TWI790544B - Method for generating protective air pressure difference with peripheral wind outlets device - Google Patents

Method for generating protective air pressure difference with peripheral wind outlets device Download PDF

Info

Publication number
TWI790544B
TWI790544B TW110104726A TW110104726A TWI790544B TW I790544 B TWI790544 B TW I790544B TW 110104726 A TW110104726 A TW 110104726A TW 110104726 A TW110104726 A TW 110104726A TW I790544 B TWI790544 B TW I790544B
Authority
TW
Taiwan
Prior art keywords
air
air supply
exhaust
devices
outlets
Prior art date
Application number
TW110104726A
Other languages
Chinese (zh)
Other versions
TW202232506A (en
Inventor
劉志偉
Original Assignee
睿升科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 睿升科技有限公司 filed Critical 睿升科技有限公司
Priority to TW110104726A priority Critical patent/TWI790544B/en
Priority to CN202123405802.5U priority patent/CN218846352U/en
Priority to CN202111651836.4A priority patent/CN114909747A/en
Priority to US17/579,226 priority patent/US20220252295A1/en
Publication of TW202232506A publication Critical patent/TW202232506A/en
Application granted granted Critical
Publication of TWI790544B publication Critical patent/TWI790544B/en

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Abstract

A method for generating protective air pressure difference with peripheral wind outlets device, comprise: using a human recognition system for human recognition, when a human is detected, human range coordinates are generated, which is based on the projection coordinates of the protective space definition; define the individual projection coordinates of the air outlets of the air supply devices and the air outlets of the exhaust devices in the protective space; calculate one of the center coordinates of the human range coordinates; and based on the human's range coordinates, define the air outlets of the air supply devices and the air outlets of the air exhaust devices corresponding to the range coordinates of the character as a first range circle, so that the wind speed generated by all the air outlets of the air supply devices and the air outlets of the air exhaust devices in the first range circle is different from the other from the air outlets of the air supply devices and the air outlets of the air exhaust devices in the first range circle, and then form a first differential pressure range circle.

Description

周邊式產生防護性空氣壓差的方法 Peripheral method of generating a protective air pressure differential

本發明是關於一種風場系統,特別是關於一種周邊式產生防護性空氣壓差的方法。 The present invention relates to a wind field system, in particular to a method for generating a protective air pressure difference around the perimeter.

嚴重特殊傳染性肺炎(Coronavirus disease 2019,縮寫:COVID-19,簡稱新冠肺炎),是人類歷史上致死人數最多的流行病之一,目前已經感染超過一億人口。由於COVID-19是經由呼吸道傳染的疾病,所以,與感冒病毒相同,皆為容易造成大規模傳染的流行病。 Severe special infectious pneumonia (Coronavirus disease 2019, abbreviated: COVID-19, referred to as new coronary pneumonia), is one of the most deadly epidemics in human history, and has infected more than 100 million people. Since COVID-19 is a disease transmitted through the respiratory tract, it is an epidemic that is likely to cause large-scale infection, just like the cold virus.

由於COVID-19的全球大規模傳染,導致了全球的傳染病的嚴格管控、醫療體系的崩盤、經濟體系的衝擊等等的重大問題。而醫療體系本身,由於其必須收治COVID-19的病患,因此,反而成為傳染病控制的最重要場所。於是,收治COVID-19病患的病房,由於其傳染力高的因素,以讓其入住入負壓病房為優先考量,以防止病房內的病毒擴散到病房外的其他地方。此外,接觸COVID-19病患的醫護人員,也必須穿上防護衣等設備,以防止其被感染。 Due to the large-scale global infection of COVID-19, it has led to major problems such as the strict control of global infectious diseases, the collapse of the medical system, and the impact of the economic system. The medical system itself, because it has to treat patients with COVID-19, has instead become the most important place for infectious disease control. Therefore, due to the high infectivity of COVID-19 patients in the ward, it is a priority to allow them to enter the negative pressure ward to prevent the virus in the ward from spreading to other places outside the ward. In addition, medical staff who come into contact with COVID-19 patients must also wear protective clothing and other equipment to prevent them from being infected.

即便病房以負壓病房,並經過防護衣的標準穿戴程序與消毒程序等,仍無法避免醫護人員於治療COVID-19病患過程中被感染的情形。以台灣部桃醫院新冠肺炎確診編號812患者引發的院內群聚感染的狀 況,就是醫師於診治病患過程中遭到感染。可見,現有的防護衣搭配負壓病房的傳染病控制模式有相當大的改進空間。 Even if the ward is a negative pressure ward, and has gone through the standard wearing procedures and disinfection procedures of protective clothing, it is still unavoidable for medical staff to be infected during the treatment of COVID-19 patients. Based on the symptoms of nosocomial cluster infection caused by No. In this case, doctors are infected during the process of diagnosing and treating patients. It can be seen that there is considerable room for improvement in the existing infectious disease control mode of protective clothing with negative pressure wards.

因此,如何能在傳染病控制病房或者其他的需要進行使用者保護的應用場所當中,配置對如醫護人員或其他相關人員的主動空氣防護系統,讓醫護人員或該些人員的局部周圍以正壓包覆,對其形成保護層,以進一步降低醫護人員或其他人員遭到感染控制病房當中病患或其他應用場所的病毒或細菌傳染風險,成為主動防護技術發展的重要課題。 Therefore, how to configure an active air protection system for medical staff or other related personnel in the infectious disease control ward or other application places that require user protection, so that the local surroundings of the medical staff or these personnel are protected by positive pressure. Covering and forming a protective layer to further reduce the risk of virus or bacterial infection of medical staff or other personnel from patients in infection control wards or other application places has become an important issue in the development of active protection technology.

有鑑於此,本發明提出一種周邊式產生防護性空氣壓差的方法,運用流體力學的原理,透過人物辨識系統來辨識人物的存在以及其位置,再控制矩陣型風場產生系統於對應於人物的空間產生不同於其他部分的流速,藉以產生人物存在位置空間的正壓或負壓,以對該人物產生空氣護盾的特殊技術功效。 In view of this, the present invention proposes a method for generating a protective air pressure difference around the perimeter, using the principle of fluid mechanics to identify the existence and position of a person through a person identification system, and then controlling the matrix wind field generation system to correspond to the person The space in the space produces a flow velocity different from other parts, so as to generate positive or negative pressure in the space where the character exists, so as to produce the special technical effect of the air shield on the character.

為達上述目的,本發明提出一種周邊式產生防護性空氣壓差的方法,運用於配置有具有一人物識別系統、一矩陣型風力產生系統之一防護空間,該矩陣型風力產生系統具有分別配置於該防護空間頂面與底面之一送風矩陣與一排風矩陣,該送風矩陣與該排風矩陣各具有複數個送風裝置與複數個排風裝置,該些送風裝置與該些排風裝置彼此面對,且每個該送風裝置與該排風裝置各具有複數個周邊送風口與複數個周邊排風口,包含:以該人物識別系統進行人物識別,當偵測到一人物時,產生一人物範圍座標,該人物範圍座標係依據該防護空間之投影座標而定義;定義該些送風 裝置的該些送風口與該些排風裝置的該些排風口於該防護空間之個別投影座標;計算該人物範圍座標當中之一中心座標;及依據該人物範圍座標,定義對應於該人物範圍座標之該些送風裝置的該些送風口、該些排風裝置的該些排風口為一第一範圍圈,使該第一範圍圈內所有的該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速與非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速不同,進而形成一第一壓差範圍圈。 In order to achieve the above-mentioned purpose, the present invention proposes a method for generating a protective air pressure difference around the perimeter, which is applied to a protective space equipped with a person identification system and a matrix type wind power generation system. The matrix type wind power generation system has separately configured An air supply matrix and an exhaust matrix on the top and bottom of the protected space, the air supply matrix and the exhaust matrix each have a plurality of air supply devices and a plurality of exhaust devices, and the air supply devices and the exhaust devices are connected to each other Facing each other, each of the air supply device and the exhaust device has a plurality of peripheral air supply outlets and a plurality of peripheral air exhaust outlets, including: using the person recognition system to perform person recognition, when a person is detected, a person is generated Range coordinates, the character range coordinates are defined according to the projected coordinates of the protective space; define the air supply The individual projection coordinates of the air supply outlets of the device and the exhaust outlets of the exhaust devices in the protected space; calculate one of the center coordinates among the coordinates of the character range; and define the range corresponding to the character according to the coordinates of the character range The air outlets of the air supply devices and the air exhaust outlets of the air exhaust devices in the coordinates are a first range circle, so that the air supply outlets and the air outlets of all the air supply devices in the first range circle The wind speed produced by the air outlets of the air exhaust device is different from the wind speed produced by the air supply ports of the air supply devices not in the first range circle, and the wind speed produced by the air outlets of the air exhaust devices, thereby forming a first A differential pressure range circle.

以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者瞭解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。 The detailed features and advantages of the present invention are described in detail below in the implementation mode, and its content is enough to make any person familiar with the related art understand the technical content of the present invention and implement it accordingly, and according to the content disclosed in this specification, the scope of the patent application and the drawings , anyone skilled in the art can easily understand the purpose and advantages of the present invention.

1:防護空間 1: Protective space

2:地板 2: floor

3:病患 3: Patient

100:人物辨識系統 100: People Recognition System

110:人物識別控制器 110: Character recognition controller

121、122、12N:人物識別感測器 121, 122, 12N: people recognition sensor

200:風場控制系統 200: Wind field control system

300:矩陣型風力產生系統 300: matrix wind power generation system

310-1、310-2、310-N、330、340、350、350N-M、350-(N+1)-(M+1)、360、360-N-M、360-(N-1)-(M+1)、370:送風裝置 310-1, 310-2, 310-N, 330, 340, 350, 350N-M, 350-(N+1)-(M+1), 360, 360-N-M, 360-(N-1)- (M+1), 370: air supply device

310-C0、350-C0、360-C0:中心範圍圈 310-C0, 350-C0, 360-C0: Center Range Circle

310-C1、350-C1、360-C1:第一範圍圈 310-C1, 350-C1, 360-C1: First range circle

310-C2:第二範圍圈 310-C2: second range circle

310-C3:第三範圍圈 310-C3: Third Range Circle

310a、320a、350a、370a:馬達 310a, 320a, 350a, 370a: motors

310b、320b、320b、350b、370b:控制器 310b, 320b, 320b, 350b, 370b: controllers

310c、320c、350c、370c:進風口 310c, 320c, 350c, 370c: air inlet

310d、320d、350d、370d:風扇 310d, 320d, 350d, 370d: fan

310e、320e、350e-1、350e-2、350e-3、350e-4、370e-1、370e-2、370e-3、370e-4:風門 310e, 320e, 350e-1, 350e-2, 350e-3, 350e-4, 370e-1, 370e-2, 370e-3, 370e-4: Damper

310f、320f、350f-1、350f-2、350f-3、350f-4、370f-1、370f-2、370f-3、370f-4:篩網 310f, 320f, 350f-1, 350f-2, 350f-3, 350f-4, 370f-1, 370f-2, 370f-3, 370f-4: screen

310g、320g、350g-1、350g-2、350g-3、350g-4、370g-1、370g-2、370g-3、370g-4:出風口 310g, 320g, 350g-1, 350g-2, 350g-3, 350g-4, 370g-1, 370g-2, 370g-3, 370g-4: air outlet

320-1、320-2、320-N:排風裝置 320-1, 320-2, 320-N: Exhaust device

400:過濾系統 400: Filtration system

500:通風管道 500: ventilation duct

611、611-1、611-2、611-3、611-4、612、621、622、630、640、650:風 611, 611-1, 611-2, 611-3, 611-4, 612, 621, 622, 630, 640, 650: Wind

700:人物 700: character

810-1、810-2:人物範圍 810-1, 810-2: character range

901、902、903:投影空間 901, 902, 903: projection space

第1圖,本發明一具體實施例中,於一防護空間的剖面示意圖。 Figure 1 is a schematic cross-sectional view of a protected space in a specific embodiment of the present invention.

第2A圖,本發明之具防護功能之風壓產生系統之系統架構圖。 Fig. 2A is a system architecture diagram of the wind pressure generation system with protection function of the present invention.

第2B圖,本發明之人物識別系統的剖面空間配置與感測示意圖。 Fig. 2B is a schematic diagram of the cross-sectional space configuration and sensing of the person recognition system of the present invention.

第2C圖,本發明之矩陣型風場產生系統的的剖面空間配置示意圖。 Figure 2C is a schematic diagram of the cross-sectional space configuration of the matrix wind field generating system of the present invention.

第3A圖、第3B圖,本發明的送風裝置310與排風裝置320的功能方塊圖。 3A and 3B are functional block diagrams of the air blowing device 310 and the air exhausting device 320 of the present invention.

第4A圖,本發明之防護空間1的上視投影空間901示意圖。 Fig. 4A is a schematic diagram of the upward projection space 901 of the protected space 1 of the present invention.

第4B圖,本發明之人物識別系統擷取到的影像資料示意圖。 Fig. 4B is a schematic diagram of image data captured by the person recognition system of the present invention.

第4C圖,本發明之防護空間1的上視送風裝置之投影空間示意圖。 Figure 4C is a schematic diagram of the projected space of the upward-looking air supply device of the protected space 1 of the present invention.

第4D圖至第4E圖,本發明的以中心座標定義第一範圍圈的投影空間示意圖。 Figures 4D to 4E are schematic diagrams of the projected space of the first circle defined by the central coordinates of the present invention.

第4F圖至第4L圖,本發明的送風矩陣的不同實施樣態示意圖。 Figure 4F to Figure 4L are schematic diagrams of different implementations of the air supply matrix of the present invention.

