to this.

依據本創作,該電極可應用於鋰離子電池,而該鋰離子電池適用的電子裝置例如:行動電源、智慧型手機、筆記型電腦、電動交通工具等,但不限於此。According to the invention, the electrode can be applied to lithium-ion batteries, and the lithium-ion batteries are suitable for electronic devices such as mobile power supplies, smart phones, notebook computers, electric vehicles, etc., but not limited thereto.

本創作另提供一種覆銅積層板,其包含如前述的電解銅箔及樹脂基板。該覆銅積層板還可應用於剛性銅箔基板、軟性銅箔基板、IC載板等印刷電路板領域,但並非僅限於此。The invention further provides a copper-clad laminate, which includes the aforementioned electrolytic copper foil and a resin substrate. The copper-clad laminate can also be applied to the fields of printed circuit boards such as rigid copper foil substrates, flexible copper foil substrates, and IC substrates, but is not limited thereto.

具體而言,該樹脂基板的材料可為聚醯亞胺樹脂、環氧樹脂、聚對苯二甲酸乙二醇酯樹脂、液晶高分子等,但不限於此。Specifically, the material of the resin substrate may be polyimide resin, epoxy resin, polyethylene terephthalate resin, liquid crystal polymer, etc., but is not limited thereto.

以下,列舉數種實施例說明本創作之電解銅箔、鋰離子電池和覆銅積層板的實施方式,同時提供數種比較例作為對照,本領域技術人員可藉由下方實施例和比較例的內容輕易理解本創作能達到的優點及效果。應當理解的是,本說明書所列舉的實施例僅僅用於示範性說明本創作的實施方式,並非用於侷限本創作的範圍,本領域技術人員可以根據其通常知識在不悖離本創作的精神下進行各種修飾、變更,以實施或應用本創作之內容。Below, several examples are cited to illustrate the implementation of the electrolytic copper foil, lithium-ion battery, and copper-clad laminate of the present invention, and several comparative examples are provided as a comparison. Those skilled in the art can learn from the following examples and comparative examples The content makes it easy to understand the advantages and effects that this creation can achieve. It should be understood that the examples listed in this specification are only used to illustrate the implementation of the invention, and are not intended to limit the scope of the invention. Those skilled in the art can use their common knowledge without departing from the spirit of the invention. Various modifications and changes are made to implement or apply the content of this creation.

《電解銅箔》《Electrolytic Copper Foil》

實施例Example 11 to 44 :電解銅箔: Electrolytic copper foil

實施例1至4係使用如圖1所示的生產設備,並依序通過大致上雷同的電沉積步驟和表面處理步驟製得電解銅箔。實施例1至4的差異主要在於電解液的組成以及電沉積步驟中的電流密度。Examples 1 to 4 used the production equipment shown in FIG. 1 , and sequentially produced electrodeposited copper foils through substantially the same electrodeposition steps and surface treatment steps. Examples 1 to 4 differ mainly in the composition of the electrolyte and the current density in the electrodeposition step.

如圖1所示,生產電解銅箔的設備包含電沉積裝置10、一系列導輥20、和表面處理裝置30;所述電沉積裝置10包括陰極輥筒11、陽極板12、銅電解液13和入料管14。陰極輥筒11可旋轉,陽極板12沿著陰極輥筒11之下半部分的弧形設置。陰極輥筒11和陽極板12彼此相間隔而容置由入料管14通入的銅電解液13。表面處理裝置30包括防銹處理槽31和設置於其中的兩組第一極板311a、311b;一系列之導輥20包含第一導輥211、第二導輥212、第三導輥213、氣刀(air knife)22和收卷輪23,其可供輸送經電沉積的原箔41、表面處理的銅箔和成品,最終以收卷輪23上收卷得到電解銅箔40。As shown in Figure 1, the equipment for producing electrolytic copper foil includes an electrodeposition device 10, a series of guide rollers 20, and a surface treatment device 30; the electrodeposition device 10 includes a cathode roller 11, an anode plate 12, and a copper electrolyte 13 And feed pipe 14. The cathode roller 11 is rotatable, and the anode plate 12 is arranged along the arc of the lower half of the cathode roller 11 . The cathode roller 11 and the anode plate 12 are spaced apart from each other to accommodate the copper electrolyte 13 fed through the feed pipe 14 . The surface treatment device 30 includes an anti-rust treatment tank 31 and two sets of first pole plates 311a, 311b arranged therein; a series of guide rollers 20 include a first guide roller 211, a second guide roller 212, a third guide roller 213, Air knife (air knife) 22 and winding wheel 23 can be used to transport the electrodeposited raw foil 41 , surface-treated copper foil and finished products, and finally wind up the electrolytic copper foil 40 on the winding wheel 23 .

利用圖1所示之生產電解銅箔的設備,製造實施例1至4之電解銅箔40的方法統一說明如後。Using the equipment for producing electrolytic copper foil shown in FIG. 1 , the methods for manufacturing the electrolytic copper foil 40 of Examples 1 to 4 are collectively described below.

首先,配製用於電沉積步驟的銅電解液13,其配方如下: 1.  基本溶液: (1) 硫酸銅(CuSO 4‧5H 2O):305克/升(g/L)、 (2) 硫酸:105 g/L; 2.  添加物: (1) 氯離子(從鹽酸而來,購自RCI Labscan Ltd.):27毫克/升(mg/L); (2) 明膠(DV,購自Nippi Inc.):4.5 mg/L; (3) ZPS:2.0 mg/L至10 mg/L; (4) 鉻離子(從H 2CrO 4或CrO 3而來):30 mg/L至130 mg/L; First, prepare the copper electrolyte solution 13 for the electrodeposition step as follows: 1. Basic solution: (1) Copper sulfate (CuSO 4 ‧5H 2 O): 305 grams/liter (g/L), (2) Sulfuric acid: 105 g/L; 2. Additions: (1) Chloride ion (from hydrochloric acid, purchased from RCI Labscan Ltd.): 27 mg/L (mg/L); (2) Gelatin (DV, purchased from Nippi Inc.): 4.5 mg/L; (3) ZPS: 2.0 mg/L to 10 mg/L; (4) Chromium ion (from H 2 CrO 4 or CrO 3 ): 30 mg/L to 130 mg /L;

在進行電沉積步驟時,控制銅電解液13的溫度為45°C,並在陰極輥筒11和陽極板12上施加一電流密度為45安培/平方分米(A/dm 2)的電流,使得銅電解液13中的銅離子在陰極輥筒11的表面沉積形成原箔41,而後將所述原箔41自陰極輥筒11上剝離並引導至第一導輥211上。 During the electrodeposition step, the temperature of the copper electrolyte solution 13 is controlled to be 45°C, and a current density of 45 amps/square decimeter (A/dm 2 ) is applied to the cathode roller 11 and the anode plate 12, The copper ions in the copper electrolyte 13 are deposited on the surface of the cathode roller 11 to form the original foil 41 , and then the original foil 41 is peeled off from the cathode roller 11 and guided to the first guide roller 211 .

其中,製造實施例1至4之電解銅箔40所使用的銅電解液13的ZPS和鉻離子的含量比例以及所施加的電流密度皆列於表1中。Table 1 lists the content ratios of ZPS and chromium ions in the copper electrolytic solution 13 used in manufacturing the electrolytic copper foil 40 of Examples 1 to 4, and the applied current density.

防銹處理Anti-rust treatment

隨後,所述原箔41通過第一導輥211輸送至表面處理裝置30中進行防銹處理:將原箔41浸入充滿鉻防銹液的防銹處理槽31中,藉由兩組第一極板311a、311b分別對原箔41的輥筒面和沉積面施以電沉積步驟以形成附著於該沉積面和該輥筒面上的表面處理層。Subsequently, the original foil 41 is transported to the surface treatment device 30 by the first guide roller 211 for antirust treatment: the original foil 41 is immersed in the antirust treatment tank 31 filled with chromium antirust solution, and the two sets of first poles The plates 311a, 311b subject the roll side and the deposition side of the raw foil 41 to electrodeposition steps respectively to form surface treatment layers attached to the deposition side and the roll side.

於此,鉻防銹液的配方及防銹處理的製程條件如下: 1.      鉻防銹液的配方: 鉻酸(CrO 3):1.5 g/L; 2.      製程條件: (1) 鉻防銹液溫度:25°C; (2) 電流密度:0.5 A/dm 2; (3) 處理時間:2秒(sec)。 Here, the formula of chromium antirust solution and the process conditions of antirust treatment are as follows: 1. Formula of chromium antirust solution: chromic acid (CrO 3 ): 1.5 g/L; 2. Process conditions: (1) Chromium antirust Liquid temperature: 25°C; (2) Current density: 0.5 A/dm 2 ; (3) Processing time: 2 seconds (sec).

經上述條件完成防銹處理後,將經防銹處理的銅箔導引至第二導輥212並利用氣刀22使其乾燥,再藉由第三導輥213將之傳送至收卷輪23上收卷得到電解銅箔40。After the anti-rust treatment is completed under the above conditions, guide the anti-rust treated copper foil to the second guide roller 212 and use the air knife 22 to dry it, and then transfer it to the winding wheel 23 by the third guide roller 213 The electrolytic copper foil 40 was obtained by winding up.

