TWI792055B - Establishing method of echocardiography judging model with 3d deep learning, echocardiography judging system with 3d deep learning and method thereof - Google Patents

Establishing method of echocardiography judging model with 3d deep learning, echocardiography judging system with 3d deep learning and method thereof Download PDF

Info

Publication number
TWI792055B
TWI792055B TW109133402A TW109133402A TWI792055B TW I792055 B TWI792055 B TW I792055B TW 109133402 A TW109133402 A TW 109133402A TW 109133402 A TW109133402 A TW 109133402A TW I792055 B TWI792055 B TW I792055B
Authority
TW
Taiwan
Prior art keywords
ultrasound
cardiac
model
cardiac ultrasound
judgment
Prior art date
Application number
TW109133402A
Other languages
Chinese (zh)
Other versions
TW202213384A (en
Inventor
何岳璟
張瑋婷
施志遠
Original Assignee
國立勤益科技大學
奇美醫療財團法人奇美醫院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立勤益科技大學, 奇美醫療財團法人奇美醫院 filed Critical 國立勤益科技大學
Priority to TW109133402A priority Critical patent/TWI792055B/en
Publication of TW202213384A publication Critical patent/TW202213384A/en
Application granted granted Critical
Publication of TWI792055B publication Critical patent/TWI792055B/en

Links

Images

Abstract

The present disclosure relates to an echocardiography judging system with 3D deep learning including an ultrasonic detector and a processor. The processor stores a program including a reference data obtaining module, a reference image pre-processing module, a reference feature selecting module, a model training module and an analyzing module. Therefore, the echocardiography judging system with 3D deep learning can be used to analyze a target echocardiography image through an echocardiography judging model to generate a target echocardiography judgment result corresponding to an infarct related artery.

Description

利用三維深度學習之心臟超音波判斷模型之建立方法、利用三維深度學習之心臟超音波判斷系統及其方法A method for establishing a cardiac ultrasound judgment model using three-dimensional deep learning, a cardiac ultrasound judgment system and its method using three-dimensional deep learning

本發明是關於一種醫療資訊判斷模型之建立方法、系統以及方法,特別是關於一種利用三維深度學習之心臟超音波判斷模型之建立方法、利用三維深度學習之心臟超音波判斷系統及其方法。The present invention relates to a method, system and method for establishing a medical information judgment model, in particular to a method for establishing a cardiac ultrasound judgment model using three-dimensional deep learning, a cardiac ultrasound judgment system and its method using three-dimensional deep learning.

在心血管疾病中,急性冠心症(Acute Coronary Syndrome,ACS)最為致命且危急。近幾年隨著心導管的普及,患者的生存率大幅提升。若能盡早了解梗塞相關血管(Infarct Related Artery,IRA)對於心導管的術前準備和評估打通血管的策略極有幫助。Among cardiovascular diseases, acute coronary syndrome (ACS) is the most deadly and critical. In recent years, with the popularity of cardiac catheterization, the survival rate of patients has increased significantly. Early understanding of infarct-related arteries (Infarct Related Artery, IRA) is extremely helpful for preoperative preparation of cardiac catheterization and evaluation of strategies to open blood vessels.

然而,目前僅以ST上升型心肌梗塞(STEMI)的患者在急性期中可透過心電圖判斷梗塞相關血管,而非ST上升型心肌梗塞(NSTEMI)與不穩定型心絞痛(Unstable angina,UA)的患者則往往需要做了心導管才能評估再灌流計畫。However, at present, only patients with ST-elevating myocardial infarction (STEMI) can judge infarction-related vessels through ECG in the acute phase, while patients with non-ST-elevating myocardial infarction (NSTEMI) and unstable angina (UA) can Cardiac catheterization is often required to assess reperfusion planning.

心臟超音波被廣泛應用在臨床上,但是心臟超音波往往無法判斷區域性室壁運動異常(RWMA),即便有豐富經驗的操作者也不一定能依據患者的心臟超音波而正確判斷是否具有梗塞相關血管。目前雖有亮點追蹤超音波(Speckle Tracking Echocardiography,STE)能在早期偵測肉眼不易辨識的梗塞相關血管,卻因價格較高且較費時而不普遍。Cardiac ultrasound is widely used clinically, but cardiac ultrasound is often unable to judge regional wall motion abnormality (RWMA), even experienced operators may not be able to correctly judge whether there is an infarction based on the patient's cardiac ultrasound associated blood vessels. Although there is a bright spot at present, Speckle Tracking Echocardiography (STE) can detect infarction-related blood vessels that are difficult to identify with the naked eye at an early stage, but it is not popular because of its high price and time-consuming.

由此可知,若能快速地在第一時間利用心臟超音波判斷出梗塞相關血管,實為民眾所殷切企盼,亦係相關業者須努力研發突破之目標及方向。It can be seen from this that if the blood vessels related to infarction can be judged quickly by using cardiac ultrasound in the first time, it is indeed the eager expectation of the public, and it is also the goal and direction that the relevant industry must work hard to develop breakthroughs.

因此,針對非ST上升型心肌梗塞與不穩定型心絞痛,本發明之目的在於提供一種利用三維深度學習之心臟超音波判斷系統,其可將心臟超音波判斷結果比對心導管確診結果,以修正心臟超音波判斷模型,達到提高心臟超音波判斷模型對於判斷梗塞相關血管的準確率。Therefore, for non-ST ascending myocardial infarction and unstable angina, the purpose of the present invention is to provide a cardiac ultrasound judgment system using three-dimensional deep learning, which can compare the cardiac ultrasound judgment results with the cardiac catheter diagnosis results to correct Cardiac ultrasound judgment model to improve the accuracy of cardiac ultrasound judgment model for judging blood vessels related to infarction.

依據本發明的一態樣之一實施方式提供一種利用三維深度學習之心臟超音波判斷模型之建立方法,其包含以下步驟:資料取得步驟、影像前處理步驟、參照特徵選取步驟以及模型訓練步驟。資料取得步驟係取得參照資料,其中參照資料包含複數個參照心臟超音波資料及對應此些參照心臟超音波資料之複數個心導管確診結果。影像前處理步驟係切割各個參照心臟超音波資料,以取得複數個參照心臟超音波影像。參照特徵選取步驟係利用參照特徵選取模組分析各個參照心臟超音波影像後,於各個參照心臟超音波影像中得到參照影像特徵值,以取得對應此些參照心臟超音波影像之複數個參照影像特徵值。模型訓練步驟係依據此些參照影像特徵值訓練而產生心臟超音波判斷模型,並輸入此些參照心臟超音波資料至心臟超音波判斷模型而產生對應此些參照心臟超音波資料之複數心臟超音波判斷結果,然後將此些心臟超音波判斷結果分別比對此些心導管確診結果以修正心臟超音波判斷模型。An embodiment according to an aspect of the present invention provides a method for establishing a cardiac ultrasound judgment model using 3D deep learning, which includes the following steps: data acquisition step, image preprocessing step, reference feature selection step, and model training step. The data obtaining step is obtaining reference data, wherein the reference data includes a plurality of reference echocardiographic data and a plurality of diagnostic results of cardiac catheterization corresponding to the reference echocardiographic data. The image preprocessing step is to cut each reference echocardiogram data to obtain a plurality of reference echocardiogram images. The reference feature selection step is to use the reference feature selection module to analyze each reference cardiac ultrasound image, and obtain reference image feature values in each reference cardiac ultrasound image, so as to obtain a plurality of reference image features corresponding to these reference cardiac ultrasound images value. The model training step is to generate a cardiac ultrasound judgment model based on the reference image feature value training, and input the reference cardiac ultrasound data into the cardiac ultrasound judgment model to generate a plurality of cardiac ultrasound corresponding to the reference cardiac ultrasound data Judgment results, and then compare these heart ultrasound judgment results with the cardiac catheter diagnosis results to modify the heart ultrasound judgment model.

