TWI790424B - Smart industrial automation data acquisition module and internet of things erection method - Google Patents

Smart industrial automation data acquisition module and internet of things erection method Download PDF

Info

Publication number
TWI790424B
TWI790424B TW109106915A TW109106915A TWI790424B TW I790424 B TWI790424 B TW I790424B TW 109106915 A TW109106915 A TW 109106915A TW 109106915 A TW109106915 A TW 109106915A TW I790424 B TWI790424 B TW I790424B
Authority
TW
Taiwan
Prior art keywords
communication interfaces
interface
service
industrial automation
data acquisition
Prior art date
Application number
TW109106915A
Other languages
Chinese (zh)
Other versions
TW202135508A (en
Inventor
薄占平
Original Assignee
宏碁通信股份有限公司
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁通信股份有限公司, 宏碁股份有限公司 filed Critical 宏碁通信股份有限公司
Priority to TW109106915A priority Critical patent/TWI790424B/en
Publication of TW202135508A publication Critical patent/TW202135508A/en
Application granted granted Critical
Publication of TWI790424B publication Critical patent/TWI790424B/en

Links

Images

Abstract

A smart industrial automation data acquisition module and an internet of things erection method are provided. The smart industrial automation data acquisition module includes a plurality of device communication interfaces, a processing unit and a plurality of service communication interfaces. The device communication interfaces are used to connect at least one sensing device. The communication types of the device communication interfaces are not the same. The processing unit is connected to the device communication interfaces. These service communication interfaces are connected to the processing unit. These service communication interfaces are used to connect a backend service. The communication types of the service communication interfaces are not the same. The processing unit selects one of the device communication interfaces to connect to the sensing device according to a device communication setting configuration. The processing unit further selects one of the service communication interfaces to connect with the backend service according to a service communication setting configuration.

Description

智能工業自動化數據採集裝置及物聯網架設 方法 Intelligent industrial automation data acquisition device and Internet of things erection method

本揭露是有關於一種數據採集裝置及物聯網架設方法,且特別是有關於一種智能工業自動化數據採集裝置及物聯網架設方法。 The present disclosure relates to a data collection device and a method for setting up the Internet of Things, and in particular relates to a data collection device for intelligent industrial automation and a method for setting up the Internet of Things.

一般而言,物聯網可分為感測器、通訊網路與應用程序等三層。第一層包括感測器和類似的裝置。對於各種應用中,感測器或其他設備收集資訊。第二層由通訊網路組成。感測器與雲端或後端服務的通訊方式有很多種。開發人員必須考慮通訊距離、訊號覆蓋範圍、數據規劃、電池壽命等來做選擇。不同的位置和不同的環境需要不同的解決方案,因此靈活性對設計而言相當重要。 Generally speaking, the Internet of Things can be divided into three layers: sensors, communication networks, and applications. The first layer includes sensors and similar devices. For various applications, sensors or other devices collect information. The second layer consists of the communication network. There are many ways for a sensor to communicate with a cloud or backend service. Developers must consider communication distance, signal coverage, data plan, battery life, etc. to make a choice. Different locations and different environments require different solutions, so flexibility is important to the design.

第三層則是由應用程序組成。資訊發送到雲端或後端服務後,使用者介面會顯示結果或執行更多資訊分 析。雲端/後端服務和應用程序之間有許多應用程式介面(API)。開發人員可以遵循定義的應用程式介面來控制資訊。 The third layer is composed of applications. After the information is sent to the cloud or back-end service, the user interface will display the results or perform more information analysis. analysis. There are many application programming interfaces (APIs) between cloud/backend services and applications. Developers can follow the defined API to control the information.

通常,開發一個物聯網物件可能需要六個月到一年的時間來規劃與設定物聯網的第一層、第二層與第三層之設計。此種開發方式相當耗時,而無法因應技術的快速變化。 Typically, developing an IoT object may take six months to a year to plan and set up the design of the first, second and third layers of the IoT. This development method is time-consuming and cannot cope with rapid changes in technology.

本揭露係有關於一種智能工業自動化數據採集裝置及物聯網架設方法,其能夠快速設定與編程裝置通訊介面與服務通訊介面,以達成智能連接。 This disclosure relates to an intelligent industrial automation data acquisition device and a method for setting up the Internet of Things, which can quickly set and program the communication interface of the device and the service communication interface to achieve intelligent connection.

根據本揭露之第一方面,提出一種智能工業自動化數據採集裝置(Smart Industrial Automation Data Acquisition Module,Smart IDAM)。智能工業自動化數據採集裝置包括數個裝置通訊介面、一處理單元及數個服務通訊介面。此些裝置通訊介面用以連線至少一感測裝置。此些裝置通訊介面之通訊型態不完全相同。處理單元連接於此些裝置通訊介面。此些服務通訊介面連接於處理單元。此些服務通訊介面用以連線一後端服務。此些服務通訊介面之通訊型態不完全相同。處理單元依據一裝置通訊設定組態選擇此些裝置通訊介面之其中之一與感測裝置連線。處理單元更依據 一服務通訊設定組態選擇此些服務通訊介面之其中之一與後端服務連線。 According to the first aspect of the present disclosure, a Smart Industrial Automation Data Acquisition Module (Smart IDAM) is proposed. The intelligent industrial automation data acquisition device includes several device communication interfaces, a processing unit and several service communication interfaces. The device communication interfaces are used to connect at least one sensing device. The communication types of these device communication interfaces are not exactly the same. The processing unit is connected to these device communication interfaces. These service communication interfaces are connected to the processing unit. These service communication interfaces are used to connect to a backend service. The communication types of these service communication interfaces are not exactly the same. The processing unit selects one of the device communication interfaces to connect with the sensing device according to a device communication setting configuration. The processing unit is more based on A service communication setting configuration selects one of these service communication interfaces to connect with the backend service.

