TWI788872B - 以光達主動式預測太陽光電供電變化的方法 - Google Patents

以光達主動式預測太陽光電供電變化的方法 Download PDF

Info

Publication number
TWI788872B
TWI788872B TW110120631A TW110120631A TWI788872B TW I788872 B TWI788872 B TW I788872B TW 110120631 A TW110120631 A TW 110120631A TW 110120631 A TW110120631 A TW 110120631A TW I788872 B TWI788872 B TW I788872B
Authority
TW
Taiwan
Prior art keywords
point cloud
cloud data
power supply
solar
power
Prior art date
Application number
TW110120631A
Other languages
English (en)
Other versions
TW202248579A (zh
Inventor
江智偉
楊松霈
孫書煌
謝明君
鍾天穎
Original Assignee
崑山科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崑山科技大學 filed Critical 崑山科技大學
Priority to TW110120631A priority Critical patent/TWI788872B/zh
Publication of TW202248579A publication Critical patent/TW202248579A/zh
Application granted granted Critical
Publication of TWI788872B publication Critical patent/TWI788872B/zh

Links

Images

Abstract

一種以光達主動式預測太陽光電供電變化的方法,包含:架構一太陽能發電系統及一控制系統,並相鄰該太陽能發電系統設置一光達單元,該光達單元在日間的一第一取樣時點、一第二取樣時點及一第三取樣時點分別取得一雲層的一第一點雲資料、一第二點雲資料及一第三點雲資料,經過該控制系統的運算取得該雲層的一移動方向、一移動速率及一遮蔽率,進而取得該太陽能發電系統未來在日間的一供電下降率。藉此,在主動式提早預測太陽光電的供電變化的同時,對於該光達單元也較方便檢修。