第5A圖至第5B圖,本發明的以中心座標定義第一範圍圈的投影空間示意圖,另一實施例。 Fig. 5A to Fig. 5B are schematic diagrams of the projection space of the first circle defined by the central coordinates of the present invention, another embodiment.

第6A圖、第6B圖,本發明之四合一式之全覆式送風裝置的送風面與功能方塊圖。 Fig. 6A and Fig. 6B are the air supply surface and functional block diagrams of the four-in-one full-cover air supply device of the present invention.

第7A圖、第7B圖,本發明之周邊式送風裝置的送風面與功能方塊圖。 Fig. 7A and Fig. 7B are the air supply surface and functional block diagrams of the peripheral air supply device of the present invention.

第7C圖,本發明第7A圖、第7B圖之周邊式送風裝置的矩陣排列示意圖。 Figure 7C is a schematic diagram of the matrix arrangement of the peripheral air blowers of Figure 7A and Figure 7B of the present invention.

第7D圖至第7E圖,本發明的以周邊式送風裝置隨人物移動的第一範圍圈移動示意圖。 Fig. 7D to Fig. 7E are schematic diagrams of the movement of the first range circle with the peripheral air blowing device of the present invention moving with the person.

第8A圖,本發明之周邊式送風裝置的送風面示意圖。 Figure 8A is a schematic view of the air supply side of the peripheral air supply device of the present invention.

第8B圖,本發明第8A圖之周邊式送風裝置的矩陣排列示意圖。 Fig. 8B is a schematic diagram of the matrix arrangement of the peripheral air blowing device in Fig. 8A of the present invention.

第8C圖至第8D圖,本發明的以周邊式送風裝置隨人物移動的第一範圍圈移動示意圖。 Fig. 8C to Fig. 8D are schematic diagrams of the movement of the first range circle with the peripheral air blowing device of the present invention moving with the person.

第9A圖至第9C圖,本發明之第一具體實施例之全覆式產生防護性空氣壓差的方法流程圖。 Fig. 9A to Fig. 9C are flow charts of the method for producing a protective air pressure difference in full coverage according to the first embodiment of the present invention.

第10A圖至第10D圖,本發明之第一具體實施例之周邊式產生防護性空氣壓差的方法流程圖。 Fig. 10A to Fig. 10D are flow charts of the method for producing a protective air pressure difference around the periphery of the first embodiment of the present invention.

本發明運用流體力學的自然法則,透過偵測人物的位置,並選取對應於人物位置上方的送風裝置與下方的排風裝置,讓其與其他非人物位置的送風裝置與排風裝置的風速不同,進而使人物位置所處的空間風壓與非人物位置空間的風壓不同,進而可對人物所處位置產生正壓或負壓,進而實現對該人物位置的範圍的空氣防護層的特殊技術功效。 The present invention uses the natural law of fluid mechanics to detect the position of the character, and select the air supply device above and the exhaust device below the position corresponding to the character, so that the wind speed of the air supply device and the exhaust device at other non-character positions are different , so that the wind pressure of the space where the character is located is different from the wind pressure of the space where the character is not, and then can generate positive or negative pressure on the position of the character, and then realize the special technology of the air protection layer in the range of the character's position effect.

請參考第1圖,本發明一具體實施例中,於一防護空間的剖面示意圖。本發明藉由幾個系統,來製造出人物所處位置的正壓或負壓。請同時參考第2A圖,本發明之具防護功能之風壓產生系統之系統架構圖。如第1圖所示,本發明運用了配置於防護空間1的頂面與底面(地板2之上)的矩陣型風力產生系統300,讓其可於人物700所處位置的範圍,風速不同。 Please refer to FIG. 1 , which is a schematic cross-sectional view of a protected space in a specific embodiment of the present invention. The present invention uses several systems to create positive or negative pressure at the location of the character. Please also refer to FIG. 2A, which is a system architecture diagram of the wind pressure generating system with protection function of the present invention. As shown in FIG. 1 , the present invention employs a matrix-type wind power generation system 300 arranged on the top and bottom surfaces (on the floor 2 ) of the protected space 1 , so that the wind speed can be different in the range where the person 700 is located.

為了達到讓人物700所處位置與其他位置的風速不同的目的,本發明採用了兩個系統:人物識別系統100與矩陣型風力產生系統300,並藉由一系列的技術手段來實現人物700(例如醫護人員)於所處位置的正壓,病患3所處位置的負壓,進而達到空氣防護層的特殊技術效果。如圖所示,當控制矩陣型風力產生系統300,位於人物700所處位置上方的送風裝置與下方的排風裝置,使其風速『小於』旁邊其他的送風裝置與排風裝置時,將產生流體力學的壓力差,進而使人物700所處位置的空間為正壓的狀況,如第1圖所示者。反之,當控制矩陣型風力產生系統300,位於人物700所處位置上方的送風裝置與下方的排風裝置,使其風速『大於』旁邊其他的送風裝置與排風裝置時,將產生流體力學的壓力差,進而使人物700所處位置的空間為負壓的狀況。而準確地確認人物700位置的人物識別系統100,就非常 重要了。 In order to achieve the purpose of making the wind speed of the character 700 different from other positions, the present invention adopts two systems: the character recognition system 100 and the matrix wind power generation system 300, and realizes the character 700 ( For example, the positive pressure at the location of the medical staff) and the negative pressure at the location of the patient 3, thereby achieving the special technical effect of the air protection layer. As shown in the figure, when the matrix-type wind power generation system 300 is controlled, the air supply device above and the exhaust device below the position of the character 700 are controlled so that the wind speed is "lower" than other air supply devices and exhaust devices next to it, a The pressure difference of hydrodynamics further makes the space where the character 700 is in a positive pressure state, as shown in FIG. 1 . Conversely, when the matrix wind power generation system 300 is controlled, the air supply device above and the exhaust device below where the character 700 is located, so that the wind speed is "greater than" other air supply devices and exhaust devices next to it, a hydrodynamic force will be generated. The pressure difference further makes the space where the character 700 is located a negative pressure condition. And the person recognition system 100 that confirms the person 700 position accurately, just very important.

人物識別系統100目前有許多種技術可資採用,例如,影像辨識系統、超音波影像辨識系統、光達影像辨識系統、紅外線熱感影像辨識系統、壓力墊系統等等,這些人物辨識系統都可有效地辨識有移動的人物700存在,以及其位置。而人物辨識系統100的設置位置,可依據防護空間1的空間大小,依據人物識別系統100所提供的規格書來設置。如第2B圖所示,人物識別系統100採用了人物識別控制器110、人物識別感測器121、人物識別感測器122......人物識別感測器12N。在本實施例中,人物識別感測器設置於防護空間的頂面,彼此具有交錯的掃描空間,因此,可以精確地感測到人物700的位置,以及其移動的狀態。 There are many technologies available for the person recognition system 100 at present, for example, image recognition systems, ultrasonic image recognition systems, lidar image recognition systems, infrared thermal image recognition systems, pressure pad systems, etc., these person recognition systems can all be Effectively identify the presence and location of the moving person 700 . The installation position of the person recognition system 100 can be set according to the size of the protected space 1 and according to the specifications provided by the person recognition system 100 . As shown in FIG. 2B , the person recognition system 100 employs a person recognition controller 110 , a person recognition sensor 121 , a person recognition sensor 122 . . . a person recognition sensor 12N. In this embodiment, the person recognition sensors are arranged on the top surface of the protective space, and have interlaced scanning spaces, so the position of the person 700 and its moving state can be accurately sensed.

接著,請回頭參考第2A圖及第2C圖,具防護功能之風壓產生系統包括了主要幾個系統:人物辨識系統100、風場控制系統200、矩陣型風力產生系統300與過濾系統400。人物辨識系統100用以辨識至少一人物,並產生該至少一人物位於防護空間1中之至少一人物範圍座標,例如,第1圖當中的人物700。矩陣型風場產生系統300,包括一送風矩陣與一排風矩陣,其中的送風矩陣配置於防護空間1之頂面且排風矩陣配置於防護空間1之底面。送風矩陣與排風矩陣各具有複數個送風裝置與複數個排風裝置,該些送風裝置與該些排風裝置彼此面對排列(可採取一對一、多對一或一對多的模式)且各具有一送風裝置座標與一排風裝置座標。該些送風裝置與該些排風裝置接收一風場控制指令,以產生對應的送風風速與排風風速。過濾系統400以一通風管道500連接送風矩陣與排風矩陣,使送風矩陣與排風矩陣所流動之空氣得以過濾並消毒。風場控制系統200(例如,採用PLC/可程式邏 輯控制器,工業電腦用伺服器等),連接人物辨識系統100、矩陣型風場產生系統300,接收由人物辨識系統100所傳來之至少一人物範圍座標,依據至少一人物範圍座標計算一風場控制範圍參數,並依據風場控制範圍參數映射至矩陣型風場產生系統300中的送風矩陣與排風矩陣,以選取至少一第一範圍圈之該些送風裝置與該些排風裝置,並輸出該風場控制指令,以使該第一範圍圈之該些送風裝置之送風風速與非該第一範圍圈之該些送風裝置之送風風速不同,且使該第一範圍圈之該些排風裝置之排風風速與非該第一範圍圈之該些排風裝置之排風風速不同。 Next, please refer back to FIG. 2A and FIG. 2C , the wind pressure generation system with protective function includes several main systems: person recognition system 100 , wind field control system 200 , matrix wind power generation system 300 and filter system 400 . The person identification system 100 is used to identify at least one person and generate at least one person range coordinate of the at least one person in the protected space 1 , for example, the person 700 in FIG. 1 . The matrix wind field generation system 300 includes an air supply matrix and an exhaust matrix, wherein the air supply matrix is arranged on the top surface of the protected space 1 and the exhaust matrix is arranged on the bottom surface of the protected space 1 . The air supply matrix and the exhaust matrix each have a plurality of air supply devices and a plurality of exhaust devices, and the air supply devices and the exhaust devices are arranged facing each other (one-to-one, many-to-one or one-to-many modes can be adopted) And each has a coordinate of an air supply device and a coordinate of an exhaust device. The air supply devices and the air exhaust devices receive a wind field control command to generate corresponding air supply wind speeds and exhaust wind speeds. The filter system 400 uses a ventilation duct 500 to connect the air supply matrix and the exhaust matrix, so that the air flowing through the air supply matrix and the exhaust matrix can be filtered and sterilized. Wind field control system 200 (for example, adopts PLC/programmable logic series controller, server for industrial computer, etc.), connected to the person recognition system 100, the matrix wind field generation system 300, receives at least one person range coordinate transmitted from the person recognition system 100, and calculates one based on at least one person range coordinate Wind field control range parameters, and according to the wind field control range parameters are mapped to the air supply matrix and exhaust air matrix in the matrix wind field generation system 300, so as to select at least one of the first range circles of the air supply devices and these exhaust devices , and output the wind field control command, so that the air supply wind speed of the air supply devices in the first range circle is different from that of the air supply devices in the non-first range circle, and make the air supply speed of the air supply devices in the first range circle The exhaust wind speeds of the exhaust devices are different from those of the exhaust devices not within the first range circle.

如第2C圖所示,在防護空間1當中,配置於頂面的送風裝置310-1、送風裝置310-2......送風裝置310-N,以及配置於底面的排風裝置320-1、排風裝置320-2......排風裝置320-N為一對一上下對應配置,其分別連結到通風管道500。整個空氣流動的方向(風向),為:送風裝置310-1、送風裝置310-2......送風裝置310-N所產生的風611、風612......,向下吹後,由排風裝置320-1、排風裝置320-2......排風裝置320-N所排出的風621、風622......,再到過濾系統400前的風630,經過過濾系統400後,變為潔淨的風640,再轉向至送風裝置310-1......的進風口的風650。如此循環不已。而此空氣循環的主要動力就是送風裝置310-1、送風裝置310-2......送風裝置310-N,以及排風裝置320-1、排風裝置320-2......排風裝置320-N。 As shown in Figure 2C, in the protected space 1, the air supply device 310-1, the air supply device 310-2 ... the air supply device 310-N are arranged on the top surface, and the air exhaust device 320 is arranged on the bottom surface. -1. The air exhaust device 320 - 2 . . . the air exhaust device 320 -N is arranged one to one up and down, and they are respectively connected to the air duct 500 . The direction (wind direction) of the whole air flow is: the wind 611, the wind 612... produced by the air supply device 310-1, the air supply device 310-2..., the air supply device 310-N, downward After blowing, the wind 621, wind 622... discharged by the exhaust device 320-1, the exhaust device 320-2 ... the exhaust device 320-N, and then before the filter system 400 The wind 630 becomes clean wind 640 after passing through the filter system 400, and then turns to the wind 650 at the air inlet of the air supply device 310-1.... And so on and on. And the main driving force of this air circulation is the air supply device 310-1, the air supply device 310-2...the air supply device 310-N, and the exhaust device 320-1, the exhaust device 320-2..... .Exhaust device 320-N.