根據上述製法,可分別製得實施例1至4的電解銅箔40。如圖2所示,各實施例之電解銅箔40包含原箔41及二表面處理層42;其中,原箔41包括相對的沉積面411及輥筒面412,該等表面處理層42包括第一表面處理層42a(即為第一鉻層)及第二表面處理層42b(即為第二鉻層);第一表面處理層42a直接覆蓋在原箔41的沉積面411上,第二表面處理層42b則直接覆蓋在原箔41的輥筒面412上。所述第一表面處理層42a具有相反於沉積面411的第一處理面42a’,而第一處理面42a’即為第一鉻層之外表面;所述第二表面處理層42b具有相反於輥筒面412的第二處理面42b’,而第二處理面42b’即為第二鉻層之外表面。Electrodeposited copper foils 40 of Examples 1 to 4 can be produced according to the above-mentioned manufacturing method. As shown in Figure 2, the electrolytic copper foil 40 of each embodiment includes the original foil 41 and two surface treatment layers 42; wherein, the original foil 41 includes the opposite deposition surface 411 and the roller surface 412, and these surface treatment layers 42 include the second A surface treatment layer 42a (i.e. the first chromium layer) and a second surface treatment layer 42b (i.e. the second chromium layer); the first surface treatment layer 42a is directly covered on the deposition surface 411 of the original foil 41, and the second surface treatment layer The layer 42b then covers directly the roll face 412 of the raw foil 41 . The first surface treatment layer 42a has a first treatment surface 42a' opposite to the deposition surface 411, and the first treatment surface 42a' is the outer surface of the first chromium layer; the second surface treatment layer 42b has a surface opposite to the deposition surface 411. The second treated surface 42b' of the roller surface 412 is the outer surface of the second chrome layer.

比較例comparative example 11 to 77 :電解銅箔: Electrolytic copper foil

比較例1至7作為實施例1至4的對照,其採用與實施例1至4之製備方法相似的方式生產電解銅箔,其差異主要在於銅電解液中ZPS和鉻離子的含量比例(ZPS:0.8 mg/L至15 mg/L;鉻離子:15 mg/L至150 mg/L),以及所施加的電流密度(30 A/dm 2至75 A/dm 2)皆列於表1中;另外,比較例1至7之電解銅箔的結構亦如圖2所示。 Comparative Examples 1 to 7 are used as the contrast of Examples 1 to 4, which adopt a method similar to the preparation method of Examples 1 to 4 to produce electrolytic copper foil, the difference mainly lies in the content ratio of ZPS and chromium ions in the copper electrolyte (ZPS : 0.8 mg/L to 15 mg/L; Chromium: 15 mg/L to 150 mg/L), and the applied current density (30 A/dm 2 to 75 A/dm 2 ) are listed in Table 1 ; In addition, the structure of the electrolytic copper foil of Comparative Examples 1 to 7 is also shown in FIG. 2 .

實施例Example 55 to 77 :電解銅箔: Electrolytic copper foil

實施例5至7係使用如圖3所示的生產設備,並依序通過大致上雷同的電沉積步驟和表面處理步驟製得電解銅箔。實施例5至7的差異主要在於表面處理步驟的製程條件和施加表面處理的表面不同。In Examples 5 to 7, the production equipment shown in FIG. 3 was used, and the electrodeposited copper foils were produced through substantially the same electrodeposition steps and surface treatment steps in sequence. The difference between Examples 5 to 7 mainly lies in the process conditions of the surface treatment step and the surface on which the surface treatment is applied.

如圖3所示,生產電解銅箔的設備包含電沉積裝置10、一系列導輥20、和表面處理裝置30;所述電沉積裝置10包括陰極輥筒11、陽極板12、銅電解液13和入料管14。陽極板12沿著陰極輥筒11之下半部分的弧形設置,且陰極輥筒11和陽極板12彼此相間隔而容置由入料管14通入的銅電解液13。表面處理裝置30包括酸洗槽32、粗化處理槽33及設置於其中的一組第二極板331、覆銅處理槽34及設置於其中的一組第三極板341、鍍鎳槽35及設置於其中的一組第四極板351、鍍鋅槽36及設置於其中的兩組第五極板361a和361b、鍍鉻槽37及設置於其中的兩組第六極板371a和371b、矽烷耦合劑噴灑裝置38、以及烘箱39;一系列之導輥20包含第一導輥211、第二導輥212、第三導輥213、第四導輥214、第五導輥215、第六導輥216、第七導輥217和收卷輪23,其可供輸送經電沉積的原箔41、經各道表面處理程序的銅箔和成品,最終以收卷輪23上收卷得到電解銅箔40。As shown in Figure 3, the equipment for producing electrolytic copper foil includes an electrodeposition device 10, a series of guide rollers 20, and a surface treatment device 30; the electrodeposition device 10 includes a cathode roller 11, an anode plate 12, and a copper electrolyte 13 And feed pipe 14. The anode plate 12 is arranged along the arc shape of the lower half of the cathode roller 11 , and the cathode roller 11 and the anode plate 12 are spaced apart from each other to accommodate the copper electrolyte 13 fed through the feed pipe 14 . The surface treatment device 30 includes a pickling tank 32, a roughening treatment tank 33 and a group of second pole plates 331 disposed therein, a copper clad treatment tank 34 and a group of third pole plates 341 disposed therein, and a nickel plating tank 35 and a group of fourth pole plates 351 disposed therein, a galvanized tank 36 and two groups of fifth pole plates 361a and 361b disposed therein, a chrome-plated tank 37 and two groups of sixth pole plates 371a and 371b disposed therein, Silane coupling agent spraying device 38, and oven 39; A series of guide rollers 20 include first guide roller 211, second guide roller 212, third guide roller 213, fourth guide roller 214, fifth guide roller 215, sixth guide roller The guide roller 216, the seventh guide roller 217 and the winding wheel 23 can be used to transport the electrodeposited raw foil 41, the copper foil and the finished product after various surface treatment procedures, and finally wind up on the winding wheel 23 to obtain electrolytic foil. Copper foil 40.

利用圖3所示之生產電解銅箔40的設備,製造實施例5至7之電解銅箔的方法統一說明如後。Using the equipment for producing electrolytic copper foil 40 shown in FIG. 3, the methods for manufacturing the electrolytic copper foils of Examples 5 to 7 are collectively described below.

電沉積步驟Electrodeposition step

實施例5至7皆進行相同的電沉積步驟,控制銅電解液13的溫度為45°C,並在陰極輥筒11和陽極板12上施加電流密度為45 A/dm 2的電流,使得銅電解液13中的銅離子在陰極輥筒11的表面沉積形成原箔41,而後將原箔41自陰極輥筒11上剝離並引導至第一導輥211上;其中,銅電解液13的配方與實施例4所採用的配方相同。 Embodiments 5 to 7 all carry out the same electrodeposition step, control the temperature of the copper electrolyte 13 to be 45°C, and apply a current density of 45 A/dm on the cathode roller 11 and the anode plate 12 , so that the copper The copper ions in the electrolyte 13 are deposited on the surface of the cathode roller 11 to form the original foil 41, and then the original foil 41 is peeled off from the cathode roller 11 and guided to the first guide roller 211; wherein, the formula of the copper electrolyte 13 Identical to the formula adopted in Example 4.

表面處理步驟Surface treatment steps

因實施例5至7的表面處理步驟略有差異,故以下分述各實施例所採用的表面處理步驟。Since the surface treatment steps of Examples 5 to 7 are slightly different, the surface treatment steps adopted in each example are described below.

實施例Example 55 之電解銅箔electrolytic copper foil

生產實施例5之電解銅箔製程另包括以下七道表面處理程序,各道表面處理程序的製程條件如下:The electrolytic copper foil manufacturing process of Production Example 5 additionally includes the following seven surface treatment procedures, and the process conditions of each surface treatment procedure are as follows:

I. 酸洗處理:實施例5之原箔41通過第一導輥211輸送至酸洗槽32中,將原箔41浸入酸洗液中清洗原箔41的兩表面;其中,酸洗液的配方及製程條件如下所示: 1.      酸洗液的配方: (1) 硫酸銅(CuSO 4‧5H 2O):200 g/L、 (2) 硫酸:100 g/L; 2.      製程條件: (1) 酸洗液溫度:25°C; (2) 處理時間:5 sec。 I. Pickling treatment : the original foil 41 of embodiment 5 is transported in the pickling tank 32 by the first guide roller 211, and the two surfaces of the original foil 41 are cleaned by immersing the original foil 41 in the pickling solution; wherein, the pickling solution The formulation and process conditions are as follows: 1. The formulation of pickling solution: (1) Copper sulfate (CuSO 4 ‧5H 2 O): 200 g/L, (2) Sulfuric acid: 100 g/L; 2. Process conditions: (1) Pickling solution temperature: 25°C; (2) Processing time: 5 sec.

待經上述步驟處理後,將經酸洗處理的原箔導引至第二導輥212,接著輸送到粗化處理槽33。請參閱圖4A,在本實施例中,經酸洗處理的原箔41包括相對的沉積面411和輥筒面412。After being processed through the above steps, the pickled raw foil is guided to the second guide roller 212 and then transported to the roughening treatment tank 33 . Referring to FIG. 4A , in this embodiment, the pickled raw foil 41 includes a deposition surface 411 and a roller surface 412 opposite to each other.

