TWI787134B - A gpu-accelerated data processing method for rapid noise-suppressed contrast enhancement - Google Patents

A gpu-accelerated data processing method for rapid noise-suppressed contrast enhancement Download PDF

Info

Publication number
TWI787134B
TWI787134B TW111119758A TW111119758A TWI787134B TW I787134 B TWI787134 B TW I787134B TW 111119758 A TW111119758 A TW 111119758A TW 111119758 A TW111119758 A TW 111119758A TW I787134 B TWI787134 B TW I787134B
Authority
TW
Taiwan
Prior art keywords
image
resized
enlarged
layer
layer image
Prior art date
Application number
TW111119758A
Other languages
Chinese (zh)
Other versions
TW202347249A (en
Inventor
孫啟光
卡地 巴
Original Assignee
國立臺灣大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣大學 filed Critical 國立臺灣大學
Priority to TW111119758A priority Critical patent/TWI787134B/en
Priority to JP2022122533A priority patent/JP7382090B1/en
Application granted granted Critical
Publication of TWI787134B publication Critical patent/TWI787134B/en
Publication of TW202347249A publication Critical patent/TW202347249A/en

Links

Images

Abstract

The present disclosure relates to a data processing method, and more specifically, to a digital image processing method to enable a rapid noise-suppressed contrast enhancement in an optical linear or nonlinear microscopy imaging application. The disclosed method digitally mimics a hardware-based feedback-driven adaptive or controlled illumination technique by means of digitally resembling selective laser-on and laser-off states so as to selectively optimize the signal strength and hence the visibility of the weak-intensity morphologies while mostly preventing saturation of the brightest structures.

Description

一種用於快速雜訊抑制對比度增強的 資料處理方法及包含其的影像採集和處理系統 A fast noise suppression contrast enhancement Data processing method and image acquisition and processing system including same

本揭露文件涉及一種資料處理方法,特別是涉及一種用於快速雜訊抑制對比度增強的數位影像處理方法。 The disclosed document relates to a data processing method, in particular to a digital image processing method for rapid noise suppression and contrast enhancement.

光學神經元成像有助於研究人員研究各種神經系統疾病以及大腦之功能和功能障礙。神經元結構通常在結構紋理和信號強度分佈方面呈現出顯著的變化。舉例來說,在對神經元進行成像時,通常觀察到細胞體(即體細胞)比相鄰的纖維結構(即軸突和樹突)更明亮,後者可能比一微米更薄。事實上,神經元成像導致足夠寬的信號強度分佈。即使採用高等先進的採集和顯示系統,由於其有限的動態範圍,通常很難在不犧牲任何資訊的情況下數位化和可視化所有神經元細節。此外,各種光學上、電學上和其他環境等的因素導致嘈雜的背景,此顯著污染了從超精細神經元結構中出現的弱強度信號,並最終惡化了這種形態的信噪比(Signal-to-Noise Ratio,SNR)和對比度。 Optical neuronal imaging helps researchers study various neurological diseases as well as brain function and dysfunction. Neuronal structures often exhibit dramatic changes in structural texture and signal intensity distribution. For example, when imaging neurons, cell bodies (i.e., soma) are often observed to be brighter than adjacent fibrous structures (i.e., axons and dendrites), which can be thinner than a micron. Indeed, imaging of neurons results in a sufficiently broad distribution of signal intensities. Even with highly advanced acquisition and display systems, due to their limited dynamic range, it is often difficult to digitize and visualize all neuronal details without sacrificing any information. Furthermore, various optical, electrical, and other environmental factors lead to noisy backgrounds that significantly contaminate weak-intensity signals emerging from hyperfine neuronal structures and ultimately deteriorate the signal-to-noise ratio of this modality (Signal- to-Noise Ratio, SNR) and contrast.

弱強度結構的傳統對比度增強通常會使最亮的 結構飽和,並且可能導致雜訊放大問題,此會進一步降低SNR。 Conventional contrast enhancement of weak-intensity structures usually makes the brightest The structure saturates and can cause noise amplification problems, which further degrades SNR.

自適應/受控照明是種很有前途的技術,其允許藉由調節雷射激發功率來即時局部最佳化信號強度。然而,自適應照明需要專用的硬體設置,並且由於電子回應較慢,可能會感測到較差的有效帶寬,因此會出現不可逆轉的數位解析度損失(混疊),尤其是在針對擴展的視野範圍內的高數位解析度時。此外,自適應照明在局部增強弱強度結構的同時,可能仍然會遇到雜訊放大。 Adaptive/controlled illumination is a promising technique that allows instant local optimization of signal intensity by adjusting laser excitation power. However, Adaptive Lighting requires a dedicated hardware setup and may sense poor effective bandwidth due to slower electronic response, so irreversible loss of digital resolution (aliasing), especially for extended At high digital resolution in the field of view. Furthermore, adaptive lighting may still suffer from noise amplification while locally enhancing weak intensity structures.

US9639915B1公開了一種影像處理方法,包括基於對相應像素、像素之間、其他像素、與相應像素相鄰之像素間的雜訊影響之不同程度,根據影像的線性雜訊模型為影像中的每個像素配置降噪濾波器。此方法更包括對每個像素執行降噪濾波,對每個像素使用降噪濾波器,以獲得降噪的影像。 US9639915B1 discloses an image processing method, including based on the different degrees of noise influence on the corresponding pixel, between pixels, other pixels, and pixels adjacent to the corresponding pixel, according to the linear noise model of the image for each image in the image Pixel configuration noise reduction filter. The method further includes performing denoising filtering on each pixel, applying a denoising filter to each pixel to obtain a denoised image.

US8417050B1在信號(如靜止影像或視頻序列)內的多個尺度之每一尺度或解析度上採用穩健濾波(Robust Filtering)。在某些實施方式中,穩健濾波包括或包含每個尺度上的非線性鄰域操作,以便在每個尺度上產生去噪、銳化和對比度增強的信號以及校正信號。 US8417050B1 employs Robust Filtering at each of multiple scales or resolutions within a signal (such as a still image or video sequence). In certain embodiments, robust filtering includes or includes non-linear neighborhood operations at each scale to produce denoised, sharpened and contrast-enhanced signals as well as correction signals at each scale.

儘管迄今為止已經提出了相當多的類比/數位信號處理方法,但現有之基於硬體的類比技術需要專用的硬體配置來操作,此增加了成本和複雜性。由於電子限制,回應速度較慢可能會導致有效帶寬較差,進而導致混疊。除了 基於硬體的方法外,現有之基於軟體的對比度增強演算法通常會導致不想要的雜訊放大,從而導致較差的信噪比,並且通常最終會使影像中最明亮的結構飽和。 Although quite a few analog/digital signal processing methods have been proposed so far, existing hardware-based analog techniques require dedicated hardware configurations to operate, which increases cost and complexity. Due to electronic limitations, slower response speeds can result in poorer effective bandwidth, which in turn can lead to aliasing. Apart from In addition to hardware-based methods, existing software-based contrast enhancement algorithms often lead to unwanted amplification of noise, resulting in poor signal-to-noise ratios, and often end up saturating the brightest structures in the image.

因此有必要引入一種數位雜訊補償對比度增強技術,其可以應用於光學線性和非線性成像模態,以幫助提高弱信號結構的可見性,同時既不會使最明亮的結構飽和,亦不會放大背景雜訊。 It is therefore necessary to introduce a digital noise-compensated contrast enhancement technique that can be applied to both optical linear and nonlinear imaging modalities to help improve the visibility of weak signal structures while neither saturating the brightest structures nor Amplifies background noise.

本發明的目的在於提供一種無需專用硬體的數位方法,其可以模仿基於硬體的自適應/受控照明技術,並選擇性地提高光學顯微影像中弱強度結構的對比度,同時對具有較明亮強度的結構影響不大。此方法採用有效的背景雜訊抑制,接著進行局部強度增強。 The purpose of the present invention is to provide a digital method that does not require special hardware, which can mimic hardware-based adaptive/controlled lighting techniques, and selectively enhance the contrast of weak intensity structures in optical microscopic images, and at the same time, it is better for those with relatively low intensity. The structure of the bright intensity has little effect. This method employs efficient background noise suppression followed by local intensity enhancement.