接著,請參考第3A圖、第3B圖,本發明的送風裝置310與排風裝置320的功能方塊圖。送風裝置310包括:進風口310c,連結通風管道500;風扇310d,面對進風口310c設置;馬達310a,帶動風扇310d,轉動後使風扇310d將進風口310c之空氣(風650)帶入:風門310e,設置於風扇310d 的出風處,用以控制風扇310d的出風量;篩網310f,設置於風門310e的出風處,用以均勻化風門310e的出風量;出風口310g,設置於篩網310f之出風處,並面對防護空間1;控制器310b,連接馬達310a及風門310e,接收風場控制指令(來自風場控制系統200)後,調節馬達310a轉速與風門310e的大小,藉以調整送風風速。排風裝置320包括:進風口320c,面對防護空間1;一風扇,面對進風口320c設置;風門320e,設置於風扇320d的出風處,用以控制風扇320d之排風量;馬達320a,帶動風扇320d,轉動後使風扇320d將進風口320c之空氣(風611)帶入:排風口320f,設置於風門320e之出風處,面對該通風管道500,排出風621;控制器320b,連接馬達320a及風門320e,接收風場控制指令(來自風場控制系統200)後,調節馬達310a轉速與風門320e的大小,藉以調整排風風速。 Next, please refer to FIG. 3A and FIG. 3B , which are functional block diagrams of the air supply device 310 and the air exhaust device 320 of the present invention. The air supply device 310 includes: an air inlet 310c, connected to the ventilation duct 500; a fan 310d, arranged facing the air inlet 310c; a motor 310a, which drives the fan 310d, and after rotation, the fan 310d brings the air (wind 650) of the air inlet 310c into: the damper 310e, set on the fan 310d The air outlet of the fan 310d is used to control the air output of the fan 310d; the screen 310f is arranged at the air outlet of the air door 310e to even out the air output of the air door 310e; the air outlet 310g is arranged at the air outlet of the screen 310f , and facing the protective space 1; the controller 310b is connected to the motor 310a and the damper 310e, and after receiving the wind field control command (from the wind field control system 200), adjusts the speed of the motor 310a and the size of the damper 310e to adjust the air supply speed. The air exhaust device 320 includes: an air inlet 320c facing the protective space 1; a fan is arranged facing the air inlet 320c; a damper 320e is arranged at the outlet of the fan 320d to control the exhaust air volume of the fan 320d; a motor 320a, Drive the fan 320d, and after the rotation, the fan 320d will bring the air (wind 611) of the air inlet 320c into: the air outlet 320f is arranged at the air outlet of the damper 320e, facing the ventilation duct 500, and exhausts the air 621; the controller 320b, Connect the motor 320a and the damper 320e, and after receiving the wind farm control command (from the wind farm control system 200), adjust the speed of the motor 310a and the size of the damper 320e to adjust the exhaust wind speed.

由以上對第2圖的說明可知,本發明的風場控制系統200,主導了整個的系統流程。風場控制系統200從接收到的人物辨識系統100所傳來之至少一人物範圍座標,經過計算後,產生了對應的第一範圍圈。此第一範圍圈所劃定的送風裝置與排風裝置,就是風場控制系統200主要要調整風速的對象。一般而言,風場控制系統200在無人的狀態下,可採取等風速的方式下達風場控制指令,也就是,每台送風裝置所產生的送風風速相同,且每台排風裝置所產生的排風風速相同。更甚者,排風風速大於送風風速,這是可達成負壓病房的基本條件。 It can be seen from the above description of FIG. 2 that the wind farm control system 200 of the present invention dominates the entire system flow. The wind field control system 200 generates a corresponding first range circle after calculation of at least one person range coordinate received from the person recognition system 100 . The air supply device and the air exhaust device delimited by the first range circle are the objects for which the wind field control system 200 mainly adjusts the wind speed. Generally speaking, the wind field control system 200 can issue wind field control commands in the manner of equal wind speed when there is no one in the state, that is, the wind speed generated by each air supply device is the same, and the wind speed generated by each air exhaust device is the same. The exhaust wind speed is the same. What's more, the exhaust wind speed is greater than the supply air wind speed, which is the basic condition for achieving a negative pressure ward.

明顯地,本發明可經由人物識別系統100所傳來的人物範圍座標來產生對應的第一範圍圈,是因為本發明的人物辨識系統100與矩陣型風力產生系統300共用了防護空間,也就是,兩者有共同的投影平面。風場 控制系統200清楚地掌握了人物辨識系統100所產生的人物700的人物範圍座標與矩陣型風力產生系統300的每個送風裝置與排風裝置的座標,所以,兩者可以相互映射。 Obviously, the present invention can generate the corresponding first range circle through the person range coordinates sent by the person recognition system 100, because the person recognition system 100 of the present invention and the matrix type wind power generation system 300 share the protective space, that is, , both have a common projection plane. wind field The control system 200 clearly grasps the character range coordinates of the person 700 generated by the person recognition system 100 and the coordinates of each air supply device and exhaust device of the matrix wind power generation system 300 , so the two can be mapped to each other.

然而,相較於針對人物700的人物範圍座標可為點、或線性的範圍,第一範圍圈所代表的送風裝置與排風裝置的座標卻為不連續的。因此,實際上,人物700的人物範圍座標與第一範圍圈所代表的送風裝置與排風裝置的座標並無法直接對應,因此,必須加以重新界定。 However, compared with the range coordinates of the character 700 which can be a point or a linear range, the coordinates of the air supply device and the air exhaust device represented by the first range circle are discontinuous. Therefore, in fact, the character range coordinates of the character 700 cannot directly correspond to the coordinates of the air supply device and the air exhaust device represented by the first range circle, and therefore must be redefined.

接下來,請參考第4A圖至第4E圖,其為本發明運用人物700的人物範圍座標來設定第一範圍圈的一具體實施例。第4A圖係為防護空間1的上視投影空間901,圖中可發現,人物700從點P1移動到點P2。此時,對人物辨識系統100來說(例如,影像辨識系統或紅外線影像辨識系統、超音波影像辨識系統),其擷取到的影像資料如第4B圖所示,防護空間1的人物辨識系統100所辨識的投影空間902,人物700顯示為人物範圍810-1與人物範圍810-2。人物辨識系統100將代表人物範圍810-1、人物範圍810-2的人物範圍座標傳送給風場控制系統200。風場控制系統200可依據此人物範圍810-1、人物範圍810-2的人物範圍座標計算出其中心座標。接著,請參考第4C圖,防護空間1的上視送風裝置之投影空間903,風場控制系統200將投影空間轉換至送風裝置之投影空間903後,即可將人物範圍810-1、人物範圍810-2的人物範圍座標與送風裝置之投影空間903疊合,其中,點P1與點P2的中心座標,分別為(X1,Y1)、(X2,Y1)。接著,風場控制系統200即可依據人物範圍810-1與人物範圍810-2的人物範圍座標來界定第一範圍圈。 Next, please refer to FIG. 4A to FIG. 4E , which are a specific embodiment of the present invention using the character range coordinates of the character 700 to set the first range circle. Fig. 4A is a top-view projection space 901 of the protected space 1, in which it can be seen that the person 700 moves from point P1 to point P2. At this time, for the person recognition system 100 (for example, an image recognition system or an infrared image recognition system, an ultrasonic image recognition system), the captured image data is shown in FIG. 4B, and the person recognition system in the protected space 1 In the projected space 902 identified by 100, the person 700 is displayed as a person range 810-1 and a person range 810-2. The person recognition system 100 transmits the person range coordinates representing the person range 810 - 1 and the person range 810 - 2 to the wind farm control system 200 . The wind farm control system 200 can calculate the center coordinates according to the character range coordinates of the character range 810-1 and the character range 810-2. Next, please refer to Figure 4C, the projection space 903 of the upward-looking air supply device in the protected space 1. After the wind field control system 200 converts the projection space to the projection space 903 of the air supply device, the character range 810-1, the character range The coordinates of the person's range of 810-2 are superimposed on the projection space 903 of the air supply device, wherein the center coordinates of point P1 and point P2 are (X1, Y1) and (X2, Y1) respectively. Next, the wind farm control system 200 can define the first range circle according to the character range coordinates of the character range 810-1 and the character range 810-2.

本發明定義第一範圍圈的方式有許多種具體實施例,例如, 中心座標界定法、人物範圍座標界定法。以下,先介紹中心座標界定法,請參考第4D圖至第4E圖。在第4D圖中,風場控制系統200由所計算出來的點P1的中心座標(X1,Y1)來指定中心送風裝置,也對應指定中心排風裝置,亦即,中心送風裝置與中心排風裝置為包覆住點P1的座標者。然而,本實施例恰好為:包覆住點P1的中心座標(X1,Y1)的送風裝置與排風裝置為一個,然而,其他的情形可能是點P1的中心座標,剛好座落於兩個送風裝置之間,或者四個送風裝置之間。因此,點P1的中心座標實質上可能對應到的中心送風裝置與中心排風裝置為至少一個。此中心送風裝置與中心排風裝置的數量,又受到送風矩陣與排風矩陣的結構所影響。如第4C圖為方形緊密結構的矩陣,點P1的關聯最大中心送風裝置數量為4個;第4K圖則為送風裝置340方形交錯排列的矩陣,點P1的關聯最大中心送風裝置數量為3個;第4L圖則為送風裝置330六角形蜂巢結構矩陣,點P1的關聯最大中心送風裝置數量則為3個。 There are many specific embodiments of the manner in which the present invention defines the first range circle, for example, Center coordinate definition method, character range coordinate definition method. In the following, the center coordinate definition method will be introduced first, please refer to Figure 4D to Figure 4E. In Figure 4D, the wind farm control system 200 designates the central air supply device by the calculated central coordinates (X1, Y1) of point P1, and also specifies the central air exhaust device, that is, the central air supply device and the central exhaust air device The device is one that wraps around the coordinates of point P1. However, this embodiment is exactly: the air supply device and the exhaust device covering the central coordinates (X1, Y1) of the point P1 are one. Between air supply devices, or between four air supply devices. Therefore, the central coordinate of the point P1 may substantially correspond to at least one central air supply device and central air exhaust device. The quantity of the central air supply device and the central air exhaust device is also affected by the structure of the air supply matrix and the exhaust matrix. For example, Figure 4C is a matrix with a square compact structure, and the maximum number of central air supply devices associated with point P1 is 4; Figure 4K is a matrix with 340 square air supply devices arranged in a staggered manner, and the maximum number of central air supply devices associated with point P1 is 3 Figure 4L shows the hexagonal honeycomb structure matrix of the air supply device 330, and the maximum number of central air supply devices associated with point P1 is 3.

回到第4D圖,中心座標(X1,Y1)對應了一個送風裝置,風場控制系統200定義其為中心送風裝置310-C0,而包圍中心送風裝置310-C0其外的九個送風裝置則定義為第一範圍圈的送風裝置310-C1,包圍第一範圍圈的送風裝置310-C1其外的14個送風裝置則定義為第二範圍圈的送風裝置310-C2,依此類推。對於排風裝置而言,其程序相同,於此不多加贅述。 Returning to Figure 4D, the central coordinates (X1, Y1) correspond to an air supply device, which is defined by the wind farm control system 200 as the central air supply device 310-C0, and the nine air supply devices surrounding the central air supply device 310-C0 are It is defined as the air supply device 310-C1 in the first range circle, and the 14 air supply devices surrounding the air supply device 310-C1 in the first range circle are defined as the air supply device 310-C2 in the second range circle, and so on. For the air exhaust device, its procedure is the same, so it is not repeated here.

第4E圖中,人物700移動到了點P2,其中心座標(X2,Y1)同樣對應了一個送風裝置,風場控制系統200定義其為中心送風裝置310-C0,而包圍中心送風裝置310-C0其外的九個送風裝置則定義為第一範圍圈的送風裝置310-C1,包圍第一範圍圈的送風裝置310-C1其外的14個送風裝 置則定義為第二範圍圈的送風裝置310-C2,依此類推。對於排風裝置而言,其程序相同,於此不多加贅述。 In Figure 4E, the character 700 has moved to point P2, and its central coordinates (X2, Y1) also correspond to an air supply device, which is defined by the wind field control system 200 as the central air supply device 310-C0, and surrounds the central air supply device 310-C0 The nine air supply devices outside it are then defined as the air supply device 310-C1 of the first range circle, and the 14 air supply devices outside the air supply device 310-C1 surrounding the first range circle The location is defined as the air supply device 310-C2 of the second range circle, and so on. For the air exhaust device, its procedure is the same, so it is not repeated here.

定義了中心送風裝置(1個以上)為中心範圍圈,以及第一範圍圈後,再控制對應的中心送風裝置、第一範圍圈送風裝置的風速與其他的風速不同,例如,中心送風裝置、第一範圍圈送風裝置的風速小於其他送風裝置的風速,即可造成第一範圍圈空間的正壓。反之,則可造成負壓。或者,中心送風裝置的風速最小,第一範圍圈的送風裝置風速次之,其他部分的送風裝置的風速最大;或者,反之。這些控制皆由風場控制系統200的控制程式執行。此即第4D圖、第4E圖的實施例的控制方式。 After defining the central air supply device (more than 1) as the central range circle and the first range circle, then control the corresponding central air supply device, and the wind speed of the first range circle air supply device is different from other wind speeds, for example, the central air supply device, The wind speed of the air supply device in the first range circle is lower than the wind speed of other air supply devices, which can cause positive pressure in the space of the first range circle. On the contrary, it can cause negative pressure. Or, the wind speed of the air supply device in the center is the smallest, the wind speed of the air supply device in the first range circle is the second, and the wind speed of the air supply devices in other parts is the largest; or, vice versa. These controls are all executed by the control program of the wind farm control system 200 . This is the control mode of the embodiments of Fig. 4D and Fig. 4E.