II. 粗化處理:將經酸洗處理的原箔浸入粗化處理槽33的粗化液中,藉由第二極板331對沉積面411施以電沉積步驟以形成附著於沉積面411上的粗化層421;其中,粗化液的配方及製程條件如下: 1.      粗化液的配方: (1) 硫酸銅(CuSO 4‧5H 2O):150 g/L、 (2) 硫酸:100 g/L; 2.      製程條件: (1) 粗化液溫度:25°C; (2) 電流密度:40 A/dm 2; (3) 處理時間:10 sec。 II. Roughening treatment : immerse the pickled original foil in the roughening solution in the roughening treatment tank 33, and apply an electrodeposition step to the deposition surface 411 through the second electrode plate 331 to form an adhesion on the deposition surface 411 The roughening layer 421; wherein, the formulation and process conditions of the roughening solution are as follows: 1. The formulation of the roughening solution: (1) Copper sulfate (CuSO 4 ‧5H 2 O): 150 g/L, (2) Sulfuric acid: 100 g/L; 2. Process conditions: (1) Roughening solution temperature: 25°C; (2) Current density: 40 A/dm 2 ; (3) Processing time: 10 sec.

待經上述步驟處理後,將經粗化處理的銅箔導引至第三導輥213,輸送到覆銅處理槽34。After being processed through the above steps, the roughened copper foil is guided to the third guide roller 213 and transported to the copper clad treatment tank 34 .

III. 覆銅處理:將經粗化處理的銅箔浸入覆銅處理槽34的覆銅液中,藉由第三極板341對粗化層421施以電沉積步驟以形成覆銅層422;其中,覆銅液的配方及製程條件如下: 1.      覆銅液的配方: (1) 硫酸銅(CuSO 4‧5H 2O):220 g/L、 (2) 硫酸:100 g/L; 2.      製程條件: (1) 覆銅液溫度:40°C; (2) 電流密度:15 A/dm 2; (3) 處理時間:10 sec。 III. Copper cladding treatment : immerse the roughened copper foil in the copper cladding liquid in the copper cladding treatment tank 34, and apply an electrodeposition step to the roughened layer 421 by the third plate 341 to form a copper clad layer 422; Among them, the formula and process conditions of the copper cladding solution are as follows: 1. The formula of the copper cladding solution: (1) copper sulfate (CuSO 4 ‧5H 2 O): 220 g/L, (2) sulfuric acid: 100 g/L; 2 . Process conditions: (1) Copper cladding solution temperature: 40°C; (2) Current density: 15 A/dm 2 ; (3) Processing time: 10 sec.

待經上述步驟處理後,將經覆銅處理的銅箔導引至第四導輥214,輸送到鍍鎳槽35。After being processed by the above steps, the copper-clad copper foil is guided to the fourth guide roller 214 and transported to the nickel plating tank 35 .

IV. 鍍鎳處理:將經覆銅處理的銅箔浸入鍍鎳槽35的鎳電解液中,藉由第四極板351對覆銅層422施以電沉積步驟以形成鎳層423;其中,鎳電解液的配方及製程條件如下: 1.  鎳電解液的配方: (1) 硫酸鎳(NiSO 4‧6H 2O):170 g/L至200 g/L、 (2) 硼酸(H 3BO 3):20 g/L至40 g/L; 2.  製程條件: (1) 鎳電解液溫度:20°C; (2) 電流密度:0.5 A/dm 2; (3) 處理時間:10 sec。 IV. Nickel plating treatment : immerse the copper clad copper foil in the nickel electrolyte in the nickel plating bath 35, and apply an electrodeposition step to the copper clad layer 422 by the fourth pole plate 351 to form a nickel layer 423; wherein, The formulation and process conditions of the nickel electrolyte are as follows: 1. The formulation of the nickel electrolyte: (1) Nickel sulfate (NiSO 4 ‧6H 2 O): 170 g/L to 200 g/L, (2) Boric acid (H 3 BO 3 ): 20 g/L to 40 g/L; 2. Process conditions: (1) Nickel electrolyte temperature: 20°C; (2) Current density: 0.5 A/dm 2 ; (3) Processing time: 10 sec .

待經上述步驟處理後,將經鍍鎳處理的銅箔導引至第五導輥215,輸送到鍍鋅槽36。After being processed by the above steps, the nickel-plated copper foil is guided to the fifth guide roller 215 and transported to the galvanizing tank 36 .

V. 鍍鋅處理:將經鍍鎳處理的銅箔浸入鍍鋅槽36的鋅電解液中,藉由兩組第五極板361a和361b對鎳層423和輥筒面412施以電沉積步驟,並分別於鎳層423和輥筒面412上形成第一鋅層424a、第二鋅層424b;其中,鋅電解液的配方和製程條件如下: 1.     鋅電解液的配方: (1) 硫酸鋅(ZnSO 4‧7H 2O):5 g/L至15 g/L、 (2) 偏釩酸銨(NH 4VO 3):0.1 g/L至0.4 g/L; 2.     製程條件: (1) 鋅電解液溫度:20°C; (2) 電流密度:0.5 A/dm 2; (3) 處理時間:10 sec。 V. Galvanizing treatment : the nickel-plated copper foil is immersed in the zinc electrolyte in the galvanizing tank 36, and the nickel layer 423 and the roller surface 412 are subjected to electrodeposition steps by two sets of fifth pole plates 361a and 361b , and form the first zinc layer 424a and the second zinc layer 424b on the nickel layer 423 and the roller surface 412 respectively; wherein, the formula and process conditions of the zinc electrolyte are as follows: 1. The formula of the zinc electrolyte: (1) sulfuric acid Zinc (ZnSO 4 ‧7H 2 O): 5 g/L to 15 g/L, (2) Ammonium metavanadate (NH 4 VO 3 ): 0.1 g/L to 0.4 g/L; 2. Process conditions: ( 1) Zinc electrolyte temperature: 20°C; (2) Current density: 0.5 A/dm 2 ; (3) Processing time: 10 sec.

待經上述步驟處理後,將經鍍鋅處理的銅箔導引至第六導輥216,輸送到鍍鉻槽37。After being processed through the above steps, the galvanized copper foil is guided to the sixth guide roller 216 and transported to the chrome plating tank 37 .

VI. 鍍鉻處理:將經鍍鋅處理的銅箔浸入鍍鉻槽37的鉻電解液中,藉由兩組第六極板371a和371b對相對的第一鋅層424a、第二鋅層424b施以電沉積步驟,並分別於該等鋅層上形成第一鉻層425a、第二鉻層425b;其中,鉻電解液的配方和製程條件如下: 1.      鉻電解液的配方: 鉻酸(CrO 3):1.6 g/L至1.8 g/L; 2.      製程條件: (1) 鉻電解液溫度:45°C; (2) 電流密度:2.7 A/dm 2; (3) 處理時間:10 sec。 VI. Chromium plating treatment : immerse the galvanized copper foil in the chromium electrolyte in the chrome plating tank 37, and apply a coating to the opposite first zinc layer 424a and second zinc layer 424b by two sets of sixth pole plates 371a and 371b. Electrodeposition step, and form the first chromium layer 425a, the second chromium layer 425b on these zinc layers respectively; Wherein, the recipe of chromium electrolytic solution and process conditions are as follows: 1. The recipe of chromium electrolytic solution: chromic acid (CrO 3 ): 1.6 g/L to 1.8 g/L; 2. Process conditions: (1) Chromium electrolyte temperature: 45°C; (2) Current density: 2.7 A/dm 2 ; (3) Processing time: 10 sec.

待經上述步驟處理後,將經鍍鉻處理的銅箔導引至第七導輥217上。After being processed by the above steps, the chrome-plated copper foil is guided to the seventh guide roller 217 .

VII. 矽烷耦合處理:經鍍鉻處理的銅箔由第七導輥217導引至收卷輪23的途中,以矽烷耦合劑噴灑裝置38將矽烷耦合劑溶液噴灑至第一鉻層425a的表面,以形成附著於第一鉻層425a上的矽烷耦合處理層426;其中,矽烷耦合劑溶液的配方和製程條件如下: 1.      矽烷耦合劑溶液的配方: (3-環氧丙氧基丙基)三甲氧基矽烷(商品型號為KBM 403):0.25重量百分比(wt%)的水溶液; 2.      製程條件: 處理時間:10 sec。 VII. Silane coupling treatment : the chrome-plated copper foil is guided by the seventh guide roller 217 to the winding wheel 23, and the silane coupling agent solution is sprayed onto the surface of the first chromium layer 425a by the silane coupling agent spraying device 38, To form the silane coupling treatment layer 426 attached to the first chromium layer 425a; wherein, the formulation and process conditions of the silane coupling agent solution are as follows: 1. The formulation of the silane coupling agent solution: (3-glycidoxypropyl) Trimethoxysilane (the product model is KBM 403): 0.25 weight percent (wt%) aqueous solution; 2. Process conditions: Processing time: 10 sec.

經上述條件完成七道表面處理程序後,將經矽烷耦合處理的銅箔導引至烘箱39烘乾,再傳送至收卷輪23上收卷,最後得到電解銅箔40。After the seven surface treatment procedures are completed under the above conditions, the silane-coupling-treated copper foil is guided to the oven 39 for drying, and then sent to the winding wheel 23 for winding, and finally the electrolytic copper foil 40 is obtained.