在第一態樣,本發明提供一種用於快速雜訊抑制對比度增強的資料處理方法,包含配置圖形處理單元或中央處理單元以執行下列步驟:取得輸入影像,其中此輸入影像具有第一寬度和第一高度,並且包括多個像素或資料點,此等像素或資料點具有允許最大像素值或最大像素強度的特定位元深度,此最大像素強度是由2提高到位元深度減1的次方來獲得。對輸入影像執行第一像素合併或第一插值處理,以第一縮減因數重調輸入影像的大小,以生成第一重調大小影像,第一重調大小影像具有比第一寬度少第一縮減因數的第二寬度、和比第一高度少第一縮減因數的第二高度。 在第一重調大小影像上執行第一低通濾波處理,以獲得第一模糊影像。對第一模糊影像執行第二插值處理,使其從第二寬度和第二高度放大化,以獲得具有第一寬度和第一高度的第二重調大小影像。執行分割處理,將一第一特定數除以第二重調大小影像,以獲得第一分割層影像。執行門檻值處理,以在使用者定義門檻值處截斷第一分割層影像,以獲得第一放大層影像。對輸入影像執行第一放大處理,以將輸入影像乘以第一放大層影像,以產生第一放大影像。對第一放大影像進行第二像素合併或第三插值處理,以第二縮減因數重調第一放大影像的大小,以產生第三重調大小影像,第三重調大小影像具有比第一寬度少第二縮減因數的第三寬度、和比第一高度少第二縮減因數的第三高度。在第三重調大小影像上執行第二低通濾波處理,以獲得第二模糊影像。對第二模糊影像執行第四插值處理,使其從第三寬度和第三高度放大化,以獲得具有第一寬度和第一高度的第四重調大小影像。在第四重調大小影像和第一放大影像上執行第一減法處理,以從第四重調大小影像中減去第一放大影像,以生成第一減影影像。對第一減影影像執行第三低通濾波處理,以獲得第三模糊影像。對第一放大層影像執行第二減法處理,以將高於使用者定義門檻值的第二特定數減去第一放大層影像,以獲得第二減影影像或第二放大層影像。對第三模糊影像執行第二放大處理,以將第三模糊影像乘以第二放大層影像,以產生第二放大影像。對輸入影像和第二放大影像執行第三減法處理,以從輸入影像中減去第二放大影像,以獲得第三減 影影像。在第一放大層影像上執行一組算術處理,以獲得第三放大層影像。以及對第三減影影像執行第三放大處理,以將第三減影影像乘以第三放大層影像,以產生第三放大影像或雜訊抑制對比度增強輸出影像。 In a first aspect, the present invention provides a data processing method for fast noise suppression contrast enhancement, comprising configuring a graphics processing unit or a central processing unit to perform the following steps: obtaining an input image, wherein the input image has a first width and a first height, and includes a plurality of pixels or data points having a specified bit depth that allows a maximum pixel value or a maximum pixel intensity raised from 2 to the power of bit depth minus 1 to get. performing a first binning or a first interpolation process on the input image, resizing the input image by a first downscaling factor to generate a first resized image, the first resized image having a first downscaling less than a first width factor, and a second height less than the first height by the first reduction factor. A first low-pass filtering process is performed on the first resized image to obtain a first blurred image. A second interpolation process is performed on the first blurred image to upscale it from a second width and a second height to obtain a second resized image having a first width and a first height. A segmentation process is performed to obtain a first segmented layer image by dividing a first specific number by the second resized image. Threshold processing is performed to truncate the first segmented layer image at a user-defined threshold to obtain a first zoomed-in layer image. A first zoom-in process is performed on the input image to multiply the input image by the first zoom-in layer image to generate a first zoom-in image. performing a second binning or a third interpolation process on the first enlarged image, resizing the first enlarged image by a second reduction factor to generate a third resized image having a width wider than the first a third width less by the second reduction factor, and a third height less than the first height by the second reduction factor. A second low-pass filtering process is performed on the third resized image to obtain a second blurred image. A fourth interpolation process is performed on the second blurred image to enlarge it from the third width and the third height to obtain a fourth resized image having the first width and the first height. A first subtraction process is performed on the fourth resized image and the first enlarged image to subtract the first enlarged image from the fourth resized image to generate a first subtracted image. A third low-pass filtering process is performed on the first subtraction image to obtain a third blurred image. A second subtraction process is performed on the first magnified layer image to subtract a second specific number higher than a user-defined threshold value from the first magnified layer image to obtain a second subtracted image or a second magnified layer image. A second zoom-in process is performed on the third blurred image to multiply the third blurred image by the second zoom-in layer image to generate a second zoom-in image. performing a third subtraction process on the input image and the second magnified image to subtract the second magnified image from the input image to obtain a third subtracted shadow image. A set of arithmetic operations are performed on the first magnification layer image to obtain a third magnification layer image. and performing a third enlargement process on the third subtracted image to multiply the third subtracted image by the third enlarged layer image to generate a third enlarged image or a noise-suppressed contrast-enhanced output image.

在較佳實施例中,第一插值處理、第二插值處理、第三插值處理和第四插值處理皆為雙線性。 In a preferred embodiment, the first interpolation process, the second interpolation process, the third interpolation process and the fourth interpolation process are all bilinear.

在較佳實施例中,第一像素合併或第一插值處理中的第一縮減因數為10。 In a preferred embodiment, the first downscaling factor in the first binning or first interpolation process is ten.

在較佳實施例中,第一低通濾波處理涉及使用第一核心大小為29×29的高斯核心來執行卷積的高斯模糊操作。 In a preferred embodiment, the first low-pass filtering process involves performing a Gaussian blur operation of the convolution using a first Gaussian kernel with a kernel size of 29x29.

在較佳實施例中,在執行第二插值處理之前,對第一模糊影像執行加法處理,以將一非零數字加到第一模糊影像。 In a preferred embodiment, an addition process is performed on the first blurred image to add a non-zero number to the first blurred image before performing the second interpolation process.

在較佳實施例中,此分割處理中的第一特定數為最大像素強度的90%。 In a preferred embodiment, the first specified number in this segmentation process is 90% of the maximum pixel intensity.

在較佳實施例中,此門檻值處理中的使用者定義門檻值範圍為3.0至8.0,允許浮點數。 In the preferred embodiment, the user-defined threshold in this threshold processing ranges from 3.0 to 8.0, allowing floating point numbers.

在較佳實施例中,在第二像素合併或第三插值處理中的第二縮減因數為3。 In a preferred embodiment, the second downscaling factor in the second binning or third interpolation process is three.

在較佳實施例中,第二低通濾波處理涉及使用第二核心大小為29×29的高斯核心來執行卷積的高斯模糊操作。 In a preferred embodiment, the second low pass filtering process involves performing a Gaussian blur operation of the convolution using a second Gaussian kernel with a kernel size of 29x29.

在較佳實施例中,第三低通濾波處理涉及使用 第三核心大小為7×7的高斯核心來執行卷積的高斯模糊操作。 In a preferred embodiment, the third low-pass filtering process involves using The third kernel is a Gaussian kernel of size 7×7 to perform the convolutional Gaussian blur operation.

在較佳實施例中,第二減法處理中的第二特定數為此使用者定義門檻值的1.25倍。 In a preferred embodiment, the second specific number in the second subtraction process is 1.25 times the user-defined threshold value.

在較佳實施例中,在第一放大層影像執行此組算術處理以獲得第三放大層影像的步驟包含:第一,將此第一放大層影像除以4的分割因數,以獲得一第二分割層影像。第二,將此第二分割層影像提高到2的次方,以獲得一經修改分割層影像。第三,將此經修改分割層影像加上0.9的值,以獲得此第三放大層影像。 In a preferred embodiment, the step of performing the set of arithmetic processing on the first magnified layer image to obtain the third magnified layer image includes: firstly, dividing the first magnified layer image by a division factor of 4 to obtain a first magnified layer image Two split layer images. Second, the second segmented layer image is raised to the power of 2 to obtain a modified segmented layer image. Thirdly, a value of 0.9 is added to the modified segmented layer image to obtain the third enlarged layer image.

