TWI787977B - Loudspeaker controller for estimating fundamental resonance frequency of loudspeaker and method for estimating fundamental resonance frequency of loudspeaker - Google Patents

Loudspeaker controller for estimating fundamental resonance frequency of loudspeaker and method for estimating fundamental resonance frequency of loudspeaker Download PDF

Info

Publication number
TWI787977B
TWI787977B TW110132061A TW110132061A TWI787977B TW I787977 B TWI787977 B TW I787977B TW 110132061 A TW110132061 A TW 110132061A TW 110132061 A TW110132061 A TW 110132061A TW I787977 B TWI787977 B TW I787977B
Authority
TW
Taiwan
Prior art keywords
signal
filter
band
circuit
current signal
Prior art date
Application number
TW110132061A
Other languages
Chinese (zh)
Other versions
TW202310636A (en
Inventor
張榮貴
余文隆
Original Assignee
晶豪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶豪科技股份有限公司 filed Critical 晶豪科技股份有限公司
Priority to TW110132061A priority Critical patent/TWI787977B/en
Application granted granted Critical
Publication of TWI787977B publication Critical patent/TWI787977B/en
Publication of TW202310636A publication Critical patent/TW202310636A/en

Links

Images

Landscapes

  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Abstract

A loudspeaker controller for estimating a fundamental resonance frequency of a loudspeaker includes: an amplifier circuit, arranged to generate a driving signal of the loudspeaker according to an audio input signal; a sensing circuit, arranged to sense characteristics of the driving signal to generate a measurement signal; a plurality of band pass filter circuits, arranged to filter the measurement signal to generate a plurality of filter outputs, respectively, wherein the plurality of band pass filter circuits have different passbands; and an estimation circuit, arranged to estimate the fundamental resonance frequency according to the plurality of filter outputs.

Description

用以估測揚聲器之基本共振頻率的揚聲器控制器以及用以估 測揚聲器之基本共振頻率的方法 A loudspeaker controller for estimating the fundamental resonant frequency of a loudspeaker and for estimating Method for Measuring the Basic Resonant Frequency of Loudspeakers

本發行係有關頻率估測,且尤指一種用以估測一揚聲器之一基本共振頻率的方法以及相關揚聲器控制器。 This publication relates to frequency estimation, and in particular to a method for estimating a fundamental resonant frequency of a loudspeaker and related loudspeaker controllers.

揚聲器係具有音圈(voice coil)的裝置,其中音圈移動一振膜(diaphragm)並且將電子訊號轉換為聲音訊號,然而,對於導致振膜位移較大的輸入訊號來說,較大的振膜位移可能會損壞揚聲器,為了避免上述問題,可以在揚聲器的基本共振頻率(fundamental resonance frequency)中控制揚聲器的一操作頻率。為了找到揚聲器的基本共振頻率,可以先取得揚聲器的阻抗(impedance)曲線圖,其中阻抗曲線圖的橫軸係為頻率,以及阻抗曲線圖的縱軸係為阻抗,再者,揚聲器的基本共振頻率可藉由辨認對應於阻抗曲線之最大值的一頻率來自阻抗曲線圖中找出,要注意的是,揚聲器的阻抗曲線可能隨著溫度改變,因此,揚聲器的基本共振頻率不是一固定值。 A loudspeaker is a device with a voice coil that moves a diaphragm and converts electrical signals into sound signals, however, for input signals that cause larger diaphragm displacements, larger diaphragms Membrane displacement may damage the speaker. To avoid the above problems, an operating frequency of the speaker can be controlled within the fundamental resonance frequency of the speaker. In order to find the basic resonance frequency of the speaker, you can first obtain the impedance curve of the speaker, where the horizontal axis of the impedance curve is the frequency, and the vertical axis of the impedance curve is the impedance. Furthermore, the basic resonance frequency of the speaker It can be found from the impedance graph by identifying a frequency corresponding to the maximum value of the impedance curve. Note that the impedance curve of a speaker may change with temperature, therefore, the fundamental resonant frequency of a speaker is not a fixed value.

為了取得揚聲器的阻抗曲線圖以及自阻抗曲線圖找出基本共振頻率,可以在揚聲器上進行一種典型的時域阻抗量測或一種典型的頻域阻抗量測,該典型的時域阻抗量測具有低成本以及高準確度的優點,然而,該典型的時域阻抗量測於揚聲器用以進行音訊播放而被驅動的期間不可動態地監控阻抗以及基本共振頻率並且需要掃頻。針對該典型的頻域阻抗量測來說,雖然阻抗以及基本共振頻率於揚聲器用以進行音訊播放而被驅動的期間可以被動態地監控並且無需掃頻,在頻域阻抗量測中的快速傅立葉轉換(fast fourier transformation,FFT)相當複雜並且可能導致較高的硬體成本。 In order to obtain the impedance curve of the loudspeaker and the self-impedance curve to find the fundamental resonance frequency, a typical time-domain impedance measurement or a typical frequency-domain impedance measurement can be performed on the loudspeaker. The typical time-domain impedance measurement has Advantages of low cost and high accuracy, however, the typical time-domain impedance measurement cannot dynamically monitor the impedance and fundamental resonant frequency while the speaker is being driven for audio playback and requires a frequency sweep. For this typical frequency-domain impedance measurement, although the impedance and fundamental resonant frequency can be dynamically monitored and no frequency sweep is required while the loudspeaker is being driven for audio playback, the fast Fourier transform in the frequency-domain impedance measurement Transformation (fast fourier transformation, FFT) is quite complicated and may result in high hardware cost.

因此,本發明之一目的在於提供一種用以估測一揚聲器之一基本共振頻率的方法,此外,為了達到低成本以及高準確度的優點,該方法另可於揚聲器用以進行音訊播放而被驅動的期間動態地監控阻抗(尤指基本共振頻率)。 Therefore, an object of the present invention is to provide a method for estimating a fundamental resonance frequency of a loudspeaker. In addition, in order to achieve the advantages of low cost and high accuracy, the method can also be used for audio playback by the loudspeaker. The impedance (especially the fundamental resonant frequency) is dynamically monitored during driving.

根據本發明之一實施例,揭露了一種用以估測一揚聲器之一基本共振頻率的方法,該方法可包含有:根據一音訊輸入訊號來產生該揚聲器之一驅動訊號;感測該驅動訊號之特性以產生一量測訊號;藉由具有不同通帶之複數個帶通濾波器來濾波該量測訊號,以產生複數個濾波器輸出;以及根據該複數個濾波器輸出來估測該基本共振頻率。 According to an embodiment of the present invention, a method for estimating a fundamental resonance frequency of a loudspeaker is disclosed, the method may include: generating a driving signal of the loudspeaker according to an audio input signal; sensing the driving signal characteristics to generate a measurement signal; filter the measurement signal by a plurality of bandpass filters with different passbands to generate a plurality of filter outputs; and estimate the basic Resonance frequency.

除了上述方法,本發明另揭露了一種揚聲器控制器,該揚聲器控制器可包含有:一放大器電路,用以根據一音訊輸入訊號來產生該揚聲器之一驅動訊號;一感測電路,用以感測該驅動訊號之特性來產生一量測訊號;複數個帶通濾波器電路,用以分別濾波該量測訊號來產生複數個濾波器輸出,其中該 複數個帶通濾波器具有不同通帶;以及一估測電路,用以根據該複數個濾波器輸出來估測該基本共振頻率。 In addition to the above method, the present invention further discloses a speaker controller, which may include: an amplifier circuit for generating a driving signal of the speaker according to an audio input signal; a sensing circuit for sensing Measuring the characteristics of the driving signal to generate a measurement signal; a plurality of bandpass filter circuits are used to respectively filter the measurement signal to generate a plurality of filter outputs, wherein the A plurality of bandpass filters have different passbands; and an estimation circuit is used for estimating the fundamental resonance frequency according to the outputs of the plurality of filters.

本發明至少可具有以下的優點/好處。與典型的時域阻抗量測相比,本發明所揭露的利用一組具有以不同頻率為中心之通帶的帶通濾波器電路的基本共振頻率估測方案可於揚聲器用以進行音訊播放而被驅動的期間動態地監控阻抗(尤指基本共振頻率),並且不需要掃頻。與典型的頻域阻抗量測相比,本發明所揭露的利用一組具有以不同頻率為中心之通帶的帶通濾波器電路的基本共振頻率估測方案不需要進行複雜的快速傅立葉轉換,並且可以以低硬體成本來實現。 The present invention may have at least the following advantages/benefits. Compared with typical time-domain impedance measurements, the disclosed basic resonant frequency estimation scheme using a set of bandpass filter circuits with passbands centered at different frequencies can be used in loudspeakers for audio playback. Impedance (especially the fundamental resonant frequency) is dynamically monitored while being driven, and frequency sweeping is not required. Compared with typical frequency-domain impedance measurements, the disclosed basic resonant frequency estimation scheme using a set of bandpass filter circuits with passbands centered at different frequencies does not require complex fast Fourier transforms, And can be implemented with low hardware cost.

10:揚聲器控制器 10:Speaker controller

12:放大器電路 12: Amplifier circuit

14:感測電路 14: Sensing circuit

28_1~28_N:帶通濾波器電路 28_1~28_N: Bandpass filter circuit

30:估測電路 30: Estimation circuit

50:揚聲器 50: speaker

A_IN:音訊輸入訊號 A_IN: audio input signal

A_DRV:驅動訊號 A_DRV: drive signal

S_M:量測訊號 S_M: Measurement signal

BPFOUT_1~BPFOUT_N:濾波器輸出 BPFOUT_1~BPFOUT_N: filter output

Fo:基本共振頻率 F o : Fundamental resonance frequency

16:電流感測電路 16: Current sensing circuit

18:電壓感測電路 18: Voltage sensing circuit

20:預處理電路 20: Preprocessing circuit

22:低通濾波器電路 22: Low-pass filter circuit

23_1,23_2:低通濾波器 23_1, 23_2: low pass filter

I(t):量測電流訊號 I(t): measurement current signal

I’(t):低通濾波電流訊號 I'(t): Low-pass filtered current signal

V(t):量測電壓訊號 V(t): Measurement voltage signal

V’(t):低通濾波電壓訊號 V’(t): Low-pass filtered voltage signal

24:降低取樣電路 24: Downsampling circuit

S_I:降低取樣電流訊號 S_I: Reduce the sampling current signal

S_V:降低取樣電壓訊號 S_V: Reduced sampling voltage signal

29_11~29_N1,29_12~29_N2:帶通濾波器 29_11~29_N1, 29_12~29_N2: bandpass filter

BPFI_1~BPFI_N:帶通濾波電流訊號 BPFI_1~BPFI_N: bandpass filter current signal

BPFV_1~BPFV_N:帶通濾波電壓訊號 BPFV_1~BPFV_N: Band-pass filtered voltage signal

32:平滑濾波器電路 32: Smoothing filter circuit

36_1~36_N:阿爾發濾波器電路 36_1~36_N: Alpha filter circuit

37_11~37_N1,37_12~37_N2:阿爾發濾波器 37_11~37_N1, 37_12~37_N2: Alpha filter

SFI_1~SFI_N:平滑電流訊號 SFI_1~SFI_N: Smooth current signal

SFV_1~SFV_N:平滑電壓訊號 SFV_1~SFV_N: Smooth voltage signal

38:處理電路 38: Processing circuit

40:強度門檻電路 40: Intensity Threshold Circuit

MAG:強度 MAG: Strength

TH:強度門檻 TH: Intensity Threshold

S80~S96,S98:步驟 S80~S96, S98: steps

第1圖為依據本發明一實施例之用以估測揚聲器之基本共振頻率的揚聲器控制器的方塊圖。 FIG. 1 is a block diagram of a speaker controller for estimating the fundamental resonance frequency of a speaker according to an embodiment of the present invention.

第2圖為依據本發明一實施例之第1圖所示之揚聲器控制器的一實施範例的示意圖。 FIG. 2 is a schematic diagram of an implementation example of the speaker controller shown in FIG. 1 according to an embodiment of the present invention.