除了控制中心送風裝置與中心範圍圈的送風裝置的風速外(第4D圖、第4E圖的實施例),另外一種方式為控制非中心送風裝置與中心範圍圈的送風裝置的其他送風裝置的風速,使其小於或大於中心送風裝置與中心範圍圈的送風裝置的風速。請參考第5A圖、第5B圖,這個實施例將中心範圍圈定義為人物範圍810-1的人物範圍座標所包含的所有送風裝置310-C0,圖例中有9個送風裝置。而送風裝置包圍其外的為第一範圍圈的送風裝置310-C1,共24個;包圍第一範圍圈外的第二範圍圈的送風裝置310-C2;包圍第二範圍圈外的第三範圍圈的送風裝置310-C3,依此類推。控制第一範圍圈、第二範圍圈、第三範圍圈的送風裝置,使其與中心範圍圈的送風裝置風速不同。同樣地,中心範圍圈的風速最小時,可使其空間範圍產生正壓,反之,產生負壓。 In addition to controlling the wind speed of the central air supply device and the air supply device of the central range circle (the embodiment of Fig. 4D and Fig. 4E), another way is to control the wind speed of other air supply devices of the non-central air supply device and the air supply device of the central range circle , so that it is less than or greater than the wind speed of the central air supply device and the air supply device of the central range circle. Please refer to FIG. 5A and FIG. 5B. In this embodiment, the central range circle is defined as all the air supply devices 310-C0 included in the character range coordinates of the character range 810-1. There are 9 air supply devices in the illustration. The air supply device 310-C1 surrounded by the first range circle is 24 in total; the air supply device 310-C2 of the second range circle outside the first range circle is surrounded; the third range circle outside the second range circle is surrounded. The blower 310-C3 of the range circle, and so on. Control the air supply devices of the first range circle, the second range circle and the third range circle so that the wind speeds of the air supply devices of the center range circle are different from those of the central range circle. Similarly, when the wind speed of the central range circle is minimum, positive pressure can be generated in its spatial range, otherwise, negative pressure can be generated.

無論何種方式,本發明皆可藉由人物範圍座標來定義出第一範圍圈、中心範圍圈等,再藉由中心範圍圈或第一範圍圈內的風速與其他 的不同,藉以達到局部空間正壓或局部空間負壓的特殊技術功效。概念上,無論是中心範圍圈或第一範圍圈那個包覆住人物範圍座標,本發明係以包覆住人物範圍座標的對應送風裝置為基礎,來讓人物所處空間產生正壓或負壓。 In any way, the present invention can define the first range circle, the central range circle, etc. by the character range coordinates, and then use the wind speed in the central range circle or the first range circle and other In order to achieve the special technical effect of local space positive pressure or local space negative pressure. Conceptually, regardless of whether it is the center range circle or the first range circle that covers the coordinates of the character range, the present invention is based on the corresponding air supply device that covers the coordinates of the character range to generate positive or negative pressure in the space where the character is located .

在第4D圖、第4E圖的實施例中,恰好第一範圍圈的大小可包覆住人物範圍810-1與人物範圍810-2。此為送風裝置的尺寸為20公分(cm)x20公分(cm)的實施例,三個送風裝置的尺寸為60公分,而一般人物的肩寬約在40~50公分之間。若送風裝置的尺寸較大或較小時,送風裝置的投影平面對應於人物範圍810-1、人物範圍810-2的數量可能會有所差異。第4F圖,送風裝置310的尺寸為20公分x20公分,人物700可由6~12個送風裝置所包覆;第4G圖,送風裝置311的尺寸為30公分x30公分,人物700可由4~9個送風裝置所包覆;第4H圖,送風裝置312的尺寸為40公分x40公分,人物700可由2~6個送風裝置所包覆;第4I圖,送風裝置313的尺寸為60公分x60公分,人物700可由1~4個送風裝置所包覆。 In the embodiments shown in FIG. 4D and FIG. 4E , the size of the first range circle can cover the character range 810 - 1 and the character range 810 - 2 . This is an embodiment in which the size of the air supply device is 20 centimeters (cm) x 20 centimeters (cm), the size of the three air supply devices is 60 centimeters, and the shoulder width of an ordinary person is about 40 to 50 centimeters. If the size of the air supply device is larger or smaller, the number of projection planes of the air supply device corresponding to the character range 810-1 and the character range 810-2 may be different. In Figure 4F, the size of the air supply device 310 is 20 cm x 20 cm, and the character 700 can be covered by 6 to 12 air supply devices; in Figure 4G, the size of the air supply device 311 is 30 cm x 30 cm, and the character 700 can be covered by 4 to 9 air supply devices Covered by the air supply device; in Figure 4H, the size of the air supply device 312 is 40 cm x 40 cm, and the figure 700 can be covered by 2~6 air supply devices; in Figure 4I, the size of the air supply device 313 is 60 cm x 60 cm, the figure 700 can be covered by 1~4 air supply devices.

以中心座標來定義第一範圍圈的方式,在送風裝置尺寸較小時,具有適用性。然而,送風裝置的尺寸越大時,有可能造成第一範圍圈過大的情形,如第4H圖的實施例,第一範圍圈可能會涵蓋到12個送風裝置,而其範圍涵蓋到240公分x240公分,並不符合實際的需求。因此,本發明第4J圖採用了另外一種作法,在40公分x40公分的一個送風裝置370中,配置了4個出風口,使其變為實際上20公分x20公分的出風口。 The method of defining the first range circle with the central coordinates is applicable when the size of the air supply device is small. However, when the size of the air supply device is larger, it may cause the situation that the first range circle is too large, as in the embodiment of Figure 4H, the first range circle may cover 12 air supply devices, and its range covers 240 cm x 240 centimeter, does not meet the actual needs. Therefore, Fig. 4J of the present invention has adopted another kind of approach, in an air supply device 370 of 40 centimeters x 40 centimeters, configured 4 air outlets, makes it become actually the air outlet of 20 centimeters x 20 centimeters.

以上的送風裝置的實施例,為全覆式送風裝置的技術,亦即,送風裝置的送風口(或出風口)為全面積出風的方式。換言之,送風裝 置以方形M公分xM公分的面積一次送風,該面積所送出的風速相同。 The above embodiment of the air supply device is the technology of the full-cover air supply device, that is, the air supply port (or air outlet) of the air supply device is a way of blowing out the air over the entire area. In other words, the blower The area of square M cm x M cm is used to supply air at one time, and the wind speed sent by this area is the same.

請參考第6A圖、第6B圖,四合一式之全覆式送風裝置,送風裝置370包括:進風口370c,連結通風管道500;風扇370d,面對進風口370c設置;馬達370a,帶動風扇370d,轉動後使風扇370d將進風口370c之空氣(風650)帶入:風門370e-1、風門370e-2、風門370e-3、風門370e-4,設置於風扇370d的出風處,用以控制風扇370d的出風量;篩網370f-1、篩網370f-2、篩網370f-3、篩網370f-4,各設置於風門370e-1、風門370e-2、風門370e-3、風門370e-4的出風處,用以均勻化風門370e-1、風門370e-2、風門370e-3、風門370e-4的出風量;出風口370g-1、出風口370g-2、出風口370g-3、出風口370g-4,各設置於篩網370f-1、篩網370f-2、篩網370f-3、篩網370f-4之出風處,並面對防護空間1;控制器370b,連接馬達370a及風門3703,接收風場控制指令(來自風場控制系統200)後,調節馬達370a轉速與風門370e-1、風門370e-2、風門370e-3、風門370e-4的大小,藉以調整送風風速。四合一全覆式排風裝置的結構,可與四合一全覆式送風裝置相同,即採取多個進風口,多個風門的方式。其中,風門370e-1、風門370e-2、風門370e-3、風門370e-4為可調整開度比例型。微控制器370b接收到風場控制系統200所傳來的風場控制指令後,控制馬達370a與風門370e-1、風門370e-2、風門370e-3、風門370e-4使出風口370g-1、出風口370g-2、出風口370g-3、出風口370g-4的風611-1、風611-1、風611-1、風611-1可不相同。 Please refer to Figure 6A and Figure 6B, the four-in-one full-cover air supply device, the air supply device 370 includes: the air inlet 370c, connected to the ventilation duct 500; the fan 370d, set facing the air inlet 370c; the motor 370a, driving the fan 370d After turning, the fan 370d will bring the air (wind 650) of the air inlet 370c into: damper 370e-1, damper 370e-2, damper 370e-3, damper 370e-4, which are arranged at the outlet of the fan 370d for Control the air volume of the fan 370d; the screens 370f-1, 370f-2, 370f-3, and 370f-4 are respectively set on the damper 370e-1, the damper 370e-2, the damper 370e-3, and the damper The air outlet of 370e-4 is used to equalize the air output of damper 370e-1, damper 370e-2, damper 370e-3, damper 370e-4; air outlet 370g-1, air outlet 370g-2, air outlet 370g -3. Air outlet 370g-4, each set at the air outlet of screen 370f-1, screen 370f-2, screen 370f-3, screen 370f-4, and facing the protective space 1; controller 370b , connect the motor 370a and the damper 3703, after receiving the wind field control command (from the wind field control system 200), adjust the speed of the motor 370a and the size of the damper 370e-1, damper 370e-2, damper 370e-3, damper 370e-4, To adjust the wind speed of the air supply. The structure of the four-in-one full-coverage exhaust device can be the same as the four-in-one full-coverage air supply device, that is, multiple air inlets and multiple dampers. Among them, damper 370e-1, damper 370e-2, damper 370e-3, damper 370e-4 are adjustable opening proportional type. After the microcontroller 370b receives the wind field control command from the wind field control system 200, it controls the motor 370a and the damper 370e-1, the damper 370e-2, the damper 370e-3, and the damper 370e-4 to make the air outlet 370g-1 The wind 611-1, wind 611-1, wind 611-1, and wind 611-1 of the air outlet 370g-2, air outlet 370g-3, and air outlet 370g-4 may be different.

接下來,說明本發明的送風裝置之另一具體實施例,周邊式送風裝置與周邊式排風裝置。請參考第7A圖至第7E圖,本發明之方形周邊式送風裝置350的造型、功能方塊圖與第一範圍圈的界定方法實施例。周邊 式送風裝置350包括了送風口350g-1、送風口350g-2、送風口350g-3、送風口350g-1,共四個。送風口350g-1、送風口350g-2、送風口350g-3、送風口350g-1個別設置於周邊式送風裝置350面對防護空間1之面的周邊,如第7A圖所示。 Next, another specific embodiment of the air supply device of the present invention, the peripheral air supply device and the peripheral air exhaust device will be described. Please refer to FIG. 7A to FIG. 7E for the shape, functional block diagram and embodiment of the method for defining the first range circle of the square peripheral air supply device 350 of the present invention. around Type air supply device 350 has included air supply port 350g-1, air supply port 350g-2, air supply port 350g-3, air supply port 350g-1, totally four. The air supply port 350g-1, the air supply port 350g-2, the air supply port 350g-3, and the air supply port 350g-1 are individually arranged on the periphery of the side of the peripheral air supply device 350 facing the protected space 1, as shown in FIG. 7A.

請參考第7B圖,周邊式送風裝置350包括:進風口350c,連結通風管道500;風扇350d,面對進風口350c設置;馬達350a,帶動風扇350d,轉動後使風扇350d將進風口350c之空氣(風650)帶入:四個風門350e-1、風門350e-2、風門350e-3、風門350e-4,設置於風扇350d的出風處,用以控制風扇350d的出風量;四個篩網350f-1、篩網350f-2、篩網350f-3、篩網350f-4,各設置於風門350e-1、風門350e-2、風門350e-3、風門350e-4的出風處,用以均勻化風門350e-1、風門350e-2、風門350e-3、風門350e-4的出風量;四個出風口350g-1、出風口350g-2、出風口350g-3、出風口350g-4,各設置於篩網350f-1、篩網350f-2、篩網350f-3、篩網350f-4之出風處,並面對防護空間1;控制器350b,連接馬達350a及風門3503,接收風場控制指令(來自風場控制系統200)後,調節馬達350a轉速與風門350e-1、風門350e-2、風門350e-3、風門350e-4的大小,藉以調整送風風速。四合一周邊式排風裝置的結構,可與四合一周邊式送風裝置相同,即採取多個進風口,多個風門的方式。其中,風門350e-1、風門350e-2、風門350e-3、風門350e-4為可調整開度比例型。微控制器350b接收到風場控制系統200所傳來的風場控制指令後,控制馬達370a與風門370e-1、風門350e-2、風門350e-3、風門350e-4使出風口350g-1、出風口350g-2、出風口350g-3、出風口350g-4的風611-1、風611-1、風611-1、風611-1可不相同。 Please refer to Figure 7B, the peripheral air supply device 350 includes: an air inlet 350c, connected to the ventilation duct 500; a fan 350d, set facing the air inlet 350c; (Wind 650) brought in: four dampers 350e-1, damper 350e-2, damper 350e-3, damper 350e-4, arranged at the outlet of the fan 350d to control the air output of the fan 350d; four sieves Net 350f-1, sieve 350f-2, sieve 350f-3, and sieve 350f-4 are respectively arranged at the air outlets of air door 350e-1, air door 350e-2, air door 350e-3, air door 350e-4, It is used to equalize the air volume of damper 350e-1, damper 350e-2, damper 350e-3 and damper 350e-4; four air outlets 350g-1, air outlet 350g-2, air outlet 350g-3, air outlet 350g -4, each installed at the air outlet of the screen 350f-1, screen 350f-2, screen 350f-3, screen 350f-4, and facing the protective space 1; the controller 350b is connected to the motor 350a and the damper 3503. After receiving the wind field control command (from the wind field control system 200), adjust the rotation speed of the motor 350a and the sizes of the dampers 350e-1, 350e-2, 350e-3, and 350e-4, so as to adjust the air supply speed. The structure of the four-in-one peripheral air exhaust device can be the same as that of the four-in-one peripheral air supply device, that is, multiple air inlets and multiple air doors are adopted. Among them, damper 350e-1, damper 350e-2, damper 350e-3, damper 350e-4 are adjustable opening proportional type. After the microcontroller 350b receives the wind field control command from the wind field control system 200, it controls the motor 370a and the damper 370e-1, the damper 350e-2, the damper 350e-3, and the damper 350e-4 to make the air outlet 350g-1 The wind 611-1, wind 611-1, wind 611-1, and wind 611-1 of the air outlet 350g-2, air outlet 350g-3, and air outlet 350g-4 may be different.