ADD:加法層 ADD: Addition layer

AMP1:第一放大影像 AMP1: the first magnified image

AMP2:第二放大影像 AMP2: second magnified image

AMP3:第三放大影像 AMP3: third magnified image

BLR1:第一模糊影像 BLR1: The first blurred image

BLR2:第二模糊影像 BLR2: second blurred image

BLR3:第三模糊影像 BLR3: third blurred image

DIV:第一分割層影像 DIV: first split layer image

INPUT:輸入影像 INPUT: input image

LAY1:第一放大層影像 LAY1: The first enlarged layer image

LAY2:第二放大層影像 LAY2: The second enlarged layer image

LAY3:第三放大層影像 LAY3: The third magnified layer image

OUTPUT:輸出影像 OUTPUT: output image

RES1:第一重調大小影像 RES1: First resized image

RES2:第二重調大小影像 RES2: Second resized image

RES3:第三重調大小影像 RES3: third resized image

RES4:第四重調大小影像 RES4: fourth resized image

S01-S03:處理 S01-S03: Processing

SUB1:第一減影影像 SUB1: first subtraction image

SUB2:第二減影影像 SUB2: Second subtraction image

SUB3:第三減影影像 SUB3: The third subtraction image

100:影像採集和處理系統 100: Image acquisition and processing system

110:計算機 110: computer

120:光學線性或非線性顯微系統 120: Optical linear or nonlinear microscopy systems

A1-A18:步驟 A1-A18: Steps

圖1是示出了根據本發明的資料處理方法之排列的架構圖。 FIG. 1 is an architectural diagram showing the arrangement of a data processing method according to the present invention.

圖2是說明放大層製備處理的流程圖。 Fig. 2 is a flow chart illustrating an amplification layer preparation process.

圖3是說明雜訊抑制處理的流程圖。 FIG. 3 is a flowchart illustrating noise suppression processing.

圖4是說明局部加強處理的流程圖。 FIG. 4 is a flowchart illustrating local enhancement processing.

圖5(a)-(d)是展示多個輸入影像和經各自處理之影像間的比較圖。 5( a )-( d ) are comparison diagrams showing a plurality of input images and the respective processed images.

圖6是展示αmax的單參數控制圖。 Figure 6 is a single parameter control chart showing α max.

圖7是示出了所揭露之資料處理方法的平均處理時間的時間複雜度圖。 FIG. 7 is a time complexity diagram showing the average processing time of the disclosed data processing method.

圖8是展示影像採集和處理系統的架構圖。 FIG. 8 is a block diagram showing the image acquisition and processing system.

圖9是示出了根據本發明的影像採集和處理系 統的詳細配置的架構圖。 Fig. 9 is a diagram illustrating an image acquisition and processing system according to the present invention Architecture diagram of the detailed configuration of the system.

為了使本領域技術人員更好地理解本發明,下面將結合本發明實施例中的附圖,對本發明實施例中的技術方案進行清楚、完整的描述。 In order to enable those skilled in the art to better understand the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention.

本文使用的術語僅出於描述特定實施例的目的,並不旨在限制本發明。如本文所用,單數形式「一」、「一個」和「此」旨在也包括複數形式,除非上下文另有明確指示。將進一步理解的是,當在本說明書中使用時,術語「包括」和/或「包含」指定了所述特徵、整數、步驟、操作、元件和/或組件的存在,但不排除存在或添加一或多個其他特徵、整數、步驟、操作、元素、組件和/或其等的群組。 The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will be further understood that when used in this specification, the terms "comprising" and/or "comprising" specify the presence of stated features, integers, steps, operations, elements and/or components, but do not exclude the presence or addition of A group of one or more other features, integers, steps, operations, elements, components, and/or the like.

在描述附圖所示的示例實施例中,為了清楚起見,採用了特定的術語。然而,本揭露文件並非意在局限於如此選擇的具體術語,並且應當理解,每個特定要素包括具有相同結構、以類似方式操作和實現類似結果的所有技術等價物。 In describing the example embodiments illustrated in the drawings, specific terminology will be employed for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms so selected, and it is to be understood that each specific element includes all technical equivalents that have the same structure, operate in a similar manner, and achieve a similar result.

在下文描述中,說明性實施例將參照操作的行為和符號表示(例如,以流程圖的形式)來描述,這些操作可以實現為程式模組或功能處理,包括例程、程式、物件、元件、資料結構等,其等執行特定任務或實現特定的抽象資料類型,並且可以使用現有網路元素或控制節點上的現有硬體 來實現。此種現有硬體可以包括一或多個中央處理單元(Central Processing Unit,CPU)、數位信號處理器(Digital Signal Processor,DSP)、特定應用積體電路(Application-Specific-Integrated-Circuit,ASIC)、現場可程式化邏輯閘陣列(Field Programmable Gate Array,FPGA)、計算機等等。這些術語通常可以統稱為處理器。 In the following description, the illustrative embodiments are described with reference to acts and symbolic representations (e.g., in the form of flowcharts) of operations that may be implemented as program modules or functional processes, including routines, programs, objects, components , data structures, etc., which perform specific tasks or implement specific abstract data types, and can use existing network elements or existing hardware on control nodes to fulfill. Such existing hardware may include one or more central processing units (Central Processing Unit, CPU), digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application-Specific-Integrated-Circuit, ASIC) , Field Programmable Gate Array (Field Programmable Gate Array, FPGA), computer and so on. These terms can often be collectively referred to as a processor.

除非另有明確說明,或者從討論中可以明顯看出,諸如「處理」或「運算」或「計算」或「決定」或「顯示」等術語,是指計算機系統或類似電子計算設備的動作和處理,其操作和轉換在計算機系統的暫存器和記憶體中表示為物理、電子量的資料,並將其轉換為在計算機系統計記憶體或暫存器或其他此類資訊儲存、傳輸或顯示設備中類似地表示為物理量的其他資訊。 Unless expressly stated otherwise, or apparent from the discussion, terms such as "processing" or "computing" or "computing" or "determining" or "displaying" refer to the actions and actions of a computer system or similar electronic computing device Processing, which manipulates and converts data represented as physical, electronic quantities in the computer system's temporary registers and memories, and converts them into computer system memory or temporary registers or other such information for storage, transmission or Displays other information similarly represented as physical quantities in a device.

根據本發明,輸入影像是使用訂製開發的多光子光學顯微(Multiphoton Optical Microscopy,MPM)系統對多個激發波長處的大腦/神經元結構的大視野(Field-of-View,FOV)之滿足奈奎斯定理(無混疊)的雙光子螢光成像來獲得。本發明揭露的方法成功地取回了被強雜訊背景污染的弱強度超精細神經元結構。所揭露的方法能夠同時改進信噪比(Signal-to-Noise Ratio,SNR)、信號背景比(Signal-to-Background Ratio,SBR)和對比度。透過圖形處理單元(Graphics Processing Unit,GPU)輔助的NVIDIA計算統一設備架構(Compute Unified Device Architecture,CUDA)加速,所揭露的方法可為典型的1000 ×1000大小的16位元無正負號影像實現低於3毫秒的時間複雜度。 According to the present invention, the input images are of a large Field-of-View (FOV) of brain/neuronal structures at multiple excitation wavelengths using a custom-developed Multiphoton Optical Microscopy (MPM) system. Obtained by two-photon fluorescence imaging satisfying the Nyquis theorem (no aliasing). The method disclosed in the present invention successfully retrieves the weak-intensity hyperfine neuron structure polluted by the strong noise background. The disclosed method can simultaneously improve Signal-to-Noise Ratio (SNR), Signal-to-Background Ratio (SBR) and contrast. Accelerated by the NVIDIA Compute Unified Device Architecture (CUDA) assisted by a Graphics Processing Unit (GPU), the disclosed method can be typically 1000 A 16-bit unsigned image of size ×1000 achieves a time complexity of less than 3 milliseconds.

本發明揭露的資料處理方法:圖1圖示了根據本揭露文件之實施例的資料處理方法的概述。圖2圖示了根據本揭露文件之實施例的獲得第一放大層影像的過程的流程圖。圖3圖示了根據本揭露文件之實施例的雜訊抑制處理的流程圖。圖4圖示了根據本揭露文件之實施例的局部加強處理的流程圖。 Data processing method disclosed in the present invention: FIG. 1 illustrates an overview of a data processing method according to an embodiment of the disclosed document. FIG. 2 illustrates a flow chart of a process of obtaining a first enlarged layer image according to an embodiment of the present disclosure. FIG. 3 illustrates a flowchart of noise suppression processing according to an embodiment of the present disclosure. FIG. 4 illustrates a flowchart of local enhancement processing according to an embodiment of the present disclosure.