藉此,本發明係透過心臟超音波資料訓練出心臟超音波判斷模型,並依據心導管確診結果修正心臟超音波判斷模型,進而得到最佳化的心臟超音波判斷模型。In this way, the present invention trains the cardiac ultrasound judgment model through the cardiac ultrasound data, and corrects the cardiac ultrasound judgment model according to the diagnosis result of the cardiac catheterization, and then obtains the optimized cardiac ultrasound judgment model.

前述實施方式之其他實施例如下:前述心臟超音波判斷模型包含依序連接的密集卷積神經網路(DenseNet)模型、全連接神經網路(Fully-connected neural network,FCNN)模型及歸一化指數函數(Softmax)模型。Other examples of the aforementioned embodiments are as follows: the aforementioned cardiac ultrasound judgment model includes a sequentially connected dense convolutional neural network (DenseNet) model, a fully-connected neural network (Fully-connected neural network, FCNN) model and a normalized Exponential function (Softmax) model.

前述實施方式之其他實施例如下:前述密集卷積神經網路模型包含複數個密集卷積神經網路模塊(DenseNet Block,DNB)、複數個最大池化模組(Max pooling)及平坦模組(Flatten)。Other examples of the foregoing embodiments are as follows: the aforementioned dense convolutional neural network model includes a plurality of dense convolutional neural network modules (DenseNet Block, DNB), a plurality of maximum pooling modules (Max pooling) and flat modules ( Flatten).

前述實施方式之其他實施例如下:前述各個密集卷積神經網路模塊包含複數個密集卷積神經網路單元,此些密集卷積神經網路單元彼此依序級聯,且各個密集卷積神經網路單元包含三維卷積層(Conv)、線性整流單元訓練層(ReLU)及批標準化層(Batch Normalization,BN)。Other examples of the foregoing embodiments are as follows: each of the aforementioned dense convolutional neural network modules includes a plurality of dense convolutional neural network units, and these dense convolutional neural network units are cascaded to each other in sequence, and each dense convolutional neural network The network unit includes a three-dimensional convolutional layer (Conv), a linear rectification unit training layer (ReLU) and a batch normalization layer (Batch Normalization, BN).

依據本發明的另一態樣之一實施方式提供一種利用三維深度學習之心臟超音波判斷系統,其包含超音波檢測器與處理器。超音波檢測器用以產生受試者之目標心臟超音波影像。處理器電性連接超音波檢測器,處理器儲存一程式,當程式由處理器執行時,程式依據目標心臟超音波影像判斷受試者是否具有梗塞相關血管(Infarct Related Artery,IRA)。所述程式包含參照資料取得模組、參照影像前處理模組、參照特徵選取模組、模型訓練模組及分析模組。參照資料取得模組係用以取得參照資料,參照資料包含複數個參照心臟超音波資料及對應此些參照心臟超音波資料之複數個心導管確診結果。參照影像前處理模組係用以切割各個參照心臟超音波資料,以取得複數個參照心臟超音波影像。參照特徵選取模組係用以分析各個參照心臟超音波影像後,於各個參照心臟超音波影像中得到參照影像特徵值,以取得對應此些參照心臟超音波影像之複數個參照影像特徵值。模型訓練模組係依據此些參照影像特徵值訓練而產生心臟超音波判斷模型,並輸入此些參照心臟超音波資料至心臟超音波判斷模型而產生對應此些參照心臟超音波資料之複數個心臟超音波判斷結果,然後將此些心臟超音波判斷結果分別比對此些心導管確診結果以修正心臟超音波判斷模型。分析模組係依據心臟超音波判斷模型分析目標心臟超音波影像而產生對應梗塞相關血管之目標心臟超音波判斷結果。An embodiment according to another aspect of the present invention provides a cardiac ultrasound diagnosis system using three-dimensional deep learning, which includes an ultrasound detector and a processor. The ultrasonic detector is used to generate the target cardiac ultrasonic image of the subject. The processor is electrically connected to the ultrasound detector, and the processor stores a program. When the program is executed by the processor, the program judges whether the subject has an Infarct Related Artery (IRA) according to the target cardiac ultrasound image. The program includes a reference data acquisition module, a reference image preprocessing module, a reference feature selection module, a model training module and an analysis module. The reference data obtaining module is used to obtain reference data, and the reference data includes a plurality of reference echocardiographic data and a plurality of diagnostic results of cardiac catheterization corresponding to the reference echocardiographic data. The reference image preprocessing module is used for cutting each reference echocardiogram data to obtain a plurality of reference echocardiogram images. The reference feature selection module is used to obtain reference image feature values in each reference echocardiogram image after analyzing each reference echocardiogram image, so as to obtain a plurality of reference image feature values corresponding to the reference echocardiogram images. The model training module is based on the training of these reference image feature values to generate a cardiac ultrasound judgment model, and input these reference cardiac ultrasound data into the cardiac ultrasound judgment model to generate a plurality of hearts corresponding to these reference cardiac ultrasound data Ultrasonic judgment results, and then compare the cardiac ultrasound judgment results with the cardiac catheter diagnosis results to modify the cardiac ultrasound judgment model. The analysis module analyzes the target cardiac ultrasound image according to the cardiac ultrasound judgment model to generate the target cardiac ultrasound judgment result corresponding to the infarction-related blood vessels.

藉此,本發明係透過心臟超音波資料訓練出心臟超音波判斷模型,進而可分析受試者之目標心臟超音波影像,達到準確地判斷受試者是否具有梗塞相關血管。In this way, the present invention trains a cardiac ultrasound judgment model through cardiac ultrasound data, and then analyzes target cardiac ultrasound images of the subject to accurately determine whether the subject has infarct-related blood vessels.

前述實施方式之其他實施例如下:前述心臟超音波判斷模型包含依序連接的密集卷積神經網路模型、全連接神經網路模型及歸一化指數函數模型。Other examples of the aforementioned embodiments are as follows: the aforementioned cardiac ultrasound judgment model includes a sequentially connected dense convolutional neural network model, a fully connected neural network model, and a normalized exponential function model.

前述實施方式之其他實施例如下:前述密集卷積神經網路模型包含複數個密集卷積神經網路模塊、複數個最大池化模組及平坦模組。Other examples of the foregoing embodiments are as follows: the foregoing dense convolutional neural network model includes a plurality of dense convolutional neural network modules, a plurality of maximum pooling modules and a flattening module.

依據本發明的又一態樣之一實施方式提供一種利用三維深度學習之心臟超音波判斷方法,其包含下述步驟。提供前段所述心臟超音波判斷模型。提供受試者之目標心臟超音波影像。依據心臟超音波判斷模型分析目標心臟超音波影像而產生目標心臟超音波判斷結果。利用目標心臟超音波判斷結果判斷受試者是否具有梗塞相關血管。An embodiment according to yet another aspect of the present invention provides a method for judging cardiac ultrasound using 3D deep learning, which includes the following steps. Provide the cardiac ultrasound judgment model mentioned in the preceding paragraph. Provide the subject's target cardiac ultrasound image. The target cardiac ultrasound image is analyzed according to the cardiac ultrasound judgment model to generate a target cardiac ultrasound judgment result. Whether the subject has an infarct-related blood vessel is judged by using the judgment result of the target cardiac ultrasound.

藉此,本發明係透過心臟超音波判斷模型分析受試者之目標心臟超音波影像,進而可準確地判斷受試者是否具有梗塞相關血管。Therefore, the present invention analyzes the subject's target cardiac ultrasound image through the cardiac ultrasound judgment model, and then can accurately determine whether the subject has infarct-related blood vessels.

前述實施方式之其他實施例如下:前述心臟超音波判斷模型包含依序連接的密集卷積神經網路模型、全連接神經網路模型及歸一化指數函數模型。Other examples of the aforementioned embodiments are as follows: the aforementioned cardiac ultrasound judgment model includes a sequentially connected dense convolutional neural network model, a fully connected neural network model, and a normalized exponential function model.