第3圖為依據本發明一實施例之用以估測揚聲器之基本共振頻率的方法流程圖。 FIG. 3 is a flowchart of a method for estimating the fundamental resonance frequency of a speaker according to an embodiment of the present invention.

第4圖為藉由具有快速傅立葉轉換的頻域阻抗量測所取得的揚聲器之阻抗曲線的示意圖。 FIG. 4 is a schematic diagram of an impedance curve of a loudspeaker obtained by frequency-domain impedance measurement with fast Fourier transform.

第5圖為依據本發明一第一實施例之藉由第3圖所示之方法的揚聲器之基本共振頻率的估測示意圖。 FIG. 5 is a schematic diagram of estimating the fundamental resonance frequency of the loudspeaker by the method shown in FIG. 3 according to a first embodiment of the present invention.

第6圖為藉由具有快速傅立葉轉換的頻域阻抗量測所取得的揚聲器之另一阻抗曲線的示意圖。 FIG. 6 is a schematic diagram of another impedance curve of a loudspeaker obtained by frequency-domain impedance measurement with fast Fourier transform.

第7圖為依據本發明一第二實施例之藉由第3圖所示之方法的揚聲器之基本共振頻率的估測示意圖。 FIG. 7 is a schematic diagram of estimation of the fundamental resonant frequency of the loudspeaker by the method shown in FIG. 3 according to a second embodiment of the present invention.

第8圖為藉由具有快速傅立葉轉換的頻域阻抗量測所取得的揚聲器之再另一阻抗曲線的示意圖。 FIG. 8 is a schematic diagram of yet another impedance curve of a loudspeaker obtained by frequency-domain impedance measurement with fast Fourier transform.

第9圖為依據本發明一第三實施例之藉由第3圖所示之方法的揚聲器之基本共振頻率的估測示意圖。 FIG. 9 is a schematic diagram of estimating the fundamental resonance frequency of the loudspeaker by the method shown in FIG. 3 according to a third embodiment of the present invention.

第10圖為依據本發明一實施例之第1圖所示之揚聲器控制器的另一實施範例的示意圖。 FIG. 10 is a schematic diagram of another implementation example of the speaker controller shown in FIG. 1 according to an embodiment of the present invention.

第11圖為依據本發明一實施例之用以估測揚聲器之基本共振頻率的另一方法流程圖。 FIG. 11 is a flow chart of another method for estimating the fundamental resonant frequency of a loudspeaker according to an embodiment of the present invention.

第12圖為依據本發明一實施例之第1圖所示之揚聲器控制器的再另一實施範例的示意圖。 FIG. 12 is a schematic diagram of yet another implementation example of the speaker controller shown in FIG. 1 according to an embodiment of the present invention.

第1圖為依據本發明一實施例之用以估測揚聲器50之基本共振頻率Fo的揚聲器控制器10的方塊圖。如第1圖所示,揚聲器控制器10係耦接於揚聲器50,並且用以估測揚聲器50之基本共振頻率Fo,要注意的是,揚聲器50在其基本共振頻率Fo時具有最高阻抗,因此,估測揚聲器50之基本共振頻率Fo可藉由估測揚聲器50之最高阻抗來實現。揚聲器控制器10可包含有一放大器電路12、一感測電路14、複數個帶通濾波器(band pass filter,BPF)電路28_1、28_2、...、28_N(為簡潔起見,分別標記為“BPF電路”)以及一估測電路30,其中“N”可代表大於一的正整數(亦即N≧2)。放大器電路12係用以接收一音訊輸入訊號A_IN並且根據音訊輸入訊號A_IN來產生揚聲器50的一驅動訊號A_DRV。感測電路14係耦接於放大器電路12以及揚聲器50,並且用以感測驅動訊號A_DRV的特性以 及產生一量測訊號S_M。帶通濾波器電路28_1~28_N係耦接於感測電路14,並且用以濾波量測訊號S_M以及分別產生複數個濾波器輸出BPFOUT_1~BPFOUT_N,其中帶通濾波器電路28_1~28_N具有不同通帶(passband),因此,當相同的量測訊號S_M輸入至帶通濾波器電路28_1~28_N時,濾波器輸出BPFOUT_1~BPFOUT_N可以是不同的。估測電路30係耦接於帶通濾波器電路28_1~28_N,並且用以根據濾波器輸出BPFOUT_1~BPFOUT_N來估測揚聲器50的基本共振頻率Fo,此外,於揚聲器50用以進行音訊播放而被驅動的期間,揚聲器控制器10可利用即時(real-time)的方式來估測揚聲器50的基本共振頻率FoFIG. 1 is a block diagram of a speaker controller 10 for estimating the fundamental resonant frequency F o of a speaker 50 according to an embodiment of the present invention. As shown in FIG. 1, the speaker controller 10 is coupled to the speaker 50 and used to estimate the fundamental resonance frequency F o of the speaker 50. It should be noted that the speaker 50 has the highest impedance at its fundamental resonance frequency F o , Therefore, estimating the fundamental resonance frequency F o of the loudspeaker 50 can be realized by estimating the highest impedance of the loudspeaker 50 . The speaker controller 10 may include an amplifier circuit 12, a sensing circuit 14, a plurality of band pass filter (band pass filter, BPF) circuits 28_1, 28_2, . . . BPF circuit") and an estimation circuit 30, wherein "N" may represent a positive integer greater than one (that is, N≧2). The amplifier circuit 12 is used for receiving an audio input signal A_IN and generating a driving signal A_DRV of the speaker 50 according to the audio input signal A_IN. The sensing circuit 14 is coupled to the amplifier circuit 12 and the speaker 50, and is used for sensing the characteristics of the driving signal A_DRV and generating a measurement signal S_M. The band-pass filter circuits 28_1~28_N are coupled to the sensing circuit 14, and are used to filter the measurement signal S_M and generate a plurality of filter outputs BPFOUT_1~BPFOUT_N respectively, wherein the band-pass filter circuits 28_1~28_N have different passbands (passband), therefore, when the same measurement signal S_M is input to the band-pass filter circuits 28_1-28_N, the filter outputs BPFOUT_1-BPFOUT_N may be different. The estimation circuit 30 is coupled to the bandpass filter circuits 28_1~28_N, and is used for estimating the fundamental resonant frequency F o of the speaker 50 according to the filter outputs BPFOUT_1~BPFOUT_N. During being driven, the speaker controller 10 can estimate the fundamental resonant frequency F o of the speaker 50 in a real-time manner.

與典型的時域阻抗量測相比,本發明所揭露的利用一組具有以不同頻率為中心之通帶的帶通濾波器電路28_1~28_N的基本共振頻率估測方案可於揚聲器50用以進行音訊播放而被驅動的期間動態地監控阻抗(尤指基本共振頻率),並且不需要掃頻。 Compared with the typical time-domain impedance measurement, the basic resonant frequency estimation scheme disclosed by the present invention using a set of bandpass filter circuits 28_1~28_N with passbands centered at different frequencies can be used in the loudspeaker 50 for Impedance (especially the fundamental resonant frequency) is dynamically monitored while being driven for audio playback, and frequency sweeping is not required.

與典型的頻域阻抗量測相比,本發明所揭露的利用一組具有以不同頻率為中心之通帶的帶通濾波器電路28_1~28_N的基本共振頻率估測方案不需要進行複雜的快速傅立葉轉換,並且可以以低硬體成本來實現。以下參照附圖來描述本發明所揭露之基本共振頻率估測方案之進一步的細節。 Compared with typical frequency-domain impedance measurements, the basic resonant frequency estimation scheme disclosed in the present invention using a set of bandpass filter circuits 28_1~28_N with passbands centered on different frequencies does not require complicated fast Fourier transform, and can be implemented with low hardware cost. Further details of the basic resonance frequency estimation scheme disclosed in the present invention are described below with reference to the accompanying drawings.

第2圖為依據本發明一實施例之第1圖所示之揚聲器控制器的一實施範例的示意圖。如上所述,感測電路14係用以感測驅動訊號A_DRV的特性並且產生量測訊號S_M,舉例來說,驅動訊號A_DRV的特性可包含有一電壓值以及一電流值,如第2圖所示,感測電路14可包含有一電流感測電路16、一電壓感測電路18以及一預處理電路20。電流感測電路16可量測流過揚聲器50之一音圈的 一電流來產生一量測電流訊號I(t),電壓感測電路18可量測揚聲器50之音圈兩端的一電壓來產生一量測電壓訊號V(t),預處理電路20係用以根據量測電流訊號I(t)以及量測電壓訊號V(t)來產生量測訊號S_M。 FIG. 2 is a schematic diagram of an implementation example of the speaker controller shown in FIG. 1 according to an embodiment of the present invention. As mentioned above, the sensing circuit 14 is used to sense the characteristics of the driving signal A_DRV and generate the measurement signal S_M. For example, the characteristics of the driving signal A_DRV may include a voltage value and a current value, as shown in FIG. 2 The sensing circuit 14 may include a current sensing circuit 16 , a voltage sensing circuit 18 and a preprocessing circuit 20 . The current sensing circuit 16 can measure the current flowing through one of the voice coils of the loudspeaker 50 A current is used to generate a measurement current signal I(t). The voltage sensing circuit 18 can measure a voltage across the voice coil of the speaker 50 to generate a measurement voltage signal V(t). The preprocessing circuit 20 is used to The measurement signal S_M is generated according to the measurement current signal I(t) and the measurement voltage signal V(t).

在本實施例中,預處理電路20可包含有一低通濾波器(low pass filter,LPF)電路22(為簡潔起見,標記為“LPF電路”)以及一降低取樣電路24,其中降低取樣電路24係耦接於低通濾波器電路22。低通濾波器電路22可包含有一第一低通濾波器23_1以及一第二濾波器23_2(為簡潔起見,分別標記為“LPF1”以及為“LPF2”),其中第一低通濾波器23_1可接收電流感測電路16所產生的量測電流訊號I(t),並且可低通濾波量測電流訊號I(t)來產生一低通濾波電流訊號I’(t),以及第二濾波器23_2可接收電壓感測電路18所產生的量測電壓訊號V(t),並且可低通濾波量測電壓訊號V(t)來產生一低通濾波電壓訊號V’(t)。為了減少計算複雜度以及/或增加準確度,降低取樣電路24可接收低通濾波電流訊號I’(t)以及低通濾波電壓訊號V’(t),並且分別降低取樣(downsample)低通濾波電流訊號I’(t)以及低通濾波電壓訊號V’(t)以產生一降低取樣電流訊號S_I以及一降低取樣電壓訊號S_V,其中第1圖所示之量測訊號S_M可包含有第2圖所示之降低取樣電流訊號S_I以及降低取樣電壓訊號S_V。 In this embodiment, the preprocessing circuit 20 may include a low pass filter (LPF) circuit 22 (for brevity, labeled as "LPF circuit") and a downsampling circuit 24, wherein the downsampling circuit 24 is coupled to the low-pass filter circuit 22 . The low-pass filter circuit 22 may include a first low-pass filter 23_1 and a second filter 23_2 (for brevity, marked as "LPF 1 " and "LPF 2 " respectively), wherein the first low-pass filter The device 23_1 can receive the measured current signal I(t) generated by the current sensing circuit 16, and can low-pass filter the measured current signal I(t) to generate a low-pass filtered current signal I'(t), and the second The second filter 23_2 can receive the measured voltage signal V(t) generated by the voltage sensing circuit 18, and can low-pass filter the measured voltage signal V(t) to generate a low-pass filtered voltage signal V'(t). In order to reduce computational complexity and/or increase accuracy, the downsampling circuit 24 can receive the low-pass filtered current signal I'(t) and the low-pass filtered voltage signal V'(t), and downsample the low-pass filtered signal respectively. The current signal I'(t) and the low-pass filtered voltage signal V'(t) are used to generate a downsampled current signal S_I and a downsampled voltage signal S_V, wherein the measurement signal S_M shown in Figure 1 may include a second The downsampled current signal S_I and downsampled voltage signal S_V are shown in the figure.