如圖1所示,輸入影像INPUT係用放大層製備處理S01進行,以得到第一放大層影像LAY1。第一放大層影像LAY1係用雜訊抑制處理S02進行,以得到雜訊抑制版本SUB3。雜訊抑制版本SUB3使用局部加強處理S03執行,以獲得經處理的影像作為輸出。 As shown in FIG. 1 , the input image INPUT is performed by the enlargement layer preparation process S01 to obtain the first enlargement layer image LAY1 . The first enlarged layer image LAY1 is subjected to noise suppression processing S02 to obtain a noise suppressed version SUB3. The noise suppression version SUB3 is performed using local enhancement processing S03 to obtain a processed image as output.

INPUT是一種受雜訊污染的低對比度16位元影像,可以用R×C像素表示為f(r,c),其中rc分別代表列和行的位置。 INPUT is a low-contrast 16-bit image contaminated by noise, which can be expressed as f ( r,c ) by R×C pixels, where r and c represent the position of the column and row, respectively.

根據處理S01,首先對f(r,c)施加10倍的縮小化,且第一重調大小影像f D (r / ,c /)是以一減少像素數量R/×C/來獲得。請參閱公式(1)和圖2中的第一重調大小影像RES1。對於所有R/×C/像素影像,r /c /分別代表列和行的位置。f D (r / ,c /)由29×29的核心高斯模糊進行低通濾波,以產生第一模糊影像。請參閱圖2中的第一模糊影像BLR1。第一模糊影像BLR1的每個像素都加1.0,以避免在後續步驟中被零除。請參閱公式(2)中的l(r / ,c /)和圖2中的加法層ADD。 l(r / ,c /)透過雙線性插值重調回R×C像素,從而產生第二重調大小影像。請參閱公式(3)中的l U (r,c)和圖2中的第二重調大小影像RES2。每個l U (r,c)像素值的倒數乘以最大允許強度的90%,即16位元影像的0.9×(216-1),以產生第一分割層影像。請參閱公式(4)中的d(r,c)和圖2中的第一分割層影像DIV。d(r,c)中高於使用者定義門檻值α max 的像素值將被截斷至α max ,以產生第一放大層影像。請參閱公式(5)中的α(r,c)和圖2中的第一放大層影像LAY1。第一放大層影像LAY1將用於下列雜訊抑制處理S02。在實施例中,使用者定義門檻值α max 的範圍為3.0至8.0,允許浮點數。 According to process S01, a 10-fold downscaling is first applied to f ( r,c ), and a first resized image fD ( r / ,c / ) is obtained with a reduced number of pixels R / ×C / . See equation (1) and the first resized image RES1 in FIG. 2 . For all r / xc / pixel images, r / and c / represent column and row positions, respectively. f D ( r / , c / ) is low-pass filtered by a 29×29 kernel Gaussian blur to generate the first blurred image. Please refer to the first blurred image BLR1 in FIG. 2 . Each pixel of the first blurred image BLR1 is incremented by 1.0 to avoid division by zero in subsequent steps. See l ( r / , c / ) in Eq. (2) and the additive layer ADD in Fig. 2. l ( r / ,c / ) is rescaled back to R×C pixels by bilinear interpolation, thereby generating a second resized image. See lU ( r ,c ) in equation (3) and the second resized image RES2 in FIG. 2 . The reciprocal of each l U ( r,c ) pixel value is multiplied by 90% of the maximum allowable intensity, which is 0.9×(2 16 -1) of the 16-bit image, to generate the first segmented layer image. Please refer to d ( r,c ) in formula (4) and the first split layer image DIV in FIG. 2 . Pixel values in d ( r,c ) higher than the user-defined threshold α max will be truncated to α max to generate the first zoom layer image. Please refer to α ( r,c ) in formula (5) and the first enlarged layer image LAY1 in FIG. 2 . The first enlarged layer image LAY1 will be used for the following noise suppression processing S02. In an embodiment, the user-defined threshold α max ranges from 3.0 to 8.0, allowing floating point numbers.

Figure 111119758-A0305-02-0012-1
Figure 111119758-A0305-02-0012-1

Figure 111119758-A0305-02-0012-2
Figure 111119758-A0305-02-0012-2

Figure 111119758-A0305-02-0012-3
Figure 111119758-A0305-02-0012-3

Figure 111119758-A0305-02-0012-4
Figure 111119758-A0305-02-0012-4

Figure 111119758-A0305-02-0012-5
Figure 111119758-A0305-02-0012-5

根據處理S02,INPUT或f(r,c)首先與第一放大層影像LAY1或α(r,c)逐像素相乘,以產生第一放大影像。請參閱圖3中的第一放大影像AMP1和公式(6)中的g(r,c)。g(r,c)被施加3×的縮小化,以產生第三重調大小影像。請參閱圖3中的第三重調大小影像RES3以及公式(7)中的g D (r // ,c //),其中r //c //分別代表列和行的位置。g D (r // ,c //)係具一減少像素數量R//×C//g D (r // ,c //)係使用29×29核心 高斯模糊來進行低通濾波,以產生第二模糊影像BLR2。請參閱圖3中的第二模糊影像BLR2以及公式(8)中的L(r // ,c //)。L(r // ,c //)透過雙線性插值重調大小回到R×C像素,以產生第四重調大小影像。請參閱圖3中的第四重調大小影像RES4以及公式(9)中的L U (r,c)。從L U (r,c)中減去g(r,c)以產生第一減影影像SUB1。請參閱圖3中的第一減影影像SUB1。第一減影影像SUB1使用7×7核心高斯模糊來進行低通濾波,以產生第三模糊影像BLR3。請參閱圖3中的第三模糊影像BLR3以及公式(10)中的L /(r,c)。α(r,c)係使用減法運算,即[1.25×α max -α(r,c)]以得到第二減影影像SUB2或第二放大層影像LAY2。請參閱圖3中的第二減影影像SUB2或第二放大層影像LAY2。接著,L /(r,c)或第三模糊影像BLR3與第二減影影像SUB2或第二放大層影像LAY2逐像素相乘,以產生第二放大影像AMP2。請參閱圖3中的第二放大影像AMP2。從f(r,c)或INPUT中減去第二放大影像AMP2,以得到第三減影影像SUB3。請參閱圖3中的第三減影影像SUB3以及公式(11)中的S(r,c)。第三減影影像SUB3或S(r,c)是INPUT或f(r,c)的雜訊抑制版本,其將在隨後的局部加強處理S03中使用。 According to the process S02, INPUT or f ( r,c ) is firstly multiplied pixel by pixel with the first enlarged layer image LAY1 or α ( r,c ) to generate the first enlarged image. Please refer to the first enlarged image AMP1 in FIG. 3 and g ( r,c ) in formula (6). g ( r,c ) is subjected to a 3× downscaling to produce a third resized image. Please refer to the third resized image RES3 in Fig. 3 and g D ( r // , c // ) in Equation (7), where r // and c // represent the positions of columns and rows, respectively. g D ( r // ,c // ) means a reduction in the number of pixels R // ×C // . g D ( r // , c // ) uses a 29×29 core Gaussian blur to perform low-pass filtering to generate the second blurred image BLR2. Please refer to the second blurred image BLR2 in FIG. 3 and L ( r // , c // ) in formula (8). L ( r // ,c // ) is resized back to R×C pixels by bilinear interpolation to generate a fourth resized image. Please refer to the fourth resized image RES4 in FIG. 3 and LU ( r,c ) in equation (9). Subtract g (r, c ) from LU ( r,c ) to generate a first subtraction image SUB1. Please refer to the first subtraction image SUB1 in FIG. 3 . The first subtraction image SUB1 uses a 7×7 kernel Gaussian blur to perform low-pass filtering to generate a third blurred image BLR3. Please refer to the third blurred image BLR3 in FIG. 3 and L / ( r,c ) in formula (10). α ( r, c ) uses subtraction, that is, [1.25× α max - α ( r, c )] to obtain the second subtraction image SUB2 or the second magnification layer image LAY2. Please refer to the second subtraction image SUB2 or the second magnification layer image LAY2 in FIG. 3 . Then, L / ( r,c ) or the third blurred image BLR3 is multiplied pixel by pixel with the second subtraction image SUB2 or the second magnification layer image LAY2 to generate the second magnification image AMP2. Please refer to the second enlarged image AMP2 in FIG. 3 . Subtract the second enlarged image AMP2 from f ( r,c ) or INPUT to obtain the third subtracted image SUB3. Please refer to the third subtraction image SUB3 in FIG. 3 and S ( r,c ) in formula (11). The third subtraction image SUB3 or S ( r,c ) is a noise-suppressed version of INPUT or f ( r,c ), which will be used in the subsequent local enhancement processing S03.