根據本揭露之第二方面,提出一種物聯網架設方法。物聯網架設方法包括以下步驟。提供一智能工業自動化數據採集裝置。智能工業自動化數據採集裝置包括數個裝置通訊介面及數個服務通訊介面。此些裝置通訊介面之通訊型態不完全相同。此些服務通訊介面之通訊型態不完全相同。以一圖形化使用者介面獲得一裝置通訊設定組態。以圖形化使用者介面獲得一服務通訊設定組態。依據裝置通訊設定組態選擇此些裝置通訊介面之其中之一與一感測裝置連線。依據服務通訊設定組態選擇此些服務通訊介面之其中之一與一後端服務連線。 According to the second aspect of the present disclosure, a method for setting up the Internet of Things is proposed. The method for erecting the Internet of Things includes the following steps. An intelligent industrial automation data acquisition device is provided. The intelligent industrial automation data acquisition device includes several device communication interfaces and several service communication interfaces. The communication types of these device communication interfaces are not exactly the same. The communication types of these service communication interfaces are not exactly the same. A device communication setting configuration is obtained through a graphical user interface. Obtain a service communication setting configuration with a graphical user interface. One of the device communication interfaces is selected to connect with a sensing device according to the device communication setting configuration. Select one of the service communication interfaces to connect with a backend service according to the service communication setting configuration.

為了對本揭露之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to have a better understanding of the above and other aspects of the present disclosure, the following specific embodiments are described in detail in conjunction with the attached drawings as follows:

100:智能工業自動化數據採集裝置(Smart IDAM) 100: Intelligent Industrial Automation Data Acquisition Device (Smart IDAM)

110:裝置通訊介面 110: device communication interface

120:處理單元 120: processing unit

130:服務通訊介面 130: Service communication interface

140:加密單元 140: encryption unit

150:儲存單元 150: storage unit

300:太陽能電池板 300: solar panel

400:LoRa感測器電路板 400: LoRa sensor circuit board

500:儀表板 500:Dashboard

600:圖形化使用者介面 600: Graphical user interface

610:系統設定頁面 610: System setting page

620:串行通訊協定設定頁面 620: Serial communication protocol setting page

630:感測器設定頁面 630: Sensor setting page

700,700A,700B,700C:感測裝置 700, 700A, 700B, 700C: sensing device

800:LoRaWAN閘道器 800: LoRaWAN gateway

900:後端服務 900: backend service

910:表現層狀態轉換應用程式介面(Restful API) 910: Presentation Layer State Transition Application Programming Interface (Restful API)

920:消息隊列遙測傳輸介面(MQTT Interface) 920: Message queue telemetry transmission interface (MQTT Interface)

930:LoRaWAN網路伺服器 930: LoRaWAN network server

940:資料庫伺服器 940:Database server

950:網頁伺服器 950:Web server

960:MQTT訊息中轉站(MQTT Broker) 960: MQTT message transfer station (MQTT Broker)

C1:裝置通訊設定組態 C1: Device communication setting configuration

C2:服務通訊設定組態 C2: Service communication setting configuration

S110,S120,S130,S140,S150:步驟 S110, S120, S130, S140, S150: steps

第1圖繪示根據一實施例之智能工業自動化數據採集裝置之示意圖。 FIG. 1 shows a schematic diagram of an intelligent industrial automation data acquisition device according to an embodiment.

第2圖示例說明智能工業自動化數據採集裝置之運作。 Figure 2 illustrates the operation of the intelligent industrial automation data acquisition device.

第3圖繪示根據一實施例之圖形化使用者介面的系統設定頁面。 FIG. 3 illustrates a system setting page of a graphical user interface according to an embodiment.

第4圖繪示根據一實施例之圖形化使用者介面的串行通訊協定(Modbus)設定頁面。 FIG. 4 illustrates a serial communication protocol (Modbus) setting page of a graphical user interface according to an embodiment.

第5圖繪示根據一實施例之圖形化使用者介面的感測器設定頁面。 FIG. 5 illustrates a sensor setting page of a graphical user interface according to an embodiment.

第6圖繪示根據一實施例之物聯網架設方法的流程圖。 FIG. 6 shows a flow chart of a method for setting up the Internet of Things according to an embodiment.

第7圖繪示根據一實施例之LoRa感測器電路板的示意圖。 FIG. 7 shows a schematic diagram of a LoRa sensor circuit board according to an embodiment.

第8圖繪示即時天氣監測系統之應用情境。 Figure 8 shows the application scenario of the real-time weather monitoring system.

第9圖繪示根據一實施例之智能水質監測站之應用情境。 Fig. 9 shows the application scenario of the intelligent water quality monitoring station according to an embodiment.

第10A、10B圖繪示根據一實施例之智能建築之應用情境。 Figures 10A and 10B illustrate an application scenario of a smart building according to an embodiment.

第11圖繪示根據一實施例之智能水錶之應用情境。 Fig. 11 shows the application scenario of the smart water meter according to an embodiment.

為了縮短物聯網的開發週期並降低複雜性,同時保持靈活性並確保每個平台和介面之間的通訊穩定性,本實施利提出一種智能工業自動化數據採集裝置(Smart Industrial Automation Data Acquisition Module,Smart IDAM)100,其能夠快速設定與編程裝置通訊介面與服務通訊介面,以達成智能連接。 In order to shorten the development cycle and reduce the complexity of the Internet of Things, while maintaining flexibility and ensuring the stability of communication between each platform and interface, this implementation proposes a Smart Industrial Automation Data Acquisition Module (Smart Industrial Automation Data Acquisition Module, Smart IDAM) 100, which can quickly set and program device communication interface and service communication interface to achieve intelligent connection.

請參照第1圖,其繪示根據一實施例之智能工業自動化數據採集裝置100之示意圖。智能工業自動化數據 採集裝置100包括數個裝置通訊介面110、一處理單元120、數個服務通訊介面130、一加密單元140及一儲存單元150。裝置通訊介面110用以連線至少一感測裝置700。感測裝置700例如是無線攝影機、智慧水錶、智慧燈具、掃地機器人等。此些裝置通訊介面110之通訊型態不完全相同。裝置通訊介面110包括通用非同步收發傳輸器/藍芽介面(Universal Asynchronous Receiver Transmitter/Blue tooth,UART/BT)、LoRa介面(LoRa P2P)或RS485介面之至少其中之二。 Please refer to FIG. 1 , which shows a schematic diagram of an intelligent industrial automation data acquisition device 100 according to an embodiment. Smart Industrial Automation Data The acquisition device 100 includes several device communication interfaces 110 , a processing unit 120 , several service communication interfaces 130 , an encryption unit 140 and a storage unit 150 . The device communication interface 110 is used for connecting at least one sensing device 700 . The sensing device 700 is, for example, a wireless camera, a smart water meter, a smart lamp, a sweeping robot, and the like. The communication types of these device communication interfaces 110 are not completely the same. The device communication interface 110 includes at least two of Universal Asynchronous Receiver Transmitter/Bluetooth (UART/BT), LoRa interface (LoRa P2P) or RS485 interface.