根據本實施例,感測電路14可將量測訊號S_M傳送至複數個帶通濾波器電路28_1~28_N,其中量測訊號S_M可包含有一電流訊號以及一電壓訊號(亦即降低取樣電流訊號S_I以及降低取樣電壓訊號S_V)。要注意的是,取決於實際設計考量,實作在揚聲器控制器10中的帶通濾波器電路28_1~28_N的數量、帶通濾波器電路28_1~28_N中的每一個帶通濾波器電路之頻寬(bandwidth)以及/或帶通濾波器電路28_1~28_N中的每一個帶通濾波器電路之通帶的中心頻率(亦 即帶通濾波器電路28_1~28_N中的每一個帶通濾波器電路之通帶的位置)皆可以被調整,舉例來說,帶通濾波器電路28_1~28_N可根據揚聲器50的製造商所提供的揚聲器50之標稱(nominal)基本共振頻率來配置為具有固定位於/分布在一頻率範圍內之各自的通帶,又例如,帶通濾波器電路28_1~28_N可根據於揚聲器50用以進行音訊播放而被驅動的期間所量測的揚聲器50之時變(time-varying)基本共振頻率來配置為具有動態地位於/分布在一頻率範圍內之各自的通帶。簡單來說,任何利用具有以不同頻率為中心之通帶的一組帶通濾波器電路來進行基本共振頻率估測(或阻抗估測)的揚聲器控制器皆落入本發明的範疇。 According to this embodiment, the sensing circuit 14 can transmit the measurement signal S_M to a plurality of band-pass filter circuits 28_1~28_N, wherein the measurement signal S_M can include a current signal and a voltage signal (that is, the downsampled current signal S_I and lower the sampling voltage signal S_V). It should be noted that, depending on actual design considerations, the number of band-pass filter circuits 28_1~28_N implemented in the speaker controller 10, the frequency of each of the band-pass filter circuits 28_1~28_N wide (bandwidth) and/or the center frequency of the passband of each bandpass filter circuit in the bandpass filter circuits 28_1~28_N (also That is, the position of the pass band of each band-pass filter circuit in the band-pass filter circuits 28_1~28_N) can be adjusted, for example, the band-pass filter circuits 28_1~28_N can be provided by the manufacturer of the speaker 50 The nominal (nominal) fundamental resonant frequency of the loudspeaker 50 is configured to have respective passbands fixedly located/distributed in a frequency range, and for example, the bandpass filter circuits 28_1~28_N can be used for the loudspeaker 50 according to The time-varying fundamental resonant frequency of the loudspeaker 50 measured during audio playback while being driven is configured to have respective passbands dynamically located/distributed over a frequency range. In short, any loudspeaker controller that utilizes a set of bandpass filter circuits with passbands centered at different frequencies for fundamental resonant frequency estimation (or impedance estimation) falls within the scope of the present invention.

此外,帶通濾波器電路28_1~28_N中的每一個帶通濾波器電路可包含有兩個帶通濾波器,舉例來說,帶通濾波器電路28_1包含有一第一帶通濾波器29_11以及一第二帶通濾波器29_12(為簡潔起見,分別標記為“BPF11”以及為“BPF12”);帶通濾波器電路28_2包含有一第一帶通濾波器29_21以及一第二帶通濾波器29_22(為簡潔起見,分別標記為“BPF21”以及為“BPF22”);以及帶通濾波器電路28_N包含有一第一帶通濾波器29_N1以及一第二帶通濾波器29_N2(為簡潔起見,分別標記為“BPFN1”以及為“BPFN2”)。同一個帶通濾波器電路的第一帶通濾波器以及第二帶通濾波器具有相同的中心頻率(亦即位於相同的位置),其中第一帶通濾波器可用以自感測電路14接收電流訊號(亦即降低取樣電流訊號S_I),並且藉由濾波電流訊號來產生一帶通濾波電流訊號,第二帶通濾波器可用以自感測電路14接收電壓訊號(亦即降低取樣電壓訊號S_V),並且藉由濾波電壓訊號來產生一帶通濾波電壓訊號,以及帶通濾波器電路的一濾波器輸出包含有帶通濾波電流訊號以及帶通濾波電壓訊號。舉例來說,濾波器輸出BPFOUT_1包含有帶通濾波電流訊號BPFI_1以及帶通濾波電壓訊號BPFV_1,濾波器輸出BPFOUT_2包含有帶通濾波電流訊號BPFI_2以及帶通濾波電壓訊號BPFV_2,以 及濾波器輸出BPFOUT_N包含有帶通濾波電流訊號BPFI_N以及帶通濾波電壓訊號BPFV_N。 In addition, each of the band-pass filter circuits 28_1~28_N may include two band-pass filters. For example, the band-pass filter circuit 28_1 includes a first band-pass filter 29_11 and a first band-pass filter 29_11. The second band-pass filter 29_12 (labeled as "BPF 11 " and "BPF 12 " respectively for the sake of brevity); the band-pass filter circuit 28_2 includes a first band-pass filter 29_21 and a second band-pass filter device 29_22 (for brevity, respectively marked as "BPF 21 " and "BPF 22 "); and the bandpass filter circuit 28_N includes a first bandpass filter 29_N1 and a second bandpass filter 29_N2 (for For brevity, labeled "BPF N1 " and "BPF N2 " respectively). The first band-pass filter and the second band-pass filter of the same band-pass filter circuit have the same center frequency (that is, they are located at the same position), wherein the first band-pass filter can be used to receive signals from the sensing circuit 14. current signal (i.e. downsampled current signal S_I), and by filtering the current signal to generate a band-pass filtered current signal, the second band-pass filter can be used to receive the voltage signal from the sensing circuit 14 (i.e. downsampled voltage signal S_V ), and a band-pass filtered voltage signal is generated by filtering the voltage signal, and a filter output of the band-pass filter circuit includes a band-pass filtered current signal and a band-pass filtered voltage signal. For example, the filter output BPFOUT_1 includes the band-pass filtered current signal BPFI_1 and the band-pass filtered voltage signal BPFV_1, the filter output BPFOUT_2 includes the band-pass filtered current signal BPFI_2 and the band-pass filtered voltage signal BPFV_2, and the filter output BPFOUT_N includes There are band-pass filtered current signal BPFI_N and band-pass filtered voltage signal BPFV_N.

應注意的是,對於估測揚聲器50的時變基本共振頻率,在基本共振頻率估測開始之前,帶通濾波器電路28_1~28_N可以根據揚聲器50之標稱基本共振頻率來被預先放置(pre-position)於一頻率範圍中,然而,此僅作為範例說明之用,本發明並不以此為限。 It should be noted that, for estimating the time-varying fundamental resonant frequency of the loudspeaker 50, before the fundamental resonant frequency estimation starts, the bandpass filter circuits 28_1˜28_N can be pre-placed according to the nominal fundamental resonant frequency of the loudspeaker 50 (pre -position) in a frequency range, however, this is only for illustrative purposes, and the present invention is not limited thereto.

揚聲器控制器10的估測電路30可包含有一平滑濾波器電路32以及一處理電路38,平滑濾波器電路32可用以自帶通濾波器電路28_1~28_N接收濾波器輸出BPFOUT_1~BPFOUT_N,並且藉由分別平整(smooth)濾波器輸出BPFOUT_1~BPFOUT_N來產生複數個平滑濾波器輸出。在本實施例中,平滑濾波器電路可包含有複數個阿爾發濾波器(alpha filter)電路36_1、36_2、...、36_N(為簡潔起見,分別標記為“α濾波器電路”),其中阿爾發濾波器電路36_1~36_N分別耦接於帶通濾波器電路28_1~28_N。此外,阿爾發濾波器電路36_1~36_N中的每一個阿爾發濾波器電路可包含有一第一阿爾發濾波器以及一第二阿爾發濾波器(為簡潔起見,分別標記為“α filter1”以及為“α filter2”),舉例來說,阿爾發濾波器電路36_1包含有第一濾波器37_11以及第二阿爾發濾波器37_12(其分別耦接於第一帶通濾波器29_11以及第二帶通濾波器29_12),阿爾發濾波器電路36_2包含有第一濾波器37_21以及第二阿爾發濾波器37_22(其分別耦接於第一帶通濾波器29_21以及第二帶通濾波器29_22),以及阿爾發濾波器電路36_N包含有第一濾波器37_N1以及第二阿爾發濾波器37_N2(其分別耦接於第一帶通濾波器29_N1以及第二帶通濾波器29_N2)。 The estimation circuit 30 of the speaker controller 10 can include a smoothing filter circuit 32 and a processing circuit 38. The smoothing filter circuit 32 can be used to receive the filter outputs BPFOUT_1~BPFOUT_N from the bandpass filter circuits 28_1~28_N, and by Smoothing the filter outputs BPFOUT_1~BPFOUT_N respectively to generate a plurality of smoothing filter outputs. In this embodiment, the smoothing filter circuit may include a plurality of alpha filter (alpha filter) circuits 36_1, 36_2, . The alpha filter circuits 36_1~36_N are respectively coupled to the bandpass filter circuits 28_1~28_N. In addition, each of the alpha filter circuits 36_1~36_N may include a first alpha filter and a second alpha filter (respectively labeled as "α filter 1 " for brevity) and "α filter 2 "), for example, the alpha filter circuit 36_1 includes a first filter 37_11 and a second alpha filter 37_12 (which are respectively coupled to the first bandpass filter 29_11 and the second band-pass filter 29_12), the alpha filter circuit 36_2 includes a first filter 37_21 and a second alpha filter 37_22 (which are respectively coupled to the first band-pass filter 29_21 and the second band-pass filter 29_22) , and the alpha filter circuit 36_N includes a first filter 37_N1 and a second alpha filter 37_N2 (which are respectively coupled to the first bandpass filter 29_N1 and the second bandpass filter 29_N2).

由於一阿爾發濾波器電路所接收的濾波器輸出包含有一電流訊號以及一電壓訊號,因此一阿爾發濾波器電路所產生的平滑濾波器輸出包含有一電流訊號以及一電壓訊號。對於每一個平滑濾波器輸出其包含有一平滑電流訊號以及一平滑電壓訊號來說,阿爾發濾波器電路的第一阿爾發濾波器可用以自帶通濾波器電路接收帶通濾波電流訊號並且產生平滑電流訊號,並且阿爾發濾波器電路的第二阿爾發濾波器可用以自帶通濾波器電路接收帶通濾波電壓訊號並且產生平滑電壓訊號。如第2圖所示,阿爾發濾波器電路36_1所產生的平滑濾波器輸出包含有平滑電流訊號SFI_1以及平滑電壓訊號SFV_1,其中平滑電流訊號SFI_1藉由將帶通濾波電流訊號BPFI_1通過第一阿爾發濾波器37_11來取得,以及平滑電壓訊號SFV_1藉由將帶通濾波電壓訊號BPF V_1通過第二阿爾發濾波器37_12來取得;阿爾發濾波器電路36_2所產生的平滑濾波器輸出包含有平滑電流訊號SFI_2以及平滑電壓訊號SFV_2,其中平滑電流訊號SFI_2藉由將帶通濾波電流訊號BPFI_2通過第一阿爾發濾波器37_21來取得,以及平滑電壓訊號SFV_2藉由將帶通濾波電壓訊號BPF V_2通過第二阿爾發濾波器37_22來取得;以及阿爾發濾波器電路36_N所產生的平滑濾波器輸出包含有平滑電流訊號SFI_N以及平滑電壓訊號SFV_N,其中平滑電流訊號SFI_N藉由將帶通濾波電流訊號BPFI_N通過第一阿爾發濾波器37_N1來取得,以及平滑電壓訊號SFV_N藉由將帶通濾波電壓訊號BPF V_N通過第二阿爾發濾波器37_N2來取得。 Since the filter output received by an alpha filter circuit includes a current signal and a voltage signal, the smoothing filter output generated by an alpha filter circuit includes a current signal and a voltage signal. For each smoothing filter output which includes a smoothed current signal and a smoothed voltage signal, the first alpha filter of the alpha filter circuit can be used with a bandpass filter circuit to receive the bandpass filtered current signal and generate the smoothed The current signal, and the second alpha filter of the alpha filter circuit can be used for the band-pass filter circuit to receive the band-pass filtered voltage signal and generate a smoothed voltage signal. As shown in FIG. 2, the smoothing filter output generated by the alpha filter circuit 36_1 includes a smoothed current signal SFI_1 and a smoothed voltage signal SFV_1, wherein the smoothed current signal SFI_1 is obtained by passing the band-pass filtered current signal BPFI_1 through the first alpha and the smoothed voltage signal SFV_1 is obtained by passing the band-pass filtered voltage signal BPF V_1 through the second alpha filter 37_12; the smoothing filter output generated by the alpha filter circuit 36_2 includes the smoothed current The signal SFI_2 and the smoothed voltage signal SFV_2, wherein the smoothed current signal SFI_2 is obtained by passing the band-pass filtered current signal BPFI_2 through the first alpha filter 37_21, and the smoothed voltage signal SFV_2 is obtained by passing the band-pass filtered voltage signal BPF V_2 through the first alpha filter 37_21 Two alpha filters 37_22 are obtained; and the smoothing filter output generated by the alpha filter circuit 36_N includes a smoothed current signal SFI_N and a smoothed voltage signal SFV_N, wherein the smoothed current signal SFI_N is obtained by passing the band-pass filtered current signal BPFI_N The first alpha filter 37_N1 is obtained, and the smoothed voltage signal SFV_N is obtained by passing the band-pass filtered voltage signal BPF V_N through the second alpha filter 37_N2 .