如圖4A所示,實施例5之電解銅箔40包含原箔41及第一表面處理層42a和第二表面處理層42b。其中,原箔41包括相對的沉積面411及輥筒面412。第一表面處理層42a設置於沉積面411上,依序包括粗化層421、覆銅層422、鎳層423、第一鋅層424a、第一鉻層425a以及矽烷耦合處理層426;所述第一表面處理層42a具有相反於沉積面411的第一處理面42a’,而第一處理面42a’即為矽烷耦合處理層426之外表面。第二表面處理層42b設置於輥筒面412上,依序包括第二鋅層424b和第二鉻層425b;所述第二表面處理層42b具有相反於輥筒面412的第二處理面42b’,第二處理面42b’即為第二鉻層425b之外表面。As shown in FIG. 4A , the electrolytic copper foil 40 of Example 5 includes an original foil 41 , a first surface treatment layer 42 a and a second surface treatment layer 42 b. Wherein, the raw foil 41 includes a deposition surface 411 and a roller surface 412 opposite to each other. The first surface treatment layer 42a is disposed on the deposition surface 411, and includes a roughened layer 421, a copper clad layer 422, a nickel layer 423, a first zinc layer 424a, a first chromium layer 425a, and a silane coupling treatment layer 426 in sequence; The first surface treatment layer 42 a has a first treatment surface 42 a ′ opposite to the deposition surface 411 , and the first treatment surface 42 a ′ is the outer surface of the silane coupling treatment layer 426 . The second surface treatment layer 42b is disposed on the roller surface 412, and includes a second zinc layer 424b and a second chromium layer 425b in sequence; the second surface treatment layer 42b has a second treatment surface 42b opposite to the roller surface 412 ', the second treated surface 42b' is the outer surface of the second chrome layer 425b.

實施例Example 66 之電解銅箔electrolytic copper foil

製備實施例6之電解銅箔採用的製備方法與製備實施例5之電解銅箔的方法相似,其差異僅在於:實施例6中粗化處理步驟中的電流密度調整為50 A/dm 2。所得的實施例6之電解銅箔的結構亦如圖4A所示。 The preparation method used to prepare the electrolytic copper foil of Example 6 is similar to the method for preparing the electrolytic copper foil of Example 5, the only difference being that the current density in the roughening step in Example 6 is adjusted to 50 A/dm 2 . The structure of the obtained electrodeposited copper foil of Example 6 is also shown in FIG. 4A .

實施例Example 77 之電解銅箔electrolytic copper foil

製備實施例7之電解銅箔採用的製備方法與製備實施例5之電解銅箔的方法相似,其差異僅在於:實施例7係針對原箔之輥筒面412進行粗化處理,鍍鋅處理則是對鎳層423和沉積面411進行處理。The preparation method used to prepare the electrolytic copper foil of Example 7 is similar to the method for preparing the electrolytic copper foil of Example 5, the only difference is that in Example 7, the surface of the roller 412 of the original foil is roughened, galvanized Then the nickel layer 423 and the deposition surface 411 are treated.

如圖4B所示,實施例7之電解銅箔40包含原箔41及第一表面處理層42a和第二表面處理層42b。其中,原箔41包括相對的沉積面411及輥筒面412。第一表面處理層42a設置於輥筒面412上,依序包括粗化層421、覆銅層422、鎳層423、第一鋅層424a、第一鉻層425a以及矽烷耦合處理層426;所述第一表面處理層42a具有相反於輥筒面412的第一處理面42a’,而第一處理面42a’即為矽烷耦合處理層426之外表面;第二表面處理層42b設置於沉積面411上,依序包括第二鋅層424b和第二鉻層425b;所述第二表面處理層42b具有相反於沉積面411的第二處理面42b’,第二處理面42b’即為第二鉻層425b之外表面。As shown in FIG. 4B , the electrolytic copper foil 40 of Example 7 includes an original foil 41 , a first surface treatment layer 42 a and a second surface treatment layer 42 b. Wherein, the raw foil 41 includes a deposition surface 411 and a roller surface 412 opposite to each other. The first surface treatment layer 42a is disposed on the roller surface 412, and sequentially includes a roughened layer 421, a copper clad layer 422, a nickel layer 423, a first zinc layer 424a, a first chromium layer 425a, and a silane coupling treatment layer 426; The first surface treatment layer 42a has a first treatment surface 42a' opposite to the roller surface 412, and the first treatment surface 42a' is the outer surface of the silane coupling treatment layer 426; the second surface treatment layer 42b is disposed on the deposition surface 411, including a second zinc layer 424b and a second chromium layer 425b in sequence; the second surface treatment layer 42b has a second treatment surface 42b' opposite to the deposition surface 411, and the second treatment surface 42b' is the second The outer surface of the chrome layer 425b.

比較例comparative example 88 and 99 :電解銅箔: Electrolytic copper foil

比較例8和9作為實施例5的對照,其採用與實施例5之製備方法相似的方式生產電解銅箔的原箔,且後續同樣採用七道表面處理程序,其差異主要在於製備原箔使用的銅電解液的ZPS和鉻離子的含量比例,並皆列於表1中;另外,比較例8和9之電解銅箔的結構亦如圖4A所示。Comparative Examples 8 and 9 are used as the comparison of Example 5. The original foil of the electrolytic copper foil is produced in a manner similar to the preparation method of Example 5, and the subsequent seven surface treatment procedures are also used. The difference is mainly in the preparation of the original foil. The content ratios of ZPS and chromium ions in the copper electrolyte are listed in Table 1; in addition, the structures of the electrolytic copper foils of Comparative Examples 8 and 9 are also shown in FIG. 4A.

分析analyze 11 :電解銅箔之平均厚度: Average thickness of electrolytic copper foil

實施例1至7、比較例1至9之電解銅箔各自裁切一長度和寬度皆為100毫米(mm)的試樣,並以微量天平(購自Mettler Toledo股份有限公司製造的AG-204)測量所述試樣的重量;再將秤得的重量除於所述試樣的面積,即可得到各電解銅箔的單位面積的重量。接著,依據IPS-TM-650 2.4.18標準方法所述,電解銅箔之密度為8.909克/立方公分(g/cm 3)(即8.909*10 6g/m 3),以式(I)計算得到實施例1至7、比較例1至9之電解銅箔的平均厚度,並將實施例1至7、比較例1至9之電解銅箔的平均厚度之分析結果列於表1中。 平均厚度(μm)=單位面積的重量(g/m 2)/ 電解銅箔之密度(g/m 3) (I) Each of the electrolytic copper foils of Examples 1 to 7 and Comparative Examples 1 to 9 was cut into a sample whose length and width were 100 millimeters (mm), and a microbalance (available from AG-204 manufactured by Mettler Toledo Co., Ltd.) ) to measure the weight of the sample; and then divide the weighed weight by the area of the sample to obtain the weight per unit area of each electrolytic copper foil. Next, according to the IPS-TM-650 2.4.18 standard method, the density of the electrolytic copper foil is 8.909 grams/cubic centimeter (g/cm 3 ) (ie 8.909*10 6 g/m 3 ), according to formula (I) The average thickness of the electrodeposited copper foils of Examples 1 to 7 and Comparative Examples 1 to 9 was calculated, and the analysis results of the average thickness of the electrodeposited copper foils of Examples 1 to 7 and Comparative Examples 1 to 9 are listed in Table 1. Average thickness (μm) = weight per unit area (g/m 2 )/density of electrolytic copper foil (g/m 3 ) (I)

表1 編號 電流密度 (A/dm 2) ZPS含量比例 (mg/L) 鉻離子含量 (mg/L) 平均厚度 (μm) 實施例1 45 3.5 30 6 實施例2 45 3.5 130 6 實施例3 45 2 30 6 實施例4 45 10 30 6 實施例5 45 10 30 35 實施例6 45 10 30 35 實施例7 45 10 30 35 比較例1 30 3.5 30 6 比較例2 75 3.5 30 6 比較例3 45 3.5 15 6 比較例4 45 3.5 150 6 比較例5 45 0.8 30 6 比較例6 45 15 30 6 比較例7 45 3.5 30 6 比較例8 45 15 30 35 比較例9 45 3.5 140 35 Table 1 serial number Current density (A/dm 2 ) ZPS content ratio (mg/L) Chromium ion content (mg/L) Average thickness (μm) Example 1 45 3.5 30 6 Example 2 45 3.5 130 6 Example 3 45 2 30 6 Example 4 45 10 30 6 Example 5 45 10 30 35 Example 6 45 10 30 35 Example 7 45 10 30 35 Comparative example 1 30 3.5 30 6 Comparative example 2 75 3.5 30 6 Comparative example 3 45 3.5 15 6 Comparative example 4 45 3.5 150 6 Comparative Example 5 45 0.8 30 6 Comparative example 6 45 15 30 6 Comparative Example 7 45 3.5 30 6 Comparative Example 8 45 15 30 35 Comparative Example 9 45 3.5 140 35

分析analyze 22 :電解銅箔之電阻溫度係數: Temperature coefficient of resistance of electrolytic copper foil

