TWI788109B - 依據造影之對應空間位置整合醫學影像之系統及方法 - Google Patents

依據造影之對應空間位置整合醫學影像之系統及方法 Download PDF

Info

Publication number
TWI788109B
TWI788109B TW110143058A TW110143058A TWI788109B TW I788109 B TWI788109 B TW I788109B TW 110143058 A TW110143058 A TW 110143058A TW 110143058 A TW110143058 A TW 110143058A TW I788109 B TWI788109 B TW I788109B
Authority
TW
Taiwan
Prior art keywords
medical images
image
images
medical
voxels
Prior art date
Application number
TW110143058A
Other languages
English (en)
Other versions
TW202322143A (zh
Inventor
林慶波
舜泰 張
羅畯義
郭冠岑
許至琹
龔怡嘉
Original Assignee
國立陽明交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立陽明交通大學 filed Critical 國立陽明交通大學
Priority to TW110143058A priority Critical patent/TWI788109B/zh
Application granted granted Critical
Publication of TWI788109B publication Critical patent/TWI788109B/zh
Publication of TW202322143A publication Critical patent/TW202322143A/zh

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一種依據造影之對應空間位置整合醫學影像之系統及方法,其透過對醫學影像進行影像配准以確認醫學影像間之空間位置與造影範圍的對應關係後,依據對應關係由各醫學影像中相對應之體素選出數值最大者,並依據被選出之各體素相對各醫學影像中的位置組合被選出之各體素以產生包含所有醫學影像中之訊息的合成影像之技術手段,可以在合成影像中呈現所有醫學影像中之訊息,並達成提升手術效率且降低手術風險的技術功效。