平滑濾波器電路32中的阿爾發濾波器電路可以將一濾波器輸出轉換成一平滑濾波器輸出,以避免或減輕電流訊號以及電壓訊號之間的相位差,也就是說,藉由阿爾發濾波器電路所產生的平滑濾波器輸出之中的電流訊號以及電壓訊號之間的相位差係小於傳送至阿爾發濾波器電路的濾波器輸出之中電流訊號以及電壓訊號之間的相位差,如此一來,基本共振頻率估測的準確度可以 被改善。 The alpha filter circuit in the smoothing filter circuit 32 can convert a filter output into a smoothing filter output to avoid or reduce the phase difference between the current signal and the voltage signal, that is, by the alpha filter The phase difference between the current signal and the voltage signal in the smoothing filter output produced by the circuit is smaller than the phase difference between the current signal and the voltage signal in the filter output sent to the alpha filter circuit, so that , the accuracy of fundamental resonance frequency estimation can be be improved.

對於平滑濾波器電路32(尤指平滑濾波器電路32中的阿爾發濾波器電路36_1~36_N)所產生的每一個平滑濾波器輸出來說,處理電路38可用以將平滑電壓訊號除以平滑電流訊號以產生一阻抗值,此外,處理電路38另可用以藉由比較自平滑濾波器輸出取得的複數個阻抗值{SFV_1/SFI_1、SFV_2/SFI_2、...、SFV_N/SFI_N}來估測揚聲器50的基本共振頻率FoFor each smoothing filter output generated by the smoothing filter circuit 32 (especially the alpha filter circuits 36_1~36_N in the smoothing filter circuit 32), the processing circuit 38 can be used to divide the smoothed voltage signal by the smoothed current signal to generate an impedance value, in addition, the processing circuit 38 can also be used to estimate the speaker by comparing a plurality of impedance values {SFV_1/SFI_1, SFV_2/SFI_2, . . . , SFV_N/SFI_N} obtained from the output of the smoothing filter The fundamental resonant frequency F o of 50.

在自阻抗值{SFV_1/SFI_1、SFV_2/SFI_2、...、SFV_N/SFI_N}中找到了一個最大值的案例中,揚聲器50的基本共振頻率Fo係被估測為涉及該最大值之推導的帶通濾波器電路之中心頻率,舉例來說,如果對應於在阻抗值{SFV_1/SFI_1、SFV_2/SFI_2、...、SFV_N/SFI_N}之中的最大值的帶通濾波器電路之中心頻率係為200赫茲(hertz,Hz),則揚聲器50的基本共振頻率Fo可被估測為200赫茲。 In the case where a maximum is found among the self-impedance values {SFV_1/SFI_1, SFV_2/SFI_2, ..., SFV_N/SFI_N}, the fundamental resonance frequency F o of the loudspeaker 50 is estimated as a derivation involving The center frequency of the bandpass filter circuit, for example, if the center frequency of the bandpass filter circuit corresponding to the maximum value among the impedance values {SFV_1/SFI_1, SFV_2/SFI_2, ..., SFV_N/SFI_N} The frequency is 200 Hz (hertz, Hz), and the fundamental resonance frequency F o of the loudspeaker 50 can be estimated to be 200 Hz.

在自阻抗值{SFV_1/SFI_1、SFV_2/SFI_2、...、SFV_N/SFI_N}中找到了具有相同最大值之兩個阻抗值的另一個案例中,揚聲器50的基本共振頻率Fo可被估測為涉及具有相同最大值之該兩個阻抗值之推導的兩個帶通濾波器電路之中心頻率的一平均,舉例來說,如果對應於在阻抗值{SFV_1/SFI_1、SFV_2/SFI_2、...、SFV_N/SFI_N}之中的最大值的一帶通濾波器電路之中心頻率係為200赫茲,以及對應於在阻抗值{SFV_1/SFI_1、SFV_2/SFI_2、...、SFV_N/SFI_N}之中的相同最大值的另一個帶通濾波器電路之中心頻率係為210赫茲,則揚聲器50的基本共振頻率Fo可被估測為205赫茲,然而,此僅作為範例說明之用,本發明並不以此為限。或者,揚聲器50的基本共振頻率Fo可被估測為 自200赫茲至210赫茲的一頻率範圍中的任一頻率值。 In another case where two impedance values with the same maximum value are found among the self-impedance values {SFV_1/SFI_1, SFV_2/SFI_2, ..., SFV_N/SFI_N}, the fundamental resonance frequency F o of the loudspeaker 50 can be estimated Measured as an average of the center frequencies of the two bandpass filter circuits related to the derivation of the two impedance values having the same maximum value, for example, if corresponding to the impedance values {SFV_1/SFI_1, SFV_2/SFI_2, . .., SFV_N/SFI_N} The center frequency of the band-pass filter circuit of the maximum value is 200 Hz, and corresponds to The center frequency of another band-pass filter circuit with the same maximum value in is 210 Hz, then the fundamental resonant frequency F o of loudspeaker 50 can be estimated to be 205 Hz, however, this is only for illustrative purposes, the present invention It is not limited to this. Alternatively, the fundamental resonance frequency F o of the loudspeaker 50 can be estimated as any frequency value in a frequency range from 200 Hz to 210 Hz.

第3圖為依據本發明一實施例之用以估測揚聲器之基本共振頻率的方法流程圖。假若可以得到相同的結果,則步驟不一定要完全遵照第3圖所示的流程來依序執行,舉例來說,第3圖所示之方法可由第2圖所示之揚聲器控制器10來加以實現。 FIG. 3 is a flowchart of a method for estimating the fundamental resonance frequency of a speaker according to an embodiment of the present invention. If the same result can be obtained, the steps do not have to be executed sequentially according to the flow shown in Figure 3. For example, the method shown in Figure 3 can be implemented by the speaker controller 10 shown in Figure 2 accomplish.

在步驟S80中,根據音訊輸入訊號A_IN來產生揚聲器50的驅動訊號A_DRV。 In step S80 , a driving signal A_DRV of the speaker 50 is generated according to the audio input signal A_IN.

在步驟S82中,量測流過揚聲器50之音圈的電流來產生量測電流訊號I(t)。 In step S82 , the current flowing through the voice coil of the speaker 50 is measured to generate a measured current signal I(t).

在步驟S84中,量測揚聲器50之音圈兩端的電壓來產生量測電壓訊號V(t)。 In step S84 , the voltage across the voice coil of the speaker 50 is measured to generate a measured voltage signal V(t).

在步驟S86中,低通濾波量測電流訊號I(t)來產生低通濾波電流訊號I’(t),並且低通濾波量測電壓訊號V(t)來產生低通濾波電壓訊號V’(t)。 In step S86, the measured current signal I(t) is low-pass filtered to generate a low-pass filtered current signal I'(t), and the measured voltage signal V(t) is low-pass filtered to generate a low-pass filtered voltage signal V' (t).

在步驟S88中,分別降低取樣低通濾波電流訊號I’(t)以及低通濾波電壓訊號V’(t)來產生降低取樣電流訊號S_I以及降低取樣電壓訊號S_V。 In step S88, the low-pass filtered current signal I'(t) and the low-pass filtered voltage signal V'(t) are respectively down-sampled to generate a down-sampled current signal S_I and a down-sampled voltage signal S_V.

在步驟S90中,利用具有不同通帶(例如具有不同中心頻率的通帶)的帶通濾波器電路28_1~28_N來產生帶通濾波電流訊號BPFI_1~BPFI_N以及帶 通濾波電壓訊號BPFV_1~BPFV_N,其中一帶通濾波電流訊號以及一帶通濾波電壓訊號係自帶通濾波器電路28_1~28_N中的每一個帶通濾波器電路來產生。 In step S90, bandpass filter circuits 28_1~28_N with different passbands (for example, passbands with different center frequencies) are used to generate bandpass filtered current signals BPFI_1~BPFI_N and bandpass filter circuits BPFI_1~BPFI_N The pass-filtered voltage signals BPFV_1-BPFV_N, wherein the band-pass-filtered current signal and the band-pass-filtered voltage signal are generated by each of the band-pass filter circuits 28_1-28_N.

在步驟S92中,平整帶通濾波電流訊號BPFI_1~BPFI_N來產生平滑電流訊號SFI_1~SFI_N,並且平整帶通濾波電壓訊號BPFV_1~BPFV_N來產生平滑電壓訊號SFV_1~SFV_N。 In step S92 , the band-pass filtered current signals BPFI_1 ˜ BPFI_N are flattened to generate smooth current signals SFI_1 ˜ SFI_N, and the band-pass filtered voltage signals BPFV_1 ˜ BPFV_N are flattened to generate smooth voltage signals SFV_1 ˜ SFV_N.

在步驟S94中,根據平滑電流訊號SFI_1~SFI_N以及平滑電壓訊號SFV_1~SFV_N來產生複數個阻抗值,其中對於包含有一平滑電流訊號以及一平滑電壓訊號的每一個平滑濾波器輸出,將該平滑電壓訊號除以該平滑電流訊號以產生一阻抗值。 In step S94, a plurality of impedance values are generated according to the smoothed current signals SFI_1~SFI_N and the smoothed voltage signals SFV_1~SFV_N, wherein for each smoothing filter output including a smoothed current signal and a smoothed voltage signal, the smoothed voltage The signal is divided by the smoothed current signal to generate an impedance value.

在步驟S96中,根據對應於該複數個阻抗值中之最大值的一或多個帶通濾波器電路之中心頻率來估測揚聲器50的基本共振頻率FoIn step S96 , the fundamental resonant frequency F o of the speaker 50 is estimated according to the center frequency of one or more bandpass filter circuits corresponding to the maximum value of the plurality of impedance values.

由於熟習技藝者可透過有關第1圖以及第2圖所示之揚聲器控制器10的說明書內容而輕易瞭解第3圖所示各步驟的操作,為了簡潔起見,於本實施例中類似的內容在此不重複贅述。 Since those skilled in the art can easily understand the operation of each step shown in Fig. 3 through the contents of the instruction manual of the speaker controller 10 shown in Fig. 1 and Fig. 2, for the sake of brevity, similar contents It will not be repeated here.