Description

以光達主動式預測太陽光電供電變化的方法
本發明係關於一種預測太陽光電供電變化的方法,尤指一種以光達主動式預測太陽光電供電變化的方法。
太陽能是再生能源的主要來源之一,然而,受限於天氣、雲層變化,日照量會下降,太陽能板的發電量也會隨之受到影響。電廠或電力公司必須根據太陽能板的發電量變化,適時調度其他能源。
於是有中華民國專利公告號第I664601號提供一種參考日照量的太陽能發電預測系統,包含一第一日照檢測裝置、複數第二日照檢測裝置與一主機。該第一日照檢測裝置設置於一太陽能電廠中;該複數第二日照檢測裝置設置於該太陽能電廠周圍,各該第二日照檢測裝置輸出該實際日照量;該主機包含一資料庫、一異常日照量判斷單元與一發電計算單元。該資料庫儲存該實際日照量;該異常日照量判斷單元連接該資料庫,比較該實際日照量與一歷史日照量,判斷該實際日照量是否為一異常日照量;該發電計算單元連接該資料庫,根據該異常日照量與該歷史日照量推算該太陽能電廠的發電下降量。
前述專利案確實可以透過第一日照檢測裝置及多個第二日照檢測裝置共同預測太陽能電廠的日照變化。然而,當第二日照檢測裝置過於接近太陽能電廠時,對於日照變化的預測將不夠及時,而當第二日照檢測裝置過於遠離太陽能電廠時,對於第二日照檢測裝置的檢修又十分不便。
爰此,本發明人提出一種以光達主動式預測太陽光電供電變化的方法,包含:架構一太陽能發電系統及一控制系統,並相鄰該太陽能發電系統設置一光達單元,該光達單元在日間的一第一取樣時點、一第二取樣時點及一第三取樣時點分別取得一雲層的一第一點雲資料、一第二點雲資料及一第三點雲資料,並輸入至該控制系統;該控制系統對該第一點雲資料及該第二點雲資料依序做一快速傅立葉轉換運算、一摺積運算及一快速傅立葉逆轉換運算而成為一第一時序資料,對該第二點雲資料及該第三點雲資料依序做該快速傅立葉轉換運算、該摺積運算及該快速傅立葉逆轉換運算而成為一第二時序資料,再根據該第一時序資料及該第二時序資料中對應該雲層之一特徵值的一位置差及一時間差取得該雲層的一移動方向及一移動速率,以及根據該特徵值取得該雲層的一遮蔽率;該控制系統根據該雲層的該遮蔽率、該移動方向及該移動速率,計算該太陽能發電系統的一照度變化,進而根據該照度變化取得該太陽能發電系統未來在日間的一供電下降率。
進一步,架構一緊急負載及一儲能系統,當該供電下降率不高於一預設值時,該控制系統控制由該太陽能發電系統供給電力至該儲能系統及/或該緊急負載;當該供電下降率高於該預設值時,由該儲能系統,或者,該太陽能發電系統及該儲能系統供給電力至該緊急負載。
進一步,架構一非緊急負載及一市電系統,當該供電下降率不高於該預設值時,該控制系統控制由該太陽能發電系統,或者,該太陽能發電系統及該市電系統供給電力至該非緊急負載;當該供電下降率高於該預設值時,由該市電系統,或者,由該太陽能發電系統、該市電系統及該儲能系統供給電 力至該緊急負載及該非緊急負載,或者,由該太陽能發電系統及該市電系統供給電力至該儲能系統、該緊急負載及該非緊急負載。
進一步,當該供電下降率不高於該預設值時,該太陽能發電系統再供給電力至該市電系統。
進一步,該控制系統根據該光達單元與該特徵值的距離取得該雲層的一高度,該控制系統再根據該高度及該遮蔽率取得對應不同波段之太陽光的一衰減率。
其中,該控制系統係對應該雲層取得複數特徵值,並根據所述特徵值的分布,取得該雲層的一厚度及一覆蓋範圍,該遮蔽率係根據該厚度及該覆蓋範圍取得。
其中,該第一點雲資料、該第二點雲資料及該第三點雲資料皆係從時域經由該快速傅立葉轉換轉入頻域,再由頻域經過該快速傅立葉逆轉換運算轉入時域。
其中,該傅立葉轉換運算由以下關係式定義:
Figure 110120631-A0305-02-0004-11
Figure 110120631-A0305-02-0004-9
ξ為任意實數,f及
Figure 110120631-A0305-02-0004-27
分別為時域及頻域的該第一點雲資料、 該第二點雲資料及該第三點雲資料之一。
其中,該摺積運算由以下關係式定義:
Figure 110120631-A0305-02-0004-10
τ),t為時間變數,f為頻域的該第一點雲資料、該第二點雲資料及該第三點雲資料,g為任意已知函數。
其中,該傅立葉逆轉換運算由以下關係式定義:f(x)=
Figure 110120631-A0305-02-0004-12
,x為任意實數,f及
Figure 110120631-A0305-02-0004-26
分別為時域及頻域的該第一點雲資料、該 第二點雲資料及該第三點雲資料之一。
根據上述技術特徵較佳地可達成以下功效:
1.藉由相鄰太陽能發電系統設置的光達單元,不僅可以主動式提早預測太陽光電的供電變化,同時由於光達單元鄰近太陽能發電系統,較方便檢修。