Description

依據造影之對應空間位置整合醫學影像之系統及方法
一種影像整合系統及其方法,特別係指一種依據造影之對應空間位置整合醫學影像之系統及方法。
醫學影像發展至今,以發展出多種的影像技術應用,例如X射線、超音波、伽馬射線、磁共振等。
舉例來說,目前臨床廣泛應用的血管造影技術主要可分為飛行時間磁振血管造影(time-of-flight, TOF)、相位對比磁振血管造影(phase contrast, PC)、電腦斷層血管造影(Computed tomography angiography, CTA)、數字剪影血管造影(Digital Subtraction Angiography, DSA)等種類。其中,飛行時間磁振血管造影不需透過顯影劑注射,可觀察動脈血流的影像,但缺乏大腦結構訊息;相位對比磁振血管造影不需透過顯影劑注射,透過流速設定,可觀察動脈或靜脈的影像,對細小血管不敏銳,且缺乏大腦結構訊息;電腦斷層血管造影需要注射顯影劑後進行電腦斷層掃描,可提供高解析度動脈影像,但需注射顯影劑,因此會有輻射劑量的影響,且缺乏大腦結構訊息;數字剪影血管造影為最準確的腦血管造影方法,解析度最高,是診斷腦血管疾病的「金標準」,但此造影為侵入性造影,需要注射顯影劑與接受高劑量的輻射,且缺乏大腦結構訊息。
由於上述臨床廣泛應用的血管造影技術都無法呈現大腦結構訊息,因此,除了血管造影之外,還需要使用磁振造影來呈現大腦結構訊息,如此一來,動脈/靜脈訊息與大腦結構訊息就會以不同的影像呈現,醫療人員無法由血管影像了解大腦結構,也無法由磁振造影所呈現的結構影像中了解血管位置,導致醫療人員可能在進行外科手術之穿刺等操作時傷害到血管。
綜上所述,可知先前技術中長期以來一直存在不同醫學影像中之訊息無法在同一醫學影像中呈現導致手術過程造成傷害的問題,因此有必要提出改進的技術手段,來解決此一問題。
有鑒於先前技術存在不同醫學影像中之訊息無法在同一醫學影像中呈現導致手術過程造成傷害的問題,本發明遂揭露一種依據造影之對應空間位置整合醫學影像之系統及方法,其中:
本發明所揭露之依據造影之對應空間位置整合醫學影像之系統,至少包含:影像取得模組,用以取得多個醫學影像;影像配准模組,用以對醫學影像進行影像配准,藉以確認醫學影像間之空間位置與造影範圍之對應關係;標準化模組,用以分別將醫學影像中之體素標準化以產生與各醫學影像對應之各標準化影像;影像合成模組,用以依據對應關係由各標準化影像中相對應之體素選出數值最大者,並依據被選出之各體素相對各標準化影像中之位置組合被選出之各體素以產生合成影像;反標準化模組,用以將合成影像中之所有體素反標準化。
本發明所揭露之依據造影之對應空間位置整合醫學影像之方法,其步驟至少包括:取得多個醫學影像;對醫學影像進行影像配准,藉以確認醫學影像間之空間位置與造影範圍之對應關係;分別將醫學影像中之體素標準化以產生與各醫學影像對應之各標準化影像;依據對應關係由各標準化影像中相對應之體素選出數值最大者,並依據被選出之各體素相對各標準化影像中之位置組合被選出之各體素以產生合成影像;將合成影像中之所有體素反標準化。
本發明所揭露之系統與方法如上,與先前技術之間的差異在於本發明透過對醫學影像進行影像配准以確認醫學影像間之空間位置與造影範圍的對應關係後,依據對應關係由各醫學影像中相對應之體素選出數值最大者,並依據被選出之各體素相對各標準化影像中之位置組合被選出之各體素以產生包含所有醫學影像中之訊息的合成影像,藉以解決先前技術所存在的問題,並可以達成提升手術效率且降低手術風險的技術功效。
以下將配合圖式及實施例來詳細說明本發明之特徵與實施方式,內容足以使任何熟習相關技藝者能夠輕易地充分理解本發明解決技術問題所應用的技術手段並據以實施,藉此實現本發明可達成的功效。
本發明可以整合不同的醫學影像以提供包含所有被整合之醫學影像中之動脈、靜脈、大腦結構等訊息的合成影像。本發明所提之醫學影像包含但不限於血管影像、磁振造影結構影像等。
以下先以「第1圖」本發明所提之依據造影之對應空間位置整合醫學影像之系統架構圖來說明本發明的系統運作。如「第1圖」所示,本發明之系統含有影像取得模組110、影像配准模組130、標準化模組150、影像合成模組160、反標準化模組170,及可附加的解析度調整模組120。
影像取得模組110負責取得多個醫學影像。影像取得模組110可以連線到產生醫學影像的醫療成像設備上取得醫學影像,也可以連線到特定的伺服器(圖中未示)下載醫療成像設備所上傳的醫學影像,或可以載入預先儲存於執行本發明之系統之計算設備中的醫學影像。其中,上述之醫療成像設備包含但不限於電腦斷層設備、磁振造影設備等。
一般而言,影像取得模組110所取得的醫學影像中,可以包含一組T1磁振造影結構影像及兩組或兩組以上的血管影像。