為了闡明與利用快速傅立葉轉換分析來取得基本共振頻率的方式相比,本發明亦可在高準確度以及低成本的情況下估測基本共振頻率,以下分別利用具有快速傅立葉轉換的頻域阻抗量測以及本發明的方法來分析並且取得一揚聲器播放一組特定音樂時的基本共振頻率。請搭配參照第4圖以及第5圖,第4圖為藉由具有快速傅立葉轉換的頻域阻抗量測所取得的揚聲器50之阻抗曲線的 示意圖。第5圖為依據本發明一第一實施例之藉由第3圖所示之方法的揚聲器50之基本共振頻率Fo的估測示意圖。如第4圖所示,藉由具有快速傅立葉轉換的頻域阻抗量測,可得知揚聲器50之基本共振頻率Fo係大約等於190赫茲。如第5圖所示,藉由第3圖所示之方法,在估測揚聲器50之基本共振頻率Fo之前,五個帶通濾波器電路28_1~28_5(N=5)可以根據標稱基本共振頻率來被分別預先放置在200赫茲、210赫茲、220赫茲、230赫茲以及240赫茲,但是本發明不限於此。 In order to clarify that compared with the method of obtaining the fundamental resonance frequency by using fast Fourier transform analysis, the present invention can also estimate the fundamental resonance frequency with high accuracy and low cost. The following uses frequency domain impedance quantities with fast Fourier transform respectively The basic resonant frequency of a loudspeaker playing a set of specific music is analyzed and obtained through the measurement and the method of the present invention. Please refer to FIG. 4 and FIG. 5 together. FIG. 4 is a schematic diagram of the impedance curve of the loudspeaker 50 obtained by frequency-domain impedance measurement with fast Fourier transform. FIG. 5 is a schematic diagram of estimating the fundamental resonance frequency F o of the loudspeaker 50 by the method shown in FIG. 3 according to a first embodiment of the present invention. As shown in FIG. 4 , by frequency-domain impedance measurement with FFT, it can be known that the fundamental resonant frequency F o of the speaker 50 is approximately equal to 190 Hz. As shown in FIG. 5, by the method shown in FIG. 3, before estimating the fundamental resonant frequency F o of the loudspeaker 50, the five bandpass filter circuits 28_1~28_5 (N=5) can be based on the nominal fundamental The resonant frequencies are preset at 200 Hz, 210 Hz, 220 Hz, 230 Hz, and 240 Hz, respectively, but the present invention is not limited thereto.

如第5圖所示,在200赫茲的帶通濾波器電路(亦即帶通濾波器電路28_1)對應於最高阻抗值,其中最高阻抗值係大約等於19歐姆,因此,揚聲器50之基本共振頻率Fo可被估測為最接近200赫茲。在揚聲器之基本共振頻率的估測中,一誤差通常係在小於50赫茲的容忍範圍中,而200赫茲以及190赫茲的差距(亦即10赫茲)係小於50赫茲,因此,與具有快速傅立葉轉換的頻域阻抗量測相比,第3圖所示之方法可以在高準確度以及低成本的情況下估測揚聲器50之基本共振頻率FoAs shown in FIG. 5, the band-pass filter circuit (ie, band-pass filter circuit 28_1) at 200 Hz corresponds to the highest impedance value, wherein the highest impedance value is approximately equal to 19 ohms. Therefore, the fundamental resonance frequency of the loudspeaker 50 F o can be estimated to the nearest 200 Hz. In the estimation of the fundamental resonant frequency of the loudspeaker, an error is usually within the tolerance range of less than 50 Hz, and the difference between 200 Hz and 190 Hz (that is, 10 Hz) is less than 50 Hz. Compared with the frequency-domain impedance measurement of , the method shown in FIG. 3 can estimate the fundamental resonant frequency F o of the loudspeaker 50 with high accuracy and low cost.

請搭配參照第6圖以及第7圖,第6圖為藉由具有快速傅立葉轉換的頻域阻抗量測所取得的揚聲器50之另一阻抗曲線的示意圖。第7圖為依據本發明一第二實施例之藉由第3圖所示之方法的揚聲器50之基本共振頻率Fo的估測示意圖。如第6圖所示,藉由具有快速傅立葉轉換的頻域阻抗量測,可得知揚聲器50之基本共振頻率Fo係大約等於95赫茲。如第7圖所示,藉由第3圖所示之方法,雖然第6圖所示之基本共振頻率Fo係大約等於95赫茲,在估測揚聲器50之基本共振頻率Fo之前,五個帶通濾波器電路28_1~28_5(N=5)仍可以被分別預先放置在200赫茲、210赫茲、220赫茲、230赫茲以及240赫茲,其中這些頻率皆遠於第6圖所示之基本共振頻率Fo,但是本發明不限於此。 Please refer to FIG. 6 and FIG. 7 together. FIG. 6 is a schematic diagram of another impedance curve of the loudspeaker 50 obtained by frequency-domain impedance measurement with fast Fourier transform. FIG. 7 is a schematic diagram of estimating the fundamental resonance frequency F o of the loudspeaker 50 by the method shown in FIG. 3 according to a second embodiment of the present invention. As shown in FIG. 6, by frequency-domain impedance measurement with FFT, it can be known that the fundamental resonance frequency F o of the speaker 50 is approximately equal to 95 Hz. As shown in FIG. 7, by the method shown in FIG. 3, although the fundamental resonance frequency F o shown in FIG . 6 is approximately equal to 95 Hz, five The bandpass filter circuits 28_1~28_5 (N=5) can still be pre-placed at 200 Hz, 210 Hz, 220 Hz, 230 Hz and 240 Hz, respectively, where these frequencies are far from the fundamental resonance frequency shown in FIG. 6 F o , but the present invention is not limited thereto.

如第7圖所示,在200赫茲的帶通濾波器電路(亦即帶通濾波器電路28_1)對應於最高阻抗值,其中最高阻抗值係大約等於14歐姆,因此,揚聲器50之基本共振頻率Fo可被估測為最接近200赫茲。在揚聲器之基本共振頻率的估測中,一誤差通常係在小於50赫茲的容忍範圍中,而200赫茲以及95赫茲的差距(亦即105赫茲)係大於50赫茲,雖然藉由本發明之第3圖所示之方法無法利用帶通濾波器電路的中心頻率設置來準確地估測揚聲器50之基本共振頻率Fo,由於帶通濾波器電路所被放置的頻率越接近揚聲器50之基本共振頻率Fo,則該帶通濾波器電路所對應的阻抗值越大,因此揚聲器50之基本共振頻率Fo的趨勢仍可藉由第3圖所示之方法來得知。揚聲器50之基本共振頻率Fo的電流估測結果可被利用來作為適應地調整帶通濾波器電路之中心頻率設置的一參考,如此一來,在根據揚聲器50之基本共振頻率Fo的趨勢來適當地調整帶通濾波器電路之中心頻率設置之後,藉由本發明之第3圖所示之方法可以準確地估測揚聲器50之基本共振頻率FoAs shown in FIG. 7, the band-pass filter circuit (ie, band-pass filter circuit 28_1) at 200 Hz corresponds to the highest impedance value, wherein the highest impedance value is approximately equal to 14 ohms. Therefore, the fundamental resonance frequency of the loudspeaker 50 F o can be estimated to the nearest 200 Hz. In the estimation of the fundamental resonant frequency of the loudspeaker, an error is usually within the tolerance range of less than 50 Hz, and the difference between 200 Hz and 95 Hz (that is, 105 Hz) is greater than 50 Hz, although by the third method of the present invention The method shown in the figure cannot use the central frequency setting of the band-pass filter circuit to accurately estimate the fundamental resonance frequency F o of the speaker 50, because the frequency of the band-pass filter circuit is placed closer to the fundamental resonance frequency F of the speaker 50 o , the impedance value corresponding to the bandpass filter circuit is larger, so the trend of the fundamental resonance frequency F o of the loudspeaker 50 can still be known by the method shown in FIG. 3 . The current estimation result of the fundamental resonance frequency F o of the loudspeaker 50 can be utilized as a reference for adaptively adjusting the center frequency setting of the bandpass filter circuit, so that After properly adjusting the central frequency setting of the bandpass filter circuit, the fundamental resonance frequency F o of the loudspeaker 50 can be accurately estimated by the method shown in FIG. 3 of the present invention.

請搭配參照第8圖以及第9圖,第8圖為藉由具有快速傅立葉轉換的頻域阻抗量測所取得的揚聲器50之再另一阻抗曲線的示意圖。第9圖為依據本發明一第三實施例之藉由第3圖所示之方法的揚聲器50之基本共振頻率Fo的估測示意圖。如第8圖所示,藉由具有快速傅立葉轉換的頻域阻抗量測,可得知揚聲器50之基本共振頻率Fo係大約等於205赫茲。如第9圖所示,藉由第3圖所示之方法,在估測揚聲器50之基本共振頻率Fo之前,五個帶通濾波器電路28_1~28_5(N=5)可以根據標稱基本共振頻率來被分別預先放置在200赫茲、210赫茲、220赫茲、230赫茲以及240赫茲,但是本發明不限於此。 Please refer to FIG. 8 and FIG. 9 together. FIG. 8 is a schematic diagram of yet another impedance curve of the loudspeaker 50 obtained by frequency-domain impedance measurement with fast Fourier transform. FIG. 9 is a schematic diagram of estimating the fundamental resonance frequency F o of the loudspeaker 50 by the method shown in FIG. 3 according to a third embodiment of the present invention. As shown in FIG. 8, by frequency-domain impedance measurement with FFT, it can be known that the fundamental resonance frequency F o of the speaker 50 is approximately equal to 205 Hz. As shown in FIG. 9, by the method shown in FIG. 3, before estimating the fundamental resonant frequency F o of the loudspeaker 50, the five bandpass filter circuits 28_1~28_5 (N=5) can be based on the nominal fundamental The resonant frequencies are preset at 200 Hz, 210 Hz, 220 Hz, 230 Hz, and 240 Hz, respectively, but the present invention is not limited thereto.

如第9圖所示,自位於200赫茲的帶通濾波器電路(例如帶通濾波器電路28_1)之濾波器輸出所取得的阻抗值與自位於210赫茲的帶通濾波器電路(例如帶通濾波器電路28_2)之濾波器輸出所取得的阻抗值相當接近,因此,要判斷哪個帶通濾波器電路具有最高阻抗值相當困難。在此案例中,揚聲器50之基本共振頻率Fo可以被估測為在200赫茲以及210赫茲之間的中間頻率(亦即205赫茲),在揚聲器之基本共振頻率的估測中,一誤差通常係在小於50赫茲的容忍範圍中,而本實施例的估測結果正好與第8圖所示之揚聲器之基本共振頻率相同,因此,與具有快速傅立葉轉換的頻域阻抗量測相比,第3圖所示之方法可以在高準確度以及低成本的情況下估測揚聲器50之基本共振頻率FoAs shown in FIG. 9, the impedance value obtained from the filter output of the band-pass filter circuit (for example, band-pass filter circuit 28_1) at 200 Hz is the same as that obtained from the filter output of the band-pass filter circuit (for example, band-pass filter circuit 28_1) at 210 Hz. The impedance values obtained by the filter outputs of the filter circuit 28_2) are quite close, so it is quite difficult to determine which bandpass filter circuit has the highest impedance value. In this case, the fundamental resonant frequency F o of the loudspeaker 50 can be estimated as an intermediate frequency between 200 Hz and 210 Hz (i.e. 205 Hz). In the estimation of the fundamental resonant frequency of the loudspeaker, an error usually is in the tolerance range of less than 50 Hz, and the estimated result of this embodiment is exactly the same as the fundamental resonance frequency of the loudspeaker shown in Fig. The method shown in FIG. 3 can estimate the fundamental resonant frequency F o of the loudspeaker 50 with high accuracy and low cost.