處理單元120連接於裝置通訊介面110。處理單元120例如是具有數據運算、訊號處理與控制功能的晶片、電路板、電路。服務通訊介面130連接於處理單元120。服務通訊介面130用以連線一後端服務900,進而讓使用者透過儀表板500進行資訊讀取或操控。服務通訊介面包括一LoRaWAN介面、一WiFi介面、一LTE 4G介面與一NBIoT介面之至少其中之二。 The processing unit 120 is connected to the device communication interface 110 . The processing unit 120 is, for example, a chip, a circuit board, or a circuit with functions of data calculation, signal processing, and control. The service communication interface 130 is connected to the processing unit 120 . The service communication interface 130 is used to connect with a backend service 900 , and then allow users to read or control information through the dashboard 500 . The service communication interface includes at least two of a LoRaWAN interface, a WiFi interface, an LTE 4G interface and an NBIoT interface.

後端服務900包括表現層狀態轉換應用程式介面(Restful Application Programming Interface,Restful API)910、消息隊列遙測傳輸介面(Message Queuing Telemetry Transport Interface,MQTT Interface)920、LoRaWAN網路伺服器930、資料庫伺服器940、網頁伺服器950與MQTT訊息中轉站(MQTT Broker)960。服務通訊介面130係透過LoRaWAN閘道器(LoRaWAN Gateway)800與LoRaWAN網路伺服器930連線。此些服務通訊介面130之通訊型態不完全相同。 The backend service 900 includes a presentation layer state conversion API (Restful Application Programming Interface, Restful API) 910, a message queue telemetry transmission interface (Message Queuing Telemetry Transport Interface, MQTT Interface) 920, a LoRaWAN network server 930, a database server A device 940, a web server 950 and an MQTT message transfer station (MQTT Broker) 960. The service communication interface 130 is connected with the LoRaWAN network server 930 through the LoRaWAN gateway (LoRaWAN Gateway) 800 . The communication types of these service communication interfaces 130 are not completely the same.

處理單元120依據一裝置通訊設定組態C1選擇裝置通訊介面110之其中之一與感測裝置700連線,處理單元120更依據一服務通訊設定組態C2選擇服務通訊介面130之其中之一與後端服務900連線。 The processing unit 120 selects one of the device communication interfaces 110 to connect with the sensing device 700 according to a device communication setting configuration C1, and the processing unit 120 further selects one of the service communication interfaces 130 to connect with the sensing device 700 according to a service communication setting configuration C2. Backend service 900 connections.

舉例來說,透過RS485/ModBus連接感應裝置700,可以在幾分鐘內透過使用圖形化使用者介面600完成智能工業自動化數據採集裝置100的配置來設置類似SCADA的系統。智能工業自動化數據採集裝置100支持用於上傳數據的WiFi、NBIoT、LTE 4G、LoRaWAN等技術。若使用者需要採用Wi-Fi、NB-IoT、或4G,智能工業自動化數據採集裝置100可以通過表現層狀態轉換應用程式介面(Restful API)910或消息隊列遙測傳輸介面(MQTT Interface)920提供數據。若使用者LoraWAN,智能工業自動化數據採集裝置100可以將有效負載發送到LoraWAN閘道器800,然後讓LoraWAN閘道器800將數據傳遞給LoRaWAN網路伺服器930。 For example, by connecting the sensing device 700 via RS485/ModBus, a SCADA-like system can be set up by using the graphical user interface 600 to complete the configuration of the intelligent industrial automation data acquisition device 100 within a few minutes. The intelligent industrial automation data acquisition device 100 supports technologies such as WiFi, NBIoT, LTE 4G, and LoRaWAN for uploading data. If the user needs to use Wi-Fi, NB-IoT, or 4G, the intelligent industrial automation data acquisition device 100 can provide data through the presentation layer state conversion application programming interface (Restful API) 910 or message queue telemetry transmission interface (MQTT Interface) 920 . If using LoraWAN, the intelligent industrial automation data acquisition device 100 can send the payload to the LoraWAN gateway 800 , and then let the LoraWAN gateway 800 transmit the data to the LoRaWAN network server 930 .

若使用者希望使用GPS、運動檢測等功能,可使用I2C或UART連接更多類型的感測裝置700。 If the user wants to use functions such as GPS and motion detection, he can use I2C or UART to connect more types of sensing devices 700 .

此外,智能工業自動化數據採集裝置100還可以支持自定義API將數據上傳到專用平台。智能工業自動化數據採集裝置100可以使用I2C接口連接加密單元140與儲存單元150,以增強數據安全功能和數據備份。加密單元140例如是具備加密功能的晶片、電路或電路板。儲存單元150例如是具備份資料功能之記憶體、硬碟。 In addition, the intelligent industrial automation data acquisition device 100 can also support a custom API to upload data to a dedicated platform. The intelligent industrial automation data acquisition device 100 can use the I2C interface to connect the encryption unit 140 and the storage unit 150 to enhance data security function and data backup. The encryption unit 140 is, for example, a chip, a circuit or a circuit board with an encryption function. The storage unit 150 is, for example, a memory and a hard disk with a data backup function.