2.根據太陽能發電系統的供電下降率,控制系統可以及早分配電力,確保整個電網的穩定。
3.控制系統可以取得不同波段太陽光的衰減率,方便後續太陽能發電系統的評估與更換。
1:太陽能發電系統
2:緊急負載
3:儲能系統
4:非緊急負載
5:市電系統
6:控制系統
7:光達單元
[第一圖]係本發明實施例之流程示意圖。
[第二圖]係本發明實施例之實施示意圖一,示意電網的整體架構。
[第三圖]係本發明實施例之實施示意圖二,示意太陽能發電系統供給電力至緊急負載、儲能系統及非緊急負載,而市電系統輔助供給電力至非緊急負載。
[第四圖]係本發明實施例之實施示意圖三,示意太陽能發電系統將多餘電力回饋至市電系統。
[第五圖]係本發明實施例之實施示意圖四,示意太陽能發電系統與儲能系統共同供給電力至緊急負載,而市電系統供給電力至非緊急負載。
[第六圖]係本發明實施例之實施示意圖五,示意市電系統供給電力至非緊急負載,而太陽能發電系統與市電系統共同供給電力至緊急負載及儲能系統。
[第七圖]係本發明實施例之實施示意圖六,示意市電系統供給電力至非緊急負載,而儲能系統與市電系統共同供給電力至緊急負載。
[第八圖]係本發明實施例之實施示意圖七,示意市電系統異常時,由儲能系統供給電力至緊急負載。
綜合上述技術特徵,本發明以光達主動式預測太陽光電供電變化的方法的主要功效將可於下述實施例清楚呈現。
請參閱第一圖及第二圖,係揭示本發明實施例以光達主動式預測太陽光電供電變化的方法,包含:架構一太陽能發電系統1、一緊急負載2、一儲能系統3、一非緊急負載4、一市電系統5及一控制系統6,而形成一電網,並相鄰該太陽能發電系統1設置一光達單元7,較佳地,該控制系統6係為功率調節器(Power Control System,PCS)。
更詳細的說,該控制系統6電性連接該太陽能發電系統1、該緊急負載2、該儲能系統3、該非緊急負載4及該市電系統5,該非緊急負載4及該市電系統5也直接電性連接彼此,該控制系統6則訊號連接該光達單元7。
透過該光達單元7在日間的一第一取樣時點、一第二取樣時點及一第三取樣時點分別取得一雲層的一第一點雲資料、一第二點雲資料及一第三點雲資料,並輸入至該控制系統6。
該控制系統6對該第一點雲資料及該第二點雲資料依序做一快速傅立葉轉換運算、一摺積運算及一快速傅立葉逆轉換運算而成為一第一時序資料,對該第二點雲資料及該第三點雲資料依序做該快速傅立葉轉換運算、該摺 積運算及該快速傅立葉逆轉換運算而成為一第二時序資料,再根據該第一時序資料及該第二時序資料中對應該雲層之一特徵值的一位置差及一時間差取得該雲層的一移動方向及一移動速率,以及根據該特徵值取得該雲層的一遮蔽率。
該傅立葉轉換運算由以下關係式定義:
Figure 110120631-A0305-02-0007-15
Figure 110120631-A0305-02-0007-13
,該摺積運算由以下關係式定義:
Figure 110120631-A0305-02-0007-14
τ),該傅立葉逆轉換運算由以下關係式定義:
Figure 110120631-A0305-02-0007-16
。前述 關係式中,ξ為任意實數,t為時間變數,g為任意已知函數,x為任意實數,f及
Figure 110120631-A0305-02-0007-25
則分別為時域及頻域的該第一點雲資料、該第二點雲資料及該第三點雲資料之一。在前述的運算過程中,該第一點雲資料、該第二點雲資料及該第三點雲資料皆係從時域經由該快速傅立葉轉換轉入頻域,再由頻域經過該快速傅立葉逆轉換運算轉入時域。
實際上,該控制系統6係對應該雲層取得複數特徵值,並根據所述特徵值的分布,取得該雲層的一厚度及一覆蓋範圍,該遮蔽率係根據該厚度及該覆蓋範圍取得。該控制系統6根據該雲層的該遮蔽率、該移動方向及該移動速率,計算該太陽能發電系統1的一照度變化,進而根據該照度變化取得該太陽能發電系統1未來在日間的一供電下降率。
再更詳細的說,該照度變化可以藉由該光達單元7取得之資料,計算一光學厚度或一能見度(Visual Range)而對應該照度變化,該厚度可以係指該光學厚度,例如該光學厚度加厚或該能見度減小,代表該照度變化是降低的,反之亦然。
參考George W.Griffing在1980年發表的論文「Relations between the prevailing visibility,nephelometer scattering coefficient and sunphotometer turbidity coefficient」,可以得知:在該光學厚度方面,由於該光達單元7所收到的大氣光散射訊號大致正比於大氣中空氣分子與粒子之背向散射係數的總和,且該光達單元7的雷射光在往返之間會被大氣吸收與散射,而隨距離減弱,因此該光達單元7所接收到的光散射訊號可以用以下的光達方程式(Lidar Equation)來描述:
Figure 110120631-A0305-02-0008-17
。其中PR和PL分別代表發射與接 收到的雷射光強度,AT為系統校正係數,包含望遠鏡與偵測器等光學、電子以及其他幾何上的因素,若系統固定,PR和PL可以被視為常數。β atm τ atm 分別為大氣總背向散射係數和大氣光學厚度(e -2τ atm 為大氣穿透率),包括空氣與粒子的貢獻。
再由氣體分子與粒子來分述,定義β air τ air 分別為氣體分子的背向散射係數和光學厚度,β p τ p 分別為粒子的背向散射係數和光學厚度,則氣體分子與粒子的光學厚度為:
Figure 110120631-A0305-02-0008-19
τ p (z)=ʃα p (z)dzS p β p (z)dz
其中α p 為粒子的消光係數,S p α p β p 的比值,也就是Extinction-to-backscatter Ratio。
因此,該光學厚度為:τ atm (z)=τ air (z)+τ p (z)。
在該能見度方面,則是藉由Koschmieder定律與氣膠之該光學厚度做轉換,關係式如下:
Figure 110120631-A0305-02-0009-20
上述關係式中,VR為該能見度,ε為物體和周圍環境的光強度對比,0.02為肉眼之偵測極限,ext為大氣消光係數(由該光達單元7量測提供)。
該控制系統6還能根據該光達單元7與所述特徵值的距離取得該雲層的一高度,該控制系統6再根據該高度及該遮蔽率取得對應不同波段之太陽光的一衰減率。由於不同波段之太陽光對應該雲層的消光係數不同,可以由比爾-朗伯定律(Beer-Lambert law)計算出不同的該衰減率。
得知不同波段之太陽光的該衰減率之後,可以做為該太陽能發電系統1的架構參考,方便後續該太陽能發電系統1的評估與更換。例如在920奈米時該衰減率最低,則該太陽能發電系統1之一太陽能板的材質就可以選擇在920奈米下相對感度較佳的晶矽等等。
該控制系統6再比對該供電下降率及一預設值,舉例來說,該預設值可以是該太陽能發電系統1的一平均供電量與該緊急負載2及該儲能系統3所需電力的差值。
當該供電下降率不高於一預設值時,該控制系統6控制由該太陽能發電系統1,或者,該太陽能發電系統1及該市電系統5,供給電力至該儲能系統3、該緊急負載2及該非緊急負載4之一或其組合。
當該供電下降率高於該預設值時,由該太陽能發電系統1、該儲能系統3及該市電系統5之一或其組合供給電力至該緊急負載2及/或該非緊急負載4,或者,由該太陽能發電系統1及該市電系統5供給電力至該儲能系統3、該緊急負載2及該非緊急負載4。
請參閱第一圖及第三圖,以下舉例幾種電力分配的模式: 當該供電下降率不高於該預設值時,該太陽能發電系統1可以供給電力至該緊急負載2及該儲能系統3,還可以有一小部分的電力供給至該非緊急負載4,使得該市電系統5供給至該非緊急負載4的電力減少,進而降低該非緊急負載4的電費。
請參閱第一圖及第四圖,而當該太陽能發電系統1除了供給電力給該緊急負載2、該非緊急負載4及該儲能系統3,還有多餘電力時,則可以將多餘電力回饋至該市電系統5,例如可以將多餘電力賣給電力公司。
請參閱第一圖及第五圖,當該供電下降率高於該預設值,且該儲能系統3已儲存有足夠電力時,則由該太陽能發電系統1與該儲能系統3共同供給電力至該緊急負載2,而該市電系統5供給電力至該非緊急負載4。
請參閱第一圖及第六圖,當該供電下降率高於該預設值,且該儲能系統3尚未儲存足夠電力時,則是由該太陽能發電系統1與該市電系統5共同供給電力至該緊急負載2及該儲能系統3,該非緊急負載4的電力則是由該市電系統5供給。
請參閱第一圖及第七圖,當該太陽能發電系統1停止供電時,例如夜晚,則是由該儲能系統3與該市電系統5共同供給電力至該緊急負載2,該非緊急負載4的電力同樣是由該市電系統5供給。
請參閱第一圖及第八圖,當該太陽能發電系統1停止供電,且該市電系統5異常或斷開時,則是由該儲能系統3供給電力至該緊急負載2。
復請參閱第二圖,藉由相鄰該太陽能發電系統1設置的該光達單元7,不僅可以主動式提早預測太陽光電的供電變化,同時由於該光達單元7鄰近該太陽能發電系統1,方便檢修。
同時,根據該太陽能發電系統1的該供電下降率,該控制系統6可以及早分配電力,確保整個該電網的穩定。
綜合上述實施例之說明,當可充分瞭解本發明之操作、使用及本發明產生之功效,惟以上所述實施例僅係為本發明之較佳實施例,當不能以此限定本發明實施之範圍,即依本發明申請專利範圍及發明說明內容所作簡單的等效變化與修飾,皆屬本發明涵蓋之範圍內。
1:太陽能發電系統
2:緊急負載
3:儲能系統
4:非緊急負載
5:市電系統
6:控制系統
7:光達單元