解析度調整模組120可以取得影像取得模組110所取得之醫學影像的解析度。解析度調整模組120可以由醫學影像中取出醫學影像的解析度,例如,對醫學影像中之特定區域進行文字辨識以取得醫學影像的解析度;解析度調整模組120也可以由醫學影像的關聯資料(如EXIF或相關的檔案內容等)中讀出醫學影像的解析度;解析度調整模組120也可以依據醫學影像的大小/尺寸判斷醫學影像的解析度,例如依據醫學影像之長與寬的像素數判斷醫學影像的解析度,但解析度調整模組120取得醫學影像之解析度的方式並不以上述為限。
解析度調整模組120也可以判斷所取得之醫學影像的解析度是否一致。當解析度調整模組120所取得之醫學影像的解析度完全一致時,即所有醫學影像在各個維度的解析度都相同時,解析度調整模組120可以將醫學影像的解析度做為最高解析度;而當解析度調整模組120所取得之醫學影像的解析度並非完全一致時,解析度調整模組120可以由所有醫學影像選擇各個維度之解析度最高的數值以產生最高解析度,例如,當有三組醫學影像,其中三組影像之解析度分別在長、寬、深的維度上有最高的數值,則解析度調整模組120可以選擇在長寬深的維度上有最高的數值做為最高的解析度,而非選擇任何一組影像的解析度做為最高的解析度。
解析度調整模組120也可以在醫學影像的解析度並非完全一致時,依據所產生之最高解析度分別對影像取得模組110所取得之各個醫學影像進行內插,使得各個醫學影像在各個維度之解析度都被調整為最高解析度。
更詳細的,解析度調整模組120可以將醫學影像的解析度放大到最高解析度,並依據醫學影像原始的影像畫面透過內插法計算放大後之醫學影像的影像畫面以產生新的醫學影像。其中,解析度調整模組120可以對醫學影像使用線性內插的方式放大醫學影像,但本發明所提之內插法並不以此為限。
影像配准模組130負責對影像取得模組110所取得(或經過解析度調整模組120調整解析度後)之醫學影像進行影像配准,藉以確認醫學影像間之空間位置與造影範圍的對應關係。其中,影像配准模組130可以使用Mark Jenkinson、Peter Bannister、Michael Brady及Stephen Smith在2001/9/19所發表在期刊NeuroImage第17卷第2期(2002年出版)第825~841頁之文獻「Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images」中所提到的配准公式
Figure 02_image001
(公式6)對醫學影像進行影像配准。
舉例來說,若如「第2圖」所示,醫學影像為一張磁振造影結構影像(以下亦以「T1結構影像」表示)211與兩張血管影像212、213,則影像配准模組130可以定義T1結構影像211為參考影像(reference image)並定義血管影像212與血管影像213為移動影像(fixed image),使得影像配准模組130可以T1結構影像211為基準,透過線性方式變換血管影像212與血管影像213而對T1結構影像211進行影像配准,藉以確定血管影像212與血管影像213對應到T1結構影像211之空間位置與造影範圍的對應關係,即確定血管影像212、血管影像213在T1結構影像211中所對應的空間位置與造影範圍。影像配准模組130可以完成影像配准後產生輸出影像(output image),也就是經過配准的血管影像212與血管影像213。要說明的是,經過配准所產生的輸出影像與配准前的移動影像可能會發生位移(如上下左右平移)或被切割(如刪除與參考影像無關之區域)的情形。
影像配准模組130也可以依據所判斷出之各醫學影像之空間位置與造影範圍的對應關係填補醫學影像,使各醫學影像的尺寸相同且空間位置與造影範圍一致。一般而言,影像配准模組130可以將數值0填入醫學影像中非原有之影像內容的體素(立體像素或體積像素,Voxel),如「第2圖」中之血管影像222、血管影像223所示。
標準化模組150負責對影像取得模組110所取得之醫學影像(或影像配准模組130填入數值0之醫學影像或經過解析度調整模組120調整解析度後之醫學影像)中的體素標準化以產生標準化影像,使得所有醫學影像中的每個體素的數值都介於0~1之間,即標準化影像中的每一個體素的數值都介於0~1之間。
一般而言,標準化模組150可以
Figure 02_image003