接著,請參考第7D圖與第7E圖,當人物範圍座標的中心點A移至中心點B時,風場控制系統200即相對應地,將中心範圍圈350-C0與第一範圍圈350-C1移動,中心範圍圈由送風裝置350N-M移動至送風裝置350-(N+1)-(M+1)。 Next, please refer to FIG. 7D and FIG. 7E. When the center point A of the person’s range coordinates moves to the center point B, the wind field control system 200 correspondingly sets the center range circle 350-C0 and the first range circle 350 -C1 moves, and the center circle moves from the air supply device 350N-M to the air supply device 350-(N+1)-(M+1).

接著,請參考第8A圖至第8D圖,本發明之六角形周邊式送風裝置360的造型與第一範圍圈的界定方法實施例。相較於第7A圖至第7E圖的實施例可知,兩者差別在於出風口的數量,第8A的六角形周邊式送風裝置360的出風口共有六個,分為為:出風口360g-1、出風口360g-2、出風口360g-3、出風口360g-4、出風口360g-5、出風口360g-6,其面對防護空間的面,具體排列為第8B圖的蜂巢狀。在第8C圖與第8D圖中,當人物範圍座標的中心點A移至中心點B時,風場控制系統200即相對應地,將中心範圍圈360-C0與第一範圍圈360-C1移動,中心範圍圈由送風裝置360N-M移動至送風裝置350-(N-1)-(M+1)。 Next, please refer to FIG. 8A to FIG. 8D , the embodiment of the shape of the hexagonal peripheral air supply device 360 and the method for defining the first range circle of the present invention. Compared with the embodiments in Fig. 7A to Fig. 7E, it can be seen that the difference between the two lies in the number of air outlets. The hexagonal peripheral air supply device 360 in No. 8A has six air outlets in total, which are divided into: air outlet 360g-1 , air outlet 360g-2, air outlet 360g-3, air outlet 360g-4, air outlet 360g-5, air outlet 360g-6, the surface facing the protective space is specifically arranged in the honeycomb shape of the 8B figure. In Figure 8C and Figure 8D, when the center point A of the person's range coordinates moves to the center point B, the wind field control system 200 correspondingly sets the central range circle 360-C0 and the first range circle 360-C1 Moving, the central range circle is moved from the air supply device 360N-M to the air supply device 350-(N-1)-(M+1).

由以上說明可知,本發明藉由風場控制系統200來控制矩陣型風力產生系統,依據人物辨識系統100的人物範圍座標,藉由定義出第一範圍圈或中心範圍圈的方式來實現人物700所處空間的正壓或負壓。以下,將列舉數個控制方法的實施例,來說明本發明的正負壓產生與控制方法。 As can be seen from the above description, the present invention uses the wind field control system 200 to control the matrix wind power generation system, and realizes the character 700 by defining the first range circle or the central range circle according to the character range coordinates of the character recognition system 100 The positive or negative pressure of the space in which it is located. Hereinafter, several embodiments of the control method will be cited to illustrate the positive and negative pressure generation and control method of the present invention.

首先,請參考第9A圖至第9C圖,本發明之第一具體實施例之全覆式產生防護性空氣壓差的方法,主流程包含下列步驟: First of all, please refer to Fig. 9A to Fig. 9C, the method for producing a protective air pressure difference in the first specific embodiment of the present invention, the main process includes the following steps:

步驟S101:以該人物識別系統進行人物識別,當偵測到一人物時,產生一人物範圍座標,該人物範圍座標係依據該防護空間之投影座標而定義。 Step S101: Use the person recognition system to perform person recognition. When a person is detected, a person range coordinate is generated, and the person range coordinate is defined according to the projected coordinate of the protective space.

步驟S102:定義該些送風裝置與該些排風裝置於該防護空間之個別投影座標。 Step S102: Define individual projection coordinates of the air supply devices and the air exhaust devices in the protected space.

步驟S103:依據該人物範圍座標,定義對應於該人物範圍座標之該些送風裝置、該些排風裝置為一第一範圍圈,使該第一範圍圈之該些送風裝置、該些排風裝置所產生之風速與非該第一範圍圈之該些送風裝置、該些排風裝置所產生之風速不同,進而形成一第一壓差範圍圈。 Step S103: According to the range coordinates of the person, define the air supply devices and the exhaust devices corresponding to the coordinates of the range of the person as a first range circle, so that the air supply devices and the exhaust devices of the first range circle The wind speed generated by the device is different from the wind speed generated by the air supply devices and the air exhaust devices not in the first range circle, thereby forming a first pressure difference range circle.

第9A圖的流程,主要的技術特徵有兩項:由人物範圍座標來定義第一範圍圈,以及控制第一範圍圈內與非第一範圍圈內的風速不同。如此,即可在第一範圍圈與非第一範圍圈產生空氣壓差。至於如何由人物範圍座標來定義第一範圍圈,本發明提供了一些具體的實施例: The process in Fig. 9A has two main technical features: the first range circle is defined by the character range coordinates, and the wind speed in the first range circle is controlled differently from the non-first range circle. In this way, an air pressure difference can be generated between the first range circle and the non-first range circle. As for how to define the first range circle by character range coordinates, the present invention provides some specific embodiments:

第9B圖的流程,提供了定義第一範圍圈的一實施例:以通過該人物範圍座標的送風裝置為第一範圍圈。亦即,人物範圍座標所標示的為人物範圍的邊界座標,所有覆蓋住此邊界的送風裝置或排風裝置,皆為第一範圍圈者。第9B圖的實施例包括以下步驟: The process in FIG. 9B provides an embodiment of defining the first range circle: the first range circle is the air supply device passing through the range coordinates of the person. That is to say, the character range coordinates indicate the boundary coordinates of the character range, and all the air supply devices or exhaust devices covering this boundary belong to the first range circle. The embodiment of Fig. 9B includes the following steps:

步驟S111:通過該人物範圍座標之該些送風裝置、該些排風裝置定義為該第一範圍圈。 Step S111: The air supply devices and the air exhaust devices passing through the person's range coordinates are defined as the first range circle.

步驟S112:檢視該第一範圍圈所包圍的空間中是否仍有未被定義的該些送風裝置與該些排風裝置,若有,定義為一中心範圍圈。以第4F圖的實施例來說,人物700可能會被6~12個送風裝置所覆蓋,而最外圈的約略就是第一範圍圈。也就是,第一範圍圈的送風裝置的數量,可能是6個、8個或10個,而中心範圍圈的數量可能是0個、1個或2個。所以,第一範圍圈以本實施例的方式來界定時,有些狀況下是會沒有中心範圍圈的。 Step S112: Check whether there are still undefined air supply devices and air exhaust devices in the space surrounded by the first area circle, and if so, define it as a central area circle. Taking the embodiment in FIG. 4F as an example, the character 700 may be covered by 6-12 air supply devices, and the outermost circle is approximately the first range circle. That is, the number of air supply devices in the first range circle may be 6, 8 or 10, while the number of the central range circle may be 0, 1 or 2. Therefore, when the first range circle is defined in the manner of this embodiment, there may be no central range circle in some cases.

步驟S113:使該中心範圍圈、該第一範圍圈之該些送風裝置、該些排風裝置所產生之風速與非該中心範圍圈、第一範圍圈之該些送風裝置、該些排風裝置所產生之風速不同,進而形成一第一壓差範圍圈。 Step S113: Make the wind speed generated by the central area circle, the air supply devices of the first area circle, and the exhaust air devices be compared with the wind speeds of the air supply devices and the exhaust air devices of the non-central area circle, the first area circle The wind speeds generated by the device are different, thereby forming a first pressure difference range circle.

第一壓差範圍圈,可以是正壓,可以是負壓,端視應用場景而定。以負壓病房為例,若要保護醫護人員,則提供正壓環境給醫護人員,提供負壓環境給病人。相對地,第二壓差範圍圈則為第一壓差範圍圈的相反。 The first differential pressure range ring can be positive pressure or negative pressure, depending on the application scenario. Take the negative pressure ward as an example. To protect the medical staff, provide a positive pressure environment for the medical staff and a negative pressure environment for the patients. In contrast, the second differential pressure range ring is the opposite of the first differential pressure range ring.

其中,當無中心範圍圈時,本發明提供了數種控制第一範圍圈內的送風裝置產生正壓的實施例,亦即,調整送風風速與排風風速的實施例。調整第一範圍圈內的正壓:I.透過調整該第一範圍圈內之該些送風裝置、該些排風裝置的送風風速與排風風速小於初始設定值,其他的送風裝置、排風裝置的風速則為初始設定值;II.透過調整非該第一範圍圈內之該些送風裝置、該些排風裝置的送風風速與排風風速大於初始設定值。調整第一範圍圈內的負壓:I.透過調整該第一範圍圈內之該些送風裝置、該些排風裝置的送風風速與排風風速大於初始設定值;II.透過調整非該第一範圍圈內之該些送風裝置、該些排風裝置的送風風速與排風風速小於初始設定值,該第一範圍圈的則為初始設定值。以上兩種方法,一種是調整第一範圍圈內的風速,另一種則為調整非第一範圍圈的風速,兩者調整的對象不同,但得到的技術效果相同。 Among them, when there is no central range circle, the present invention provides several embodiments of controlling the positive pressure generated by the air supply device in the first range circle, that is, embodiments of adjusting the wind speed of the air supply and the wind speed of the exhaust air. Adjust the positive pressure in the first range circle: I. By adjusting the air supply wind speed and exhaust wind speed of these air supply devices and these exhaust air devices in the first range circle to be less than the initial set value, other air supply devices, exhaust air The wind speed of the device is the initial set value; II. By adjusting the air supply wind speed and the exhaust wind speed of the air supply devices not in the first range circle and the exhaust air devices are greater than the initial set value. Adjust the negative pressure in the first range circle: I. By adjusting the air supply wind speed and exhaust wind speed of the air supply devices and exhaust air devices in the first range circle to be greater than the initial set value; II. The air supply wind speed and the exhaust wind speed of the air supply devices and the air exhaust devices in a range circle are less than the initial set value, and the first range circle is the initial set value. The above two methods, one is to adjust the wind speed within the first range circle, and the other is to adjust the wind speed outside the first range circle. The objects of both adjustments are different, but the technical effects obtained are the same.

當有中心範圍圈時,本發明提供了數種控制第一範圍圈內的送風裝置產生正壓的實施例,亦即,調整送風風速與排風風速的實施例。調整第一範圍圈內的正壓:I.透過調整該中心範圍圈、該第一範圍圈內之該些送風裝置、該些排風裝置的送風風速與排風風速小於初始設定值,其他 的送風裝置、排風裝置的風速則為初始設定值,且中心範圍圈的部分,其風速小於第一範圍圈,也就是中心範圍圈的風速最小。調整第一範圍圈內的負壓:I.透過調整該中心範圍圈、該第一範圍圈內之該些送風裝置、該些排風裝置的送風風速與排風風速大於初始設定值,且中心範圍圈的部分,其風速大於第一範圍圈,也就是中心範圍圈的風速最大。以上兩種方法,一種是調整第一範圍圈內的風速,另一種則為調整非第一範圍圈的風速,兩者調整的對象不同,但得到的技術效果相同。 When there is a central range circle, the present invention provides several embodiments for controlling the positive pressure generated by the air supply device in the first range circle, that is, embodiments for adjusting the air supply velocity and the exhaust velocity. Adjust the positive pressure in the first range circle: I. By adjusting the air supply wind speed and exhaust wind speed of the center range circle, the air supply devices in the first range circle, and the exhaust air devices to be less than the initial setting value, other The wind speed of the air supply device and the exhaust device is the initial setting value, and the wind speed of the part of the central range circle is smaller than the first range circle, that is, the wind speed of the central range circle is the minimum. Adjust the negative pressure in the first range circle: I. By adjusting the central range circle, the air supply devices in the first range circle, and the air supply wind speed and exhaust wind speed of these exhaust devices are greater than the initial set value, and the center The wind speed of the part of the range circle is greater than that of the first range circle, that is, the wind speed of the central range circle is the highest. The above two methods, one is to adjust the wind speed within the first range circle, and the other is to adjust the wind speed outside the first range circle. The objects of both adjustments are different, but the technical effects obtained are the same.

第9C圖的流程,提供了定義第一範圍圈的另一實施例:以中心座標來定義第一範圍圈。亦即,由人物範圍座標所計算的中心座標,來界定第一範圍圈的範圍。第9C圖的實施例包括以下步驟: The process of FIG. 9C provides another embodiment of defining the first range circle: the first range circle is defined by the central coordinates. That is, the center coordinates calculated from the coordinates of the range of the person define the range of the first range circle. The embodiment of Figure 9C includes the following steps:

步驟S121:依據該人物範圍座標計算該人物之一中心座標。 Step S121: Calculate one of the center coordinates of the character according to the range coordinates of the character.