請參照第2圖,其示例說明智能工業自動化數據採集裝置100之運作。感測裝置700A例如是PM2.5/PM10感測器,感測裝置700B例如是壓力感測器,感測裝置700C例如是一氧化碳感測器。感測裝置700A、700B、700C收集數據後,傳輸至智能工業自動化數據採集裝置100。智能工業自動化數據採集裝置100再透過LoraWAN閘道器800或基站400上傳數據至後端服務900。 Please refer to FIG. 2 , which illustrates the operation of the intelligent industrial automation data acquisition device 100 . The sensing device 700A is, for example, a PM2.5/PM10 sensor, the sensing device 700B is, for example, a pressure sensor, and the sensing device 700C is, for example, a carbon monoxide sensor. After the sensing devices 700A, 700B, and 700C collect data, they are transmitted to the intelligent industrial automation data collection device 100 . The intelligent industrial automation data collection device 100 uploads data to the backend service 900 through the LoraWAN gateway 800 or the base station 400 .

請參照第3圖,其繪示根據一實施例之圖形化使用者介面600的系統設定頁面610。在電腦上安裝軟件後,如果使用者通過USB接口將智能工業自動化數據採集裝置100連接到電腦,圖形化使用者介面600將自動彈出。圖形化使用者介面600包括一系統設定頁面610。系統設定頁面610用以設定服務通訊設定組態C2。 Please refer to FIG. 3 , which illustrates a system setting page 610 of a GUI 600 according to an embodiment. After installing the software on the computer, if the user connects the intelligent industrial automation data acquisition device 100 to the computer through the USB interface, the graphical user interface 600 will pop up automatically. The GUI 600 includes a system setting page 610 . The system setting page 610 is used to set the service communication setting configuration C2.

在系統設定頁面610中,使用者需要選擇想要的上傳方式。在「DEVICE NAME」欄位中,其內容將會上傳到後端服務900,以顯示於儀表板500。 In the system setting page 610, the user needs to select the desired uploading method. In the “DEVICE NAME” field, its content will be uploaded to the backend service 900 to be displayed on the dashboard 500 .

在「SERVER IP ADDRESS」欄位中,由使用者填入後端服務網路位址。 In the "SERVER IP ADDRESS" column, the user fills in the backend service network address.

在「UPLINK TYPE」欄位中,由使用者選擇LoRaWAN、WiFi、LTE 4G、NBIoT等上傳方式。 In the "UPLINK TYPE" field, the user can choose LoRaWAN, WiFi, LTE 4G, NBIoT and other upload methods.

在「DEVICE UUID」欄位中,由使用者填入智能工業自動化數據採集裝置100的通用唯一辨識碼(UUID)。 In the "DEVICE UUID" column, the user fills in the universally unique identification code (UUID) of the intelligent industrial automation data acquisition device 100 .

請參照第4圖,其繪示根據一實施例之圖形化使用者介面600的串行通訊協定(Modbus)設定頁面620。 圖形化使用者介面600更包括串行通訊協定設定頁面620。「MODBUS POLLING INTERVAL」用以設定輪詢間隔,「MODBUS POLLING TIMEOUT」用以設定輪詢超時,「MODBUS CYCLE INTERVAL」用以設定週期間隔。其中,不同裝置的輪詢超時可能不同,使用者需要設定所有輪詢超時之最大值。 Please refer to FIG. 4 , which illustrates a serial communication protocol (Modbus) setting page 620 of the graphical user interface 600 according to an embodiment. The GUI 600 further includes a serial communication protocol setting page 620 . "MODBUS POLLING INTERVAL" is used to set the polling interval, "MODBUS POLLING TIMEOUT" is used to set the polling timeout, and "MODBUS CYCLE INTERVAL" is used to set the cycle interval. Wherein, the polling timeout of different devices may be different, and the user needs to set the maximum value of all polling timeouts.

請參照第5圖,其繪示根據一實施例之圖形化使用者介面600的感測器設定頁面630。圖形化使用者介面600包括感測器設定頁面630。感測器設定頁面630用以設定裝置通訊設定組態C1。在感測器設定頁面630中,使用者可以透過以下步驟添加感測裝置700。 Please refer to FIG. 5 , which illustrates a sensor setting page 630 of the graphical user interface 600 according to an embodiment. The GUI 600 includes a sensor setting page 630 . The sensor setting page 630 is used to set the device communication setting configuration C1. In the sensor setting page 630, the user can add the sensing device 700 through the following steps.

1、點選「Add Device」添加感測裝置700。 1. Click "Add Device" to add sensing device 700.

2、透過「Modbus ID」、「Baudrate」、「Device Name」設定串行通訊協定帳號、鮑率與裝置名稱。 2. Set the serial communication protocol account, baud rate and device name through "Modbus ID", "Baudrate" and "Device Name".

3、點選「+」為感測裝置700添加新變量。 3. Click “+” to add a new variable for the sensing device 700 .

4、若感測裝置需要更多變量,則可以點選「+」多次。 4. If the sensing device needs more variables, you can click "+" multiple times.

5、透過「Name」、「Address」、「Type」、「Max Value」、「Min Value」、「Scale」、「Unit」修改變量名稱、ModBus位址、變量類型、最大值、最小值、比例、單位。其中,若從Modbus獲得的值是523且比例(Scale)是10,則該值將變為52.3。 5. Modify the variable name, ModBus address, variable type, maximum value, minimum value, and ratio through "Name", "Address", "Type", "Max Value", "Min Value", "Scale", and "Unit" ,unit. Wherein, if the value obtained from Modbus is 523 and the scale (Scale) is 10, the value will become 52.3.

6、點選「Download Device Info」,以將裝置通訊設定組態C1下載到智能工業自動化數據採集裝置100。 6. Click “Download Device Info” to download the device communication setting configuration C1 to the intelligent industrial automation data acquisition device 100 .

如上所述,透過智能工業自動化數據採集裝置100即可順利完成物聯網的架設。請參照第6圖,其繪示根據一實施例之物聯網架設方法的流程圖。在步驟S110中,提供智能工業自動化數據採集裝置100。智能工業自動化數據採集裝置100例如是第1圖及其相關段落之內容。 As mentioned above, the establishment of the Internet of Things can be successfully completed through the intelligent industrial automation data acquisition device 100 . Please refer to FIG. 6 , which shows a flowchart of a method for setting up the Internet of Things according to an embodiment. In step S110, an intelligent industrial automation data collection device 100 is provided. The intelligent industrial automation data acquisition device 100 is, for example, the content of Fig. 1 and its related paragraphs.