應注意的是,當揚聲器用以進行音訊播放而被驅動於一低音量時,第3圖所示之方法的估測結果可能會有誤差,舉例來說,在第9圖所示之第10秒~第15秒的時間中,在200赫茲的帶通濾波器電路(亦即帶通濾波器電路28_1)對應於最高阻抗值,其與自位於200赫茲的帶通濾波器電路(例如帶通濾波器電路28_1)之濾波器輸出所取得的阻抗值與自位於210赫茲的帶通濾波器電路(例如帶通濾波器電路28_2)之濾波器輸出所取得的阻抗值相當接近的上述案例不相同。為了解決此問題,一強度門檻可以被加入至揚聲器控制器,以避免當揚聲器用以進行音訊播放而被驅動於低音量時發生誤差。 It should be noted that when the speaker is driven at a low volume for audio playback, the estimation result of the method shown in Fig. 3 may have errors, for example, in Fig. In the time from second to the 15th second, the band-pass filter circuit at 200 Hz (that is, the band-pass filter circuit 28_1) corresponds to the highest impedance value, which is different from the band-pass filter circuit at 200 Hz (such as the band-pass filter circuit 28_1). The impedance value obtained from the filter output of the filter circuit 28_1) is not the same as the above case in which the impedance value obtained from the filter output of the band-pass filter circuit at 210 Hz (for example, the band-pass filter circuit 28_2) is quite close . To solve this problem, an intensity threshold can be added to the speaker controller to avoid errors when the speaker is driven at a low volume for audio playback.

第10圖為依據本發明一實施例之第1圖所示之揚聲器控制器10的另一實施範例的示意圖。為了避免當揚聲器50用以進行音訊播放而被驅動於低音量時發生誤差,第10圖所示之估測電路30另包含有一強度門檻電路40,強度門檻電路40係耦接於放大器電路12、平滑濾波器電路32以及處理電路38,並且用以將驅動訊號A_DRV的一強度(magnitude)MAG與一強度門檻(magnitude threshold)TH進行比較。當驅動訊號A_DRV的強度MAG超過強度門檻TH時,估測電路30根據帶通濾波器電路28_1~28_N的濾波器輸出來估測基本共振頻率Fo,舉例來說,當驅動訊號A_DRV的強度MAG超過強度門檻TH時,處理電路38藉由對自平滑電流訊號SFI_1~SFI_N以及平滑電壓訊號SFV_1~SFV_N所取得的阻抗值進行比較來估測基本共振頻率Fo,其中平滑電流訊號SFI_1~SFI_N係藉由濾波帶通濾波電流訊號BPFI_1~BPFI_N來取得,以及平滑電壓訊號SFV_1~SFV_N係藉由濾波帶通濾波電壓訊號BPFV_1~BPFV_N來取得。當驅動訊號A_DRV的強度MAG不超過強度門檻TH時,估測電路30不會根據帶通濾波器電路28_1~28_N的濾波器輸出來估測基本共振頻率Fo,如此一來,可以避免上述在低音量時的估測誤差。 FIG. 10 is a schematic diagram of another implementation example of the speaker controller 10 shown in FIG. 1 according to an embodiment of the present invention. In order to avoid errors when the loudspeaker 50 is driven at a low volume for audio playback, the estimation circuit 30 shown in FIG. 10 further includes an intensity threshold circuit 40, which is coupled to the amplifier circuit 12, The smoothing filter circuit 32 and the processing circuit 38 are used for comparing a magnitude MAG of the driving signal A_DRV with a magnitude threshold TH. When the intensity MAG of the driving signal A_DRV exceeds the intensity threshold TH, the estimation circuit 30 estimates the fundamental resonance frequency F o according to the filter outputs of the bandpass filter circuits 28_1~28_N, for example, when the intensity MAG of the driving signal A_DRV When the intensity threshold TH is exceeded, the processing circuit 38 estimates the fundamental resonant frequency F o by comparing the impedance values obtained from the smoothed current signals SFI_1~SFI_N and the smoothed voltage signals SFV_1~SFV_N, wherein the smoothed current signals SFI_1~SFI_N are The smoothed voltage signals SFV_1 ˜ SFV_N are obtained by filtering the band-pass filtered current signals BPFI_1 ˜ BPFI_N, and the smoothed voltage signals SFV_1 ˜ SFV_N are obtained by filtering the band-pass filtered voltage signals BPFV_1 ˜ BPFV_N. When the intensity MAG of the driving signal A_DRV does not exceed the intensity threshold TH, the estimation circuit 30 will not estimate the fundamental resonant frequency F o according to the filter outputs of the bandpass filter circuits 28_1~28_N. Estimation error at low volume.

第11圖為依據本發明一實施例之用以估測揚聲器之基本共振頻率的另一方法流程圖。假若可以得到相同的結果,則步驟不一定要完全遵照第11圖所示的流程來依序執行,舉例來說,第11圖所示之方法可由第10圖所示之揚聲器控制器10來加以實現。第3圖所示之方法以及第11圖所示之方法之間的差別在於第11圖所示之方法另包含有步驟S98,在步驟S98中,當驅動訊號A_DRV的強度MAG超過強度門檻TH時,流程進入步驟S96;當驅動訊號A_DRV的強度MAG不超過強度門檻TH時,流程回到步驟S80。 FIG. 11 is a flow chart of another method for estimating the fundamental resonant frequency of a loudspeaker according to an embodiment of the present invention. If the same result can be obtained, the steps do not have to be executed sequentially according to the flow shown in Figure 11. For example, the method shown in Figure 11 can be implemented by the speaker controller 10 shown in Figure 10 accomplish. The difference between the method shown in FIG. 3 and the method shown in FIG. 11 is that the method shown in FIG. 11 further includes step S98. In step S98, when the intensity MAG of the driving signal A_DRV exceeds the intensity threshold TH , the process enters step S96; when the intensity MAG of the driving signal A_DRV does not exceed the intensity threshold TH, the process returns to step S80.

在本發明的某些實施例中,只有當驅動訊號A_DRV之一電流強度或一電壓強度大於強度門檻TH時,感測電路14才可感測驅動訊號A_DRV的特性來產生量測訊號S_M(其可包含量測電流訊號I(t)以及量測電壓訊號V(t)),舉例來說,強度門檻TH可被設置為一電流門檻,並且只有當驅動訊號之電流強度大於強度門檻TH時,感測電路14才被允許感測驅動訊號A_DRV的特性來產生量測訊 號S_M,但是本發明不限於此。 In some embodiments of the present invention, only when the current intensity or a voltage intensity of the driving signal A_DRV is greater than the intensity threshold TH, the sensing circuit 14 can sense the characteristics of the driving signal A_DRV to generate the measurement signal S_M (the It may include measuring the current signal I(t) and measuring the voltage signal V(t)). For example, the intensity threshold TH can be set as a current threshold, and only when the current intensity of the driving signal is greater than the intensity threshold TH, The sensing circuit 14 is allowed to sense the characteristics of the driving signal A_DRV to generate the measurement signal No. S_M, but the present invention is not limited thereto.

第12圖為依據本發明一實施例之第1圖所示之揚聲器控制器10的再另一實施範例的示意圖。在本實施例中,電壓可被設置為一固定值,並且電流與阻抗之間的關係為倒數,因此,如第12圖所示,感測電路14可包含有電流感測電路16以及預處理電路20,電流感測電路16可量測流過揚聲器50之音圈的一電流來產生量測電流訊號I(t),並且預處理電路20係用以根據量測電流訊號I(t)來產生量測訊號S_M。在本實施例中,預處理電路20可包含有低通濾波器電路22以及降低取樣電路24,其中降低取樣電路24係耦接於低通濾波器電路22。低通濾波器電路22可包含有一低通濾波器23_1(為簡潔起見,標記為“LPF1”),其中低通濾波器23_1可接收電流感測電路16所產生的量測電流訊號I(t),並且可低通濾波量測電流訊號I(t)來產生低通濾波電流訊號I’(t)。為了減少計算複雜度以及/或增加準確度,降低取樣電路24可接收低通濾波電流訊號I’(t)來產生降低取樣電流訊號S_I,其中第1圖所示之量測訊號S_M可包含有第12圖所示之降低取樣電流訊號S_I。 FIG. 12 is a schematic diagram of yet another implementation example of the speaker controller 10 shown in FIG. 1 according to an embodiment of the present invention. In this embodiment, the voltage can be set to a fixed value, and the relationship between the current and the impedance is an inverse number. Therefore, as shown in FIG. 12, the sensing circuit 14 can include a current sensing circuit 16 and a pre-processing The circuit 20, the current sensing circuit 16 can measure a current flowing through the voice coil of the loudspeaker 50 to generate a measured current signal I(t), and the preprocessing circuit 20 is used to measure the current signal I(t) according to the measured current signal I(t) Generate measurement signal S_M. In this embodiment, the pre-processing circuit 20 may include a low-pass filter circuit 22 and a down-sampling circuit 24 , wherein the down-sampling circuit 24 is coupled to the low-pass filter circuit 22 . The low-pass filter circuit 22 can include a low-pass filter 23_1 (marked as “LPF 1 ” for brevity), wherein the low-pass filter 23_1 can receive the measurement current signal I ( t), and the measured current signal I(t) can be low-pass filtered to generate a low-pass filtered current signal I'(t). In order to reduce computational complexity and/or increase accuracy, the downsampling circuit 24 can receive the low-pass filtered current signal I'(t) to generate a downsampled current signal S_I, wherein the measurement signal S_M shown in FIG. 1 can include Figure 12 shows the downsampled current signal S_I.

感測電路14可以將量測訊號S_M傳送至帶通濾波器電路28_1~28_N,其中量測訊號S_M可包含有一電流訊號(亦即降低取樣電流訊號S_I),此外,帶通濾波器電路28_1~28_N中的每一個帶通濾波器電路可包含有一帶通濾波器,舉例來說,帶通濾波器電路28_1包含有一帶通濾波器29_11(為簡潔起見,標記為“BPF11”);帶通濾波器電路28_2包含有一帶通濾波器29_21(為簡潔起見,標記為“BPF21”);以及帶通濾波器電路28_N包含有一帶通濾波器29_N1(為簡潔起見,標記為“BPFN1”)。在帶通濾波器電路28_1~28_N中的每一個帶通濾波器電路中的帶通濾波器可用以自感測電路14接收電流訊號(例如降 低取樣電流訊號S_I),並且藉由濾波電流訊號來產生一帶通濾波電流訊號,以及帶通濾波器電路的一濾波器輸出包含有該帶通濾波電流訊號。舉例來說,濾波器輸出BPFOUT_1包含有帶通濾波電流訊號BPFI_1,濾波器輸出BPFOUT_2包含有帶通濾波電流訊號BPFI_2,以及濾波器輸出BPFOUT_N包含有帶通濾波電流訊號BPFI_N。 The sensing circuit 14 can transmit the measurement signal S_M to the bandpass filter circuits 28_1~28_N, wherein the measurement signal S_M can include a current signal (that is, reduce the sampling current signal S_I). In addition, the bandpass filter circuits 28_1~28_N Each band-pass filter circuit in 28_N may comprise a band-pass filter, for example, band-pass filter circuit 28_1 comprises a band-pass filter 29_11 (labeled "BPF 11 " for brevity); The pass filter circuit 28_2 includes a band pass filter 29_21 (labeled "BPF 21 " for brevity); and the band pass filter circuit 28_N includes a band pass filter 29_N1 (labeled "BPF 21" for brevity). N1 "). The band-pass filter in each of the band-pass filter circuits 28_1~28_N can be used to receive the current signal from the sensing circuit 14 (for example, down-sample the current signal S_I), and filter the current signal to A band-pass filtered current signal is generated, and a filter output of the band-pass filter circuit includes the band-pass filtered current signal. For example, the filter output BPFOUT_1 includes the band-pass filtered current signal BPFI_1, the filter output BPFOUT_2 includes the band-pass filtered current signal BPFI_2, and the filter output BPFOUT_N includes the band-pass filtered current signal BPFI_N.