將實施例1至7、比較例1至9之電解銅箔裁切適當尺寸後放置於常壓的環境下且持溫110°C進行退火處理6小時,以得到實施例1至7、比較例1至9的試樣。接著,將各試樣以金屬細線絲探針電阻量測系統量測各試樣分別於10°C和50°C下的電阻值,以式(II)計算得到實施例1至7、比較例1至9之電解銅箔的電阻溫度係數,並將實施例1至4、比較例1至7之電解銅箔的電阻溫度係數之分析結果列於表2中,另將實施例5至7、比較例8和9之電解銅箔的電阻溫度係數之分析結果列於表3中。相關測試條件記載如下: α (K -1) =[R 323K– R 283K(歐姆,Ω)] / [R 50°C(Ω) x (323 K – 283 K)] (II) 1.      金屬細線絲探針電阻量測系統:購自KeithLink科技股份有限公司的LSR4-TG2L; 2.      電解銅箔試樣尺寸:100 mm(長度)x 100 mm(寬度); 3.      測試溫度:先於10°C(283 K)下持溫1小時後進行測量,之後再升溫至50°C(323K)持溫1小時後進行測量。 The electrolytic copper foils of Examples 1 to 7 and Comparative Examples 1 to 9 were cut to appropriate sizes and then placed in an environment of normal pressure and kept at 110°C for annealing treatment for 6 hours to obtain Examples 1 to 7 and Comparative Examples 1 to 9 samples. Next, measure the resistance values of each sample at 10°C and 50°C respectively with a metal fine wire probe resistance measuring system, and calculate the values of Examples 1 to 7 and Comparative Example by formula (II) The temperature coefficients of resistance of the electrolytic copper foils of 1 to 9, and the analysis results of the temperature coefficients of resistance of the electrolytic copper foils of Examples 1 to 4 and Comparative Examples 1 to 7 are listed in Table 2. In addition, Examples 5 to 7, The analysis results of the temperature coefficient of resistance of the electrodeposited copper foils of Comparative Examples 8 and 9 are listed in Table 3. The relevant test conditions are described as follows: α (K -1 ) =[R 323K – R 283K (ohm, Ω)] / [R 50°C (Ω) x (323 K – 283 K)] (II) 1. Thin metal wire Wire probe resistance measurement system: LSR4-TG2L purchased from KeithLink Technology Co., Ltd.; 2. Electrolytic copper foil sample size: 100 mm (length) x 100 mm (width); 3. Test temperature: before 10° C (283 K) was held for 1 hour for measurement, and then heated to 50°C (323K) for 1 hour for measurement.

分析analyze 33 :電解銅箔之表面粗糙程度: Surface roughness of electrolytic copper foil

前述實施例1至7及比較例1至9之電解銅箔以表面粗糙度計分析該等電解銅箔的表面粗糙程度。依據JIS B 0601:2013規定的方法,分別量測該等電解銅箔的第一表面處理層之Rc,並分別將實施例1至4及比較例1至7之電解銅箔的實驗結果列於表2,實施例5至7及比較例8和9之電解銅箔的實驗結果列於表3。另將相關測試條件記載如下: 1.      電解銅箔試樣尺寸:100 mm(長度)x 100 mm(寬度); 2.      表面粗糙度計:購自Kosaka Laboratory股份有限公司製造的SE600; 3.      觸針尖端半徑:2 μm; 4.      觸針尖端的角度:90°; 5.      掃描速度:0.5 mm/sec; 6.      濾波器的截止值:0.8 mm(λc)、2.5μm(λs); 7.      評估長度:4 mm。 The surface roughness of the electrodeposited copper foils of Examples 1 to 7 and Comparative Examples 1 to 9 was analyzed with a surface roughness meter. According to the method stipulated in JIS B 0601:2013, the Rc of the first surface treatment layer of these electrolytic copper foils was measured respectively, and the experimental results of the electrolytic copper foils of Examples 1 to 4 and Comparative Examples 1 to 7 are listed in Table 2, the experimental results of the electrodeposited copper foils of Examples 5 to 7 and Comparative Examples 8 and 9 are listed in Table 3. In addition, the relevant test conditions are recorded as follows: 1. Electrolytic copper foil sample size: 100 mm (length) x 100 mm (width); 2. Surface roughness meter: purchased from SE600 manufactured by Kosaka Laboratory Co., Ltd.; 3. Radius of stylus tip: 2 μm; 4. The angle of the tip of the stylus: 90°; 5. Scanning speed: 0.5 mm/sec; 6. Filter cut-off value: 0.8 mm (λc), 2.5 μm (λs); 7. Evaluation length: 4 mm.

《用於鋰離子電池的電極、及包含其的鋰離子電池》"Electrodes for Lithium Ion Batteries, and Lithium Ion Batteries Containing Them"

前述實施例1至4、比較例1至7之電解銅箔之第一表面處理層進一步塗覆有負極漿料,待烘乾後再以碾壓機進行碾壓,以製成實施例1-A至4-A、比較例1-A至7-A的電極,前述電極可作為鋰離子電池的負極。其中,以100重量份的負極活性材料與60重量份的N-甲基吡咯烷酮(1-Methyl-2-pyrrolidone,NMP)形成負極漿料,所述負極活性材料的配方和製程條件如下: 1.      負極活性材料的配方: (1) 介相石墨碳微球(Mesophase Graphite Powder,MGP):93.9 wt%; (2) 導電添加物:導電碳黑(Super P ®):1 wt%; (3) 溶劑系黏結劑:聚偏二氟乙烯(PVDF 6020):5 wt%; (4) 草酸:0.1 wt%。 2.      製程條件: (1) 塗佈速率:5公尺∕分 (m/min); (2) 塗佈厚度:200 μm; (3) 烘乾溫度:160°C; (4) 碾壓機的碾壓輥之材質、尺寸和硬度:高碳鉻軸承鋼(SUJ2);250 mm × 250 mm;62至65HRC; (5)碾壓速率和壓力:1 m/min;3000磅/平方吋(psi)。 The first surface treatment layer of the electrolytic copper foil of the aforementioned Examples 1 to 4 and Comparative Examples 1 to 7 is further coated with negative electrode slurry, and after being dried, it is rolled by a rolling machine to produce Example 1- The electrodes of A to 4-A and Comparative Examples 1-A to 7-A, the aforementioned electrodes can be used as negative electrodes of lithium ion batteries. Wherein, 100 parts by weight of the negative electrode active material and 60 parts by weight of N-methylpyrrolidone (1-Methyl-2-pyrrolidone, NMP) are used to form the negative electrode slurry, and the formulation and process conditions of the negative electrode active material are as follows: 1. The formula of the negative electrode active material: (1) Mesophase Graphite Powder (MGP): 93.9 wt%; (2) Conductive additive: conductive carbon black (Super P ® ): 1 wt%; (3) Solvent-based binder: polyvinylidene fluoride (PVDF 6020): 5 wt%; (4) oxalic acid: 0.1 wt%. 2. Process conditions: (1) Coating rate: 5 meters per minute (m/min); (2) Coating thickness: 200 μm; (3) Drying temperature: 160°C; (4) Roller Material, size and hardness of rolling rollers: high carbon chromium bearing steel (SUJ2); 250 mm × 250 mm; 62 to 65HRC; (5) Rolling speed and pressure: 1 m/min; 3000 pounds per square inch ( psi).

前述製得的各負極進一步與正極搭配,進而製得包含實施例1-A至4-A、比較例1-A至7-A的電極之鋰離子電池。Each of the above-prepared negative electrodes was further matched with the positive electrode, and then a lithium-ion battery comprising the electrodes of Examples 1-A to 4-A and Comparative Examples 1-A to 7-A was prepared.

具體來說,所述鋰離子電池之正極可大致上經由如下所述之步驟製得。Specifically, the positive electrode of the lithium-ion battery can be generally prepared through the following steps.

將正極漿料塗覆在鋁箔上,待溶劑蒸發後再以碾壓機進行碾壓,即可得到正極。其中,以100重量份的正極活性材料與195重量份的NMP形成正極漿料,所述正極活性材料的配方如下: 1.      正極活性物質:鋰鈷氧化物(LiCoO 2):89 wt%; 2.      導電添加物: (1) 片狀石墨(flaked graphite,KS6):5 wt%; (2) 導電碳黑粉末(Super P ®):1 wt%; 3.      溶劑系黏結劑:聚偏二氟乙烯(PVDF 1300)):5 wt%。 The positive electrode slurry is coated on the aluminum foil, and then rolled with a rolling machine after the solvent evaporates to obtain the positive electrode. Wherein, 100 parts by weight of the positive electrode active material and 195 parts by weight of NMP are used to form the positive electrode slurry, and the formula of the positive electrode active material is as follows: 1. The positive electrode active material: lithium cobalt oxide (LiCoO 2 ): 89 wt%; 2 . Conductive additives: (1) Flaked graphite (KS6): 5 wt%; (2) Conductive carbon black powder (Super P ® ): 1 wt%; 3. Solvent-based binder: polyvinylidene fluoride Ethylene (PVDF 1300)): 5 wt%.