步驟S122:依據該中心座標,選取最接近該中心座標之至少一個該送風裝置與至少一個該排風裝置為一中心範圍圈。如前所述,中心範圍圈的送風裝置數量,以第4F圖為例,有可能是1個、2個或4個。以第4K圖、第4L圖的實施例而言,有可能是1個、2個或3個。 Step S122: According to the center coordinate, select at least one of the air supply device and at least one of the air exhaust device closest to the center coordinate as a center circle. As mentioned above, the number of air supply devices in the central range circle may be 1, 2 or 4, taking Figure 4F as an example. In the embodiment of Fig. 4K and Fig. 4L, there may be 1, 2 or 3.

步驟S123:定義包覆該中心範圍圈之該些送風裝置與該些排風裝置為一第一範圍圈,並檢視該第一範圍圈所包覆之範圍是否完全覆蓋該人物範圍座標。 Step S123: Define the air supply devices and the air exhaust devices covering the central circle as a first circle, and check whether the range covered by the first circle completely covers the coordinates of the character range.

步驟S124:若該第一範圍圈所包覆之範圍未完全覆蓋該人物範圍座標,增加選取可覆蓋住該人物範圍座標之至少一個該送風裝置與該排風裝置至該第一範圍圈。 Step S124: If the range covered by the first range circle does not completely cover the character range coordinates, add and select at least one of the air supply device and the exhaust device that can cover the character range coordinates to the first range circle.

步驟S125:使該中心範圍圈、該第一範圍圈之該些送風裝 置、該些排風裝置所產生之風速與非該中心範圍圈、第一範圍圈之該些送風裝置、該些排風裝置所產生之風速不同,進而形成一第一壓差範圍圈。 Step S125: Make the air supply devices of the central range circle and the first range circle The wind speeds produced by these exhaust devices are different from the wind speeds produced by these air supply devices and these exhaust devices that are not in the central range circle and the first range circle, thereby forming a first pressure difference range circle.

比較第9B圖與第9C圖的實施例可知,兩者所界定的第一範圍圈有可能相同,也有可能不同。第9B圖的實施例中,有可能沒有中心範圍圈,而第9C圖的實施例中,一定會有中心範圍圈。所以,第一範圍圈的定義方法不同,可能可導引出相同範圍的第一範圍圈,也有可能不同。而一旦中心範圍圈與第一範圍圈定義出來後,其產生正壓與負壓的方法就如同前所述,於此不多加贅述。 Comparing the embodiments in FIG. 9B and FIG. 9C, it can be known that the first range circles defined by the two may be the same or different. In the embodiment of Fig. 9B, there may be no center circle, but in the embodiment of Fig. 9C, there must be a center circle. Therefore, different methods of defining the first circle of scope may lead to the first circle of the same scope, or may be different. Once the central range circle and the first range circle are defined, the method for generating positive pressure and negative pressure is the same as that described above, and will not be repeated here.

以上的風場控制方法,係為以全覆式送風裝置、全覆式排風裝置為實施例時的控制方法。以下,將說明周邊式送風裝置、排風裝置的控制方法。請參考第10A圖至第10C圖,周邊式產生防護性空氣壓差的方法,主流程包含下列步驟: The wind field control method above refers to the control method when the full-cover air supply device and the full-cover air exhaust device are used as examples. Hereinafter, the control method of the peripheral air blower and the exhaust device will be described. Please refer to Fig. 10A to Fig. 10C, the method of producing a protective air pressure difference around the perimeter, the main process includes the following steps:

步驟S201:以該人物識別系統進行人物識別,當偵測到一人物時,產生一人物範圍座標,該人物範圍座標係依據該防護空間之投影座標而定義。 Step S201: Use the person recognition system to perform person recognition. When a person is detected, a person range coordinate is generated, and the person range coordinate is defined according to the projected coordinate of the protective space.

步驟S202:定義該些送風裝置的該些送風口與該些排風裝置的該些排風口於該防護空間之個別投影座標。 Step S202: Define individual projected coordinates of the air outlets of the air supply devices and the exhaust outlets of the air exhaust devices in the protected space.

步驟S203:計算該人物範圍座標當中之一中心座標。與全覆式送風裝置不同,周邊式送風裝置的出風口位於周邊,而全覆式送風裝置的出風口是整面。因此周邊式送風裝置的出風口的中心,都位於各個邊的中心,而全覆式送風裝置的出風口的中心,位於整面的中心。也因此,當人物範圍座標通過一個周邊式送風裝置時,有可能只通過一個、二個或三個出風 口。而其通過的位置,是在其內或其外,很難判定。因此,以人物範圍座標的中心座標作為參考點,就可以較精準掌握周邊式送風裝置的出風口與人物範圍座標之間的關係。 Step S203: Calculate one of the center coordinates of the person's range coordinates. Different from the full-cover air supply device, the air outlet of the peripheral air supply device is located at the periphery, while the air outlet of the full-cover air supply device is the entire surface. Therefore, the center of the air outlet of the peripheral air supply device is located at the center of each side, while the center of the air outlet of the full-cover air supply device is located at the center of the entire surface. Therefore, when the character range coordinates pass through a peripheral air supply device, it is possible to pass only one, two or three air outlets mouth. It is difficult to determine whether the passing position is inside or outside. Therefore, by using the center coordinates of the character range coordinates as a reference point, the relationship between the air outlets of the peripheral air supply device and the character range coordinates can be grasped more accurately.

步驟S204:依據該人物範圍座標,定義對應於該人物範圍座標之該些送風裝置的該些送風口、該些排風裝置的該些排風口為一第一範圍圈,使該第一範圍圈內所有的該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速與非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速不同,進而形成一第一壓差範圍圈。 Step S204: According to the range coordinates of the person, define the air supply outlets of the air supply devices and the exhaust outlets of the air exhaust devices corresponding to the range coordinates of the person as a first range circle, so that the first range circle The wind speed generated by the air outlets of all the air supply devices and the exhaust outlets of the air exhaust devices is different from that of the air supply outlets and exhaust devices of the air supply devices that are not in the first range The wind speeds generated by the exhaust outlets are different, thereby forming a first pressure difference range circle.

定義第一範圍圈的一實施例,如第10B圖所示。 An embodiment of defining the first range circle is shown in FIG. 10B.

步驟S211:依據該人物範圍座標,選取大於且最接近於該人物範圍座標與該中心座標之距離所對應之該些送風裝置的該些送風口、該些排風裝置的該些排風口為一第一範圍圈,且使該第一範圍圈的該些送風口能包圍住該人物範圍座標。與全覆式送風裝置不同,由於全覆式送風裝置可以『覆蓋住』人物座標範圍,而構成封閉的結構;而周邊式送風裝置由於出風口設於周邊,所以,人物座標範圍所通過的出風口,彼此可能呈現開放是的,而未彼此連結。因此,本發明的其中一個實施例是形成一個封閉的,由出風口彼此連結的封閉結構。 Step S211: According to the character range coordinates, select the air supply outlets and the air exhaust devices of the air supply devices that are larger and closest to the distance between the character range coordinates and the center coordinates as one A first range circle, and the air outlets of the first range circle can surround the range coordinates of the character. Different from the full-coverage air supply device, because the full-coverage air supply device can "cover" the coordinate range of the character, it forms a closed structure; and the peripheral air supply device has the air outlet located on the periphery, so the outlet through which the character coordinate range passes The outlets may be open to each other, but not connected to each other. Therefore, one embodiment of the present invention is to form a closed structure connected to each other by the air outlets.

步驟S212:使該第一範圍圈內所有的該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速小於非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速,進而形成一正壓差範圍圈。 Step S212: Make the wind speed generated by the air outlets of all the air supply devices and the air exhaust outlets of the air exhaust devices in the first range circle be smaller than the wind speed generated by the air supply devices not in the first range circle The wind speeds produced by the air outlets of the air outlets and the air exhaust devices form a positive pressure difference range circle.

步驟S213:使該第一範圍圈內所有的該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速大於非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速,進而形成一負壓壓差範圍圈。 Step S213: Make the wind speed generated by the air outlets of all the air supply devices and the air outlets of the air exhaust devices in the first range circle be greater than the wind speed of the air supply devices not in the first range circle The wind speeds produced by the air outlets of the air supply ports and the air exhaust devices form a negative pressure differential range circle.

定義第一範圍圈的另一實施例,如第10C圖所示。 Another embodiment of defining the first circle of range is shown in Fig. 10C.

步驟S221:依據該人物範圍座標,選取通過該人物範圍座標所對應之該些送風裝置的該些送風口、該些排風裝置的該些排風口為一第一範圍圈。 Step S221: According to the range coordinates of the person, select the air supply outlets of the air supply devices and the exhaust outlets of the air exhaust devices corresponding to the person range coordinates as a first range circle.

步驟S222:使該第一範圍圈內所有的該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速小於非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速,進而形成一正壓差範圍圈。 Step S222: Make the wind speed generated by the air outlets of all the air supply devices and the air exhaust outlets of the air exhaust devices in the first range circle be smaller than the wind speed generated by the air supply devices not in the first range circle The wind speeds produced by the air outlets of the air outlets and the air exhaust devices form a positive pressure difference range circle.

步驟S223:使該第一範圍圈內所有的該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速大於非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速,進而形成一負壓壓差範圍圈。 Step S223: Make the wind speed generated by the air outlets of all the air supply devices and the air exhaust outlets of the air exhaust devices in the first range circle be greater than the wind speed generated by the air supply devices not in the first range circle The wind speeds produced by the air outlets of the air supply ports and the air exhaust devices form a negative pressure differential range circle.

步驟S211~步驟S213與步驟S221~步驟S223兩者都是定義第一範圍圈的方法。此外,還可進一步定義中心範圍圈,如第10D圖所示。 Both steps S211 to S213 and steps S221 to S223 are methods for defining the first circle. In addition, the central range circle can be further defined, as shown in Figure 10D.

步驟S231:定義包圍該中心座標之該些送風裝置的該些送風口與該些排風裝置的該些排風口為一中心範圍圈。如前所述的實施例,這裡的中心範圍圈,是以包圍的概念,類似步驟S211~步驟S213。由於中心座標是點,所以,其可能位於周邊式送風裝置的出風口,也可能位於出風口以 外。以第4F圖的實施例為例,如果剛好位於出風口,則包圍中心座標的周邊式送風裝置的出風口數量,可能是五個,也就是,相鄰的一個出風口以及包含該周邊式送風裝置本身的四個出風口;也可以是一個,也就是該個出風口。如果中心座標剛好位於兩個出風口之間,那麼,包圍中心座標的周邊式送風裝置的出風口數量,則為八個(封閉式包圍),也可以採用兩個(開放式包圍)。若中心座標恰好座落於四個出風口之間,那麼,包圍中心座標的周邊式送封裝置的出風口數量是四個。依此類推。這裡的包圍的概念,除了可以用步驟S111~步驟S113的封閉式包圍的概念來詮釋,也可以用開放式包圍的概念來詮釋。。 Step S231 : Define the air supply openings of the air supply devices and the air exhaust outlets of the air exhaust devices surrounding the central coordinate as a central circle. As in the aforementioned embodiment, the central circle here is based on the concept of encirclement, similar to steps S211 to S213. Since the central coordinate is a point, it may be located at the air outlet of the peripheral air supply device, or it may be located at the outlet of the air outlet. outside. Taking the embodiment in Figure 4F as an example, if it is just at the air outlet, the number of air outlets of the peripheral air supply device surrounding the central coordinates may be five, that is, an adjacent air outlet and the peripheral air supply The four air outlets of the device itself; it can also be one, that is, the air outlet. If the central coordinates are just between the two air outlets, then the number of air outlets of the peripheral air supply device surrounding the central coordinates is eight (closed surround), or two (open surrounded). If the central coordinate is exactly located between the four air outlets, then the number of air outlets of the peripheral sealing delivery device surrounding the central coordinate is four. So on and so forth. The concept of encirclement here can be interpreted not only by the concept of closed encirclement in steps S111 to S113 , but also by the concept of open encirclement. .

步驟S232:使該第一範圍圈內所有的該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速小於非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速,且使該中心範圍圈內所有的該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速小於該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速,進而形成一正壓差範圍圈。 Step S232: Make the wind speed generated by the air outlets of all the air supply devices and the air exhaust outlets of the air exhaust devices in the first range circle be smaller than the wind speed generated by the air supply devices not in the first range circle The air speeds produced by the air supply outlets and the exhaust outlets of the air exhaust devices, and the wind speeds generated by the air supply outlets of all the air supply devices and the exhaust outlets of the exhaust devices in the central range circle The wind speed is lower than the wind speed generated by the air outlets of the air supply devices and the air outlets of the air exhaust devices in the first range circle, thereby forming a positive pressure difference range circle.

步驟S233:使該第一範圍圈內所有的該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速大於非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速,且使該中心範圍圈內所有的該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速大於該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速,進而形成一負壓差範圍圈。 Step S233: Make the wind speed generated by the air outlets of all the air supply devices and the air outlets of the air exhaust devices in the first range circle be greater than the wind speed of the air supply devices not in the first range circle The air speeds produced by the air supply outlets and the exhaust outlets of the air exhaust devices, and the wind speeds generated by the air supply outlets of all the air supply devices and the exhaust outlets of the exhaust devices in the central range circle The wind speed is greater than the wind speed generated by the air outlets of the air supply devices and the air outlets of the air exhaust devices in the first range circle, thereby forming a negative pressure difference range circle.