g(r,c)=f(r,c)×α(r,c) 公式(6) g(r,c)=f(r,c)×α(r,c) formula (6)

Figure 111119758-A0305-02-0013-6
Figure 111119758-A0305-02-0013-6

Figure 111119758-A0305-02-0013-7
Figure 111119758-A0305-02-0013-7

Figure 111119758-A0305-02-0014-9
Figure 111119758-A0305-02-0014-9

Figure 111119758-A0305-02-0014-10
Figure 111119758-A0305-02-0014-10

S(r,c)=f(r,c)-L /(r,c)×[1.25×α max -α(r,c)] 公式(11) S ( r,c )= f ( r,c )- L / ( r,c )×[1.25× α max - α ( r,c )] formula (11)

根據處理S03,第一放大層影像LAY1或α(r,c)係透過一組算術操作執行,給出為[X+{α(r,c)/Y} n ],以生成第三放大層影像LAY3。請參閱圖4中的第三放大層影像LAY3。在一實施例中,X、Y和n的值分別選擇為0.9、4.0、2.0。第三減影影像SUB3(即S(r,c)),亦即第三減影影像SUB3逐像素乘以第三放大層影像LAY3,以產生第三放大影像AMP3或雜訊抑制對比度增強輸出影像。請參閱圖4中的OUTPUT和公式(12)中的F(r,c)。 According to process S03, the first magnification layer image LAY1 or α ( r,c ) is performed through a set of arithmetic operations, given as [ X +{ α ( r,c )/ Y } n ], to generate the third magnification layer Image LAY3. Please refer to the third enlarged layer image LAY3 in Figure 4. In one embodiment, the values of X, Y and n are selected as 0.9, 4.0 and 2.0, respectively. The third subtraction image SUB3 (ie S ( r, c )), that is, the third subtraction image SUB3 is multiplied pixel by pixel by the third amplification layer image LAY3 to generate a third amplification image AMP3 or a noise-suppressed contrast-enhanced output image . See OUTPUT in Figure 4 and F ( r,c ) in Equation (12).

F(r,c)=S(r,c)×[0.9+{α(r,c)/4.0}2.0] 公式(12) F ( r,c )= S ( r,c )×[0.9+{ α ( r,c )/4.0} 2.0 ] formula (12)

INPUT中的高強度區域將導致第三放大層影像LAY3中相應區域的值接近1,從而在第三減影影像SUB3與第三放大層影像LAY3相乘時防止OUTPUT中的飽和。而INPUT中的低強度區域會導致第三放大層影像LAY3中相應區域的值大於1,從而當第三減影影像SUB3與第三放大層影像LAY3相乘時局部增強OUTPUT中的低強度區域。 A region of high intensity in INPUT will cause the value of the corresponding region in the third magnification layer image LAY3 to be close to 1, thereby preventing saturation in OUTPUT when the third subtraction image SUB3 is multiplied by the third magnification layer image LAY3. And the low-intensity area in INPUT will cause the value of the corresponding area in the third magnification layer image LAY3 to be greater than 1, so when the third subtraction image SUB3 is multiplied by the third magnification layer image LAY3, the low-intensity area in OUTPUT is locally enhanced.

所揭露之資料處理方法的應用係使用Nav1.8-tdTomato陽性老鼠背根神經節(Dorsal-Root-Ganglion,DRG)部分的雙光子激發螢光(Two-Photon Excitation Fluorescence,TPEF)影像和來自Thy1-GFP陽性老鼠大腦皮層區域的冠狀部分來證明的。DRG部分由明亮的體組織 和弱強度的細軸突纖維組成,而皮質部分由軸突、樹突和樹突棘組成。對於Nav1.8-tdTomato和Thy1-GFP陽性標本,TPEF成像分別在1070nm和919nm(70MHz、<60fs、<40mW平均激發功率)的中心激發波長下進行。 The application of the disclosed data processing method uses two-photon excitation fluorescence (TPEF) images of Nav1.8-tdTomato positive mouse dorsal root ganglion (Dorsal-Root-Ganglion, DRG) parts and images from Thy1 - as evidenced by coronal sections of cortical regions of GFP-positive mice. DRG partially organized by bright body The cortical part consists of axons, dendrites, and dendritic spines. For Nav1.8-tdTomato and Thy1-GFP positive specimens, TPEF imaging was performed at the central excitation wavelengths of 1070nm and 919nm (70MHz, <60fs, <40mW average excitation power), respectively.

圖5(a)和5(c)分別描繪了Nav1.8-tdTomato和Thy1-GFP標本的兩個TPEF影像,各者都有一個150μm的比例尺。圖5(a)和5(c)都顯示了較差的SNR、SBR和對比度。應用本發明揭露的資料處理方法,圖5(a)中的影像的α max =8.0,圖5(c)中的影像的α max =6.0,而經處理影像分別顯示於圖5(b)和5(d)中。所揭露的資料處理方法在各個情況下都產生顯著的影像質量改進。 Figures 5(a) and 5(c) depict two TPEF images of Nav1.8-tdTomato and Thy1-GFP specimens, respectively, each with a scale bar of 150 μm. Both Figure 5(a) and 5(c) show poor SNR, SBR and contrast. Applying the data processing method disclosed in the present invention, the image in Fig. 5(a) has α max =8.0, the image in Fig. 5(c) has α max =6.0, and the processed images are shown in Fig. 5(b) and 5(d). The disclosed data processing methods produce significant image quality improvements in each case.

圖6提供了Nav1.8-tdTomato影像的兩個感興趣區域(Regions-of-Interest,ROI)和Thy1-GFP影像的兩個感興趣區域,分別取自圖5(a)和5(c),旨在定量地可視化α max 的影響。第一列(即圖6中的INP)描繪了未處理的感興趣區域。下一列描繪了從3.0到8.0依次變化的不同α max 值下經處理的感興趣區域。 Figure 6 provides two regions of interest (Regions-of-Interest, ROI) of the Nav1.8-tdTomato image and two regions of interest of the Thy1-GFP image, respectively taken from Figure 5(a) and 5(c) , aiming to quantitatively visualize the effect of α max . The first column (i.e., INP in Figure 6) depicts the unprocessed region of interest. The next column depicts the processed region of interest for different values of αmax sequentially varying from 3.0 to 8.0.

圖7繪製了所揭露的資料處理方法相對於輸入影像大小(16位元無正負號格式)的平均處理時間(以毫秒為單位)。平均處理時間包括將未處理的輸入影像從主機上傳到GPU,在GPU中處理上傳的影像,並將經處理的輸出影像從GPU下載到主機。前述的第一條曲線(帶有方塊的曲線)透過傳統的CPU i7-9800X繪製了平均處理時間,對於10,000×10,000像素16位元輸入影像來說,最多消耗約2000毫秒。 第二條和第三條曲線(帶有三角形的曲線和帶有球形的曲線)透過兩個支援CUDA的GPU(分別為Quadro P1000和Quadro RTX 8000)繪製了平均處理時間,各自都顯示處理速度的顯著提高。Quadro RTX 8000在相同的10,000×10,000像素16位元輸入影像下消耗約111毫秒,指出了與i7-980X相比,性能提升了18倍。 Figure 7 plots the average processing time (in milliseconds) of the disclosed data processing method against the input image size (16-bit unsigned format). The average processing time consists of uploading the raw input image from the host to the GPU, processing the uploaded image in the GPU, and downloading the processed output image from the GPU to the host. The first curve above (the one with the squares) plots the average processing time through a traditional CPU i7-9800X, consuming a maximum of about 2000 ms for a 10,000 x 10,000 pixel 16-bit input image. The second and third curves (the one with the triangle and the one with the sphere) plot the average processing time across two CUDA-capable GPUs (Quadro P1000 and Quadro RTX 8000, respectively), each showing the difference in processing speed. Significantly improved. The Quadro RTX 8000 consumes about 111 milliseconds on the same 10,000×10,000 pixel 16-bit input image, pointing to an 18x performance improvement over the i7-980X.