前述實施方式之其他實施例如下:前述密集卷積神經網路模型包含複數個密集卷積神經網路模塊、複數個最大池化模組及平坦模組。Other examples of the foregoing embodiments are as follows: the foregoing dense convolutional neural network model includes a plurality of dense convolutional neural network modules, a plurality of maximum pooling modules and a flattening module.

以下將參照圖式說明本發明之複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之;並且重複之元件將可能使用相同的編號表示之。Several embodiments of the present invention will be described below with reference to the drawings. For the sake of clarity, many practical details are included in the following narrative. It should be understood, however, that these practical details should not be used to limit the invention. That is, in some embodiments of the present invention, these practical details are unnecessary. In addition, for the sake of simplifying the drawings, some commonly used structures and elements will be shown in a simple and schematic way in the drawings; and repeated elements may be denoted by the same reference numerals.

第1圖係繪示本發明一實施方式之利用三維深度學習之心臟超音波判斷模型之建立方法100的步驟流程圖。如第1圖所示,利用三維深度學習之心臟超音波判斷模型之建立方法100包含步驟110、步驟120、步驟130及步驟140。建立後的心臟超音波判斷模型可用以分析目標心臟超音波影像,以利後續判斷是否具有梗塞相關血管(Infarct Related Artery,IRA)並產生目標心臟超音波判斷結果。FIG. 1 is a flow chart showing the steps of a method 100 for establishing a cardiac ultrasound judgment model using 3D deep learning according to an embodiment of the present invention. As shown in FIG. 1 , the method 100 for establishing a cardiac ultrasound judgment model using 3D deep learning includes step 110 , step 120 , step 130 and step 140 . The established cardiac ultrasound judgment model can be used to analyze the target cardiac ultrasound image, so as to facilitate the subsequent judgment of whether there is an infarct related artery (Infarct Related Artery, IRA) and generate the target cardiac ultrasound judgment result.

步驟110是進行資料取得步驟,資料取得步驟係取得參照資料,參照資料包含複數個參照心臟超音波資料及對應此些參照心臟超音波資料之複數個心導管確診結果。Step 110 is to perform a data acquisition step. The data acquisition step is to obtain reference data. The reference data includes a plurality of reference echocardiographic data and a plurality of diagnostic results of cardiac catheterization corresponding to the reference echocardiographic data.

步驟120是進行影像前處理步驟,影像前處理步驟係切割各個參照心臟超音波資料,以取得複數個參照心臟超音波影像。Step 120 is an image pre-processing step. The image pre-processing step is to cut each reference echocardiogram data to obtain a plurality of reference echocardiogram images.

步驟130是進行參照特徵選取步驟,參照特徵選取步驟係利用參照特徵選取模組分析各個參照心臟超音波影像後,於各個參照心臟超音波影像中得到參照影像特徵值,以取得對應此些參照心臟超音波影像之複數個參照影像特徵值。Step 130 is to perform a reference feature selection step. The reference feature selection step is to use the reference feature selection module to analyze each reference cardiac ultrasound image, and obtain reference image feature values from each reference cardiac ultrasound image, so as to obtain the corresponding reference cardiac ultrasound images. A plurality of reference image feature values of the ultrasound image.

步驟140是進行模型訓練步驟,模型訓練步驟係依據此些參照影像特徵值訓練而產生心臟超音波判斷模型,並輸入此些參照心臟超音波資料至心臟超音波判斷模型而產生對應此些參照心臟超音波資料之複數心臟超音波判斷結果,然後將此些心臟超音波判斷結果分別比對此些心導管確診結果以修正心臟超音波判斷模型。Step 140 is a model training step. The model training step is to generate a cardiac ultrasound judgment model based on the reference image feature value training, and input the reference cardiac ultrasound data to the cardiac ultrasound judgment model to generate a corresponding reference heart. The multiple cardiac ultrasound judgment results of the ultrasound data, and then compare these cardiac ultrasound judgment results with the cardiac catheter diagnosis results to modify the cardiac ultrasound judgment model.

所述心臟超音波判斷模型可包含依序連接的一密集卷積神經網路(DenseNet)模型、一全連接神經網路(Fully-connected neural network,FCNN)模型及一歸一化指數函數(Softmax)模型。較佳地,密集卷積神經網路模型可包含複數個密集卷積神經網路模塊(DenseNet Block,DNB)、複數個最大池化模組(Max pooling)及一平坦模組(Flatten),且各個密集卷積神經網路模塊可包含複數個密集卷積神經網路單元,此些密集卷積神經網路單元彼此依序級聯,且各個密集卷積神經網路單元包含三維卷積層(Conv)、線性整流單元訓練層(ReLU)和批標準化層(Batch Normalization,BN)。The cardiac ultrasound judgment model may include a dense convolutional neural network (DenseNet) model, a fully-connected neural network (Fully-connected neural network, FCNN) model and a normalized exponential function (Softmax )Model. Preferably, the dense convolutional neural network model may include a plurality of dense convolutional neural network modules (DenseNet Block, DNB), a plurality of maximum pooling modules (Max pooling) and a flat module (Flatten), and Each dense convolutional neural network module may contain a plurality of dense convolutional neural network units, and these dense convolutional neural network units are cascaded to each other in sequence, and each dense convolutional neural network unit contains a three-dimensional convolutional layer (Conv ), linear rectification unit training layer (ReLU) and batch normalization layer (Batch Normalization, BN).

第2圖係繪示本發明另一實施方式之利用三維深度學習之心臟超音波判斷系統200的方塊示意圖。如第2圖所示,利用三維深度學習之心臟超音波判斷系統200包含超音波檢測器210和處理器220。FIG. 2 is a schematic block diagram of a cardiac ultrasound judgment system 200 using three-dimensional deep learning according to another embodiment of the present invention. As shown in FIG. 2 , the cardiac ultrasound diagnosis system 200 using 3D deep learning includes an ultrasound detector 210 and a processor 220 .

超音波檢測器210可為心臟超音波檢測器,用以產生受試者之目標心臟超音波影像。The ultrasound detector 210 can be a cardiac ultrasound detector, which is used to generate a target cardiac ultrasound image of the subject.

處理器220電性連接超音波檢測器210,所述處理器220儲存一程式,當程式由處理器220執行時,程式依據目標心臟超音波影像判斷受試者是否具有梗塞相關血管。所述程式包含參照資料取得模組221、參照影像前處理模組222、參照特徵選取模組223、模型訓練模組224及分析模組225。The processor 220 is electrically connected to the ultrasound detector 210. The processor 220 stores a program. When the program is executed by the processor 220, the program judges whether the subject has infarct-related blood vessels according to the target cardiac ultrasound image. The program includes a reference data acquisition module 221 , a reference image preprocessing module 222 , a reference feature selection module 223 , a model training module 224 and an analysis module 225 .

參照資料取得模組221係用以取得參照資料,參照資料包含複數個參照心臟超音波資料及對應此些參照心臟超音波資料之複數個心導管確診結果。The reference data acquisition module 221 is used to obtain reference data, which includes a plurality of reference echocardiographic data and a plurality of cardiac catheterization results corresponding to the reference echocardiographic data.

參照影像前處理模組222係用以切割各個參照心臟超音波資料,以取得複數個參照心臟超音波影像。The reference image pre-processing module 222 is used for cutting each reference echocardiogram data to obtain a plurality of reference echocardiogram images.

參照特徵選取模組223係用以分析各個參照心臟超音波影像後,於各個參照心臟超音波影像中得到參照影像特徵值,以取得對應此些參照心臟超音波影像之複數個參照影像特徵值。The reference feature selection module 223 is used to obtain reference image feature values in each reference echocardiogram image after analyzing each reference echocardiogram image, so as to obtain a plurality of reference image feature values corresponding to these reference echocardiogram images.