步驟S231~步驟S233的實施例中,其目的同樣在創造中心範 圍圈、第一範圍圈等不同層的風速,以期達到第一範圍圈當中,或者,從中心範圍圈到第一範圍圈到其他的部分的風速遞增或遞減的狀態。 In the embodiment of step S231 ~ step S233, its purpose is also in the creation center The wind speed of different layers such as the surrounding circle and the first range circle is expected to reach the state of increasing or decreasing wind speed in the first range circle, or from the central range circle to the first range circle to other parts.

同樣地,步驟S231~步驟S233也可採用控制第一範圍圈之外的出風口,使其速度不同於第一範圍圈之內的出風口風速。作法如前所述,於此不再贅述。 Similarly, steps S231 to S233 may also control the air outlets outside the first range to make their speeds different from the wind speeds of the air outlets within the first range. The method is as mentioned above and will not be repeated here.

然而,偵測到人物後,判斷這個人是什麼人?是醫護人員,還是病人,接下來才知道要如何對該人物進行壓差的保護。以下,將列舉數個實施例來說明。 However, after detecting a person, who is the person judged? Whether it is a medical staff or a patient, the next thing is to know how to protect the character from the pressure difference. Hereinafter, several embodiments will be listed for illustration.

在本發明的一個實施例中,採用只有一個特定的對象有標籤,也就是單標籤,例如醫護人員,或者病患,也就是非黑即白的概念。具體的作法為:當所辨識之該人物有一標籤時,形成該第一壓差範圍圈;當所辨識之該人物無該標籤時,依據該人物範圍座標,選取通過該人物範圍座標所對應之該些送風裝置、該些排風裝置為一第一範圍圈,使該第一範圍圈之該些送風裝置、該些排風裝置所產生之風速與非該第一範圍圈之該些送風裝置、該些排風裝置所產生之風速不同,進而形成一第二壓差範圍圈,該第二壓差範圍圈與該第一壓差範圍圈相反。 In one embodiment of the present invention, only one specific object has a label, that is, a single label, such as a medical staff or a patient, that is, the concept of either black or white. The specific method is: when the identified person has a label, form the first pressure difference range circle; These air supply devices and these air exhaust devices are a first range circle, so that the wind speed produced by these air supply devices and these air exhaust devices in the first range circle . The wind speeds generated by the air exhaust devices are different, thereby forming a second differential pressure range circle, and the second differential pressure range circle is opposite to the first differential pressure range circle.

接著,在本發明的另一種實施例中,採用雙標籤的作法。也就是,當所辨識之該人物有一第一標籤時,形成該第一壓差範圍圈;當所辨識之該人物有一第二標籤時,形成一第二壓差範圍圈,該第二壓差範圍圈與該第一壓差範圍圈相反。 Next, in another embodiment of the present invention, a double-label approach is adopted. That is, when the identified person has a first label, the first pressure difference range circle is formed; when the identified person has a second label, a second pressure difference range circle is formed, and the second pressure difference range circle is formed. The range ring is opposite the first differential pressure range ring.

其中標籤係為一射頻識別標籤之實體標籤,或由該人物識別系統所產生之一特定人物判斷之軟體標籤(Soft Tag)。所謂的軟體標籤, 就是由人物識別裝置依據其系統的判斷,例如,判斷醫護人員的穿著材質(防護衣),與病患的穿著材質(棉質衣料),進而判斷其身份,來產生對應的軟體標籤。 The tag is a physical tag of a radio frequency identification tag, or a software tag (Soft Tag) generated by the person identification system to judge a specific person. The so-called software label, It is based on the judgment of the system of the person recognition device, for example, judging the material (protective clothing) worn by medical staff and the material (cotton clothing) worn by patients, and then judging their identities to generate corresponding software tags.

由以上的多種實施例可知,本發明藉由實現對於人物700的人物識別、人物所處的範圍定義(第一範圍圈)以及不同風速的產生,進而產生對於人物周圍的風壓不同,而創造一個防護性的風壓空間,進而實現對於醫護人員或其他需受保護人員的主動式防護。此一主動式防護,就相當於一個空氣防護罩,並且,隨侍在側,跟隨著醫護人員的位置而移動。於是,實施本發明的技術,可讓醫護人員,在現代負壓病房仍有缺陷的情況下,對醫護人員增加一層防護網,藉以降低醫護人員遭到感染的可能性。 It can be known from the above various embodiments that the present invention realizes the recognition of the person 700, the definition of the range of the person (the first range circle) and the generation of different wind speeds, thereby generating different wind pressures around the person, and creating A protective wind pressure space, thereby realizing active protection for medical staff or other people who need to be protected. This active protection is equivalent to an air shield, and it is accompanied by the side, moving with the position of the medical staff. Therefore, implementing the technology of the present invention allows medical staff to add a layer of protective net to the medical staff under the condition that modern negative pressure wards still have defects, so as to reduce the possibility of medical staff being infected.

雖然本發明的技術內容已經以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神所作些許之更動與潤飾,皆應涵蓋於本發明的範疇內,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the technical content of the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any modification and modification made by those skilled in the art without departing from the spirit of the present invention should be covered by the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application.

1:防護空間 1: Protective space

2:地板 2: floor

3:病患 3: Patient

100:人物辨識系統 100: People Recognition System

300:矩陣型風力產生系統 300: matrix wind power generation system

700:人物 700: character

Claims (25)