Claims (9)

  1. 一種以光達主動式預測太陽光電供電變化的方法,包含:架構一太陽能發電系統及一控制系統,並相鄰該太陽能發電系統設置一光達單元,該光達單元在日間的一第一取樣時點、一第二取樣時點及一第三取樣時點分別取得一雲層的一第一點雲資料、一第二點雲資料及一第三點雲資料,並輸入至該控制系統;該控制系統對該第一點雲資料及該第二點雲資料依序做一快速傅立葉轉換運算、一摺積運算及一快速傅立葉逆轉換運算而成為一第一時序資料,對該第二點雲資料及該第三點雲資料依序做該快速傅立葉轉換運算、該摺積運算及該快速傅立葉逆轉換運算而成為一第二時序資料,再根據該第一時序資料及該第二時序資料中對應該雲層之一特徵值的一位置差及一時間差取得該雲層的一移動方向及一移動速率,以及根據該特徵值取得該雲層的一遮蔽率;該控制系統根據該雲層的該遮蔽率、該移動方向及該移動速率,計算該太陽能發電系統的一照度變化,進而根據該照度變化取得該太陽能發電系統未來在日間的一供電下降率;該控制系統根據該光達單元與該特徵值的距離取得該雲層的一高度,該控制系統再根據該高度及該遮蔽率取得對應不同波段之太陽光的一衰減率。
  2. 如請求項1所述之以光達主動式預測太陽光電供電變化的方法,進一步,架構一緊急負載及一儲能系統,當該供電下降率不高於一預設值時,該控制系統控制由該太陽能發電系統供給電力至該儲能系統及/或該緊急負載;當該供電下降率高於該預設值時,由該儲能系統,或者,該太陽能發電系統及該儲能系統供給電力至該緊急負載。
  3. 如請求項1所述之以光達主動式預測太陽光電供電變化的方法,進一步,架構一非緊急負載及一市電系統,當該供電下降率不高於該預設值時, 該控制系統控制由該太陽能發電系統,或者,該太陽能發電系統及該市電系統供給電力至該非緊急負載;當該供電下降率高於該預設值時,由該市電系統,或者,由該太陽能發電系統、該市電系統及該儲能系統供給電力至該緊急負載及該非緊急負載,或者,由該太陽能發電系統及該市電系統供給電力至該儲能系統、該緊急負載及該非緊急負載。
  4. 如請求項3所述之以光達主動式預測太陽光電供電變化的方法,進一步,當該供電下降率不高於該預設值時,該太陽能發電系統再供給電力至該市電系統。
  5. 如請求項1所述之以光達主動式預測太陽光電供電變化的方法,其中,該控制系統係對應該雲層取得複數特徵值,並根據所述特徵值的分布,取得該雲層的一厚度及一覆蓋範圍,該遮蔽率係根據該厚度及該覆蓋範圍取得。
  6. 如請求項1所述之以光達主動式預測太陽光電供電變化的方法,其中,該第一點雲資料、該第二點雲資料及該第三點雲資料皆係從時域經由該快速傅立葉轉換轉入頻域,再由頻域經過該快速傅立葉逆轉換運算轉入時域。
  7. 如請求項1所述之以光達主動式預測太陽光電供電變化的方法, 其中,該傅立葉轉換運算由以下關係式定義:
    Figure 110120631-A0305-02-0013-23
    ξ為任 意實數,f及
    Figure 110120631-A0305-02-0013-28
    分別為時域及頻域的該第一點雲資料、該第二點雲資料及該第三點雲資料之一。
  8. 如請求項1所述之以光達主動式預測太陽光電供電變化的方法, 其中,該摺積運算由以下關係式定義:
    Figure 110120631-A0305-02-0013-21
    ,t為時間 變數,f為頻域的該第一點雲資料、該第二點雲資料及該第三點雲資料,g為任意已知函數。
  9. 如請求項1所述之以光達主動式預測太陽光電供電變化的方法, 其中,該傅立葉逆轉換運算由以下關係式定義:
    Figure 110120631-A0305-02-0014-24
    ,x為任 意實數,f及
    Figure 110120631-A0305-02-0014-29
    分別為時域及頻域的該第一點雲資料、該第二點雲資料及該第三點雲資料之一。
TW110120631A 2021-06-07 2021-06-07 以光達主動式預測太陽光電供電變化的方法 TWI788872B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110120631A TWI788872B (zh) 2021-06-07 2021-06-07 以光達主動式預測太陽光電供電變化的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110120631A TWI788872B (zh) 2021-06-07 2021-06-07 以光達主動式預測太陽光電供電變化的方法