模型訓練模組224係依據此些參照影像特徵值訓練而產生心臟超音波判斷模型,並輸入此些參照心臟超音波資料至心臟超音波判斷模型而產生對應此些參照心臟超音波資料之複數個心臟超音波判斷結果,然後將此些心臟超音波判斷結果分別比對此些心導管確診結果以修正心臟超音波判斷模型。The model training module 224 is based on the training of these reference image feature values to generate a cardiac ultrasound judgment model, and input these reference cardiac ultrasound data into the cardiac ultrasound judgment model to generate a plurality of corresponding to these reference cardiac ultrasound data Cardiac ultrasound judgment results, and then these cardiac ultrasound judgment results are compared with these cardiac catheter diagnosis results to modify the cardiac ultrasound judgment model.

分析模組225係依據心臟超音波判斷模型分析目標心臟超音波影像而產生對應梗塞相關血管之目標心臟超音波判斷結果。The analysis module 225 analyzes the target cardiac ultrasound image according to the cardiac ultrasound judgment model to generate a target cardiac ultrasound judgment result corresponding to the infarct-related blood vessel.

第3圖係繪示本發明又一實施方式之利用三維深度學習之心臟超音波判斷方法300的步驟流程圖。利用三維深度學習之心臟超音波判斷方法300包含步驟310、步驟320、步驟330和步驟340。FIG. 3 is a flow chart showing the steps of a cardiac ultrasound judgment method 300 using 3D deep learning according to another embodiment of the present invention. The cardiac ultrasound judgment method 300 using 3D deep learning includes step 310 , step 320 , step 330 and step 340 .

步驟310係提供心臟超音波判斷模型。所述心臟超音波判斷模型係經由前述步驟110至步驟140所建立而成。Step 310 is to provide a cardiac ultrasound judgment model. The cardiac ultrasound judgment model is established through the aforementioned steps 110 to 140 .

步驟320係提供目標心臟超音波影像,亦即提供受試者之目標心臟超音波影像。Step 320 is to provide the target ultrasound image of the heart, that is, to provide the target ultrasound image of the heart of the subject.

步驟330係產生目標心臟超音波判斷結果,亦即分析模組225依據心臟超音波判斷模型分析目標心臟超音波影像而產生目標心臟超音波判斷結果。Step 330 is to generate a target ultrasonic cardiac judgment result, that is, the analysis module 225 analyzes the target ultrasonic cardiac image according to the ultrasonic cardiac judgment model to generate a target ultrasonic cardiac judgment result.

步驟340係判斷是否具有梗塞相關血管,亦即利用目標心臟超音波判斷結果判斷受試者是否具有梗塞相關血管。Step 340 is to determine whether there is an infarction-related vessel, that is, to determine whether the subject has an infarction-related vessel by using the target cardiac ultrasound determination result.

[試驗例][Test example]

一、參照資料1. Reference materials

本發明所使用的參照資料包含患有急性冠心症(Acute coronary syndrome,ACS)之複數個病患的複數個參照心臟超音波資料及經醫師診斷後的複數個心導管確診結果,並可分類為以下三組:The reference data used in the present invention include multiple reference echocardiographic data of multiple patients with acute coronary syndrome (ACS) and multiple cardiac catheterization results after diagnosis by doctors, and can be classified into the following three groups:

(1)ACS:心導管有看到冠狀動脈阻塞,且心臟超音波也看到區域性室壁運動異常(RWMA)。(1) ACS: Coronary artery obstruction was seen in cardiac catheterization, and regional wall motion abnormalities (RWMA) were also seen in cardiac ultrasound.

(2)Insignificant:心導管有看到冠狀動脈阻塞,但心臟超音波未看到區域性室壁運動異常。(2) Insignificant: Coronary artery obstruction was seen in cardiac catheterization, but regional wall motion abnormalities were not seen in cardiac ultrasound.

(3)Control:心導管未看到冠狀動脈阻塞,且心臟超音波也未看到區域性室壁運動異常。(3) Control: Cardiac catheterization did not see coronary artery obstruction, and cardiac ultrasound did not see regional wall motion abnormalities.

值得注意的是,將一參照心臟超音波資料和一心導管確診結果定義為一組樣本。試驗上共有9000個樣本組,並進一步分類為7500個訓練樣本組、1000個驗證樣本組與500個測試樣本組。 It is worth noting that a reference echocardiographic data and a cardiac catheterization result were defined as a group of samples. There are 9000 sample groups in the experiment, which are further classified into 7500 training sample groups, 1000 verification sample groups and 500 test sample groups.

二、影像前處理 2. Image pre-processing

在取得參照資料後,先進行影像前處理步驟,其係切割各個參照心臟超音波資料,以取得複數個參照心臟超音波影像。 After obtaining the reference data, the image pre-processing step is performed firstly, which is to cut each reference echocardiogram data to obtain a plurality of reference echocardiogram images.

三、本發明之心臟超音波判斷模型 Three, the cardiac ultrasonic judgment model of the present invention

第4圖係繪示本發明之心臟超音波判斷模型400的架構示意圖。如第4圖所示,心臟超音波判斷模型400主要由密集卷積神經網路模型500、全連接神經網路模型600及歸一化指數函數模型700依序連接所構成。密集卷積神經網路模型500可包含4個密集卷積神經網路模塊510、4個最大池化模組520及1個平坦模組530。首先,將參照心臟超音波影像401經過4次的密集卷積神經網路模塊510和最大池化模組520運算,並利用平坦模組530攤平成一維的陣列,接著透過全連接神經網路模型600將特徵值透過權值矩陣做合成,最後輸入至歸一化指數函數模型700進行運算而產生三種深度學習機率800,其中深度學習機率800分別為異常機率、正常機率及疑似異常機率。深度學習機率800透過交叉熵(Cross Entropy)分類成三種心臟超音波判斷結果900,心臟超音波判斷結果900分別為異常、正常及疑似異常。所得到的心臟超音波 判斷結果900可與心導管確診結果進行比對以修正心臟超音波判斷模型400。其中全連接神經網路模型600是一種神經元的連接模式,其特色是上一層神經元與下一層所有的神經元相連接,而歸一化指數函數模型700在計算機深度學習的應用主要在處理多分類問題上,且其使多分類的輸出數值轉換為相對論概率,使其更容易理解和比較。 FIG. 4 is a schematic diagram showing the structure of the cardiac ultrasound judgment model 400 of the present invention. As shown in FIG. 4 , the cardiac ultrasound judgment model 400 is mainly composed of a dense convolutional neural network model 500 , a fully connected neural network model 600 and a normalized exponential function model 700 connected in sequence. The dense convolutional neural network model 500 may include 4 dense convolutional neural network modules 510 , 4 max pooling modules 520 and 1 flattening module 530 . First, the reference cardiac ultrasound image 401 is processed by the dense convolutional neural network module 510 and the maximum pooling module 520 four times, and flattened into a one-dimensional array by the flattening module 530, and then through the fully connected neural network The model 600 synthesizes the eigenvalues through the weight matrix, and finally inputs them into the normalized exponential function model 700 for operation to generate three kinds of deep learning probabilities 800, wherein the deep learning probabilities 800 are respectively abnormal probability, normal probability and suspected abnormal probability. The deep learning probability 800 is classified into three kinds of cardiac ultrasound judgment results 900 through cross entropy (Cross Entropy), and the cardiac ultrasound judgment results 900 are respectively abnormal, normal and suspected abnormal. The resulting echocardiogram The judgment result 900 can be compared with the diagnosis result of cardiac catheterization to modify the cardiac ultrasound judgment model 400 . Among them, the fully connected neural network model 600 is a connection mode of neurons, and its characteristic is that the neurons of the upper layer are connected with all the neurons of the lower layer, and the normalized exponential function model 700 is mainly used in the processing of deep learning On multi-classification problems, and it converts the output value of multi-classification into relativistic probability, making it easier to understand and compare.