在一實施例中,提供了一種用於快速雜訊抑制對比度增強的影像採集和處理系統,其透過圖形處理單元加速,在光學線性或非線性顯微應用中具有數位地實現基於硬體的自適應/受控照明效果,同時確保1000×1000像素16位元輸入影像的時間複雜度低於3毫秒。 In one embodiment, an image acquisition and processing system for fast noise-suppressed contrast enhancement accelerated by a graphics processing unit with digitally implemented hardware-based automation in optical linear or nonlinear microscopy applications is provided. Adaptive/controlled lighting effects while ensuring a time complexity of less than 3 milliseconds for a 1000×1000 pixel 16-bit input image.

圖8是展示影像採集和處理系統100的示意圖。影像採集和處理系統100包括具有支援計算統一設備架構(Compute Unified Device Architecture,CUDA)之顯示卡的計算機110,以及被配置為以高數位解析度獲取生物標本影像的光學線性或非線性顯微系統120。 FIG. 8 is a schematic diagram showing the image acquisition and processing system 100 . The image acquisition and processing system 100 includes a computer 110 with a display card supporting Compute Unified Device Architecture (CUDA), and an optical linear or nonlinear microscope system configured to acquire images of biological specimens with high digital resolution 120.

圖9是示出影像採集和處理系統100的配置的框圖。由光學線性或非線性顯微系統120採集的影像提供作為輸入,並用專用於快速雜訊抑制對比度增強的資料處理方法進行處理,其中此資料處理方法以數位方式模仿基於硬體的自適應/受控照明技術。此資料處理方法包括配置計算機110之支援CUDA的圖形處理單元以執行以下步驟。 FIG. 9 is a block diagram showing the configuration of the image acquisition and processing system 100 . Images acquired by the optical linear or nonlinear microscopy system 120 are provided as input and processed with a data processing method dedicated to fast noise suppression contrast enhancement that digitally mimics hardware-based adaptive/responsive control lighting technology. The data processing method includes configuring a CUDA-supported graphics processing unit of the computer 110 to perform the following steps.

A1:從光學線性或非線性顯微系統獲得受雜訊影響的低對比度輸入影像,其中此輸入影像具有第一寬度和 第一高度,並且包括多個像素或資料點,像素或資料點具有允許最大像素值或最大像素強度的特定位元深度,此最大像素強度是由2提高到位元深度減1的次方來獲得。 A1: Obtaining a noise-affected low-contrast input image from an optical linear or nonlinear microscopy system, wherein the input image has a first width and a first height, and includes a plurality of pixels or data points having a specific bit depth that allows a maximum pixel value or maximum pixel intensity obtained by raising 2 to the power of the bit depth minus 1 .

放大層製備處理S01包括步驟A2~A7。 The amplification layer preparation process S01 includes steps A2 to A7.

A2:對輸入影像執行第一雙線性插值處理,以第一縮減因數10來重調輸入影像的大小,以生成第一重調大小影像,此第一重調大小影像具有比第一寬度少第一縮減因數的第二寬度、和比第一高度少第一縮減因數的第二高度。 A2: Perform a first bilinear interpolation process on the input image to resize the input image by a first downscaling factor of 10 to generate a first resized image having a width less than the first width A second width of the first reduction factor, and a second height less than the first height by the first reduction factor.

A3:藉由使用第一核心大小為29×29的高斯核心來對第一重調大小影像進行卷積運算,以對第一重調大小影像進行第一高斯模糊處理,以獲得第一模糊影像。 A3: Performing a first Gaussian blurring process on the first resized image by performing a convolution operation on the first resized image using a Gaussian kernel with a first kernel size of 29×29 to obtain a first blurred image .

A4:執行加法處理以將非零數字(即1.0),添加到第一模糊影像,以獲得非零影像。 A4: Perform an addition process to add a non-zero number (ie 1.0) to the first blurred image to obtain a non-zero image.

A5:對非零影像執行第二雙線性插值處理,以將其從第二寬度和第二高度放大化以獲得具有第一寬度和第一高度的第二重調大小影像。 A5: Performing a second bilinear interpolation process on the non-zero image to upscale it from a second width and a second height to obtain a second resized image having the first width and the first height.

A6:執行分割處理,將最大像素強度的90%除以第二重調大小影像,以獲得第一分割層影像。 A6: A segmentation process is performed, dividing 90% of the maximum pixel intensity by the second resized image to obtain the first segmented layer image.

A7:執行門檻值處理,以將第一分割層影像在3.0至8.0範圍內的使用者定義門檻值處截斷,以獲得第一放大層影像。 A7: Perform threshold processing to truncate the first segmented layer image at a user-defined threshold value ranging from 3.0 to 8.0 to obtain the first enlarged layer image.

雜訊抑制處理S02包括步驟A8~A16。 The noise suppression processing S02 includes steps A8-A16.

A8:對輸入影像執行第一放大處理,以將輸入 影像與第一放大層影像相乘,並生成第一放大影像。 A8: Perform the first enlargement process on the input image to convert the input The image is multiplied by the first magnified layer image to generate a first magnified image.

A9:對第一放大影像執行第三雙線性插值處理,以第二縮減因數3來重調第一放大影像的大小,以產生第三重調大小影像,此第三重調大小影像具有比第一寬度少第二縮減因數的第三寬度、和比第一高度少第二縮減因數的第三高度。 A9: Perform a third bilinear interpolation process on the first enlarged image to resize the first enlarged image by a second downscaling factor of 3 to generate a third resized image having a ratio The first width is less than a third width by the second reduction factor, and the third height is less than the first height by the second reduction factor.

A10:藉由使用第二核心大小為29×29的高斯核心來對第三重調大小影像進行卷積運算,以對第三重調大小影像執行第二高斯模糊處理,以獲得第二模糊影像。 A10: Performing a second Gaussian blur on the third resized image by convolving the third resized image with a second Gaussian kernel of size 29×29 to obtain a second blurred image .

A11:對第二模糊影像進行第四雙線性插值處理,將其從第三寬度和第三高度放大化,以獲得具有第一寬度和第一高度的第四重調大小影像。 A11: performing a fourth bilinear interpolation process on the second blurred image, and enlarging it from the third width and the third height to obtain a fourth resized image having the first width and the first height.

A12:對第四重調大小影像和第一放大影像進行第一減法處理,以從第四重調大小影像中減去第一放大影像,以產生第一減影影像。 A12: performing a first subtraction process on the fourth resized image and the first enlarged image, so as to subtract the first enlarged image from the fourth resized image to generate a first subtracted image.

A13:藉由使用第三核心大小為7×7的高斯核心來對第一減影影像進行卷積運算,以對第一減影影像執行第三高斯模糊處理,以獲得第三模糊影像。 A13: Convolving the first subtraction image with a third Gaussian kernel with a size of 7×7 to perform a third Gaussian blurring process on the first subtraction image to obtain a third blurred image.

A14:對第一放大層影像進行第二減法處理,以從1.25倍的使用者定義門檻值中減去第一放大層影像,以獲得第二減影影像或第二放大層影像。 A14: performing a second subtraction process on the first magnified layer image to subtract the first magnified layer image from a user-defined threshold of 1.25 times to obtain a second subtracted image or a second magnified layer image.

A15:對第三模糊影像進行第二放大處理,以將第三模糊影像與第二放大層影像相乘,並生成第二放大影像。 A15: performing a second zoom-in process on the third blurred image, so as to multiply the third blurred image by the second zoom-in layer image to generate a second zoom-in image.

A16:對輸入影像和第二放大影像進行第三減法處理,以從輸入影像中減去第二放大影像,以獲得第三減影影像。 A16: performing a third subtraction process on the input image and the second enlarged image, so as to subtract the second enlarged image from the input image to obtain a third subtracted image.

局部加強處理S03包括步驟A17和A18。 The local enhancement process S03 includes steps A17 and A18.