在步驟S120中,以圖形化使用者介面600獲得裝置通訊設定組態C1。此步驟例如是透過第5圖之感測器設定頁面630獲得裝置通訊設定組態C1。 In step S120 , the device communication setting configuration C1 is obtained through the graphical user interface 600 . This step is, for example, obtaining the device communication setting configuration C1 through the sensor setting page 630 in FIG. 5 .

在步驟S130中,以圖形化使用者介面600獲得服務通訊設定組態C2。此步驟例如是透過第3圖之系統設定頁面610獲得服務通訊設定組態C2。上述步驟S120與步驟S130係可交換順序。 In step S130 , the service communication setting configuration C2 is obtained through the graphical user interface 600 . This step is, for example, obtaining the service communication setting configuration C2 through the system setting page 610 in FIG. 3 . The above step S120 and step S130 can be exchanged in order.

在步驟S140中,依據裝置通訊設定組態C1選擇此些裝置通訊介面110之其中之一與感測裝置700連線。在步驟S150中,依據服務通訊設定組態C2選擇此些服務通訊介面130之其中之一與後端服務900連線。上述步驟S140與步驟S150係可交換順序或同時執行。 In step S140, one of the device communication interfaces 110 is selected to connect with the sensing device 700 according to the device communication setting configuration C1. In step S150, one of the service communication interfaces 130 is selected to connect with the backend service 900 according to the service communication setting configuration C2. The above step S140 and step S150 can be performed in exchange order or at the same time.

此外,在上述LoRaWAN閘道器800中,LoRaWAN閘道器800從每個感測裝置700收集數據,然後將其發送到雲端或後端服務900。對於想要構建私有雲的開發人員來說,這是一個很好的解決方案。LoRa覆蓋範圍可以從1公里到10公里,具體取決於LoRaWAN閘道器800所處的環境和高度。 Furthermore, in the aforementioned LoRaWAN gateway 800 , the LoRaWAN gateway 800 collects data from each sensing device 700 and then sends it to the cloud or backend service 900 . This is a great solution for developers who want to build a private cloud. LoRa coverage can be from 1 km to 10 km, depending on the environment and altitude where the LoRaWAN Gateway 800 is located.

並非所有感測裝置700都能夠支持無線電頻率,因此開發人員可以利用智能工業自動化數據採集裝置100將感測裝置700連接到雲端或後端服務900。 Not all sensing devices 700 are capable of supporting radio frequencies, so developers can utilize the smart industrial automation data collection device 100 to connect the sensing devices 700 to the cloud or backend services 900 .

請參照第7圖,其繪示根據一實施例之LoRa感測器電路板400的示意圖。在某些環境中,可能無法使用電纜將感測裝置700直接連接到智能工業自動化數據採集裝置100。此時可以搭配LoRa感測器電路板400,可將UART、I2C或RS485(Modbus)的訊號轉換為LoRa。然後,LoRa感測器電路板400可以通過LoRa介面與智能工業自動化數據採集裝置100通訊。智能工業自動化數據採集裝置100可以再通過Wi-Fi、4G-LTE或NB-IoT發送數據。因此,開發人員可以靈活地安裝感測裝置700。 Please refer to FIG. 7 , which shows a schematic diagram of a LoRa sensor circuit board 400 according to an embodiment. In some environments, it may not be possible to directly connect the sensing device 700 to the smart industrial automation data acquisition device 100 using a cable. At this time, the LoRa sensor circuit board 400 can be used to convert the signal of UART, I2C or RS485 (Modbus) into LoRa. Then, the LoRa sensor circuit board 400 can communicate with the intelligent industrial automation data acquisition device 100 through the LoRa interface. The intelligent industrial automation data acquisition device 100 can then send data through Wi-Fi, 4G-LTE or NB-IoT. Therefore, a developer can flexibly install the sensing device 700 .

此外,在某些情況可能無法使用電源。此時可以利用太陽能電池板來產生能量。將太陽能可以轉換為12V或24V的電能,並將電能存儲在電池中。太陽能電池板300(示例於第8圖)可以通過RS485介面連接到智能工業自動化數據採集裝置100。開發人員可以在從智能工業自動化數據採集裝置100獲取數據後在儀表板500上顯示電源狀態。 Also, the power supply may not be available in some cases. At this point solar panels can be used to generate energy. The solar energy can be converted into 12V or 24V electrical energy, and the electrical energy is stored in the battery. The solar panel 300 (illustrated in FIG. 8 ) can be connected to the intelligent industrial automation data acquisition device 100 through the RS485 interface. Developers can display the power status on the dashboard 500 after acquiring data from the intelligent industrial automation data acquisition device 100 .

以下進一步說明本發明之各種應用情境。請參照第8圖,其繪示即時天氣監測系統之應用情境。即時天氣監測系統是監測農場氣候條件的重要工具。農民可以透過即時天氣監測系統即時收到極端天氣狀況的警告,以節省時間和 金錢。智能工業自動化數據採集裝置100應用於即時天氣監測系統時,可採用的感測裝置700例如是環境光感測器(Ambient Light Sensor)、風速感測器(Wind Speed Sensor)、風向感測器(Wind Direction Sensor)、空氣溼度/溫度/降雨感測器(Air Humidity/Temperature/Rainfall Sensor)、土壤溼度感測器(Soil Humidity Sensor)、NH3感測器、土壤PH值感測器(PH Sensor For Soil)、PM2.5感測器、PM10感測器、二氧化碳感測器、臭氧感測器、氧氣感測器、大氣壓力感測器等。 Various application scenarios of the present invention are further described below. Please refer to Figure 8, which shows the application scenario of the real-time weather monitoring system. Real-time weather monitoring systems are an important tool for monitoring climatic conditions on your farm. Farmers can receive instant warnings of extreme weather conditions through the real-time weather monitoring system to save time and money. When the intelligent industrial automation data acquisition device 100 is applied to a real-time weather monitoring system, the sensing device 700 that can be used is, for example, an ambient light sensor (Ambient Light Sensor), a wind speed sensor (Wind Speed Sensor), a wind direction sensor ( Wind Direction Sensor), air humidity/temperature/rainfall sensor (Air Humidity/Temperature/Rainfall Sensor), soil humidity sensor (Soil Humidity Sensor), NH3 sensor, soil pH sensor (PH Sensor For Soil), PM2.5 sensor, PM10 sensor, carbon dioxide sensor, ozone sensor, oxygen sensor, atmospheric pressure sensor, etc.