的計算式分別對每一組醫學影像中的所有體素進行標準化,其中,V i為標準化後之醫學影像的第i個體素數值,x i為標準化前之醫學影像的第i個體素數值,x為同一醫學影像中之所有體素的數值。舉例來說,有三組醫學影像,若第一組醫學影像中體素的數值介於0~1000之間,標準化後第一組醫學影像中體素的數值將會介於0~1之間,其中,標準化前之數值為零的體素在標準化後之數值仍然為零,標準化前之數值為1000的體素在標準化後之數值為1;若第二組醫學影像中體素的數值介於5~5000之間,標準化後第二組醫學影像中體素的數值同樣將會介於0~1之間,標準化前之數值為5的體素在標準化後之數值為零,標準化前之數值為5000的體素在標準化後之數值為1;第三組醫學影像也相同,故不再描述。
影像合成模組160負責依據標準化模組150所產生的標準化影像中相對應的體素選出數值最大者,並依據被選出之各體素相對於各標準化影像中的位置組合被選出之各體素以產生合成影像。
舉例來說,若有三組醫學影像,影像合成模組160可以分別判斷三組醫學影像中排列在第i個位置之體素的數值大小,並選出由三組醫學影像中選出同樣排列在第i個位置之體素的最大數值,及將所選出之數值填入合成影像中排列在第i個體素中;接著,影像合成模組160可以判斷三組醫學影像之第i+1個體素(通常為與第i個體素相鄰之體素,但本發明並不以此為限)的數值大小,並選出三組醫學影像中第i+1個體素的最大數值,及將所選出之數值填入合成影像的第i+1個體素中;依此類推,影像合成模組160便可以組合出合成影像。其中,要說明的是,影像合成模組160會以相同的方式定義各組醫學影像中之體素的位置,意即第i個體素在不同的醫學影像中的位置是相同的。
反標準化模組170可以將影像合成模組160所產生的合成影像中的所有體素反標準化。一般而言,反標準化模組170可以透過
Figure 02_image005
的公式反標準化合成影像中的每一個體素,其中,與前述相同的,V i為醫學影像之第i個體素的數值,x為同一醫學影像中之所有體素的數值。
接著以一個實施例來解說本發明的運作系統與方法,並請參照「第3A圖」本發明所提之依據造影之對應空間位置整合醫學影像之方法流程圖。在本實施例中,假設本發明應用在電腦、平板、智慧電視等計算設備中,且計算設備設置於醫療機構中,但本發明並不以此為限。
首先,影像取得模組110可以取得醫學影像(步驟310)。在本實施例中,假設醫學影像包含由磁振造影設備所產生的T1結構影像211及由磁振造影設備所產生的兩組血管影像212、213等,影像取得模組110可以提供使用者設定醫學影像的儲存路徑,並依據被設定的儲存路徑取得使用者預先儲存在計算設備中的T1結構影像211與兩組血管影像212、213。
在影像取得模組110取得各醫學影像後,影像配准模組130可以對各醫學影像進行影像配准,藉以確認各醫學影像間之空間位置與造影範圍的對應關係(步驟350)。在本實施例中,假設影像配准模組130可以使用FSL開源軟體中之線性配准函數FLIRT(),將T1結構影像211做為基準的參考影像,並將兩組血管影像212、213做為移動影像對參考影像(T1結構影像211)進行影像配准以產生輸出影像。
另外,影像配准模組130還可以依據T1結構影像211與兩組血管影像212、213之空間位置與造影範圍之對應關係填補T1結構影像211與血管影像212、213等醫學影像,使各醫學影像之尺寸相同,例如,當T1結構影像211的尺寸為256*192、第一組血管影像212的尺寸為192*192、第二組血管影像213的尺寸為120*200時,影像配准模組130可以將數值0做為體素填補到兩組血管影像中,使得兩組血管影像的尺寸與T1結構影像相同,都為256*192。
在影像配准模組130對影像取得模組110所取得的各醫學影像進行影像配准後,標準化模組150可以對影像取得模組110所取得之各醫學影像中的每一個體素進行標準化(步驟360),其中,若影像配准模組130有調整醫學影像的尺寸,則標準化尺寸調整後之各醫學影像的每一個體素。在本實施例中,標準化模組150可以分別將T1結構影像211與兩組血管影像212、213在三個維度上之體素的數值按比例調整為0~1之間。
在標準化模組150對醫學影像進行標準化後,影像合成模組160可以依據影像配准模組130所建立之對應關係由經過標準化模組150標準化的各醫學影像中之對應的體素選出數值最大者,並依據被選出之體素相對於各醫學影像中之位置組合被選出之體素以產生合成影像(步驟370)。在本實施例中,影像合成模組160可以依據影像配准模組130所建立之對應關係,逐一比對T1結構影像211與兩組血管影像212、213中相對應之體素的數值大小,並取得數值最大之體素,及將所取得之體素複製到合成影像中之相同位置。
在影像合成模組160產生合成影像後,反標準化模組170可以將合成影像中之所有體素反標準化(步驟380)。在本實施例中,反標準化模組170所產生之反標準化的合成影像400如「第4圖」所示,與T1結構影像211相比,合成影像400可以額外包含兩組血管影像212、213的訊息,如箭頭420、430標示處所示。如此,透過本發明,可以將不同的醫學影像中之動脈、靜脈、大腦結構等訊息整合為一個合成影像,方便醫療人員觀察。