Publications (2)

Publication Number Publication Date
TW202248579A TW202248579A (zh) 2022-12-16
TWI788872B true TWI788872B (zh) 2023-01-01

Family

ID=85793509

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110120631A TWI788872B (zh) 2021-06-07 2021-06-07 以光達主動式預測太陽光電供電變化的方法

Country Status (1)

Country Link
TW (1) TWI788872B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130258068A1 (en) * 2012-03-30 2013-10-03 General Electric Company Methods and Systems for Predicting Cloud Movement
CN109416413A (zh) * 2016-05-11 2019-03-01 联邦科学和工业研究组织 太阳能预报

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130258068A1 (en) * 2012-03-30 2013-10-03 General Electric Company Methods and Systems for Predicting Cloud Movement
CN109416413A (zh) * 2016-05-11 2019-03-01 联邦科学和工业研究组织 太阳能预报

Also Published As

Publication number Publication date
TW202248579A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
Chow et al. Short-term prediction of photovoltaic energy generation by intelligent approach
JP2013529051A (ja) 太陽光発電予測システム並びに方法
Ohlmann et al. Ocean radiant heating. Part I: Optical influences
Tabrizi et al. Rooftop wind monitoring campaigns for small wind turbine applications: Effect of sampling rate and averaging period
JP2011159199A (ja) 太陽光発電装置の発電量予測システム及び発電量予測方法
Zitouni et al. Experimental investigation and modeling of photovoltaic soiling loss as a function of environmental variables: A case study of semi-arid climate
JP2011159199A6 (ja) 太陽光発電装置の発電量予測システム及び発電量予測方法
Barnard et al. An evaluation of the FAST-J photolysis algorithm for predicting nitrogen dioxide photolysis rates under clear and cloudy sky conditions
JP2012053582A (ja) 太陽光発電設備の出力予測装置
Sadeghi et al. Improving PV power plant forecast accuracy: A hybrid deep learning approach compared across short, medium, and long-term horizons
TWI788872B (zh) 以光達主動式預測太陽光電供電變化的方法
Sadat et al. A Review of the Effects of Haze on Solar Photovoltaic Performance
Aziz et al. Impacts of albedo and atmospheric conditions on the efficiency of solar energy: A case study in temperate climate of Choman, Iraq
Conceição et al. High-frequency response of the atmospheric electric potential gradient under strong and dry boundary-layer convection
CN117220597A (zh) 一种光伏电站快速频率响应速率监测系统
Roumpakias et al. Correlation of actual efficiency of photovoltaic panels with air mass
CN109599899B (zh) 一种新能源运行模拟边界条件的设定方法
Golroodbari et al. On the effect of dynamic albedo on performance modelling of offshore floating photovoltaic systems
Zhang et al. Physical process and statistical properties of solar irradiance enhancement observed under clouds
CN109582910A (zh) 基于空气混合高度的地面pm2.5的计算方法及系统
Khan et al. Soiling mitigation potential of glass coatings and tracker routines in the desert climate of Saudi Arabia
Chen et al. Intra-day forecast of ground horizontal irradiance using long short-term memory network (LSTM)
Guo et al. Prediction of thermal boundary layer thickness and bidirectional effect of dust deposition on the output of photovoltaic modules
Zhang et al. Solar photovoltaic power prediction based on similar day approach
Frimannslund et al. Impact of solar power plant design parameters on snowdrift accumulation and energy yield