隨後,將所述正極和實施例1-A至4-A、比較例1-A至7-A的電極裁切至特定大小,再將所述正極和各負極之間夾著微孔性隔離膜(型號Celgard 2400,由Celgard公司製造)交替堆疊,放置於充滿電解液的壓合模具(型號LBC322-01H,購自深圳新宙邦科技股份有限公司)中,密封形成層壓型鋰離子電池,即為實施例1-B至4-B、比較例1-B至7-B之鋰離子電池。所述層壓型鋰離子電池的尺寸為41 mm×34 mm×53 mm。Subsequently, the positive electrode and the electrodes of Examples 1-A to 4-A and Comparative Examples 1-A to 7-A are cut to a specific size, and then the positive electrode and each negative electrode are sandwiched between the microporous isolation Membranes (model Celgard 2400, manufactured by Celgard) are stacked alternately, placed in a press-fit mold (model LBC322-01H, purchased from Shenzhen Xinzhoubang Technology Co., Ltd.) filled with electrolyte, and sealed to form a laminated lithium-ion battery , that is, the lithium ion batteries of Examples 1-B to 4-B and Comparative Examples 1-B to 7-B. The size of the laminated lithium-ion battery is 41 mm×34 mm×53 mm.

分析analyze 44 :鋰離子電池之循環壽命分析: Cycle Life Analysis of Li-ion Batteries

本分析係將選用前述實施例1-B至4-B和比較例1-B至7-B之鋰離子電池作為待測樣品,進行充放電循環測試。具體充放電循環測試的分析條件如下: 1.      充電模式:恆定電流-恆定電壓(constant current-constant voltage,CCCV) (1) 充電電壓:4.2伏特(V); (2) 充電電流:5C; 2.      放電模式:恆定電流(constant current,CC) (1) 放電電壓:2.8 V; (2) 放電電流:5C; (3) 測試溫度:55°C。 In this analysis, the lithium-ion batteries of Examples 1-B to 4-B and Comparative Examples 1-B to 7-B were selected as samples to be tested, and a charge-discharge cycle test was performed. The analysis conditions of the specific charge-discharge cycle test are as follows: 1. Charging mode: constant current-constant voltage (CCCV) (1) Charging voltage: 4.2 volts (V); (2) Charging current: 5C; 2. Discharge mode: constant current (CC) (1) Discharge voltage: 2.8 V; (2) Discharge current: 5C; (3) Test temperature: 55°C.

作為待測樣品的鋰離子電池經過重複的充放電循環後,當其電容量降至初始電容量的80%時,將其所執行的充放電循環次數定義為鋰離子電池的循環壽命。實施例1-B至4-B之鋰離子電池(分別包含實施例1至4之電解銅箔)和比較例1-B至7-B之鋰離子電池(分別包含比較例1至7之電解銅箔)的充放電循環測試結果亦列於表2中。After the lithium-ion battery as the sample to be tested undergoes repeated charge-discharge cycles, when its capacity drops to 80% of the initial capacity, the number of charge-discharge cycles performed is defined as the cycle life of the lithium-ion battery. The lithium-ion batteries of Examples 1-B to 4-B (respectively comprising the electrolytic copper foils of Examples 1-4) and the lithium-ion batteries of Comparative Examples 1-B to 7-B (respectively comprising the electrolytic copper foils of Comparative Examples 1-7 Copper foil) charge-discharge cycle test results are also listed in Table 2.

表2   電解銅箔 鋰離子電池 編號 α值 第一處理面的Rc 電極 編號 電池 編號 循環壽命 實施例1 0.0014 K -1 0.71 μm 實施例1-A 實施例1-B 1403次 實施例2 0.0039 K -1 0.39 μm 實施例2-A 實施例2-B 1312次 實施例3 0.0012 K -1 1.63 μm 實施例3-A 實施例3-B 957次 實施例4 0.0027 K -1 0.34 μm 實施例4-A 實施例4-B 1048次 比較例1 0.0052 K -1 0.43 μm 比較例1-A 比較例1-B 680次 比較例2 0.0064 K -1 1.93 μm 比較例2-A 比較例2-B 643次 比較例3 0.0008 K -1 1.01 μm 比較例3-A 比較例3-B 714次 比較例4 0.0052 K -1 0.20 μm 比較例4-A 比較例4-B 637次 比較例5 0.0007 K -1 2.02 μm 比較例5-A 比較例5-B 611次 比較例6 0.0064 K -1 0.29 μm 比較例6-A 比較例6-B 621次 比較例7 0.0041 K -1 0.24 μm 比較例7-A 比較例7-B 641次 Table 2 Electrolytic copper foil Lithium Ion Battery serial number alpha value Rc of the first treatment surface Electrode No. battery number cycle life Example 1 0.0014 K -1 0.71 μm Example 1-A Example 1-B 1403 times Example 2 0.0039 K -1 0.39 μm Example 2-A Example 2-B 1312 times Example 3 0.0012 K -1 1.63 μm Example 3-A Example 3-B 957 times Example 4 0.0027 K -1 0.34 μm Example 4-A Example 4-B 1048 times Comparative example 1 0.0052 K -1 0.43 μm Comparative Example 1-A Comparative Example 1-B 680 times Comparative example 2 0.0064 K -1 1.93 μm Comparative Example 2-A Comparative Example 2-B 643 times Comparative example 3 0.0008 K -1 1.01 μm Comparative Example 3-A Comparative Example 3-B 714 times Comparative example 4 0.0052 K -1 0.20 μm Comparative Example 4-A Comparative Example 4-B 637 times Comparative Example 5 0.0007 K -1 2.02 μm Comparative Example 5-A Comparative Example 5-B 611 times Comparative example 6 0.0064 K -1 0.29 μm Comparative Example 6-A Comparative Example 6-B 621 times Comparative Example 7 0.0041 K -1 0.24 μm Comparative Example 7-A Comparative Example 7-B 641 times

《覆銅積層板》"Copper Clad Laminated Board"

將前述實施例5至7、比較例8和9之電解銅箔以第一表面處理層面向一樹脂基材(購自生益科技股份有限公司製造的S7439G),製成具對稱帶狀線結構的樣品,以得到實施例5-A至7-A、比較例8-A和9-A之覆銅積層板。The electrodeposited copper foils of Examples 5 to 7 and Comparative Examples 8 and 9 faced a resin substrate (purchased from S7439G manufactured by Shengyi Technology Co., Ltd.) with the first surface treatment layer to form a symmetrical stripline structure. samples to obtain the copper-clad laminates of Examples 5-A to 7-A, Comparative Examples 8-A and 9-A.

分析analyze 55 :覆銅積層板的訊號傳遞損失之分析: Analysis of signal transmission loss of copper clad laminates

本分析係將選用前述實施例5-A至7-A和比較例8-A和9-A之覆銅積層板作為待測樣品,具體待測樣品的條件如下: 1.      介電材(即所述樹脂基板): (1) 厚度:152.4 μm; (2) 介電常數(Dk):由標準方法IPC-TM-650 No. 2.5.5.5量測所述介電材於頻率10 GHz時的Dk值,其結果為3.74; (3) 介電損耗(Df):由標準方法IPC-TM-650 No. 2.5.5.5量測所述介電材於頻率10 GHz時的Df值,其結果為0.006; 2.      導體(即所述電解銅箔): (1) 長度:100 mm; (2) 厚度:35 μm; 3.      特性阻抗:50 Ω; 4.      狀態:無覆蓋膜。 In this analysis, the copper-clad laminates of Examples 5-A to 7-A and Comparative Examples 8-A and 9-A will be selected as the samples to be tested. The specific conditions of the samples to be tested are as follows: 1. Dielectric material (that is, the resin substrate): (1) Thickness: 152.4 μm; (2) Dielectric constant (Dk): The Dk value of the dielectric material at a frequency of 10 GHz was measured by the standard method IPC-TM-650 No. 2.5.5.5, and the result was 3.74; (3) Dielectric loss (Df): The Df value of the dielectric material at a frequency of 10 GHz was measured by the standard method IPC-TM-650 No. 2.5.5.5, and the result was 0.006; 2. Conductor (that is, the electrolytic copper foil): (1) Length: 100mm; (2) Thickness: 35 μm; 3. Characteristic impedance: 50 Ω; 4. Status: No cover film.

該等覆銅積層板以網路分析儀分析訊號傳遞損失,並將分析結果列於表3中。具體測試條件如下: 1.      儀器型號:購自是德科技公司製造的PNA N5227B; 2.      掃描頻率範圍:8 GHz; 3.      掃描點數:2000點; 4.      校正方式:E-Cal (校驗套件:N4692D); 5.      測試方法:Cisco S3 方法。 The signal transmission loss of these copper clad laminates was analyzed with a network analyzer, and the analysis results are listed in Table 3. The specific test conditions are as follows: 1. Instrument model: PNA N5227B purchased from Keysight Technologies; 2. Scanning frequency range: 8 GHz; 3. Scanning points: 2000 points; 4. Calibration method: E-Cal (calibration kit: N4692D); 5. Test method: Cisco S3 method.