請一併參照第4圖與第5圖,其中第5圖係繪示第4圖中密集卷積神經網路模塊510的架構示意圖。密集卷積神經網路模塊510包含4個密集卷積神經網路單元511、512、513、514,參照心臟超音波影像401輸入至輸入端515,且經由4個密集卷積神經網路單元511、512、513、514彼此依序級聯並計算後,再輸出至輸出端516。 Please refer to FIG. 4 and FIG. 5 together, wherein FIG. 5 is a schematic diagram of the architecture of the dense convolutional neural network module 510 in FIG. 4 . The dense convolutional neural network module 510 includes 4 dense convolutional neural network units 511, 512, 513, 514, which are input to the input terminal 515 with reference to the cardiac ultrasound image 401, and through the 4 dense convolutional neural network units 511 , 512 , 513 , 514 are sequentially cascaded and calculated, and then output to the output terminal 516 .

詳細地說,各個密集卷積神經網路單元511、512、513、514可包含三維卷積層540、線性整流單元訓練層550及批標準化層560。各個密集卷積神經網路單元511、512、513、514的輸出都將傳送至級聯單元C進行相加,並做為下一個的輸入,且以此類推,最終輸出至輸出端516。特別的是,使用填充(Padding)方法,將三維卷積層540的輸出影像放大而保持整個密集卷積神經網路模塊510的影像大小(Size),亦即影像經過各個密集卷積神經網路單元511、512、513、514運算後圖形大小不變,只有通道(Channel)數量的改變。 In detail, each dense convolutional neural network unit 511 , 512 , 513 , 514 may include a three-dimensional convolutional layer 540 , a linear rectification unit training layer 550 and a batch normalization layer 560 . The output of each dense convolutional neural network unit 511 , 512 , 513 , 514 will be sent to the cascaded unit C for summing up, and used as the input of the next one, and so on, and finally output to the output terminal 516 . In particular, the padding method is used to enlarge the output image of the three-dimensional convolutional layer 540 while maintaining the image size (Size) of the entire dense convolutional neural network module 510, that is, the image passes through each dense convolutional neural network unit After 511, 512, 513, and 514 operations, the size of the graph remains unchanged, only the number of channels (Channel) changes.

此外,本發明的心臟超音波判斷模型400以線性 整流單元訓練層550作為激活函數(Activation Function),相較於傳統神經網路激活函數,線性整流單元訓練層550具有仿生物學原理、更加有效率的梯度下降以及反向傳播、避免梯度消失與簡化計算過程等優點。 In addition, the cardiac ultrasound judgment model 400 of the present invention uses a linear The rectification unit training layer 550 is used as an activation function (Activation Function). Compared with the traditional neural network activation function, the linear rectification unit training layer 550 has the principle of imitating biology, more efficient gradient descent and backpropagation, and avoids gradient disappearance and Simplify the calculation process and other advantages.

再者,本發明的心臟超音波判斷模型400所使用的損失函數(Loss Function)主要功能在於提供深度學習網路評估訓練結果與目標結果之誤差程度,且其如式子(1)與(2)所示:

Figure 109133402-A0305-02-0015-2
Figure 109133402-A0305-02-0015-3
Furthermore, the main function of the loss function (Loss Function) used by the cardiac ultrasound judgment model 400 of the present invention is to provide a deep learning network to evaluate the degree of error between the training result and the target result, and it is shown in the formulas (1) and (2) ) as shown:
Figure 109133402-A0305-02-0015-2
Figure 109133402-A0305-02-0015-3

針對損失函數利用梯度下降法的計算,進而達到網路自我調整與學習之目的。其中

Figure 109133402-A0305-02-0015-4
為網路參數,Y r 為訓練結果,
Figure 109133402-A0305-02-0015-5
為目標結果,ΩReg為正規化項(regularization term),λ為正規化因子(regularization factor)。 For the calculation of the loss function, the gradient descent method is used to achieve the purpose of network self-adjustment and learning. in
Figure 109133402-A0305-02-0015-4
is the network parameter, Y r is the training result,
Figure 109133402-A0305-02-0015-5
is the target result, Ω Reg is the regularization term, and λ is the regularization factor.

接著,本發明的心臟超音波判斷模型400的網路參數w l+1是藉由使用小批次梯度下降矩估算(Mini Batch Gradient Descent Moment Estimation)技術加以遞迴更新,且其如式子(3)所示:

Figure 109133402-A0305-02-0015-6
Next, the network parameter w l +1 of the cardiac ultrasound judgment model 400 of the present invention is recursively updated by using the Mini Batch Gradient Descent Moment Estimation (Mini Batch Gradient Descent Moment Estimation) technique, and it is as in the formula ( 3) As shown:
Figure 109133402-A0305-02-0015-6

其中η為學習率(Learning Rate),

Figure 109133402-A0305-02-0015-17
是一個值很小的常數主要用於避免式子(3)中第二項出現分母為零的現象發生。在更新網路參數時本發明的心臟超音波判斷模 型400考慮了數量為B個小批次(Mini Batch),因此在下列式子(4)與(5)中出現一次式梯度下降法(Gradient Descent)▽L r (w l )與二次式梯度下降法[▽L r (w l )]2的平均數,其平均數量為小批次的數量B。此外,β1與β2為衰減率(decay rate)。每次心臟超音波判斷模型400從測試樣本組中,隨機抽取數量為B個樣本組進行深度學習的方式稱為小批次。 Where η is the learning rate (Learning Rate),
Figure 109133402-A0305-02-0015-17
is a constant with a very small value, which is mainly used to avoid the phenomenon that the denominator of the second term in the formula (3) is zero. Cardiac ultrasound judgment model 400 of the present invention considered quantity to be B mini-batches (Mini Batch) when updating network parameter, therefore appears in following formula (4) and (5) Gradient descending method (Gradient Descent)▽ L r ( w l ) and the average of the quadratic gradient descent method [▽ L r ( w l )] 2 , the average number of which is the number B of the small batch. In addition, β 1 and β 2 are decay rates. The mode in which the cardiac ultrasound judgment model 400 randomly selects B sample groups from the test sample group for deep learning is called a small batch.

Figure 109133402-A0305-02-0016-7
Figure 109133402-A0305-02-0016-7
Figure 109133402-A0305-02-0016-8
Figure 109133402-A0305-02-0016-8

式子(4)與(5)說明心臟超音波判斷模型400每次調整時除了使用小批次技術外,還考慮先前每組小批次的梯度下降數值,亦即本次調整網路參數時會根據先前的調整經驗作為本次調整的參考依據,其具有依據先前經驗配合本次小批次產生動態調整網路參數的智能特性。 Equations (4) and (5) show that the cardiac ultrasound judgment model 400 not only uses the small batch technique, but also considers the gradient descent value of each group of small batches before adjusting the network parameters. The previous adjustment experience will be used as the reference basis for this adjustment, and it has the intelligent feature of dynamically adjusting network parameters based on previous experience and this small batch generation.