上述實施例中,還可以如「第3B圖」所示,在影像取得模組110取得醫學影像(步驟310)後,解析度調整模組120可以取得各醫學影像的解析度(步驟321),並判斷所取得之醫學影像的解析度是否完全一致(步驟323)。若所有醫學影像的解析度完成一致,則影像配准模組130可以對各醫學影像進行影像配准(步驟350);而若醫學影像的解析度並非完成一致,則解析度調整模組120可以依據醫學影像的解析度判斷最高解析度(步驟325)。例如,若T1結構影像的解析度為1x1x1 mm 3、一組血管影像的解析度為0.5x0.5x0.5 mm 3、另一組血管影像的解析度為0.3x0.3x1 mm 3,則解析度調整模組120可以判斷醫學影像的解析度並不一致,並可以判斷T1結構影像與兩組血管影像之解析度在三個維度上的最小值做為最高解析度,即解析度調整模組120所取得的最高解析度為0.3x0.3x0.5 mm 3
在解析度調整模組120依據影像取得模組110所取得之醫學影像取得最高解析度(步驟325)後,可以依據所取得的最高解析度對調整過解析度的各醫學影像進行內插以產生分別與各醫學影像對應的各醫學影像(步驟330),使得影像配准模組130可以對調整過解析度的各醫學影像進行影像配准(步驟350)。在本實施例中,解析度調整模組120可以對T1結構影像與兩組血管影像等醫學影像使用線性內插的方式使解析度分別由1x1x1 mm 3、0.5x0.5x0.5 mm 3、0.3x0.3x1 mm 3都調整為0.3x0.3x0.5 mm 3,也就是說,解析度調整模組120在內插後可以產生解析度均為0.3x0.3x0.5 mm 3的T1結構影像211、血管影像212、血管影像213。
綜上所述,可知本發明與先前技術之間的差異在於具有透過對醫學影像進行影像配准以確認醫學影像間之空間位置與造影範圍的對應關係後,依據對應關係由各醫學影像中相對應之體素選出數值最大者,並依據被選出之各體素相對各標準化影像中之位置組合被選出之各體素以產生包含所有醫學影像中之訊息的合成影像之技術手段,藉由此一技術手段可以來解決先前技術所存在不同醫學影像中之訊息無法在同一醫學影像中呈現導致手術過程造成額外傷害的問題,進而達成提升手術效率且降低手術風險的技術功效。
再者,本發明之依據造影之對應空間位置整合醫學影像之方法,可實現於硬體、軟體或硬體與軟體之組合中,亦可在電腦系統中以集中方式實現或以不同元件散佈於若干互連之電腦系統的分散方式實現。
雖然本發明所揭露之實施方式如上,惟所述之內容並非用以直接限定本發明之專利保護範圍。任何本發明所屬技術領域中具有通常知識者,在不脫離本發明所揭露之精神和範圍的前提下,對本發明之實施的形式上及細節上作些許之更動潤飾,均屬於本發明之專利保護範圍。本發明之專利保護範圍,仍須以所附之申請專利範圍所界定者為準。
110:影像取得模組 120:解析度調整模組 130:影像配准模組 150:標準化模組 160:影像合成模組 170:反標準化模組 211:T1結構影像 212:血管影像 213:血管影像 222:血管影像 223:血管影像 400:合成影像 420:箭頭 430:箭頭 步驟310:取得多個醫學影像 步驟321:取得各醫學影像之解析度 步驟323:判斷解析度是否完全一致 步驟325:依據醫學影像之解析度判斷最高解析度 步驟330:依據最高解析度對各醫學影像進行內插,使醫學影像之解析度調整為最高解析度 步驟350:對醫學影像進行影像配准,藉以確認醫學影像間之空間位置與造影範圍之對應關係 步驟360:將醫學影像中之體素標準化以產生與各醫學影像對應之各標準化影像 步驟370:由各醫學影像中相對應之體素選出數值最大者,並依據被選出之各體素相對各醫學影像中之位置組合各體素以產生合成影像 步驟380:將合成影像中之所有體素反標準化
第1圖為本發明所提之依據造影之對應空間位置整合醫學影像之系統架構圖。 第2圖為本發明實施例所提之醫學影像之示意圖。 第3A圖為本發明所提之依據造影之對應空間位置整合醫學影像之方法流程圖。 第3B圖為本發明所提之調整醫學影像之解析度之方法流程圖。 第4圖為本發明實施例所提之合成影像之示意圖。
步驟310:取得多個醫學影像
步驟350:對醫學影像進行影像配准,藉以確認醫學影像間之空間位置與造影範圍之對應關係
步驟360:將醫學影像中之體素標準化以產生與各醫學影像對應之各標準化影像
步驟370:由各醫學影像中相對應之體素選出數值最大者,並依據被選出之各體素相對各醫學影像中之位置組合各體素以產生合成影像
步驟380:將合成影像中之所有體素反標準化