A17:在第一放大層影像執行一組算術處理。第一,將第一放大層影像除以4的分割因數,以獲得第二分割層影像。第二,將第二分割層影像提高到2的次方,以獲得經修改分割層影像。以及第三,將此經修改分割層影像加上0.9的值,以獲得第三放大層影像。 A17: Perform a set of arithmetic processing on the first magnification layer image. First, divide the first enlarged layer image by a division factor of 4 to obtain a second divided layer image. Second, the second segmented layer image is raised to the power of 2 to obtain the modified segmented layer image. And thirdly, a value of 0.9 is added to the modified segmented layer image to obtain a third enlarged layer image.

A18:對第三減影影像執行第三放大處理,以將第三減影影像乘以第三放大層影像,並產生第三放大影像或具有增強對比度的輸出影像。 A18: Performing a third enlargement process on the third subtraction image, so as to multiply the third subtraction image by the third enlargement layer image, and generate a third enlargement image or an output image with enhanced contrast.

簡而言之,代替基於硬體的解決方案,本揭露文件在此報告了一種專用於快速雜訊抑制對比度增強的數位方法,其以數位方式模仿光學線性或非線性顯微應用中的反饋驅動的自適應/受控照明技術。 In short, instead of hardware-based solutions, this disclosure reports here a dedicated digital method for fast noise-suppression contrast enhancement that digitally mimics optical feedback-driven in linear or nonlinear microscopy applications Adaptive/controlled lighting technology.

本發明中提及的所有文件透過引用方式併入本文,其程度如同每個單獨的文件被具體地和單獨地指示透過引用方式併入。此外,應當理解,在閱讀本發明所教示的內容後,本領域的技術人員可以對本發明進行各種修改和變化,而這些等同物也落入請求項所定義的範圍內。 All documents mentioned in this application are herein incorporated by reference to the same extent as if each individual document was specifically and individually indicated to be incorporated by reference. In addition, it should be understood that those skilled in the art can make various modifications and changes to the present invention after reading the teachings of the present invention, and these equivalents also fall within the scope defined in the claims.

S01-S03:處理 S01-S03: Processing

LAY1:第一放大層影像 LAY1: The first enlarged layer image

SUB3:第三減影影像 SUB3: The third subtraction image

Claims (13)

一種用於快速雜訊抑制對比度增強的資料處理方法,包含配置一圖形處理單元以執行下列步驟: 取得一輸入影像,其中該輸入影像具有一第一寬度和一第一高度,並且包括多個像素或資料點,該等像素或資料點具有允許一最大像素值或一最大像素強度的一特定位元深度; 對該輸入影像執行一第一像素合併或一第一插值處理,以一第一縮減因數重調該輸入影像的大小,以生成一第一重調大小影像,該第一重調大小影像具有比該第一寬度少該第一縮減因數的一第二寬度、和比該第一高度少該第一縮減因數的一第二高度; 在該第一重調大小影像上執行一第一低通濾波處理,以獲得一第一模糊影像; 對該第一模糊影像執行一第二插值處理,使其從該第二寬度和該第二高度放大化,以獲得具有該第一寬度和該第一高度的一第二重調大小影像; 執行一分割處理,將一第一特定數除以該第二重調大小影像,以獲得一第一分割層影像; 執行一門檻值處理,以在一使用者定義門檻值處截斷該第一分割層影像,以獲得一第一放大層影像; 對該輸入影像執行一第一放大處理,以將該輸入影像乘以該第一放大層影像,以產生一第一放大影像; 對該第一放大影像進行一第二像素合併或一第三插值處理,以一第二縮減因數重調該第一放大影像的大小,以產生一第三重調大小影像,該第三重調大小影像具有比該第一寬度少該第二縮減因數的一第三寬度、和比該第一高度少該第二縮減因數的一第三高度; 在該第三重調大小影像上執行一第二低通濾波處理,以獲得一第二模糊影像; 對該第二模糊影像執行一第四插值處理,使其從該第三寬度和該第三高度放大化,以獲得具有該第一寬度和該第一高度的一第四重調大小影像; 在該第四重調大小影像和該第一放大影像上執行一第一減法處理,以從該第四重調大小影像中減去該第一放大影像,以生成一第一減影影像; 對該第一減影影像執行一第三低通濾波處理,以獲得一第三模糊影像; 對該第一放大層影像執行一第二減法處理,以將高於該使用者定義門檻值的一第二特定數減去該第一放大層影像,以獲得一第二減影影像或一第二放大層影像; 對該第三模糊影像執行一第二放大處理,以將該第三模糊影像乘以該第二放大層影像,以產生一第二放大影像; 對該輸入影像和該第二放大影像執行一第三減法處理,以從該輸入影像中減去該第二放大影像,以獲得一第三減影影像; 在該第一放大層影像上執行一組算術處理,以獲得一第三放大層影像;以及對該第三減影影像執行一第三放大處理,以將該第三減影影像乘以該第三放大層影像,以產生一第三放大影像或一對比度優化輸出影像。 A data processing method for fast noise suppression contrast enhancement, comprising configuring a graphics processing unit to perform the following steps: obtaining an input image, wherein the input image has a first width and a first height and includes a plurality of pixels or data points having a specific bit that allows a maximum pixel value or a maximum pixel intensity meta depth; performing a first binning or a first interpolation process on the input image, resizing the input image by a first downscaling factor to generate a first resized image having a ratio a second width less the first width by the first reduction factor, and a second height less the first height by the first reduction factor; performing a first low-pass filtering process on the first resized image to obtain a first blurred image; performing a second interpolation process on the first blurred image, upscaling it from the second width and the second height to obtain a second resized image having the first width and the first height; performing a segmentation process of dividing a first specified number by the second resized image to obtain a first segmented layer image; performing a threshold value processing to truncate the first segmented layer image at a user-defined threshold value to obtain a first enlarged layer image; performing a first magnification process on the input image to multiply the input image by the first magnification layer image to generate a first magnification image; performing a second binning or a third interpolation process on the first enlarged image, and resizing the first enlarged image by a second reduction factor to generate a third resized image, the third resized the size image has a third width less than the first width by the second downscaling factor, and a third height less than the first height by the second downscaling factor; performing a second low-pass filtering process on the third resized image to obtain a second blurred image; performing a fourth interpolation process on the second blurred image, upscaling it from the third width and the third height to obtain a fourth resized image having the first width and the first height; performing a first subtraction process on the fourth resized image and the first enlarged image to subtract the first enlarged image from the fourth resized image to generate a first subtracted image; performing a third low-pass filtering process on the first subtracted image to obtain a third blurred image; performing a second subtraction process on the first magnified layer image to subtract a second specific number higher than the user-defined threshold value from the first magnified layer image to obtain a second subtracted image or a first Two enlarged layers of images; performing a second zoom-in process on the third blurred image to multiply the third blurred image by the second zoom-in layer image to generate a second zoom-in image; performing a third subtraction process on the input image and the second enlarged image to subtract the second enlarged image from the input image to obtain a third subtracted image; performing a set of arithmetic processing on the first magnification layer image to obtain a third magnification layer image; and performing a third magnification process on the third subtraction image to multiply the third subtraction image by the first Three upscaled images to generate a third upscaled image or a contrast-optimized output image. 如請求項1所述的方法,其中該第一插值處理、該第二插值處理、該第三插值處理和該第四插值處理皆為雙線性。The method as claimed in claim 1, wherein the first interpolation process, the second interpolation process, the third interpolation process and the fourth interpolation process are all bilinear. 如請求項1所述的方法,其中該第一像素合併或該第一插值處理中的該第一縮減因數為10。The method according to claim 1, wherein the first reduction factor in the first binning or the first interpolation process is 10. 如請求項1所述的方法,其中該第一低通濾波處理涉及使用一第一核心大小為29×29的一高斯核心來執行卷積的一高斯模糊操作。The method of claim 1, wherein the first low pass filtering process involves performing a Gaussian blur operation of convolution using a Gaussian kernel with a first kernel size of 29×29. 如請求項1所述的方法,其中在執行該第二插值處理之前,對該第一模糊影像執行一加法處理,以將一非零數字加到該第一模糊影像。The method of claim 1, wherein before performing the second interpolation process, an addition process is performed on the first blurred image to add a non-zero number to the first blurred image. 如請求項1所述的方法,其中該分割處理中的該第一特定數為該最大像素強度的90%。The method of claim 1, wherein the first specified number in the segmentation process is 90% of the maximum pixel intensity. 如請求項1所述的方法,其中該門檻值處理中的該使用者定義門檻值範圍為3.0至8.0,允許浮點數。The method as recited in claim 1, wherein the user-defined threshold in the threshold processing ranges from 3.0 to 8.0, allowing floating point numbers. 如請求項1所述的方法,其中在該第二像素合併或該第三插值處理中的該第二縮減因數為3。The method as claimed in claim 1, wherein the second downscaling factor in the second pixel binning or the third interpolation process is 3. 如請求項1所述的方法,其中該第二低通濾波處理涉及使用一第二核心大小為29×29的一高斯核心來執行卷積的一高斯模糊操作。The method of claim 1, wherein the second low pass filtering process involves using a Gaussian kernel with a second kernel size of 29×29 to perform a Gaussian blur operation of convolution. 如請求項1所述的方法,其中該第三低通濾波處理涉及使用一第三核心大小為7×7的一高斯核心來執行卷積的一高斯模糊操作。The method of claim 1, wherein the third low-pass filtering process involves using a Gaussian kernel with a third kernel size of 7×7 to perform a Gaussian blur operation of convolution. 如請求項1所述的方法,其中該第二減法處理中的該第二特定數為該使用者定義門檻值的1.25倍。The method according to claim 1, wherein the second specific number in the second subtraction process is 1.25 times the user-defined threshold. 如請求項1所述的方法,其中在該第一放大層影像執行該組算術處理以獲得該第三放大層影像的步驟包含: 第一,將該第一放大層影像除以4的分割因數,以獲得一第二分割層影像; 第二,將該第二分割層影像提高到2的次方,以獲得一經修改分割層影像;以及 第三,將該經修改分割層影像加上0.9的值,以獲得該第三放大層影像。 The method according to claim 1, wherein the step of performing the set of arithmetic processing on the first magnified layer image to obtain the third magnified layer image comprises: First, dividing the first enlarged layer image by a division factor of 4 to obtain a second divided layer image; Second, raising the second segmented layer image to a power of 2 to obtain a modified segmented layer image; and Thirdly, a value of 0.9 is added to the modified segmented layer image to obtain the third enlarged layer image. 一種影像採集和處理系統,包含用以執行如請求項1-11中任一項所述之方法的裝置。An image acquisition and processing system, comprising a device for performing the method described in any one of Claims 1-11.
TW111119758A 2022-05-26 2022-05-26 A gpu-accelerated data processing method for rapid noise-suppressed contrast enhancement TWI787134B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111119758A TWI787134B (en) 2022-05-26 2022-05-26 A gpu-accelerated data processing method for rapid noise-suppressed contrast enhancement
JP2022122533A JP7382090B1 (en) 2022-05-26 2022-08-01 GPU-accelerated data processing method for rapid noise suppression and contrast enhancement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111119758A TWI787134B (en) 2022-05-26 2022-05-26 A gpu-accelerated data processing method for rapid noise-suppressed contrast enhancement