請一併參照第4圖至第6圖,其中第6圖係繪示第5圖中批標準化層560的架構示意圖。本發明的心臟超音波判斷模型400藉由批標準化層560減少訓練所需的時間、防止梯度下降消失問題與降低參數初始化造成擬合過度(Overfitting)的現象。心臟超音波判斷模型400在學習過程中會從測試樣本組中,隨機抽取數量為B個樣本組(小批次)進行學習。請一併參照下列式子(6)與式子(7),由輸入值X1、X2、X3與權重W1、W2、W3計算每個神經元輸出值A1、A2、A3的平均值μ與標準差σ,再將所有輸出值A1、A2、A3以平均值μ與標準差σ進行正規化 得到數值Ã1、Ã2、Ã3(即式子(6)的數值à i ),但是我們希望小批次進入激活函數時平均值μ與標準差σ與另一個小批次是不同的,因此引進參數β與參數γ調整此現象並獲得數值Â1、Â2、Â3(即式子(7)的數值 i )。 Please refer to FIG. 4 to FIG. 6 together, wherein FIG. 6 is a schematic diagram of the architecture of the batch normalization layer 560 in FIG. 5 . The cardiac ultrasound judgment model 400 of the present invention uses the batch normalization layer 560 to reduce the time required for training, prevent the problem of disappearing gradient descent and reduce the phenomenon of overfitting caused by parameter initialization. During the learning process, the cardiac ultrasound judgment model 400 randomly selects B sample groups (small batches) from the test sample group for learning. Please refer to the following formula (6) and formula (7) to calculate the output value A 1 and A 2 of each neuron from the input value X 1 , X 2 , X 3 and the weight W 1 , W 2 , W 3 , the mean value μ and standard deviation σ of A 3 , and then normalize all the output values A 1 , A 2 , A 3 with the mean value μ and standard deviation σ to get the values à 1 , à 2 , à 3 (that is, the formula The value of (6) à i ), but we hope that when the small batch enters the activation function, the mean μ and standard deviation σ are different from the other small batch, so the parameter β and parameter γ are introduced to adjust this phenomenon and obtain the value  1 ,  2 ,  3 (that is, the value  i of formula (7)).

Figure 109133402-A0305-02-0017-9
 i =γ˙à i +β (7)。
Figure 109133402-A0305-02-0017-9
 i = γ˙ à i + β (7).

四、模型訓練步驟 4. Model training steps

將7500個訓練樣本組與1000個驗證樣本組,放入心臟超音波判斷模型400中進行訓練。根據訓練結果,若Loss小於2%的目標無法被滿足時,將執行深度學習參數修正程序並重新訓練,直到目標被滿足為止。進一步可修正相關參數包含:初始參數、學習率、正規化因子、衰退率、每層神經元個數、神經元階層數、小批次大小、訓練樣本組與驗證樣本組,並繼續監控與參數調整直至狀況被改善。 7500 training sample groups and 1000 verification sample groups are put into the cardiac ultrasound judgment model 400 for training. According to the training results, if the goal of Loss less than 2% cannot be met, the deep learning parameter correction program will be executed and retrained until the goal is met. Further modifiable parameters include: initial parameters, learning rate, regularization factor, decay rate, number of neurons in each layer, number of neuron levels, small batch size, training sample group and validation sample group, and continue to monitor and parameterize Adjust until condition improves.

當訓練結果滿足Loss小於2%且無擬合過度發生達到收斂而得到最佳化的心臟超音波判斷模型400後,前述心臟超音波判斷模型400輸出複數個心臟超音波判斷結果,並將各個心臟超音波判斷結果分別與相應的各個心導管確診結果進行比對,以驗證心臟超音波判斷模型400的準確性,若比對結果未通過,則回到模型訓練步驟並執行深度學習參數修正程序。 When the training result satisfies that the Loss is less than 2% and there is no over-fitting to achieve convergence and obtain the optimized cardiac ultrasound judgment model 400, the aforementioned cardiac ultrasound judgment model 400 outputs a plurality of cardiac ultrasound judgment results, and each cardiac The ultrasonic judgment results are compared with the corresponding diagnostic results of each cardiac catheterization to verify the accuracy of the cardiac ultrasonic judgment model 400. If the comparison result fails, return to the model training step and execute the deep learning parameter correction procedure.

綜所上述,本發明具有下列優點:其一,本發明利 用三維深度學習訓練出心臟超音波判斷模型,並將心臟超音波判斷結果比對心導管確診結果而修正心臟超音波判斷模型,最終得到最佳化的心臟超音波判斷模型。其二,本發明透過心臟超音波判斷模型可即時分析目標心臟超音波影像而產生對應梗塞相關血管之目標心臟超音波判斷結果,進而改善人眼無法辨識區域性室壁運動異常的問題,達到可提早擬定後續心導管的術前準備。 In summary, the present invention has the following advantages: one, the present invention utilizes Three-dimensional deep learning is used to train the cardiac ultrasound judgment model, and the cardiac ultrasound judgment results are compared with the cardiac catheter diagnosis results to correct the cardiac ultrasound judgment model, and finally an optimized cardiac ultrasound judgment model is obtained. Second, the present invention can analyze the target cardiac ultrasound image in real time through the cardiac ultrasound judgment model to generate the target cardiac ultrasound judgment result corresponding to the infarct-related blood vessel, thereby improving the problem that the human eye cannot identify regional abnormal wall motion, and achieving Prepare early for subsequent cardiac catheterization.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed above in terms of implementation, it is not intended to limit the present invention. Anyone skilled in this art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be defined by the appended patent application scope.

100:利用三維深度學習之心臟超音波判斷模型之建立方法 100: Establishment method of cardiac ultrasound judgment model using three-dimensional deep learning

110,120,130,140:步驟 110, 120, 130, 140: steps

200:利用三維深度學習之心臟超音波判斷系統 200: Cardiac Ultrasound Judgment System Using 3D Deep Learning

210:超音波檢測器 210: Ultrasonic detector

220:處理器 220: Processor

221:參照資料取得模組 221:Refer to the information to obtain the module

222:參照影像前處理模組 222: Refer to image preprocessing module

223:參照特徵選取模組 223: Reference feature selection module

224:模型訓練模組 224:Model training module

225:分析模組 225: Analysis module

300:利用三維深度學習之心臟超音波判斷方法 300: Cardiac ultrasound judgment method using three-dimensional deep learning

310,320,330,340:步驟 310, 320, 330, 340: steps

400:心臟超音波判斷模型 400: Cardiac Ultrasound Judgment Model

401:參照心臟超音波影像 401: Refer to cardiac ultrasound images

500:密集卷積神經網路模型 500: Dense Convolutional Neural Network Models

510:密集卷積神經網路模塊 510:Dense Convolutional Neural Network Module

511,512,513,514:密集卷積神經網路單元 511,512,513,514: Dense Convolutional Neural Network Units

515:輸入端 515: input terminal

516:輸出端 516: output terminal

520:最大池化模組 520: Maximum pooling module

530:平坦模組 530: flat module

540:三維卷積層 540: Three-dimensional convolution layer

550:線性整流單元訓練層 550: Linear rectification unit training layer

560:批標準化層 560: Batch normalization layer

600:全連接神經網路模型 600: Fully connected neural network model

700:歸一化指數函數模型 700:Normalized exponential function model

800:深度學習機率 800: Deep Learning Probability

900:心臟超音波判斷結果 900: Judgment result of cardiac ultrasound

X1,X2,X3:輸入值 X 1 , X 2 , X 3 : input value

W1,W2,W3:權重 W 1 , W 2 , W 3 : weights

C:級聯單元 C: cascade unit

μ:平均值 μ: average value

σ:標準差 σ: standard deviation

β,γ:參數 β, γ: parameters

Ã123123:數值 Ã 1 , Ã 2 , Ã 3 , Â 1 , Â 2 , Â 3 : numeric values

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1圖係繪示本發明一實施方式之利用三維深度學習之心臟超音波判斷模型之建立方法的步驟流程圖; 第2圖係繪示本發明另一實施方式之利用三維深度學習之心臟超音波判斷系統的方塊示意圖; 第3圖係繪示本發明又一實施方式之利用三維深度學習之心臟超音波判斷方法的步驟流程圖; 第4圖係繪示本發明之心臟超音波判斷模型的架構示意圖; 第5圖係繪示第4圖中密集卷積神經網路模塊的架構示意圖;以及 第6圖係繪示第5圖中批標準化層的架構示意圖。 In order to make the above and other objects, features, advantages and embodiments of the present invention more clearly understood, the accompanying drawings are described as follows: Figure 1 is a flow chart showing the steps of a method for establishing a cardiac ultrasound judgment model using three-dimensional deep learning according to an embodiment of the present invention; Fig. 2 is a schematic block diagram of a heart ultrasound judgment system using three-dimensional deep learning according to another embodiment of the present invention; FIG. 3 is a flow chart showing the steps of a cardiac ultrasound judgment method using three-dimensional deep learning according to another embodiment of the present invention; Figure 4 is a schematic diagram showing the structure of the cardiac ultrasound judgment model of the present invention; FIG. 5 is a schematic diagram showing the architecture of the dense convolutional neural network module in FIG. 4; and FIG. 6 is a schematic diagram showing the architecture of the batch normalization layer in FIG. 5 .