Claims (10)

  1. 一種依據造影之對應空間位置整合醫學影像之方法,係應用於一計算設備,該方法至少包含下列步驟: 取得多個醫學影像; 對該些醫學影像進行影像配准,藉以確認該些醫學影像間之空間位置與造影範圍之一對應關係; 分別將該些醫學影像中之體素標準化以產生與各該醫學影像對應之各標準化影像; 依據該對應關係由各該標準化影像中相對應之體素選出數值最大者,並依據被選出之各該體素相對各該標準化影像中之位置組合被選出之各該體素以產生一合成影像;及 將該合成影像中之所有體素反標準化。
  2. 如請求項1所述之依據造影之對應空間位置整合醫學影像之方法,其中對該些醫學影像進行影像配准之步驟為依據該些醫學影像中之一磁振造影結構影像為基準,透過線性方式將該些醫學影像中非該磁振造影結構影像對該磁振造影結構影像進行影像配准。
  3. 如請求項1所述之依據造影之對應空間位置整合醫學影像之方法,其中該方法於對該些醫學影像進行影像配准之步驟前,更包含取得各該醫學影像之各解析度,當該些解析度未完全一致時,依據該些解析度判斷一最高解析度,並依據該最高解析度對各該醫學影像進行內插,使該些醫學影像之解析度調整為該最高解析度之步驟。
  4. 如請求項3所述之依據造影之對應空間位置整合醫學影像之方法,其中依據該最高解析度對各該醫學影像進行內插之步驟為對各該醫學影像使用線性內插。
  5. 如請求項1所述之依據造影之對應空間位置整合醫學影像之方法,其中對該些醫學影像進行影像配准之步驟,更包含依據該些醫學影像之空間位置與造影範圍填補各該醫學影像,使各該醫學影像之尺寸相同之步驟。
  6. 一種依據造影之對應空間位置整合醫學影像之系統,該系統至少包含: 一影像取得模組,用以取得多個醫學影像; 一影像配准模組,用以對該些醫學影像進行影像配准,藉以確認該些醫學影像間之空間位置與造影範圍之一對應關係; 一標準化模組,用以分別將該些醫學影像中之體素標準化以產生與各該醫學影像對應之各標準化影像; 一影像合成模組,用以依據該對應關係由各該標準化影像中相對應之體素選出數值最大者,並依據被選出之各該體素相對各該標準化影像中之位置組合被選出之各該體素以產生一合成影像;及 一反標準化模組,用以將該合成影像中之所有體素反標準化。
  7. 如請求項6所述之依據造影之對應空間位置整合醫學影像之系統,其中該影像配准模組是依據該些醫學影像中之一磁振造影結構影像為基準,透過線性方式將該些醫學影像中非該磁振造影結構影像對該磁振造影結構影像進行影像配准。
  8. 如請求項6所述之依據造影之對應空間位置整合醫學影像之系統,其中該系統更包含一解析度調整模組,用以取得各該醫學影像之各解析度,及用以判斷該些解析度不完全一致時,取得該些解析度中之一最高解析度,並依據該最高解析度對各該醫學影像進行內插,使該些醫學影像之解析度調整為該最高解析度。
  9. 如請求項8所述之依據造影之對應空間位置整合醫學影像之系統,其中該解析度調整模組是對各該醫學影像使用線性內插。
  10. 如請求項6所述之依據造影之對應空間位置整合醫學影像之系統,其中該影像配准模組更用以依據該些醫學影像之空間位置與造影範圍填補各該醫學影像,使各該醫學影像之尺寸相同。
TW110143058A 2021-11-18 2021-11-18 依據造影之對應空間位置整合醫學影像之系統及方法 TWI788109B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110143058A TWI788109B (zh) 2021-11-18 2021-11-18 依據造影之對應空間位置整合醫學影像之系統及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110143058A TWI788109B (zh) 2021-11-18 2021-11-18 依據造影之對應空間位置整合醫學影像之系統及方法