請參照第9圖,其繪示根據一實施例之智能水質監測站之應用情境。監測水質是一個複雜、耗時的程序。透過智能工業自動化數據採集裝置100能夠快速搭建起智能水質監測站。智能工業自動化數據採集裝置100應用於智能水質監測站時,可採用的感測裝置700例如是PH值感測器、DO感測器、EC感測器、溫度感測器、濁度感測器、溶解氧感測器、ORP感測器、鹽度感測器、葉綠素感測器、COD感測器、BOD感測器、TSS感測器、藍藻感測器、NH3感測器、NH4感測器等。 Please refer to FIG. 9, which shows the application scenario of the intelligent water quality monitoring station according to an embodiment. Monitoring water quality is a complex, time-consuming procedure. Through the intelligent industrial automation data acquisition device 100, an intelligent water quality monitoring station can be quickly set up. When the intelligent industrial automation data acquisition device 100 is applied to an intelligent water quality monitoring station, the sensing device 700 that can be used is, for example, a pH sensor, a DO sensor, an EC sensor, a temperature sensor, and a turbidity sensor , dissolved oxygen sensor, ORP sensor, salinity sensor, chlorophyll sensor, COD sensor, BOD sensor, TSS sensor, cyanobacteria sensor, NH3 sensor, NH4 sensor detector etc.

請參照第10A、10B圖,其繪示根據一實施例之智能建築之應用情境。LoRa是一種具有高信號強度、長數據傳輸距離和低功耗的通信技術。由於LoRa不需要許可,用戶可以開發自己的高安全性專用網路而無需支付數據交易費 用。已有許多用戶使用LoRa來為房屋、倉庫和工廠開發無線系統。 Please refer to Figures 10A and 10B, which illustrate the application scenarios of an intelligent building according to an embodiment. LoRa is a communication technology with high signal strength, long data transmission distance and low power consumption. Since LoRa does not require permission, users can develop their own high-security private network without paying data transaction fees use. LoRa has been used by many users to develop wireless systems for houses, warehouses and factories.

但智能建築中所使用的感測裝置700都能夠支持LoRa,並且某些感測裝置仍然存在電池壽命問題。要解決這些問題,開發人員可以使用本發明智能工業自動化數據採集裝置100來連接這些感測裝置700。 But the sensing devices 700 used in smart buildings are all capable of supporting LoRa, and some sensing devices still have battery life issues. To solve these problems, developers can use the intelligent industrial automation data acquisition device 100 of the present invention to connect these sensing devices 700 .

第10A圖係為智能家庭的實施例,第10B圖係為智能工廠的實施例。在第10A圖之智能家庭中,每個智能家庭都可以安裝許多感測裝置700。在智能家庭中,可以為老年居民安裝SOS按鈕。如果需要幫助,他們只需按下SOS按鈕即可。通過這些感測裝置700,保險公司、安全機構和社區委員會可以管理每個居民的安全。他們還可以為居民提供服務,允許他們遠程控制窗簾,恆溫器和電源插頭。一旦智能工業自動化數據採集裝置100從每個家庭收集數據,它就可以使用LoRa技術將數據發送到LoRaWAN閘道器800,LoRaWAN閘道器800可以位於社區的中心或建築物的屋頂上。 Fig. 10A is an embodiment of a smart home, and Fig. 10B is an embodiment of a smart factory. In the smart home of FIG. 10A, many sensing devices 700 can be installed in each smart home. In smart homes, SOS buttons can be installed for elderly residents. If they need help, they just need to press the SOS button. Through these sensing devices 700, insurance companies, security agencies and community boards can manage the safety of each resident. They can also provide residents with services that allow them to remotely control shades, thermostats and power plugs. Once the smart industrial automation data collection device 100 collects data from each household, it can use LoRa technology to send the data to the LoRaWAN gateway 800, which can be located in the center of the community or on the roof of the building.

在第10B圖之智能工廠中,智能工業自動化數據採集裝置100能夠支持工業4.0(Industry 4.0)的發展。通過監控電流,可以輕鬆識別機器是否正在運行。此外,通過分析溫度和振動狀態,可以簡化每台機器的運行狀況。智能電力監控系統還可以監控工廠每個區域的電力消耗和電力供應,確保始終有穩定的電力供應。 In the smart factory shown in Figure 10B, the smart industrial automation data acquisition device 100 can support the development of Industry 4.0 (Industry 4.0). By monitoring the current, it is easy to identify whether the machine is running. Additionally, the health of each machine can be simplified by analyzing temperature and vibration conditions. The smart power monitoring system can also monitor the power consumption and power supply in each area of the factory, ensuring that there is always a stable power supply.

請參照第11圖,其繪示根據一實施例之智能水錶之應用情境。各國政府希望投入智能水錶,但政府面臨的最大挑戰是預算的問題。除了購買新的儀表外,還有安裝和運營成本。為了解決這個問題,可以直接在現有水錶添加具備智能讀取功能的感測裝置700,捕獲水度數值後,透過本發明之智能工業自動化數據採集裝置100發送到雲端或後端服務900。通過這種方式,政府無需購買新的儀表,也無需付費安裝。 Please refer to FIG. 11 , which shows an application scenario of a smart water meter according to an embodiment. Governments want to invest in smart water meters, but the biggest challenge facing governments is budgetary issues. In addition to buying new meters, there are installation and operating costs. In order to solve this problem, a sensing device 700 with intelligent reading function can be directly added to the existing water meter. After capturing the water level value, it is sent to the cloud or back-end service 900 through the intelligent industrial automation data acquisition device 100 of the present invention. In this way, the government does not need to purchase new meters and pay for them to be installed.

綜上所述,雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露。本揭露所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾。因此,本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 To sum up, although the present disclosure has been disclosed above with embodiments, it is not intended to limit the present disclosure. Those with ordinary knowledge in the technical field to which this disclosure belongs may make various changes and modifications without departing from the spirit and scope of this disclosure. Therefore, the scope of protection of this disclosure should be defined by the scope of the appended patent application.