揚聲器控制器10之估測電路30可包含有一平滑濾波器電路32以及一處理電路38,平滑濾波器電路32可用以自帶通濾波器電路28_1~28_N接收濾波器輸出並且藉由分別平整濾波器輸出來產生複數個平滑濾波器輸出。在本實施例中,平滑濾波器電路32可包含有複數個阿爾發濾波器電路36_1、36_2、...、36_N,其中阿爾發濾波器電路36_1~36_N分別耦接於帶通濾波器電路28_1~28_N。此外,阿爾發濾波器電路36_1~36_N中的每一個阿爾發濾波器電路可包含有一阿爾發濾波器(為簡潔起見,標記為“α filter”),舉例來說,阿爾發濾波器電路36_1包含有阿爾發濾波器37_11(其耦接於帶通濾波器29_11),阿爾發濾波器電路36_2包含有阿爾發濾波器37_21(其耦接於帶通濾波器29_21),以及阿爾發濾波器電路36_N包含有阿爾發濾波器37_N1(其耦接於帶通濾波器29_N1)。 The estimation circuit 30 of the speaker controller 10 can include a smoothing filter circuit 32 and a processing circuit 38. The smoothing filter circuit 32 can be used to receive filter outputs from the pass filter circuits 28_1~28_N and smooth the filters by respectively output to produce a complex number of smoothing filter outputs. In this embodiment, the smoothing filter circuit 32 may include a plurality of alpha filter circuits 36_1, 36_2, ..., 36_N, wherein the alpha filter circuits 36_1~36_N are respectively coupled to the bandpass filter circuit 28_1 ~28_N. In addition, each of the alpha filter circuits 36_1~36_N may include an alpha filter (marked as “α filter” for brevity), for example, the alpha filter circuit 36_1 Including an alpha filter 37_11 (which is coupled to the band-pass filter 29_11), the alpha filter circuit 36_2 comprises an alpha filter 37_21 (which is coupled to the band-pass filter 29_21), and an alpha filter circuit 36_N includes an alpha filter 37_N1 (which is coupled to the bandpass filter 29_N1).

如第12圖所示,阿爾發濾波器電路36_1所產生的一平滑濾波器輸出包含有平滑電流訊號SFI_1,其中平滑電流訊號SFI_1藉由將帶通濾波電流訊號BPFI_1通過阿爾發濾波器37_11來取得;阿爾發濾波器電路36_2所產生的一平滑濾波器輸出包含有平滑電流訊號SFI_2,其中平滑電流訊號SFI_2藉由將帶通濾波電流訊號BPFI_2通過阿爾發濾波器37_21來取得;以及阿爾發濾波器電路36_N所產生的一平滑濾波器輸出包含有平滑電流訊號SFI_N,其中平滑電流訊號SFI_N藉由將帶通濾波電流訊號BPFI_N通過阿爾發濾波器37_N1來取得。 As shown in FIG. 12, a smoothing filter output generated by the alpha filter circuit 36_1 includes a smoothed current signal SFI_1, wherein the smoothed current signal SFI_1 is obtained by passing the band-pass filtered current signal BPFI_1 through the alpha filter 37_11 ; A smoothing filter output generated by the alpha filter circuit 36_2 includes a smooth current signal SFI_2, wherein the smooth current signal SFI_2 is obtained by passing the band-pass filtered current signal BPFI_2 through the alpha filter 37_21; and the alpha filter A smoothing filter output generated by the circuit 36_N includes the smoothed current signal SFI_N, wherein the smoothed current signal SFI_N is obtained by passing the band-pass filtered current signal BPFI_N through the alpha filter 37_N1.

在本實施例中,由於電壓係被設置為一固定值,對於平滑濾波器電路32(尤指平滑濾波器電路32中的阿爾發濾波器電路36_1~36_N)所產生的每一個平滑濾波器輸出(尤指平滑電流訊號)來說,處理電路38可用以比較每一個平滑電流訊號的強度,其中當平滑電流訊號的強度越小時,則藉由處理電路38所估測出來的揚聲器50之基本共振頻率Fo越大,因此,在自複數個平滑電流訊號{SFI_1、SFI_2、...、SFI_N}的強度中找到了一個最小值的案例中,揚聲器50的基本共振頻率Fo係被估測為涉及該最小值之推導的帶通濾波器電路之中心頻率,舉例來說,如果對應於在複數個平滑電流訊號{SFI_1、SFI_2、...、SFI_N}的強度之中的最小值的帶通濾波器電路之中心頻率係為200赫茲,則揚聲器50的基本共振頻率Fo可被估測為200赫茲。為簡潔起見,於本實施例中類似的內容在此不重複贅述。 In this embodiment, since the voltage is set to a fixed value, each smoothing filter output generated by the smoothing filter circuit 32 (especially the alpha filter circuits 36_1~36_N in the smoothing filter circuit 32) (especially the smooth current signal), the processing circuit 38 can be used to compare the strength of each smooth current signal, wherein when the strength of the smooth current signal is smaller, the basic resonance of the loudspeaker 50 estimated by the processing circuit 38 The larger the frequency F o is, therefore, the fundamental resonance frequency F o of the loudspeaker 50 is estimated in the case where a minimum is found among the intensities from the complex number of smooth current signals {SFI_1, SFI_2, ..., SFI_N} is the center frequency of the bandpass filter circuit involved in the derivation of the minimum, for example, if the band corresponding to the minimum among the intensities of the plurality of smoothed current signals {SFI_1, SFI_2, ..., SFI_N} Since the center frequency of the pass filter circuit is 200 Hz, the fundamental resonant frequency F o of the loudspeaker 50 can be estimated to be 200 Hz. For the sake of brevity, similar content in this embodiment is not repeated here.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

10:揚聲器控制器 10:Speaker controller

12:放大器電路 12: Amplifier circuit

14:感測電路 14: Sensing circuit

28_1~28_N:帶通濾波器電路 28_1~28_N: Bandpass filter circuit

30:估測電路 30: Estimation circuit

50:揚聲器 50: speaker

A_IN:音訊輸入訊號 A_IN: audio input signal

A_DRV:驅動訊號 A_DRV: drive signal

S_M:量測訊號 S_M: Measurement signal

BPFOUT_1~BPFOUT_N:濾波器輸出 BPFOUT_1~BPFOUT_N: filter output

Fo:基本共振頻率 F o : Fundamental resonance frequency

Claims (16)