200:利用三維深度學習之心臟超音波判斷系統 200: Cardiac Ultrasound Judgment System Using 3D Deep Learning

210:超音波檢測器 210: Ultrasonic detector

220:處理器 220: Processor

221:參照資料取得模組 221:Refer to the information to obtain the module

222:參照影像前處理模組 222: Refer to image preprocessing module

223:參照特徵選取模組 223: Reference feature selection module

224:模型訓練模組 224:Model training module

225:分析模組 225: Analysis module

Claims (7)

一種利用三維深度學習之心臟超音波判斷模型之建立方法,包含以下步驟:進行一資料取得步驟,其係取得一參照資料,該參照資料包含複數個參照心臟超音波資料及對應該些參照心臟超音波資料之複數個心導管確診結果;進行一影像前處理步驟,其係切割各該參照心臟超音波資料,以取得複數個參照心臟超音波影像;進行一參照特徵選取步驟,其係利用一參照特徵選取模組分析各該參照心臟超音波影像後,於各該參照心臟超音波影像中得到一參照影像特徵值,以取得對應該些參照心臟超音波影像之複數個該參照影像特徵值;以及進行一模型訓練步驟,其係依據該些參照影像特徵值訓練而產生一心臟超音波判斷模型,並輸入該些參照心臟超音波資料至該心臟超音波判斷模型而產生對應該些參照心臟超音波資料之複數個心臟超音波判斷結果,然後將該些心臟超音波判斷結果分別比對該些心導管確診結果以修正該心臟超音波判斷模型,其中該心臟超音波判斷模型包含依序連接的一密集卷積神經網路(DenseNet)模型、一全連接神經網路(Fully-connected neural network,FCNN)模型及一歸一化指數函數(Softmax)模型;其中,於該模型訓練步驟中執行一深度學習參數修正程序並重新訓練該心臟超音波判斷模型,直到該心臟超音波判斷模型之一損失函數小於2%為止。 A method for establishing a cardiac ultrasound judgment model using three-dimensional deep learning, including the following steps: performing a data acquisition step, which is to obtain a reference data, the reference data includes a plurality of reference cardiac ultrasound data and the corresponding reference cardiac ultrasound data A plurality of cardiac catheterization diagnosis results of the sound wave data; an image preprocessing step, which is to cut each of the reference heart ultrasound data, to obtain a plurality of reference heart ultrasound images; a reference feature selection step, which is to use a reference After the feature selection module analyzes each of the reference echocardiographic images, a reference image feature value is obtained from each of the reference echocardiographic images, so as to obtain a plurality of reference image feature values corresponding to the reference echocardiographic images; and Carry out a model training step, which is to generate a cardiac ultrasound judgment model based on the reference image feature value training, and input the reference cardiac ultrasound data to the cardiac ultrasound judgment model to generate corresponding reference cardiac ultrasound Multiple cardiac ultrasound judgment results of the data, and then compare these cardiac ultrasound judgment results with these cardiac catheterization diagnosis results to modify the cardiac ultrasound judgment model, wherein the cardiac ultrasound judgment model includes a sequentially connected A dense convolutional neural network (DenseNet) model, a fully-connected neural network (Fully-connected neural network, FCNN) model and a normalized exponential function (Softmax) model; wherein, in the model training step, a depth Learning a parameter correction program and retraining the cardiac ultrasound judgment model until one of the loss functions of the cardiac ultrasound judgment model is less than 2%. 如請求項1所述之利用三維深度學習之心臟超音波判斷模型之建立方法,其中該密集卷積神經網路模型包含複數個密集卷積神經網路模塊(DenseNet Block,DNB)、複數個最大池化模組(Max pooling)及一平坦模組(Flatten)。 A method for establishing a cardiac ultrasound judgment model using three-dimensional deep learning as described in claim 1, wherein the dense convolutional neural network model includes a plurality of dense convolutional neural network modules (DenseNet Block, DNB), a plurality of maximum Pooling module (Max pooling) and a flat module (Flatten). 如請求項2所述之利用三維深度學習之心臟超音波判斷模型之建立方法,其中各該密集卷積神經網路模塊包含複數個密集卷積神經網路單元,該些密集卷積神經網路單元彼此依序級聯,且各該密集卷積神經網路單元包含一三維卷積層(Conv)、一線性整流單元訓練層(ReLU)及一批標準化層(Batch Normalization,BN)。 A method for establishing a cardiac ultrasound judgment model using three-dimensional deep learning as described in claim 2, wherein each of the dense convolutional neural network modules includes a plurality of dense convolutional neural network units, and these dense convolutional neural networks The units are cascaded to each other in sequence, and each dense convolutional neural network unit includes a three-dimensional convolutional layer (Conv), a linear rectification unit training layer (ReLU), and a batch of normalization layers (Batch Normalization, BN). 一種利用三維深度學習之心臟超音波判斷系統,包含:一超音波檢測器,用以產生一受試者之一目標心臟超音波影像;以及一處理器,電性連接該超音波檢測器,該處理器其儲存一程式,當該程式由該處理器執行時,該程式依據該目標心臟超音波影像判斷該受試者是否具有一梗塞相關血管(Infarct Related Artery,IRA),該程式包含:一參照資料取得模組,其係用以取得一參照資料,該參照資料包含複數個參照心臟超音波資料及對應該些參 照心臟超音波資料之複數個心導管確診結果;一參照影像前處理模組,其係用以切割各該參照心臟超音波資料,以取得複數個參照心臟超音波影像;一參照特徵選取模組,其係用以分析各該參照心臟超音波影像後,於各該參照心臟超音波影像中得到一參照影像特徵值,以取得對應該些參照心臟超音波影像之複數個該參照影像特徵值;一模型訓練模組,其係依據該些參照影像特徵值訓練而產生一心臟超音波判斷模型,並輸入該些參照心臟超音波資料至該心臟超音波判斷模型而產生對應該些參照心臟超音波資料之複數個心臟超音波判斷結果,然後將該些心臟超音波判斷結果分別比對該些心導管確診結果以修正該心臟超音波判斷模型,該模型訓練模組執行一深度學習參數修正程序並重新訓練該心臟超音波判斷模型,直到該心臟超音波判斷模型之一損失函數小於2%為止,其中該心臟超音波判斷模型包含依序連接的一密集卷積神經網路(DenseNet)模型、一全連接神經網路(Fully-connected neural network,FCNN)模型及一歸一化指數函數(Softmax)模型;及一分析模組,其係依據該心臟超音波判斷模型分析該目標心臟超音波影像而產生對應該梗塞相關血管之一目標心臟超音波判斷結果。 A heart ultrasound judgment system using three-dimensional deep learning, including: an ultrasound detector, used to generate a target heart ultrasound image of a subject; and a processor, electrically connected to the ultrasound detector, the The processor stores a program. When the program is executed by the processor, the program judges whether the subject has an infarct-related artery (Infarct Related Artery, IRA) according to the target cardiac ultrasound image. The program includes: a The reference data acquisition module is used to obtain a reference data, which includes a plurality of reference echocardiographic data and corresponding parameters Diagnosis results of multiple cardiac catheterizations based on cardiac ultrasound data; a reference image preprocessing module, which is used to cut each reference cardiac ultrasound data to obtain multiple reference cardiac ultrasound images; a reference feature selection module , which is used to obtain a reference image feature value in each of the reference echocardiogram images after analyzing each of the reference echocardiogram images, so as to obtain a plurality of reference image feature values corresponding to the reference echocardiogram images; A model training module, which generates a cardiac ultrasound judgment model based on the reference image feature value training, and inputs the reference cardiac ultrasound data into the cardiac ultrasound judgment model to generate the corresponding reference cardiac ultrasound Multiple cardiac ultrasound judgment results of the data, and then compare these cardiac ultrasound judgment results with these cardiac catheter diagnosis results to modify the cardiac ultrasound judgment model, the model training module executes a deep learning parameter correction program and Retrain the heart ultrasound judgment model until a loss function of the heart ultrasound judgment model is less than 2%, wherein the heart ultrasound judgment model includes a dense convolutional neural network (DenseNet) model connected in sequence, a A fully-connected neural network (Fully-connected neural network, FCNN) model and a normalized exponential function (Softmax) model; and an analysis module, which analyzes the target cardiac ultrasound image based on the cardiac ultrasound judgment model A target cardiac ultrasonic judgment result corresponding to one of the blood vessels related to the infarction is generated. 如請求項4所述之三維深度學習之心臟超音 波判斷系統,其中該密集卷積神經網路模型包含複數個密集卷積神經網路模塊(DenseNet Block,DNB)、複數個最大池化模組(Max pooling)及一平坦模組(Flatten)。 Cardiac ultrasound of three-dimensional deep learning as described in claim 4 A wave judgment system, wherein the dense convolutional neural network model includes a plurality of dense convolutional neural network modules (DenseNet Block, DNB), a plurality of maximum pooling modules (Max pooling) and a flat module (Flatten). 一種利用三維深度學習之心臟超音波判斷方法,包含下述步驟:提供一如請求項1之心臟超音波判斷模型;提供一受試者之一目標心臟超音波影像;依據該心臟超音波判斷模型分析該目標心臟超音波影像而產生一目標心臟超音波判斷結果;以及利用該目標心臟超音波判斷結果判斷該受試者是否具有一梗塞相關血管(Infarct Related Artery,IRA)。 A cardiac ultrasound judgment method using three-dimensional deep learning, comprising the following steps: providing a cardiac ultrasound judgment model as in claim 1; providing a target cardiac ultrasound image of a subject; according to the cardiac ultrasound judgment model Analyzing the target ultrasound image of the heart to generate a target ultrasound diagnosis result; and using the target ultrasound diagnosis result to determine whether the subject has an Infarct Related Artery (IRA). 如請求項6所述之利用三維深度學習之心臟超音波判斷方法,其中該密集卷積神經網路模型包含複數個密集卷積神經網路模塊(DenseNet Block,DNB)、複數個最大池化模組(Max pooling)及一平坦模組(Flatten)。The cardiac ultrasound judgment method using three-dimensional deep learning as described in claim 6, wherein the dense convolutional neural network model includes a plurality of dense convolutional neural network modules (DenseNet Block, DNB), a plurality of maximum pooling models group (Max pooling) and a flat module (Flatten).
TW109133402A 2020-09-25 2020-09-25 Establishing method of echocardiography judging model with 3d deep learning, echocardiography judging system with 3d deep learning and method thereof TWI792055B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109133402A TWI792055B (en) 2020-09-25 2020-09-25 Establishing method of echocardiography judging model with 3d deep learning, echocardiography judging system with 3d deep learning and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109133402A TWI792055B (en) 2020-09-25 2020-09-25 Establishing method of echocardiography judging model with 3d deep learning, echocardiography judging system with 3d deep learning and method thereof