一種周邊式產生防護性空氣壓差的方法,運用於配置有具有一人物識別系統、一矩陣型風力產生系統之一防護空間,該矩陣型風力產生系統具有分別配置於該防護空間頂面與底面之一送風矩陣與一排風矩陣,該送風矩陣與該排風矩陣各具有複數個送風裝置與複數個排風裝置,該些送風裝置與該些排風裝置彼此面對,且每個該送風裝置與該排風裝置各具有複數個周邊送風口與複數個周邊排風口,包含:以該人物識別系統進行人物識別,當偵測到一人物時,產生一人物範圍座標,該人物範圍座標係依據一防護空間之投影空間而定義,該防護空間之投影空間由該人物識別系統所辨識並定義;定義該些送風裝置的該些送風口與該些排風裝置的該些排風口於該防護空間之投影空間的複數個個別投影座標;計算該人物範圍座標當中之一中心座標;及依據該人物範圍座標,定義對應於該人物範圍座標之該些送風裝置的該些送風口、該些排風裝置的該些排風口為一第一範圍圈,使該第一範圍圈內所有的該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速與非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速不同,進而形成一第一壓差範圍圈;其中,定義對應於該人物範圍座標之該些送風裝置、該些排風裝置為該第一範圍圈之方式為:依據該人物範圍座標,選取大於且相鄰於該人物範圍座標與該中心座標之距離所對應之該些送風裝置的該些送風口、該些排風 裝置的該些排風口為一第一範圍圈。 A method for generating a protective air pressure difference around the perimeter, which is applied to a protective space equipped with a person identification system and a matrix wind power generation system, and the matrix wind power generation system is respectively arranged on the top and bottom of the protective space An air supply matrix and an exhaust matrix, the air supply matrix and the exhaust matrix each have a plurality of air supply devices and a plurality of exhaust devices, the air supply devices and the exhaust devices face each other, and each of the air supply The device and the exhaust device each have a plurality of peripheral air supply outlets and a plurality of peripheral exhaust outlets, including: using the person recognition system to perform person identification, when a person is detected, a person range coordinate is generated, and the person range coordinate system Define according to the projection space of a protective space, the projection space of the protective space is identified and defined by the person recognition system; define the air supply outlets of the air supply devices and the exhaust outlets of the air exhaust devices in the protection A plurality of individual projection coordinates of the projected space of the space; calculate one of the center coordinates among the character range coordinates; and define the air supply outlets and the rows of the air supply devices corresponding to the character range coordinates according to the character range coordinates The air outlets of the wind devices are a first range circle, so that the wind speeds produced by the air outlets of the air supply devices and the air outlets of the exhaust devices in the first range circle are not the same as those of the air outlets of the air outlets. The wind speeds generated by the air outlets of the air supply devices and the air exhaust outlets of the air exhaust devices in the first range circle are different, thereby forming a first pressure difference range circle; wherein, the definition corresponds to the character range coordinates The air supply devices and the air exhaust devices are in the first range circle: according to the character range coordinates, select the air supply devices that are larger than and adjacent to the distance between the character range coordinates and the center coordinates The air outlets, the exhaust The exhaust outlets of the device form a first range circle. 如請求項1所述之周邊式產生防護性空氣壓差的方法,更包含:當所辨識之該人物有一標籤時,形成該第一壓差範圍圈;當所辨識之該人物無該標籤時,依據該人物範圍座標,選取大於且相鄰於該人物範圍座標與該中心座標之距離所對應之該些送風裝置的該些送風口、該些排風裝置的該些排風口為一第一範圍圈,使該第一範圍圈內所有的之該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速與非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口所產生之風速不同,進而形成一第二壓差範圍圈,該第二壓差範圍圈與該第一壓差範圍圈相反。 The method for generating a protective air pressure difference around the perimeter as described in Claim 1 further includes: forming the first pressure difference range circle when the identified person has a tag; when the identified person does not have the tag , according to the character range coordinates, select the air supply outlets and the exhaust outlets of the air supply devices that are larger than and adjacent to the distance between the character range coordinates and the center coordinates as a first range circle, so that the wind speeds produced by the air outlets of the air supply devices and the exhaust outlets of the exhaust devices in the first range circle are the same as those of the air supply devices not in the first range circle The wind speeds generated by the air outlets and the exhaust outlets of the air exhaust devices are different, thereby forming a second pressure difference range circle, which is opposite to the first pressure difference range circle. 如請求項1所述之周邊式產生防護性空氣壓差的方法,其中,當所辨識之該人物有一第一標籤時,形成該第一壓差範圍圈;當所辨識之該人物有一第二標籤時,形成一第二壓差範圍圈,該第二壓差範圍圈與該第一壓差範圍圈相反。 The method for producing a protective air pressure difference around the perimeter as described in claim 1, wherein, when the identified person has a first label, the first pressure difference range circle is formed; when the identified person has a second When labeling, a second differential pressure range ring is formed, and the second differential pressure range ring is opposite to the first differential pressure range ring. 如請求項2、3所述之周邊式產生防護性空氣壓差的方法,其中該標籤係為一射頻識別標籤之實體標籤,或由該人物識別系統所產生之一特定人物判斷之軟體標籤。 The method for generating a protective air pressure difference around the periphery as described in claim 2 and 3, wherein the tag is a physical tag of a radio frequency identification tag, or a software tag for identifying a specific person generated by the person identification system. 如請求項4所述之周邊式產生防護性空氣壓差的方法,其中控制該第一範圍圈內之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速小於非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風 速,以產生一正壓差範圍圈。 The method for producing a protective air pressure difference around the periphery as described in claim 4, wherein the air supply speed of the air supply ports of the air supply devices and the air discharge ports of the air discharge devices within the first range is controlled The air supply wind speed and the exhaust wind speed of the air supply outlets of the air supply devices and the exhaust air outlets of the exhaust air devices are smaller than the exhaust wind speed. speed to produce a positive differential pressure range circle. 如請求項5所述之周邊式產生防護性空氣壓差的方法,其中調整送風風速與排風風速的方式,係透過調整該第一範圍圈內之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速小於初始設定值。 The method for generating a protective air pressure difference around the periphery as described in claim 5, wherein the mode of adjusting the air supply wind speed and the exhaust air wind speed is by adjusting the air supply ports, the air supply devices of the air supply devices in the first range circle The air supply velocity and the exhaust velocity of the exhaust outlets of the exhaust devices are lower than the initial set values. 如請求項5所述之周邊式產生防護性空氣壓差的方法,其中調整送風風速與排風風速的方式,係透過調整非該第一範圍圈內之該些送風裝置、該些排風裝置的送風風速與排風風速大於初始設定值。 The method for generating a protective air pressure difference around the perimeter as described in Claim 5, wherein the method of adjusting the air supply wind speed and the exhaust wind speed is by adjusting the air supply devices and the air exhaust devices that are not in the first range circle The supply air speed and exhaust air speed are greater than the initial set value. 如請求項4所述之周邊式產生防護性空氣壓差的方法,其中控制該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速大於非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速,以產生一負壓差範圍圈。 The method for generating a protective air pressure difference around the periphery as described in claim 4, wherein the air supply speed and the air speed of the air supply ports of the air supply devices in the first range circle and the exhaust ports of the exhaust devices are controlled. The exhaust wind speed is greater than the air supply wind speed and exhaust wind speed of the air supply ports of the air supply devices and the air exhaust ports of the air exhaust devices other than the first range circle, so as to generate a negative pressure difference range circle. 如請求項8所述之周邊式產生防護性空氣壓差的方法,其中調整送風風速與排風風速的方式,係透過調整該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速大於初始設定值。 The method for producing a protective air pressure difference around the periphery as described in claim 8, wherein the mode of adjusting the air supply wind speed and the exhaust air wind speed is by adjusting the air supply ports and the air supply devices of the first range circle. The air supply velocity and the exhaust velocity of the exhaust outlets of the exhaust device are greater than the initial set values. 如請求項8所述之周邊式產生防護性空氣壓差的方法,其中調整送風風速與排風風速的方式,係透過調整非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速小於初始設定值。 The method for generating a protective air pressure difference around the periphery as described in Claim 8, wherein the mode of adjusting the air supply wind speed and the exhaust air wind speed is by adjusting the air supply ports, the air supply devices of the air supply devices that are not in the first range circle. The air supply velocity and the exhaust velocity of the exhaust outlets of the exhaust devices are lower than the initial set values. 如請求項1所述之周邊式產生防護性空氣壓差的方法,其 中,定義對應於該人物範圍座標之該些送風裝置、該些排風裝置為該第一範圍圈之方式為:依據該人物範圍座標,選取通過該人物範圍座標所對應之該些送風裝置的該些送風口、該些排風裝置的該些排風口為一第一範圍圈。 The method for producing a protective air pressure difference in a peripheral type as described in Claim 1, wherein , the method of defining the air supply devices and the exhaust devices corresponding to the coordinates of the character range as the first range circle is: according to the coordinates of the range of the character, select the air supply devices corresponding to the coordinates of the range of the character The air supply ports and the air exhaust ports of the air exhaust devices form a first range circle. 如請求項11所述之周邊式產生防護性空氣壓差的方法,其中控制該第一範圍圈內之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速小於非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速,以產生一正壓差範圍圈。 The method for producing a protective air pressure difference around the periphery as described in claim 11, wherein the air supply speed of the air supply ports of the air supply devices and the air discharge ports of the air discharge devices within the first range is controlled The air supply wind speed and the exhaust wind speed of the air supply outlets of the air supply devices and the exhaust outlets of the air exhaust devices are smaller than the exhaust wind speed, so as to generate a positive pressure difference range circle. 如請求項12所述之周邊式產生防護性空氣壓差的方法,其中調整送風風速與排風風速的方式,係透過調整該第一範圍圈內之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速小於初始設定值。 The method for generating a protective air pressure difference around the periphery as described in claim 12, wherein the mode of adjusting the air supply wind speed and the exhaust air wind speed is by adjusting the air supply ports, the air supply devices of the air supply devices in the first range circle. The air supply velocity and the exhaust velocity of the exhaust outlets of the exhaust devices are lower than the initial set values. 如請求項12所述之周邊式產生防護性空氣壓差的方法,其中調整送風風速與排風風速的方式,係透過調整非該第一範圍圈內之該些送風裝置、該些排風裝置的送風風速與排風風速大於初始設定值。 The method for generating a protective air pressure difference around the periphery as described in claim 12, wherein the method of adjusting the air supply wind speed and the exhaust wind speed is by adjusting the air supply devices and the air exhaust devices that are not in the first range circle The supply air speed and exhaust air speed are greater than the initial set value. 如請求項11所述之周邊式產生防護性空氣壓差的方法,其中控制該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速大於非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速,以產生一負壓差範圍圈。 The method for generating a protective air pressure difference around the periphery as described in claim 11, wherein the air supply wind speed and the air speed of the air supply ports of the air supply devices in the first range circle, the air discharge ports of the exhaust devices are controlled The exhaust wind speed is greater than the air supply wind speed and exhaust wind speed of the air supply ports of the air supply devices and the air exhaust ports of the air exhaust devices other than the first range circle, so as to generate a negative pressure difference range circle. 如請求項15所述之周邊式產生防護性空氣壓差的方法,其 中調整送風風速與排風風速的方式,係透過調整該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速大於初始設定值。 The method for producing a protective air pressure difference in a peripheral type as described in claim 15, wherein The way to adjust the air supply wind speed and exhaust wind speed is to adjust the air supply wind speed and exhaust wind speed of the air supply outlets of the air supply devices in the first range circle and the exhaust air outlets of the exhaust devices to be greater than the initial setting. value. 如請求項15所述之周邊式產生防護性空氣壓差的方法,其中調整送風風速與排風風速的方式,係透過調整非該第一範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速小於初始設定值。 The method for generating a protective air pressure difference around the periphery as described in claim 15, wherein the method of adjusting the air supply wind speed and the exhaust wind speed is by adjusting the air supply outlets, the air supply devices of the air supply devices that are not in the first range circle. The air supply velocity and the exhaust velocity of the exhaust outlets of the exhaust devices are lower than the initial set values. 如請求項4或11所述之周邊式產生防護性空氣壓差的方法,更包含:定義包圍該中心座標之該些送風裝置的該些送風口與該些排風裝置的該些排風口為一中心範圍圈。 The method for producing a protective air pressure difference in the peripheral type as described in claim 4 or 11 further includes: defining the air supply ports of the air supply devices surrounding the central coordinate and the air discharge ports of the exhaust devices as A central range circle. 如請求項18所述之周邊式產生防護性空氣壓差的方法,更包含:控制該中心範圍圈之至少一個該送風裝置的該些送風口、該排風裝置的該些排風口的送風風速、排風風速,不同於該第一範圍圈內之所有其他該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速、排風風速。 The method for generating a protective air pressure difference in a peripheral type as described in claim 18, further comprising: controlling the air supply speed of the air supply ports of the at least one air supply device and the air discharge ports of the air exhaust device in the central range circle , The exhaust wind speed is different from the air supply wind speed and the exhaust wind speed of the air supply outlets of all the other air supply devices in the first range circle, and the exhaust air outlets of the exhaust devices. 如請求項19所述之周邊式產生防護性空氣壓差的方法,其中控制該中心範圍圈與該第一範圍圈內所有其他之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速小於非該第一範圍圈內之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速,且該中心範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速小於 該第一範圍圈內所有其他之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速,以產生一正壓差範圍圈。 The method for generating a protective air pressure difference in a peripheral type as described in claim 19, wherein the air outlets of the central circle and all other air supply devices in the first circle are controlled, and the air outlets of the air exhaust devices are controlled. The air supply wind speed and exhaust wind speed of these air outlets are lower than the air supply wind speed and exhaust wind speed of the air supply outlets of the air supply devices and the exhaust air outlets of the air exhaust devices outside the first range circle, and the The air supply wind speed and the exhaust wind speed of the air supply outlets of the air supply devices and the exhaust outlets of the air exhaust devices in the central range circle are less than The air supply wind speed and exhaust wind speed of the air supply outlets of the other air supply devices and the air exhaust outlets of the air exhaust devices in the first range circle, so as to generate a positive pressure difference range circle. 如請求項20所述之周邊式產生防護性空氣壓差的方法,其中調整送風風速與排風風速的方式,係透過調整該中心範圍圈與該第一範圍圈內所有其他之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速小於初始設定值。 The method for generating a protective air pressure difference around the periphery as described in claim 20, wherein the method of adjusting the air supply velocity and the exhaust velocity is by adjusting the central area circle and all other air supply devices in the first area circle The air supply wind speed and the exhaust wind speed of the air supply outlets and the exhaust outlets of the exhaust devices are less than the initial set value. 如請求項20所述之周邊式產生防護性空氣壓差的方法,其中調整送風風速與排風風速的方式,係透過調整非該中心範圍圈與該第一範圍圈內所有其他之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速大於初始設定值。 The method for producing a protective air pressure difference around the periphery as described in claim 20, wherein the mode of adjusting the air supply wind speed and the exhaust air wind speed is by adjusting all the other air supply winds not in the central range circle and the first range circle The air supply wind speed and the exhaust air wind speed of the air supply ports of the device and the air exhaust ports of the air exhaust devices are greater than the initial setting values. 如請求項19所述之周邊式產生防護性空氣壓差的方法,其中控制該中心範圍圈與該第一範圍圈內所有其他之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速大於非該中心範圍圈與該第一範圍圈內所有其他之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速,且該中心範圍圈之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速大於該第一範圍圈內所有其他之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速,以產生一負壓差範圍圈。 The method for generating a protective air pressure difference in a peripheral type as described in claim 19, wherein the air outlets of the central circle and all other air supply devices in the first circle are controlled, and the air outlets of the air exhaust devices are controlled. The air supply wind speed and the exhaust wind speed of the air outlets are greater than the air supply wind speeds of the air supply outlets and the air outlets of the air exhaust devices in all other air supply devices not in the central range circle and the first range circle and exhaust wind speed, and the air supply wind speed and exhaust wind speed of the air supply outlets of the air supply devices and the exhaust outlets of the air exhaust devices in the central range circle are greater than those of all the other ones in the first range circle The air supply wind speed and exhaust wind speed of the air supply ports of the air supply device and the air exhaust ports of the air exhaust devices are used to generate a negative pressure difference range circle. 如請求項23所述之周邊式產生防護性空氣壓差的方法,其中調整送風風速與排風風速的方式,係透過調整該中心範圍圈與該第一範圍圈內所有其他之該些送風裝置的該些送風口、該些排風裝置的 該些排風口的送風風速與排風風速大於初始設定值。 The method for generating a protective air pressure difference around the perimeter as described in claim 23, wherein the method of adjusting the air supply velocity and the exhaust velocity is by adjusting the central area circle and all other air supply devices in the first area circle The air supply outlets, the exhaust devices The air supply velocity and the exhaust velocity of the exhaust outlets are greater than the initial set values. 如請求項23所述之周邊式產生防護性空氣壓差的方法,其中調整送風風速與排風風速的方式,係透過調整非該中心範圍圈與該第一範圍圈內所有其他之該些送風裝置的該些送風口、該些排風裝置的該些排風口的送風風速與排風風速小於初始設定值。 The method for producing a protective air pressure difference around the periphery as described in claim 23, wherein the method of adjusting the air supply wind speed and the exhaust air wind speed is by adjusting all the other air supply winds not in the central range circle and the first range circle The air supply wind speed and the exhaust air wind speed of the air supply ports of the device and the air exhaust ports of the air exhaust devices are lower than the initial setting values.
TW110104726A 2021-02-08 2021-02-08 Method for generating protective air pressure difference with peripheral wind outlets device TWI790544B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW110104726A TWI790544B (en) 2021-02-08 2021-02-08 Method for generating protective air pressure difference with peripheral wind outlets device
CN202123405802.5U CN218846352U (en) 2021-02-08 2021-12-31 Wind pressure generating system with protection function
CN202111651836.4A CN114909747A (en) 2021-02-08 2021-12-31 Wind pressure generating system with protection function and method for generating protective air pressure difference
US17/579,226 US20220252295A1 (en) 2021-02-08 2022-01-19 Wind barrier generation system with protective function and method of generating protective air pressure difference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110104726A TWI790544B (en) 2021-02-08 2021-02-08 Method for generating protective air pressure difference with peripheral wind outlets device

Publications (2)

Publication Number Publication Date
TW202232506A TW202232506A (en) 2022-08-16
TWI790544B true TWI790544B (en) 2023-01-21

Family

ID=83782534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110104726A TWI790544B (en) 2021-02-08 2021-02-08 Method for generating protective air pressure difference with peripheral wind outlets device

Country Status (1)

Country Link
TW (1) TWI790544B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201344595A (en) * 2012-04-25 2013-11-01 Chunghwa Telecom Co Ltd Air-conditioning comfort level control system combined with image recognition and method
WO2015098478A1 (en) * 2013-12-25 2015-07-02 鈴木 良延 Air purification device and operating room equipped with same
CN111413936A (en) * 2020-03-31 2020-07-14 重庆海润绿色科技集团有限公司 Negative-pressure ward unit intelligent management system based on Internet of things and big data
TWM600926U (en) * 2020-04-29 2020-09-01 全人健康事業有限公司 Mobile negative pressure isolation care system
CN212201461U (en) * 2020-03-29 2020-12-22 河南沐之鑫实业有限公司 Negative pressure movable ward and isolation cabin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201344595A (en) * 2012-04-25 2013-11-01 Chunghwa Telecom Co Ltd Air-conditioning comfort level control system combined with image recognition and method
WO2015098478A1 (en) * 2013-12-25 2015-07-02 鈴木 良延 Air purification device and operating room equipped with same
CN212201461U (en) * 2020-03-29 2020-12-22 河南沐之鑫实业有限公司 Negative pressure movable ward and isolation cabin
CN111413936A (en) * 2020-03-31 2020-07-14 重庆海润绿色科技集团有限公司 Negative-pressure ward unit intelligent management system based on Internet of things and big data
TWM600926U (en) * 2020-04-29 2020-09-01 全人健康事業有限公司 Mobile negative pressure isolation care system

Also Published As

Publication number Publication date
TW202232506A (en) 2022-08-16

Similar Documents

Publication Publication Date Title
TWI779483B (en) A wind barrier generation system with protective function
JP6770761B2 (en) Infectious disease room
KR102151091B1 (en) Sterilization system in negative pressure isolation room
TWM615036U (en) Full covered wind outlet device and a matrix wind generation system using the same
TWM617179U (en) A wind barrier generation system with protective function
TWI790544B (en) Method for generating protective air pressure difference with peripheral wind outlets device
TWM628405U (en) Peripheral wind outlets device and a matrix wind generation system using the same
TWI794737B (en) Method for generating protective air pressure difference with full covered wind outlet device
TWI788778B (en) Full covered wind outlet device and a matrix wind generation system using the same
TWI786540B (en) Peripheral wind outlets device and a matrix wind generation system using the same
KR20210074792A (en) Air conditioning device and control method thereof
TW202303054A (en) Peripheral wind outlets device
TW202246707A (en) Full covered wind outlet device
CN107823689A (en) Air disinfector control method and device based on infrared sensor
CN107990509A (en) Control method of fresh air equipment and fresh air equipment
US20220252295A1 (en) Wind barrier generation system with protective function and method of generating protective air pressure difference
CN218846352U (en) Wind pressure generating system with protection function
CN103438538A (en) Diagnosis and treatment environment construction method for avoiding infection between doctor and patient through directional airflow field established in environmental air pressure difference creation mode
CN103720248A (en) Sale window with sterilization and disinfection device
WO2023009577A1 (en) Directing air streams at a target
CN104976709B (en) A kind of medical air micro dust particle obstructing instrument
KR20220010376A (en) Ultraviolet ray disinfection device and control method thereof
CN204943734U (en) A kind of medical air micro dust particle obstructing instrument
CN205953283U (en) Elevator ventilation unit
KR102514297B1 (en) A lighting device with sterilization function