若所述覆銅積層板於頻率8 GHz下的訊號傳遞損失的絕對值小於0.75分貝/英吋(dB/in),記為「A級」,若所述覆銅積層板於頻率8 GHz下的訊號傳遞損失的絕對值大於或等於0.75 dB/in至小於或等於0.8 dB/in,則記為「B級」,若所述覆銅積層板於頻率8 GHz下的訊號傳遞損失的絕對值大於0.8 dB/in,則記為「C級」。 表3   電解銅箔 覆銅積層板 編號 α值 第一處理面的Rc 編號 訊號傳遞損失 實施例5 0.0028 K -1 0.38 μm 實施例5-A A級 實施例6 0.0027 K -1 9.72 μm 實施例6-A B級 實施例7 0.0028 K -1 1.07 μm 實施例7-A A級 比較例8 0.0065 K -1 0.37 μm 比較例8-A C級 比較例9 0.0041 K -1 0.27 μm 比較例9-A C級 If the absolute value of the signal transmission loss of the copper-clad laminate at a frequency of 8 GHz is less than 0.75 decibels per inch (dB/in), it is recorded as "Class A", and if the copper-clad laminate is at a frequency of 8 GHz If the absolute value of the signal transmission loss of the copper-clad laminate is greater than or equal to 0.75 dB/in to less than or equal to 0.8 dB/in, it will be recorded as "Class B". If the absolute value of the signal transmission loss of the copper-clad laminate at a frequency of 8 GHz If it is greater than 0.8 dB/in, it is recorded as "Class C". table 3 Electrolytic copper foil copper clad laminate serial number alpha value Rc of the first treatment surface serial number signal transmission loss Example 5 0.0028 K -1 0.38 μm Example 5-A Grade A Example 6 0.0027 K -1 9.72 μm Example 6-A Grade B Example 7 0.0028 K -1 1.07 μm Example 7-A Grade A Comparative Example 8 0.0065 K -1 0.37 μm Comparative Example 8-A Grade C Comparative Example 9 0.0041 K -1 0.27 μm Comparative Example 9-A Grade C

《實驗結果討論》"Experimental Results Discussion"

根據表2的結果,因實施例1至4的電解銅箔控制電解銅箔的電阻溫度係數在適當的範圍(即α值為0.0012 K -1至0.0039 K -1),因此,包含實施例1-A至4-A的電極之鋰離子電池1-B至4-B在充放電循環壽命的表現上都可達900次以上。由此可證,本創作的電解銅箔確實能具體提升熱穩定性,從而實現延長鋰離子電池的充放電循環壽命,提升其電池效能。反觀比較例1至7的電解銅箔,由於其未控制電阻溫度係數在適當的範圍,故包含其的比較例1-B至7-B之鋰離子電池的循環壽命皆未達800次,其循環壽命表現明顯劣於實施例1-B至4-B之鋰離子電池的循環壽命表現。 According to the results in Table 2, because the electrolytic copper foils of Examples 1 to 4 control the temperature coefficient of resistance of the electrolytic copper foils in an appropriate range (that is, the α value is 0.0012 K -1 to 0.0039 K -1 ), therefore, the inclusion of Example 1 The lithium-ion batteries 1-B to 4-B with the electrodes of -A to 4-A can reach more than 900 times in terms of charge and discharge cycle life. It can be proved that the electrolytic copper foil of the present invention can indeed improve the thermal stability, thereby prolonging the charge-discharge cycle life of the lithium-ion battery and improving its battery performance. In contrast to the electrolytic copper foils of Comparative Examples 1 to 7, because the temperature coefficient of resistance is not controlled in an appropriate range, the cycle life of the lithium-ion batteries of Comparative Examples 1-B to 7-B does not reach 800 times. The cycle life performance is significantly worse than that of the lithium ion batteries of Examples 1-B to 4-B.

根據表3的結果,因實施例5至7的電解銅箔控制電解銅箔的電阻溫度係數在適當的範圍(即α值為0.0012 K -1至0.0039 K -1),因此,包含其的覆銅積層板5-A至7-A在訊號傳遞損失的分析結果中都能表現良好。由此可證,本創作的電解銅箔確實能具體提升熱穩定性,從而降低包含其的覆銅積層板的訊號傳遞損失,提升覆銅積層板的效能。反觀比較例8和9的電解銅箔,由於其未控制電阻溫度係數在適當的範圍,故包含其的比較例1-B至7-B之覆銅積層板在訊號傳遞損失的分析結果明顯不佳。 According to the results in Table 3, because the electrolytic copper foils of Examples 5 to 7 control the temperature coefficient of resistance of the electrolytic copper foils in an appropriate range (that is, the α value is 0.0012 K -1 to 0.0039 K -1 ), therefore, the covering Copper laminates 5-A to 7-A performed well in the signal transmission loss analysis results. It can be proved that the electrolytic copper foil of the invention can indeed improve the thermal stability, thereby reducing the signal transmission loss of the copper-clad laminate including it, and improving the performance of the copper-clad laminate. In contrast to the electrolytic copper foils of Comparative Examples 8 and 9, since the temperature coefficient of resistance was not controlled within an appropriate range, the analysis results of the signal transmission loss of the copper-clad laminates including Comparative Examples 1-B to 7-B were significantly different. good.

綜合上述表2和表3的結果,本創作藉由調控電解銅箔的電阻溫度係數之範圍,能有效抑制所述電解銅箔因產品應用造成的溫度升高而導致電解銅箔的內電阻增加的現象,從而實現提高電解銅箔的熱穩定性;另外,本創作亦能於後續應用於鋰離子電池時提供延長循環壽命的效果,以及後續應用於印刷電路板時提供降低訊號傳遞損失等效果,進而提升應用產品的品質。Based on the results of the above Table 2 and Table 3, this creation can effectively suppress the increase in the internal resistance of the electrolytic copper foil caused by the temperature rise of the electrolytic copper foil due to product application by regulating the range of the temperature coefficient of resistance of the electrolytic copper foil phenomenon, thereby improving the thermal stability of electrolytic copper foil; in addition, this creation can also provide the effect of extending cycle life when it is subsequently applied to lithium-ion batteries, and provide effects such as reducing signal transmission loss when it is subsequently applied to printed circuit boards , thereby improving the quality of application products.

10:電沉積裝置 11:陰極輥筒 12:陽極板 13:銅電解液 14:入料管 20:導輥 211:第一導輥 212:第二導輥 213:第三導輥 214:第四導輥 215:第五導輥 216:第六導輥 217:第七導輥 22:氣刀 23:收卷輪 30:表面處理裝置 31:防銹處理槽 311a:第一極板 311b:第一極板 32:酸洗槽 33:粗化處理槽 331:第二極板 34:覆銅處理槽 341:第三極板 35:鍍鎳槽 351:第四極板 36: 鍍鋅槽 361a:第五極板 361b:第五極板 37:鍍鉻槽 371a:第六極板 371b:第六極板 38:矽烷耦合劑噴灑裝置 39:烘箱 40:電解銅箔 41:原箔 411:沉積面 412:輥筒面 42:表面處理層 42a:第一表面處理層 42a’:第一處理面 42b:第二表面處理層 42b’:第二處理面 421:粗化層 422:覆銅層 423:鎳層 424a:第一鋅層 424b:第二鋅層 425a:第一鉻層 425b:第二鉻層 426:矽烷耦合處理層 10: Electrodeposition device 11: Cathode roller 12: Anode plate 13: copper electrolyte 14: Feed pipe 20: guide roller 211: The first guide roller 212: Second guide roller 213: The third guide roller 214: The fourth guide roller 215: The fifth guide roller 216: The sixth guide roller 217: The seventh guide roller 22: Air Knife 23: Winding wheel 30: Surface treatment device 31: Anti-rust treatment tank 311a: the first plate 311b: the first plate 32: pickling tank 33: Coarsening treatment tank 331: second plate 34: Copper clad treatment tank 341: The third plate 35: Nickel plating tank 351: The fourth plate 36: Galvanizing tank 361a: fifth plate 361b: fifth plate 37: chrome tank 371a: the sixth plate 371b: the sixth plate 38: Silane coupling agent spraying device 39: Oven 40: Electrolytic copper foil 41: Raw foil 411: deposition surface 412: roller surface 42: Surface treatment layer 42a: first surface treatment layer 42a': the first processing surface 42b: Second surface treatment layer 42b': the second processing surface 421:Coarsening layer 422: copper clad layer 423: nickel layer 424a: the first zinc layer 424b: second zinc layer 425a: first chrome layer 425b: second chromium layer 426: Silane coupling treatment layer

圖1為實施例1之電解銅箔的生產流程示意圖。 圖2為實施例1之電解銅箔的剖面圖。 圖3為實施例5之電解銅箔的生產流程示意圖。 圖4A為實施例5之電解銅箔的剖面圖。 圖4B為實施例7之電解銅箔的剖面圖。 FIG. 1 is a schematic diagram of the production process of the electrolytic copper foil of Example 1. FIG. 2 is a cross-sectional view of the electrodeposited copper foil of Example 1. FIG. 3 is a schematic diagram of the production process of the electrolytic copper foil of Example 5. FIG. 4A is a cross-sectional view of the electrodeposited copper foil of Example 5. FIG. FIG. 4B is a cross-sectional view of the electrodeposited copper foil of Example 7. FIG.

none

40:電解銅箔 41:原箔 411:沉積面 412:輥筒面 42:表面處理層 42a:第一表面處理層 42a’:第一處理面 42b:第二表面處理層 42b’:第二處理面 40: Electrolytic copper foil 41: Raw foil 411: deposition surface 412: roller surface 42: Surface treatment layer 42a: first surface treatment layer 42a': the first processing surface 42b: Second surface treatment layer 42b': the second processing surface