Publications (2)

Publication Number Publication Date
TW202213384A TW202213384A (en) 2022-04-01
TWI792055B true TWI792055B (en) 2023-02-11

Family

ID=82197115

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109133402A TWI792055B (en) 2020-09-25 2020-09-25 Establishing method of echocardiography judging model with 3d deep learning, echocardiography judging system with 3d deep learning and method thereof

Country Status (1)

Country Link
TW (1) TWI792055B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518684A (en) * 2013-08-27 2016-04-20 哈特弗罗公司 Systems and methods for predicting location, onset, and/or change of coronary lesions
CN105825509A (en) * 2016-03-17 2016-08-03 电子科技大学 Cerebral vessel segmentation method based on 3D convolutional neural network
CN110232383A (en) * 2019-06-18 2019-09-13 湖南省华芯医疗器械有限公司 A kind of lesion image recognition methods and lesion image identifying system based on deep learning model
CN110475505A (en) * 2017-01-27 2019-11-19 阿特瑞斯公司 Utilize the automatic segmentation of full convolutional network
US10706545B2 (en) * 2018-05-07 2020-07-07 Zebra Medical Vision Ltd. Systems and methods for analysis of anatomical images
US20200272857A1 (en) * 2019-02-22 2020-08-27 Neuropace, Inc. Systems and methods for labeling large datasets of physiologial records based on unsupervised machine learning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518684A (en) * 2013-08-27 2016-04-20 哈特弗罗公司 Systems and methods for predicting location, onset, and/or change of coronary lesions
CN105825509A (en) * 2016-03-17 2016-08-03 电子科技大学 Cerebral vessel segmentation method based on 3D convolutional neural network
CN110475505A (en) * 2017-01-27 2019-11-19 阿特瑞斯公司 Utilize the automatic segmentation of full convolutional network
US10706545B2 (en) * 2018-05-07 2020-07-07 Zebra Medical Vision Ltd. Systems and methods for analysis of anatomical images
US20200272857A1 (en) * 2019-02-22 2020-08-27 Neuropace, Inc. Systems and methods for labeling large datasets of physiologial records based on unsupervised machine learning
CN110232383A (en) * 2019-06-18 2019-09-13 湖南省华芯医疗器械有限公司 A kind of lesion image recognition methods and lesion image identifying system based on deep learning model

Also Published As

Publication number Publication date
TW202213384A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
CN109584254B (en) Heart left ventricle segmentation method based on deep full convolution neural network
EP3445250B1 (en) Echocardiographic image analysis
CN111493935B (en) Artificial intelligence-based automatic prediction and identification method and system for echocardiogram
Alqudah et al. COVID-19 detection from x-ray images using different artificial intelligence hybrid models
US8308646B2 (en) Trainable diagnostic system and method of use
CN109620152B (en) MutifacolLoss-densenert-based electrocardiosignal classification method
CN111626114B (en) Electrocardiosignal arrhythmia classification system based on convolutional neural network
CN111009324B (en) Auxiliary diagnosis system and method for mild cognitive impairment through multi-feature analysis of brain network
CN109192305B (en) Heart function automatic analysis method based on deep circulation neural network
Nurmaini et al. Accurate detection of septal defects with fetal ultrasonography images using deep learning-based multiclass instance segmentation
CN107391900A (en) Atrial fibrillation detection method, disaggregated model training method and terminal device
KR102439082B1 (en) Method for predicting liver disease of ordinary perseon using ecg analysis data based on deep running
JPH05176932A (en) Diagnostic method for cerebral infarction
US8064670B2 (en) Analysis of multidimensional data
Putra et al. Identification of heart disease with iridology using backpropagation neural network
TWI792055B (en) Establishing method of echocardiography judging model with 3d deep learning, echocardiography judging system with 3d deep learning and method thereof
Sapitri et al. Segmentation atrioventricular septal defect by using convolutional neural networks based on U-NET architecture
CN117274185A (en) Detection method, detection model product, electronic device, and computer storage medium
CN109191425B (en) Medical image analysis method based on multilayer neural network model
Peng et al. Research on application of data mining algorithm in cardiac medical diagnosis system
Karan et al. Heart Sound Abnormality Detection using Wavelet Packet Features and Machine Learning
CN114224354A (en) Arrhythmia classification method, device and readable storage medium
Thakral et al. An innovative intelligent solution incorporating artificial neural networks for medical diagnostic application
CN110786839A (en) Method, device, equipment and medium for generating instantaneous waveform-free ratio
WO2020199692A1 (en) Method and apparatus for screening predictive image features for cancer metastasis, and storage medium