一種用以估測一揚聲器之一基本共振頻率的揚聲器控制器,包含有:一放大器電路,用以根據一音訊輸入訊號來產生該揚聲器之一驅動訊號;一感測電路,用以感測該驅動訊號之特性來產生一量測訊號;複數個帶通濾波器電路,用以分別濾波該量測訊號來產生複數個濾波器輸出,其中該複數個帶通濾波器具有不同通帶;以及一估測電路,用以將該驅動訊號之一強度與一強度門檻進行比較,以及因應該驅動訊號之該強度超過該強度門檻來根據該複數個濾波器輸出估測該基本共振頻率。 A loudspeaker controller for estimating a fundamental resonance frequency of a loudspeaker, comprising: an amplifier circuit for generating a driving signal of the loudspeaker according to an audio input signal; a sensing circuit for sensing the The characteristics of the driving signal are used to generate a measurement signal; a plurality of bandpass filter circuits are used to respectively filter the measurement signal to generate a plurality of filter outputs, wherein the plurality of bandpass filters have different passbands; and a The estimation circuit is used for comparing an intensity of the driving signal with an intensity threshold, and estimating the fundamental resonance frequency according to the plurality of filter outputs in response to the intensity of the driving signal exceeding the intensity threshold. 如申請專利範圍第1項所述之揚聲器控制器,其中該感測電路包含有:一電流感測電路,用以藉由量測流過該揚聲器之一音圈的一電流來產生一量測電流訊號;一電壓感測電路,用以藉由量測該揚聲器之該音圈兩端的一電壓來產生一量測電壓訊號;以及一預處理電路,用以根據該量測電流訊號以及該量測電壓訊號來產生該量測訊號。 The speaker controller as described in claim 1, wherein the sensing circuit includes: a current sensing circuit for generating a measurement by measuring a current flowing through a voice coil of the speaker a current signal; a voltage sensing circuit for generating a measurement voltage signal by measuring a voltage across the voice coil of the loudspeaker; and a preprocessing circuit for generating a measurement voltage signal based on the measurement current signal and the quantity The voltage measurement signal is used to generate the measurement signal. 如申請專利範圍第2項所述之揚聲器控制器,其中該預處理電路包含有:一低通濾波器電路,用以濾波該量測電流訊號以產生一低通濾波電流訊號,以及濾波該量測電壓訊號以產生一低通濾波電壓訊號;以及 一降低取樣電路,用以降低取樣該低通濾波電流訊號以產生一降低取樣電流訊號,並且降低取樣該低通濾波電壓訊號以產生一降低取樣電壓訊號;其中自該預處理電路輸出的該量測訊號包含有該降低取樣電流訊號以及該降低取樣電壓訊號。 The loudspeaker controller described in claim 2 of the patent application, wherein the preprocessing circuit includes: a low-pass filter circuit for filtering the measured current signal to generate a low-pass filtered current signal, and filtering the quantity measuring the voltage signal to generate a low-pass filtered voltage signal; and a downsampling circuit for downsampling the low-pass filtered current signal to generate a downsampled current signal, and downsampling the low-pass filtered voltage signal to generate a downsampled voltage signal; wherein the quantity output from the preprocessing circuit The test signal includes the downsampled current signal and the downsampled voltage signal. 如申請專利範圍第1項所述之揚聲器控制器,其中該量測訊號包含有一電流訊號以及一電壓訊號;該複數個帶通濾波器電路的每一個帶通濾波器電路包含有一第一帶通濾波器以及一第二帶通濾波器;對於該複數個帶通濾波器電路的該每一個帶通濾波器電路,該第一帶通濾波器係用以藉由濾波該電流訊號來產生一帶通濾波電流訊號,以及該第二帶通濾波器係用以藉由濾波該電壓訊號來產生一帶通濾波電壓訊號;以及該複數個帶通濾波器電路的每一個帶通濾波器電路的一濾波器輸出包含有該帶通濾波電流訊號以及該帶通濾波電壓訊號。 The loudspeaker controller as described in item 1 of the scope of the patent application, wherein the measurement signal includes a current signal and a voltage signal; each band-pass filter circuit of the plurality of band-pass filter circuits includes a first band-pass filter circuit filter and a second band-pass filter; for each band-pass filter circuit of the plurality of band-pass filter circuits, the first band-pass filter is used to generate a band-pass filter by filtering the current signal filtering the current signal, and the second bandpass filter for generating a bandpass filtered voltage signal by filtering the voltage signal; and a filter for each of the plurality of bandpass filter circuits The output includes the band-pass filtered current signal and the band-pass filtered voltage signal. 如申請專利範圍第4項所述之揚聲器控制器,其中該估測電路包含有:一平滑濾波器電路,用以分別平整該複數個濾波器輸出,以產生複數個平滑濾波器輸出,其中該複數個平滑濾波器輸出的每一個平滑濾波器輸出包含有一平滑電流訊號以及一平滑電壓訊號;以及一處理電路,用以根據該複數個平滑濾波器輸出來估測該基本共振頻率。 The loudspeaker controller as described in item 4 of the scope of the patent application, wherein the estimation circuit includes: a smoothing filter circuit, which is used to level the plurality of filter outputs respectively to generate a plurality of smoothing filter outputs, wherein the Each smoothing filter output of the plurality of smoothing filter outputs includes a smoothed current signal and a smoothed voltage signal; and a processing circuit for estimating the fundamental resonance frequency according to the plurality of smoothing filter outputs. 如申請專利範圍第5項所述之揚聲器控制器,其中該平滑濾波器電路包含有複數個阿爾發濾波器電路;該複數個阿爾發濾波器電路的每一個阿 爾發濾波器電路包含有一第一阿爾發濾波器以及一第二阿爾發濾波器;以及對於該複數個平滑濾波器輸出的該每一個平滑濾波器輸出,該平滑電流訊號係藉由利用該第一阿爾發濾波器來產生,以及該平滑電壓訊號係藉由利用該第二阿爾發濾波器來產生。 The loudspeaker controller as described in item 5 of the scope of patent application, wherein the smoothing filter circuit includes a plurality of alpha filter circuits; each alpha of the plurality of alpha filter circuits The alpha filter circuit includes a first alpha filter and a second alpha filter; and for each smoothing filter output of the plurality of smoothing filter outputs, the smoothed current signal is obtained by using the first alpha filter An alpha filter is generated, and the smoothed voltage signal is generated by using the second alpha filter. 如申請專利範圍第5項所述之揚聲器控制器,其中對於該複數個平滑濾波器輸出的每一個平滑濾波器輸出,該處理電路係用以將該平滑電壓訊號除以該平滑電流訊號,以產生一阻抗值;以及該處理電路係另用以藉由比較自複數個平滑濾波器輸出取得的複數個阻抗值來估測該基本共振頻率。 The speaker controller described in claim 5, wherein for each smoothing filter output of the plurality of smoothing filter outputs, the processing circuit is used to divide the smoothed voltage signal by the smoothed current signal to obtain An impedance value is generated; and the processing circuit is further used to estimate the fundamental resonant frequency by comparing a plurality of impedance values obtained from a plurality of smoothing filter outputs. 如申請專利範圍第1項所述之揚聲器控制器,其中於該揚聲器用以進行音訊播放而被驅動的期間,該揚聲器控制器以即時的方式來估測該揚聲器之該基本共振頻率。 The speaker controller as described in claim 1 of the claimed invention, wherein during the period when the speaker is driven for audio playback, the speaker controller estimates the fundamental resonance frequency of the speaker in real time. 一種用以估測一揚聲器之一基本共振頻率的方法,包含有:根據一音訊輸入訊號來產生該揚聲器之一驅動訊號;感測該驅動訊號之特性以產生一量測訊號;藉由具有不同通帶之複數個帶通濾波器來濾波該量測訊號,以產生複數個濾波器輸出;將該驅動訊號之一強度與一強度門檻進行比較;以及因應該驅動訊號之該強度超過該強度門檻,根據該複數個濾波器輸出來估測該基本共振頻率。 A method for estimating a fundamental resonance frequency of a loudspeaker, comprising: generating a driving signal of the loudspeaker according to an audio input signal; sensing a characteristic of the driving signal to generate a measurement signal; by having different filtering the measurement signal with a plurality of passband filters to generate a plurality of filter outputs; comparing an intensity of the driving signal with an intensity threshold; and responding to the intensity of the driving signal exceeding the intensity threshold , estimating the fundamental resonance frequency according to the plurality of filter outputs. 如申請專利範圍第9項所述之方法,其中感測該驅動訊號之特性以 產生該量測訊號的步驟包含有:藉由量測流過該揚聲器之一音圈的一電流來產生一量測電流訊號;藉由量測該揚聲器之該音圈兩端的一電壓來產生一量測電壓訊號;以及根據該量測電流訊號以及該量測電壓訊號來產生該量測訊號。 The method described in claim 9, wherein the characteristic of the drive signal is sensed to The step of generating the measurement signal includes: generating a measurement current signal by measuring a current flowing through a voice coil of the loudspeaker; generating a measurement current signal by measuring a voltage across the voice coil of the loudspeaker measuring a voltage signal; and generating the measuring signal according to the measuring current signal and the measuring voltage signal. 如申請專利範圍第10項所述之方法,其中根據該量測電流訊號以及該量測電壓訊號來產生該量測訊號的步驟包含有:低通濾波該量測電流訊號以產生一低通濾波電流訊號;低通濾波該量測電壓訊號以產生一低通濾波電壓訊號;降低取樣該低通濾波電流訊號以產生一降低取樣電流訊號;以及降低取樣該低通濾波電壓訊號以產生一降低取樣電壓訊號;其中該量測訊號包含有該降低取樣電流訊號以及該降低取樣電壓訊號。 The method described in claim 10, wherein the step of generating the measurement signal according to the measurement current signal and the measurement voltage signal includes: low-pass filtering the measurement current signal to generate a low-pass filter current signal; low pass filtering the measured voltage signal to generate a low pass filtered voltage signal; downsampling the low pass filtered current signal to generate a downsampled current signal; and downsampling the low pass filtered voltage signal to generate a downsampled A voltage signal; wherein the measurement signal includes the downsampled current signal and the downsampled voltage signal. 如申請專利範圍第9項所述之方法,其中該量測訊號包含有一電流訊號以及一電壓訊號,該複數個帶通濾波器電路的每一個帶通濾波器電路包含有一第一帶通濾波器以及一第二帶通濾波器,以及藉由具有不同通帶之該複數個帶通濾波器來濾波該量測訊號,以產生該複數個濾波器輸出的步驟包含有:對於該複數個帶通濾波器電路的該每一個帶通濾波器電路:藉由該第一帶通濾波器來濾波該電流訊號,以產生一帶通濾波電流訊號;以及藉由該第二帶通濾波器來濾波該電壓訊號,以產生一帶通濾波電壓訊號;其中該複數個帶通濾波器電路的該每一個帶通濾波器電路的一濾波器輸出包含有該帶通濾波電流訊號以及該帶通濾波電壓訊號。 The method described in item 9 of the claimed scope of patents, wherein the measurement signal includes a current signal and a voltage signal, and each band-pass filter circuit of the plurality of band-pass filter circuits includes a first band-pass filter and a second band-pass filter, and the step of filtering the measurement signal through the plurality of band-pass filters with different passbands to generate the outputs of the plurality of filters includes: for the plurality of band-pass filters Each of the bandpass filter circuits of the filter circuit: filters the current signal by the first bandpass filter to generate a bandpass filtered current signal; and filters the voltage by the second bandpass filter signal to generate a band-pass filtered voltage signal; wherein a filter output of each of the plurality of band-pass filter circuits includes the band-pass filtered current signal and the band-pass filtered voltage signal. 如申請專利範圍第12項所述之方法,其中根據該複數個濾波器輸出來估測該基本共振頻率的步驟包含有:分別平整該複數個濾波器輸出以產生複數個平滑濾波器輸出,其中該複數個平滑濾波器輸出的每一個平滑濾波器輸出包含有一平滑電流訊號以及一平滑電壓訊號;以及根據該複數個平滑濾波器輸出來估測該基本共振頻率。 The method described in claim 12, wherein the step of estimating the fundamental resonance frequency according to the plurality of filter outputs includes: leveling the plurality of filter outputs respectively to generate a plurality of smoothing filter outputs, wherein Each smoothing filter output of the plurality of smoothing filter outputs includes a smoothed current signal and a smoothed voltage signal; and the fundamental resonance frequency is estimated according to the plurality of smoothing filter outputs. 如申請專利範圍第13項所述之方法,其中對於該複數個平滑濾波器輸出的該每一個平滑濾波器輸出,該平滑電流訊號係藉由利用一第一阿爾發濾波器來產生,以及該平滑電壓訊號係藉由利用一第二阿爾發濾波器來產生。 The method according to claim 13, wherein for each smoothing filter output of the plurality of smoothing filter outputs, the smoothed current signal is generated by using a first alpha filter, and the The smoothed voltage signal is generated by using a second alpha filter. 如申請專利範圍第13項所述之方法,其中根據該複數個平滑濾波器輸出來估測該基本共振頻率的步驟包含有:對於該複數個平滑濾波器輸出的每一個平滑濾波器輸出,將該平滑電壓訊號除以該平滑電流訊號,以產生一阻抗值;以及藉由比較自複數個平滑濾波器輸出取得的複數個阻抗值來估測該基本共振頻率。 The method described in claim 13, wherein the step of estimating the fundamental resonance frequency according to the plurality of smoothing filter outputs includes: for each smoothing filter output of the plurality of smoothing filter outputs, The smoothed voltage signal is divided by the smoothed current signal to generate an impedance value; and the fundamental resonant frequency is estimated by comparing a plurality of impedance values obtained from a plurality of smoothing filter outputs. 如申請專利範圍第9項所述之方法,其中於該揚聲器用以進行音訊播放而被驅動的期間,該方法以即時的方式來估測該揚聲器之該基本共振頻率。 The method according to claim 9, wherein the method estimates the fundamental resonant frequency of the speaker in a real-time manner while the speaker is driven for audio playback.
TW110132061A 2021-08-30 2021-08-30 Loudspeaker controller for estimating fundamental resonance frequency of loudspeaker and method for estimating fundamental resonance frequency of loudspeaker TWI787977B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110132061A TWI787977B (en) 2021-08-30 2021-08-30 Loudspeaker controller for estimating fundamental resonance frequency of loudspeaker and method for estimating fundamental resonance frequency of loudspeaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110132061A TWI787977B (en) 2021-08-30 2021-08-30 Loudspeaker controller for estimating fundamental resonance frequency of loudspeaker and method for estimating fundamental resonance frequency of loudspeaker

Publications (2)

Publication Number Publication Date
TWI787977B true TWI787977B (en) 2022-12-21
TW202310636A TW202310636A (en) 2023-03-01

Family

ID=85795150

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110132061A TWI787977B (en) 2021-08-30 2021-08-30 Loudspeaker controller for estimating fundamental resonance frequency of loudspeaker and method for estimating fundamental resonance frequency of loudspeaker

Country Status (1)

Country Link
TW (1) TWI787977B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150030169A1 (en) * 2013-07-23 2015-01-29 Analog Devices A/S Method of Controlling Sound Reproduction of Enclosure Mounted Loudspeakers
US20150030167A1 (en) * 2013-07-23 2015-01-29 Analog Devices A/S Method of Detecting Enclosure Leakage of Enclosure Mounted Loudspeakers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150030169A1 (en) * 2013-07-23 2015-01-29 Analog Devices A/S Method of Controlling Sound Reproduction of Enclosure Mounted Loudspeakers
US20150030167A1 (en) * 2013-07-23 2015-01-29 Analog Devices A/S Method of Detecting Enclosure Leakage of Enclosure Mounted Loudspeakers

Also Published As

Publication number Publication date
TW202310636A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
US9578416B2 (en) Control of a loudspeaker output
US8175284B2 (en) Method and apparatus for calibrating sound-reproducing equipment
EP2229006B1 (en) Speaker line inspection device
CN107734427A (en) A kind of guard method and device according to voice coil loudspeaker voice coil temperature rise adjust automatically speaker volume
CN104735600A (en) Loudspeaker controller
US11570563B1 (en) Method for estimating fundamental resonance frequency of loudspeaker and associated loudspeaker controller
US9510119B2 (en) Method and device for detecting function of loudspeaker module
TWI787977B (en) Loudspeaker controller for estimating fundamental resonance frequency of loudspeaker and method for estimating fundamental resonance frequency of loudspeaker
CN104363554A (en) Method for detecting loudspeaker abnormal sounds
US9800984B2 (en) Identification of a load with a search algorithm that controls application of signals to the load and a reference generator
TWI683534B (en) Adjusting system and adjusting method thereof for equalization processing
CN112530450A (en) Sample-precision delay identification in the frequency domain
WO2018127942A1 (en) Speaker fault diagnosis device and fault diagnosis method
CN104640052B (en) Loudspeaker polarity detector
CN115842991A (en) Speaker controller for estimating fundamental resonance frequency of speaker and method thereof
US11671047B2 (en) Voice coil actuator driver signal generator
KR101386366B1 (en) Method for resonance frequency measuring of speaker and apparatus using the same
JP6503537B1 (en) Control method and apparatus for extracting the limit ability of a speaker system
CN112804626A (en) Method and system for dynamically controlling amplitude of loudspeaker and mobile terminal
Kong et al. Modeling of lossy inductance in moving-coil loudspeakers
US9712906B1 (en) Alternating current (AC) load identification technique using a search algorithm
WO2023181144A1 (en) Noise elimination device and method
WO2023135854A1 (en) Sound reproduction apparatus
US20140198902A1 (en) Method and system for determining a number of load coils in a transmission line
CN113259811A (en) Method and audio processing unit for detecting pitch and use thereof