100:智能工業自動化數據採集裝置(Smart IDAM) 100: Intelligent Industrial Automation Data Acquisition Device (Smart IDAM)

110:裝置通訊介面 110: device communication interface

120:處理單元 120: processing unit

130:服務通訊介面 130: Service communication interface

140:加密單元 140: encryption unit

150:儲存單元 150: storage unit

500:儀表板 500:Dashboard

600:圖形化使用者介面 600: Graphical user interface

700:感測裝置 700: Sensing device

800:LoRaWAN閘道器 800: LoRaWAN gateway

900:後端服務 900: backend service

910:表現層狀態轉換應用程式介面(Restful API) 910: Presentation Layer State Transition Application Programming Interface (Restful API)

920:消息隊列遙測傳輸介面(MQTT Interface) 920: Message queue telemetry transmission interface (MQTT Interface)

930:LoRaWAN網路伺服器 930: LoRaWAN network server

940:資料庫伺服器 940:Database server

950:網頁伺服器 950:Web server

960:MQTT訊息中轉站(MQTT Broker) 960: MQTT message transfer station (MQTT Broker)

C1:裝置通訊設定組態 C1: Device communication setting configuration

C2:服務通訊設定組態 C2: Service communication setting configuration

Claims (12)

一種智能工業自動化數據採集裝置(Smart Industrial Automation Data Acquisition Module,Smart IDAM),包括:複數個裝置通訊介面,用以連線至少一感測裝置,該些裝置通訊介面之通訊型態不完全相同;一處理單元,連接於該些裝置通訊介面;以及複數個服務通訊介面,連接於該處理單元,該些服務通訊介面用以連線一後端服務,該些服務通訊介面之通訊型態不完全相同;其中該處理單元更提供一圖形化使用者介面,該圖形化使用者介面包括一感測器設定頁面及一系統設定頁面,該感測器設定頁面用以設定一裝置通訊設定組態,該系統設定頁面用以設定一服務通訊設定組態,該感測器設定頁面不同於該系統設定頁面;其中,該處理單元依據該裝置通訊設定組態選擇該些裝置通訊介面之其中之一與該感測裝置連線,該處理單元更依據該服務通訊設定組態選擇該些服務通訊介面之其中之一與該後端服務連線。 An intelligent industrial automation data acquisition device (Smart Industrial Automation Data Acquisition Module, Smart IDAM), including: a plurality of device communication interfaces for connecting at least one sensing device, and the communication types of these device communication interfaces are not completely the same; A processing unit connected to the device communication interfaces; and a plurality of service communication interfaces connected to the processing unit, the service communication interfaces are used to connect to a backend service, and the communication types of the service communication interfaces are incomplete same; wherein the processing unit further provides a graphical user interface, the graphical user interface includes a sensor setting page and a system setting page, the sensor setting page is used to set a device communication setting configuration, The system setting page is used to set a service communication setting configuration, and the sensor setting page is different from the system setting page; wherein, the processing unit selects one of the device communication interfaces and the device communication setting configuration according to the device communication setting configuration. The sensing device is connected, and the processing unit further selects one of the service communication interfaces to connect with the backend service according to the service communication setting configuration. 如請求項1所述之智能工業自動化數據採集裝置,其中該處理單元更提供一圖形化使用者介面,該圖形化使用者介面包括一串行通訊協定(Modbus)設定頁面,該 串行通訊協定設定頁面用以設定一輪詢間隔(polling interval)、一輪詢超時(polling timeout)及一週期間隔(cycle interval)。 As the intelligent industrial automation data acquisition device described in claim 1, wherein the processing unit further provides a graphical user interface, the graphical user interface includes a serial communication protocol (Modbus) setting page, the The serial protocol setting page is used to set the polling interval, polling timeout and cycle interval. 如請求項1所述之智能工業自動化數據採集裝置,更包括:一加密單元,用以對一接收資訊進行加密。 The intelligent industrial automation data acquisition device as described in Claim 1 further includes: an encryption unit for encrypting a received information. 如請求項1所述之智能工業自動化數據採集裝置,更包括:一儲存單元,用以暫存一接收資訊。 The intelligent industrial automation data acquisition device as described in claim 1 further includes: a storage unit for temporarily storing a received information. 如請求項1所述之智能工業自動化數據採集裝置,其中該些裝置通訊介面包括一通用非同步收發傳輸器介面(Universal Asynchronous Receiver/Transmitter,UART)、一LoRa介面與一RS485介面之至少其中之二。 The intelligent industrial automation data acquisition device as described in claim 1, wherein the communication interfaces of these devices include at least one of a Universal Asynchronous Receiver/Transmitter (UART), a LoRa interface and an RS485 interface two. 如請求項1所述之智能工業自動化數據採集裝置,其中該些服務通訊介面包括一LoRaWAN介面、一WiFi介面、一LTE 4G介面與一NBIoT介面之至少其中之二。 The intelligent industrial automation data acquisition device as described in claim 1, wherein the service communication interfaces include at least two of a LoRaWAN interface, a WiFi interface, an LTE 4G interface, and an NBIoT interface. 一種物聯網架設方法,包括:提供一智能工業自動化數據採集裝置,該智能工業自動化數據採集裝置包括複數個裝置通訊介面及複數個服務通訊 介面,該些裝置通訊介面之通訊型態不完全相同,該些服務通訊介面之通訊型態不完全相同;以一圖形化使用者介面獲得一裝置通訊設定組態;以該圖形化使用者介面獲得一服務通訊設定組態,其中該圖形化使用者介面更包括一系統設定頁面及一感測器設定頁面;依據該裝置通訊設定組態由該感測器設定頁面進行設定,以選擇該些裝置通訊介面之其中之一與一感測裝置連線;以及依據該服務通訊設定組態由該系統設定頁面進行設定,以選擇該些服務通訊介面之其中之一與一後端服務連線。 A method for setting up the Internet of Things, comprising: providing an intelligent industrial automation data acquisition device, the intelligent industrial automation data acquisition device includes a plurality of device communication interfaces and a plurality of service communications Interface, the communication types of these device communication interfaces are not exactly the same, and the communication types of these service communication interfaces are not exactly the same; use a graphical user interface to obtain a device communication setting configuration; use the graphical user interface Obtain a service communication setting configuration, wherein the graphical user interface further includes a system setting page and a sensor setting page; according to the device communication setting configuration, the sensor setting page is set to select these One of the device communication interfaces is connected with a sensing device; and the system setting page is configured according to the service communication setting configuration to select one of the service communication interfaces to be connected with a backend service. 如請求項7所述之物聯網架設方法,其中該圖形化使用者介面包括一串行通訊協定(Modbus)設定頁面,該串行通訊協定設定頁面用以設定一輪詢間隔(polling interval)、一輪詢超時(polling timeout)及一週期間隔(cycle interval)。 The method for setting up the Internet of Things as described in claim item 7, wherein the graphical user interface includes a serial communication protocol (Modbus) setting page, and the serial communication protocol setting page is used to set a polling interval (polling interval), a round Polling timeout and cycle interval. 如請求項7所述之物聯網架設方法,更包括:對一接收資訊進行加密。 The method for setting up the Internet of Things as described in Claim 7 further includes: encrypting a piece of received information. 如請求項7所述之物聯網架設方法,更包括:暫存一接收資訊。 The method for setting up the Internet of Things as described in Claim 7 further includes: temporarily storing a received information. 如請求項7所述之物聯網架設方法,其中該些裝置通訊介面包括一通用非同步收發傳輸器介面(Universal Asynchronous Receiver/Transmitter,UART)、一LoRa介面與一RS485介面之至少其中之二。 The method for erecting the Internet of Things as described in Claim 7, wherein the device communication interfaces include at least two of a Universal Asynchronous Receiver/Transmitter (UART), a LoRa interface, and an RS485 interface. 如請求項7所述之物聯網架設方法,其中該些服務通訊介面包括一LoRaWAN介面、一WiFi介面、一LTE 4G介面與一NBIoT介面之至少其中之二。 The method for setting up the Internet of Things as described in claim 7, wherein the service communication interfaces include at least two of a LoRaWAN interface, a WiFi interface, an LTE 4G interface, and an NBIoT interface.
TW109106915A 2020-03-03 2020-03-03 Smart industrial automation data acquisition module and internet of things erection method TWI790424B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109106915A TWI790424B (en) 2020-03-03 2020-03-03 Smart industrial automation data acquisition module and internet of things erection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109106915A TWI790424B (en) 2020-03-03 2020-03-03 Smart industrial automation data acquisition module and internet of things erection method