Publications (2)

Publication Number Publication Date
TWI788109B true TWI788109B (zh) 2022-12-21
TW202322143A TW202322143A (zh) 2023-06-01

Family

ID=85795209

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110143058A TWI788109B (zh) 2021-11-18 2021-11-18 依據造影之對應空間位置整合醫學影像之系統及方法

Country Status (1)

Country Link
TW (1) TWI788109B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101336844A (zh) * 2007-07-05 2009-01-07 株式会社东芝 医用图像处理装置以及医用图像诊断装置
US20100086185A1 (en) * 2004-03-11 2010-04-08 Weiss Kenneth L Image creation, analysis, presentation and localization technology
TW201417769A (zh) * 2012-11-09 2014-05-16 Iner Aec Executive Yuan 一種影像品質的改善處理方法及其造影系統
TW201817385A (zh) * 2016-11-14 2018-05-16 財團法人金屬工業硏究發展中心 導線定位造影方法與系統
TW202027091A (zh) * 2019-01-14 2020-07-16 國立陽明大學 個人化大腦影像評估之方法、非暫時性電腦可讀媒體及設備

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100086185A1 (en) * 2004-03-11 2010-04-08 Weiss Kenneth L Image creation, analysis, presentation and localization technology
CN101336844A (zh) * 2007-07-05 2009-01-07 株式会社东芝 医用图像处理装置以及医用图像诊断装置
TW201417769A (zh) * 2012-11-09 2014-05-16 Iner Aec Executive Yuan 一種影像品質的改善處理方法及其造影系統
TW201817385A (zh) * 2016-11-14 2018-05-16 財團法人金屬工業硏究發展中心 導線定位造影方法與系統
TW202027091A (zh) * 2019-01-14 2020-07-16 國立陽明大學 個人化大腦影像評估之方法、非暫時性電腦可讀媒體及設備

Also Published As

Publication number Publication date
TW202322143A (zh) 2023-06-01

Similar Documents

Publication Publication Date Title
CN100528083C (zh) 采用原立体数据组进行数字减影血管造影的方法
Zhao et al. A new approach for medical image enhancement based on luminance-level modulation and gradient modulation
US7916139B2 (en) Imaging volume data
US7734119B2 (en) Method and system for progressive multi-resolution three-dimensional image reconstruction using region of interest information
US8238630B2 (en) Image processing apparatus and program for the same
US9569839B2 (en) Image processing apparatus, method and medical image device
JP6835813B2 (ja) コンピュータ断層撮影視覚化調整
US20080123912A1 (en) Purpose-driven enhancement filtering of anatomical data
Goo Semiautomatic three-dimensional threshold-based cardiac computed tomography ventricular volumetry in repaired tetralogy of Fallot: comparison with cardiac magnetic resonance imaging
WO2017148332A1 (zh) 一种灌注分析方法与设备
US20200242744A1 (en) Forecasting Images for Image Processing
US10134127B2 (en) Method for post-processing flow-sensitive phase contrast magnetic resonance images
CN104783825A (zh) 用于产生血管系统的二维投影图像的方法和装置
US20210174501A1 (en) Medical data processing apparatus
Nakazato et al. Automatic alignment of myocardial perfusion PET and 64-slice coronary CT angiography on hybrid PET/CT
CN111932665A (zh) 一种基于血管管状模型的肝血管三维重建及可视化方法
Molwitz et al. Fat quantification in dual-layer detector spectral computed tomography: experimental development and first in-patient validation
Park et al. Deep learning image reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of image quality and radiation dose in a phantom study
TWI788109B (zh) 依據造影之對應空間位置整合醫學影像之系統及方法
US8805122B1 (en) System, method, and computer-readable medium for interpolating spatially transformed volumetric medical image data
Scialpi et al. Split-bolus multidetector-row computed tomography technique for characterization of focal liver lesions in oncologic patients
US9905001B2 (en) Image processing apparatus and image processing method
Sprawls Optimizing medical image contrast, detail and noise in the digital era
US20230253110A1 (en) Method and System for Estimating Arterial Input Function
EP4315238A1 (en) Methods and systems for biomedical image segmentation based on a combination of arterial and portal image information