Claims (13)

一種電解銅箔,其中,該電解銅箔的電阻溫度係數(α值)為0.0012K-1至0.0039K-1;其中,該電解銅箔包含一原箔及設置於該原箔上的第一表面處理層;該原箔具有相反的沉積面及輥筒面,該第一表面處理層設置於該原箔的該沉積面或該輥筒面上。 An electrolytic copper foil, wherein the temperature coefficient of resistance (α value) of the electrolytic copper foil is 0.0012K -1 to 0.0039K -1 ; wherein the electrolytic copper foil includes an original foil and a first Surface treatment layer; the original foil has opposite deposition surface and roller surface, and the first surface treatment layer is arranged on the deposition surface or the roller surface of the original foil. 如請求項1所述之電解銅箔,其中,該電解銅箔的電阻溫度係數係由歷經6小時的退火處理之電解銅箔所測得,該退火處理係於持溫110℃的環境下進行。 The electrodeposited copper foil as described in Claim 1, wherein the temperature coefficient of resistance of the electrodeposited copper foil is measured from the electrodeposited copper foil that has been annealed for 6 hours, and the annealing process is carried out in an environment at a temperature of 110°C . 如請求項1或2所述之電解銅箔,其中,該第一表面處理層具有相反於該原箔的第一處理面;該第一處理面的粗糙度曲線要素的平均高度(Rc)為0.34微米至9.72微米。 The electrodeposited copper foil according to claim 1 or 2, wherein the first surface treatment layer has a first treatment surface opposite to the original foil; the average height (Rc) of the roughness curve elements of the first treatment surface is: 0.34 microns to 9.72 microns. 如請求項3所述之電解銅箔,其中,該第一表面處理層包括防銹層,該第一處理面的Rc為0.34微米至1.63微米。 The electrolytic copper foil according to claim 3, wherein the first surface treatment layer includes an anti-rust layer, and the Rc of the first treatment surface is 0.34 microns to 1.63 microns. 如請求項3所述之電解銅箔,其中,該第一表面處理層包括粗化層,該第一處理面的Rc為0.38微米至9.72微米。 The electrolytic copper foil according to claim 3, wherein the first surface treatment layer includes a roughened layer, and the Rc of the first treatment surface is 0.38 microns to 9.72 microns. 如請求項5所述之電解銅箔,其中,該第一表面處理層更包括選自由覆銅層、鎳層、鋅層、鉻層和矽烷耦合處理層所構成之群組中的至少一子層形成於該粗化層上。 The electrolytic copper foil as described in claim 5, wherein the first surface treatment layer further includes at least one sublayer selected from the group consisting of a copper clad layer, a nickel layer, a zinc layer, a chromium layer, and a silane coupling treatment layer. A layer is formed on the roughened layer. 如請求項1所述之電解銅箔,其中,該電解銅箔更包含設置於該原箔上的第二表面處理層;該原箔位於該第一表面處理層和該第二表面處理層之間,該第二表面處理層具有相反於該原箔的第二處理面。 The electrolytic copper foil as described in claim 1, wherein the electrolytic copper foil further includes a second surface treatment layer disposed on the original foil; the original foil is located between the first surface treatment layer and the second surface treatment layer Between, the second surface treatment layer has a second treatment surface opposite to the original foil. 如請求項7所述之電解銅箔,其中,該第二表面處理層包括防銹層,該第二處理面的Rc為0.34微米至1.63微米。 The electrolytic copper foil according to claim 7, wherein the second surface treatment layer includes an anti-rust layer, and the Rc of the second treatment surface is 0.34 microns to 1.63 microns. 如請求項7所述之電解銅箔,其中,該第二表面處理層包括粗化層,該第二處理面的Rc為0.38微米至9.72微米。 The electrolytic copper foil according to claim 7, wherein the second surface treatment layer includes a roughened layer, and the Rc of the second treatment surface is 0.38 microns to 9.72 microns. 如請求項9所述之電解銅箔,其中,該第二表面處理層更包括選自由覆銅層、鎳層、鋅層、鉻層和矽烷耦合處理層所構成之群組中的至少一子層形成於該粗化層上。 The electrolytic copper foil as claimed in claim 9, wherein the second surface treatment layer further includes at least one sub-layer selected from the group consisting of a copper clad layer, a nickel layer, a zinc layer, a chromium layer, and a silane coupling treatment layer. A layer is formed on the roughened layer. 如請求項7所述之電解銅箔,其中,該第二表面處理層包括選自由覆銅層、鎳層、鋅層、鉻層和矽烷耦合處理層所構成之群組中的至少一子層。 The electrolytic copper foil according to claim 7, wherein the second surface treatment layer includes at least one sublayer selected from the group consisting of a copper clad layer, a nickel layer, a zinc layer, a chromium layer, and a silane coupling treatment layer . 一種用於鋰離子電池的電極,其包含如請求項1至11中任一項所述的電解銅箔、至少一種黏著劑及至少一種活性物質。 An electrode for a lithium ion battery, comprising the electrolytic copper foil according to any one of claims 1 to 11, at least one adhesive and at least one active material. 一種覆銅積層板,其包含如請求項1至11中任一項所述的電解銅箔及樹脂基板。 A copper-clad laminate, comprising the electrolytic copper foil and a resin substrate as described in any one of Claims 1 to 11.
TW110127489A 2021-07-27 2021-07-27 Electrolytic copper foil, and electrode and copper-clad laminate comprising the same TWI792449B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110127489A TWI792449B (en) 2021-07-27 2021-07-27 Electrolytic copper foil, and electrode and copper-clad laminate comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110127489A TWI792449B (en) 2021-07-27 2021-07-27 Electrolytic copper foil, and electrode and copper-clad laminate comprising the same

Publications (2)

Publication Number Publication Date
TW202305187A TW202305187A (en) 2023-02-01
TWI792449B true TWI792449B (en) 2023-02-11

Family

ID=86661327

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110127489A TWI792449B (en) 2021-07-27 2021-07-27 Electrolytic copper foil, and electrode and copper-clad laminate comprising the same

Country Status (1)

Country Link
TW (1) TWI792449B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169118A (en) * 2002-11-20 2004-06-17 Mitsui Mining & Smelting Co Ltd Copper foil with resistance layer, its production method, copper-clad laminate or printed wiring board with resistance circuit prepared by using the copper foil with resistance layer, and method for producing printed wiring board with resistance circuit by using the copper foil with resistance layer
TW201807260A (en) * 2016-06-14 2018-03-01 古河電氣工業股份有限公司 Electrolytic copper foil, lithium ion secondary cell negative electrode, lithium ion secondary cell, and printed wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169118A (en) * 2002-11-20 2004-06-17 Mitsui Mining & Smelting Co Ltd Copper foil with resistance layer, its production method, copper-clad laminate or printed wiring board with resistance circuit prepared by using the copper foil with resistance layer, and method for producing printed wiring board with resistance circuit by using the copper foil with resistance layer
TW201807260A (en) * 2016-06-14 2018-03-01 古河電氣工業股份有限公司 Electrolytic copper foil, lithium ion secondary cell negative electrode, lithium ion secondary cell, and printed wiring board

Also Published As

Publication number Publication date
TW202305187A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
CN111801444B (en) Electrolytic copper foil, electrode and lithium ion secondary battery comprising same
KR101555090B1 (en) Negative electrode for secondary battery, negative electrode collector, method for producing negative electrode for secondary battery, method for producing negative electrode collector, and secondary battery
US20130011734A1 (en) Copper foil for negative electrode current collector of secondary battery
US11355757B2 (en) Electrolytic copper foil, electrode comprising the same, secondary battery comprising the same, and method for manufacturing the same
WO2012137613A1 (en) Porous metal foil and production method therefor
WO2012137614A1 (en) Composite metal foil and production method therefor
TWI791776B (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, copper clad laminate, and printed circuit board using the electrolytic copper foil
JP7008128B2 (en) Electrolyzed copper foil, its manufacturing method and cathode for high-capacity Li secondary batteries including it
TWI656682B (en) Electrolytic copper foil, electrode comprising the same, and lithium ion battery comprising the same
TWI792449B (en) Electrolytic copper foil, and electrode and copper-clad laminate comprising the same
TWI684651B (en) Electrolytic copper foil, method for manufacturing the same, and anode for lithium secondary battery of high capacity
US11346015B2 (en) Electrolytic copper foil having high-temperature dimensional stability and texture stability, and manufacturing method therefor
TWI705160B (en) Electrolytic copper foil and electrode and copper-clad laminate comprising the same
KR20180038690A (en) Elctrodeposited copper foil, current collectors for secondary batteries and secondary batteries
US11365486B2 (en) Electrolytic copper foil, electrode comprising the same, and lithium ion battery comprising the same
EP3640371B1 (en) Electrolytic copper foil, electrode comprising the same, and lithium ion battery comprising the same
KR20180086949A (en) Copper foil having nodule, method for manufacturing the same, electrode for secondary battery and flexible copper clad laminate comprising the same
CN115799525A (en) Composite copper current collector, preparation method thereof, electrode and secondary battery