Publications (2)

Publication Number Publication Date
TWI787134B true TWI787134B (en) 2022-12-11
TW202347249A TW202347249A (en) 2023-12-01

Family

ID=85795108

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111119758A TWI787134B (en) 2022-05-26 2022-05-26 A gpu-accelerated data processing method for rapid noise-suppressed contrast enhancement

Country Status (2)

Country Link
JP (1) JP7382090B1 (en)
TW (1) TWI787134B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102138329A (en) * 2009-07-07 2011-07-27 索尼公司 Image processing device, image processing method, and program
CN104885187A (en) * 2012-10-30 2015-09-02 加州理工学院 Fourier ptychographic imaging systems, devices, and methods
TWI526066B (en) * 2010-09-30 2016-03-11 蘋果公司 System ,method and electronic device for processing an image signal
WO2019211459A1 (en) * 2018-05-04 2019-11-07 Five AI Limited Stereo depth estimation
TW201947530A (en) * 2018-05-08 2019-12-16 晨星半導體股份有限公司 Image cropping device and image cropping method
US20200029090A1 (en) * 2017-01-04 2020-01-23 Samsung Electronics Co., Ltd Video decoding method and apparatus and video encoding method and apparatus
TW202211682A (en) * 2019-04-22 2022-03-16 美商雷亞有限公司 Systems and methods of enhancing quality of multiview images using a multimode display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1345172A1 (en) 2002-02-26 2003-09-17 Sony International (Europe) GmbH Contrast enhancement for digital images
ATE512421T1 (en) 2005-11-23 2011-06-15 Cedara Software Corp METHOD AND SYSTEM FOR IMPROVEMENT OF DIGITAL IMAGES
US20100142790A1 (en) 2008-12-04 2010-06-10 New Medical Co., Ltd. Image processing method capable of enhancing contrast and reducing noise of digital image and image processing device using same
EP2389660A1 (en) 2009-01-20 2011-11-30 Koninklijke Philips Electronics N.V. Method and apparatus for generating enhanced images

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102138329A (en) * 2009-07-07 2011-07-27 索尼公司 Image processing device, image processing method, and program
TWI526066B (en) * 2010-09-30 2016-03-11 蘋果公司 System ,method and electronic device for processing an image signal
CN104885187A (en) * 2012-10-30 2015-09-02 加州理工学院 Fourier ptychographic imaging systems, devices, and methods
US20200029090A1 (en) * 2017-01-04 2020-01-23 Samsung Electronics Co., Ltd Video decoding method and apparatus and video encoding method and apparatus
WO2019211459A1 (en) * 2018-05-04 2019-11-07 Five AI Limited Stereo depth estimation
TW201947530A (en) * 2018-05-08 2019-12-16 晨星半導體股份有限公司 Image cropping device and image cropping method
TW202211682A (en) * 2019-04-22 2022-03-16 美商雷亞有限公司 Systems and methods of enhancing quality of multiview images using a multimode display

Also Published As

Publication number Publication date
JP7382090B1 (en) 2023-11-16
TW202347249A (en) 2023-12-01
JP2023174439A (en) 2023-12-07

Similar Documents

Publication Publication Date Title
CN109389556B (en) Multi-scale cavity convolutional neural network super-resolution reconstruction method and device
CN111340744B (en) Attention double-flow depth network-based low-quality image down-sampling method and system
US8503811B2 (en) Filters for denoising digital images with minimized blur and shape distortion and controlled deblurring
WO2018227465A1 (en) Sparse positive source separation model-based image deblurring algorithm
Li et al. Sparse representation-based volumetric super-resolution algorithm for 3D CT images of reservoir rocks
Xie et al. An improved method for single image super-resolution based on deep learning
CN108376393B (en) Blurred image blind restoration method for high-speed linear motion object
Song et al. Gradual deep residual network for super-resolution
CN109949329A (en) Based on the consistent phase stretching conversion PST method for detecting image edge of phase
Qian et al. Effective super-resolution methods for paired electron microscopic images
CN110111392B (en) High-resolution optical imaging method based on nanoparticle calibration
Li et al. Blind image deblurring based on sparse prior of dictionary pair
TWI787134B (en) A gpu-accelerated data processing method for rapid noise-suppressed contrast enhancement
Borah et al. A GPU-accelerated modified unsharp-masking method for high-frequency background-noise suppression
Xiao et al. Detail enhancement of image super-resolution based on detail synthesis
CN105243677B (en) A kind of real-time unimolecule localization method and system guaranteeing precision
JP2023532755A (en) Computer-implemented method, computer program product, and system for processing images
US20230385988A1 (en) GPU-accelerated data processing method for rapid noise-suppressed contrast enhancement
Qin et al. A novel fluorescence microscopy image deconvolution approach
JP4405407B2 (en) Defect inspection equipment
Mortazavi et al. Fractional derivative approach to sparse super-resolution
US20210287339A1 (en) Image processing apparatus using artificial intelligence super-resolution circuit and follow-up resize circuit for image resizing
Wu et al. Convolutional neural network with Squeeze and Excitation modules for image blind deblurring
EP3635677A1 (en) Method and device for image correction
Xu et al. An image sharpening algorithm for high magnification image zooming