Publications (2)

Publication Number Publication Date
TW202135508A TW202135508A (en) 2021-09-16
TWI790424B true TWI790424B (en) 2023-01-21

Family

ID=78777398

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109106915A TWI790424B (en) 2020-03-03 2020-03-03 Smart industrial automation data acquisition module and internet of things erection method

Country Status (1)

Country Link
TW (1) TWI790424B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10013303B2 (en) * 2015-10-07 2018-07-03 Business Objects Software Ltd. Detecting anomalies in an internet of things network
US20190253477A1 (en) * 2018-03-30 2019-08-15 Intel Corporation Data Fragment Recombination for Internet of Things Devices
US20190306200A1 (en) * 2015-12-08 2019-10-03 Jpu.Io Ltd Network routing and security within a mobile radio network
US20190385057A1 (en) * 2016-12-07 2019-12-19 Arilou Information Security Technologies Ltd. System and Method for using Signal Waveform Analysis for Detecting a Change in a Wired Network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10013303B2 (en) * 2015-10-07 2018-07-03 Business Objects Software Ltd. Detecting anomalies in an internet of things network
US20190306200A1 (en) * 2015-12-08 2019-10-03 Jpu.Io Ltd Network routing and security within a mobile radio network
US20190385057A1 (en) * 2016-12-07 2019-12-19 Arilou Information Security Technologies Ltd. System and Method for using Signal Waveform Analysis for Detecting a Change in a Wired Network
US20190253477A1 (en) * 2018-03-30 2019-08-15 Intel Corporation Data Fragment Recombination for Internet of Things Devices

Also Published As

Publication number Publication date
TW202135508A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
Kang et al. Internet of everything: A large-scale autonomic IoT gateway
US20060067209A1 (en) Universal configurable device gateway
US10855526B2 (en) Sensor registration method, sensor registration system, and relay device
CN104159294A (en) Cloud positioning platform based on Bluetooth 4.0 technology
CN110648437A (en) Entrance guard management system based on LoRa thing networking
Purkayastha et al. IoT based design of air quality monitoring system web server for android platform
CN205427671U (en) Environmental information automatic monitoring device based on thing networking
TWI790424B (en) Smart industrial automation data acquisition module and internet of things erection method
CN102183930B (en) Personnel location monitoring system and location method under chemical scene
Li et al. A wireless ecological aquaculture water quality monitoring system based on LoRa technology
TWM632725U (en) Smart industrial automation data acquisition module
US10917263B1 (en) Universal configurable device gateway
Kazdaridis et al. NITOS BikesNet: enabling mobile sensing experiments through the OMF framework in a city-wide environment
KR20190070687A (en) Advanced Metering Infrastructure System for LoRaWAN based Smart Meter
CN112423386A (en) Internet of things terminal positioning method and device and related equipment
Rojek et al. Iot-based real-time monitoring system for a smart energy house
Huang et al. Design of intelligent automatic weather station based on internet of things
Lai et al. A context-aware multi-model remote controller for electronic home devices
Voisin-Grall et al. Remote condition monitoring: a prototype based on Pycom development board FiPy and Pysense
Chen Smart cities air pollution monitoring system-developing a potential data collecting platform based on Raspberry Pi
CN205375162U (en) Remote monitering system based on WIFI of family network
Singh et al. XBee and Internet of Robotic Things based worker safety in construction sites
Sharma Design and Implementation of Wireless Sensor Networks Using LoRaWAN, MQTT and Cloud Computing
Chen et al. Design of Security Alarm System Based on LoRa Technology
CN216291458U (en) Intelligent home gateway and intelligent home system