TWI786805B - Solid state electrolyte structure - Google Patents

Solid state electrolyte structure Download PDF

Info

Publication number
TWI786805B
TWI786805B TW110132794A TW110132794A TWI786805B TW I786805 B TWI786805 B TW I786805B TW 110132794 A TW110132794 A TW 110132794A TW 110132794 A TW110132794 A TW 110132794A TW I786805 B TWI786805 B TW I786805B
Authority
TW
Taiwan
Prior art keywords
solid electrolyte
electrolyte structure
solid
protective layer
ion
Prior art date
Application number
TW110132794A
Other languages
Chinese (zh)
Other versions
TW202312548A (en
Inventor
楊思枬
Original Assignee
輝能科技股份有限公司
英屬開曼群島商輝能控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 輝能科技股份有限公司, 英屬開曼群島商輝能控股股份有限公司 filed Critical 輝能科技股份有限公司
Priority to TW110132794A priority Critical patent/TWI786805B/en
Priority to DE202022103923.2U priority patent/DE202022103923U1/en
Priority to KR2020220001834U priority patent/KR20230000522U/en
Priority to CN202222007180.9U priority patent/CN220086124U/en
Application granted granted Critical
Publication of TWI786805B publication Critical patent/TWI786805B/en
Publication of TW202312548A publication Critical patent/TW202312548A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The invention discloses a solid state electrolyte structure. For the solid state electrolytes containing titanium, a protecting layer is complete covered its surface thereof. The protecting layer made of solid metal oxide or organic polymer is utilized to effectively block the reduction reaction of titanium at lower voltage. Therefore, the pollution or affection for the electrode layer resulting from the titanium will be effectively prevented, and its chemical resistance is improved. Moreover, the application of the solid electrolytes containing titanium is greatly increased.By the protecting layer, the contact of the solid electrolytes is improved.The problems of the smaller or poor contact surface and the high resistance of the charge transfer are eliminated.

Description

固態電解質結構 Solid Electrolyte Structure

本發明係有關於一種固態電解質結構特別是一種具保護層的含鈦固態電解質結構。 The invention relates to a solid electrolyte structure, in particular to a titanium-containing solid electrolyte structure with a protective layer.

現有的鋰離子二次電池主要是透過液態電解質作為鋰離子傳輸媒介,然而液態電解質的易揮發特性,對人體及環境都會造成不良影響;同時,液態電解質的易燃性對於電池使用者來說,也是極大的安全隱憂。 Existing lithium-ion secondary batteries mainly use liquid electrolytes as the lithium-ion transmission medium. However, the volatile nature of liquid electrolytes will have adverse effects on the human body and the environment; at the same time, the flammability of liquid electrolytes is harmful to battery users It is also a great security risk.

再者,目前鋰電池性能不穩定的原因之一,主要是因為電極表面活性較大(負極)與電壓較高(正極),在電極與電解液的直接接觸下會導致兩者間界面產生不穩定,進而產生所謂的放熱反應形成鈍性保護膜於此兩這接觸介面上,此些反應會消耗液態電解質與鋰離子,同時也會產生熱。一旦發生局部短路,局部溫度快速升高,此時鈍性保護膜將變得不穩定,同時會釋放出熱;而此放熱反應是可累積的,因而使得電池整體的溫度持續上升。一旦電池溫度增加至熱鍊鎖反應(thermal runaway)的起始溫度(或誘發溫度(trigger temp)),則會引發熱失控之現象,進而造成電池的破壞現象,例如爆炸或者起火,對於使用上造成相當大的安全性顧慮。 Furthermore, one of the reasons for the unstable performance of lithium batteries at present is mainly because the electrode surface activity is relatively large (negative electrode) and the voltage is relatively high (positive electrode). Stability, and then produce the so-called exothermic reaction to form a passive protective film on the contact interface of the two. These reactions will consume the liquid electrolyte and lithium ions, and will also generate heat. Once a local short circuit occurs, the local temperature rises rapidly, and the passive protective film will become unstable at this time, and heat will be released at the same time; and this exothermic reaction can be accumulated, thus making the overall temperature of the battery continue to rise. Once the temperature of the battery increases to the initial temperature (or trigger temp) of the thermal runaway, thermal runaway will occur, which will cause damage to the battery, such as explosion or fire. cause considerable security concerns.

近年來,固態電解質成為另一研究關注重點,其具有相似於液態電解質之離子導電率,但卻沒有液態電解質的易於蒸發與燃燒的性質, 同時,與活性材料表面的界面相對穩定(無論是化學性還是電化學特性)。然而固態電解質不同於液態電解質,其與活性材料的接觸面小、且接觸面不良、電荷轉移反應常數較低,因此存在著與極層內正負極之活性材料之電荷轉移界面阻值較大問題,不利於鋰離子有效傳輸,故目前仍舊難以完全取代液態電解質。 In recent years, solid-state electrolytes have become another research focus. They have ionic conductivity similar to liquid electrolytes, but they do not have the properties of liquid electrolytes that are easy to evaporate and burn. At the same time, the interface with the active material surface is relatively stable (both chemically and electrochemically). However, solid electrolytes are different from liquid electrolytes in that they have a small and poor contact surface with active materials and a low charge transfer reaction constant. Therefore, there is a problem that the charge transfer interface resistance with the positive and negative active materials in the electrode layer is relatively large. , is not conducive to the effective transmission of lithium ions, so it is still difficult to completely replace liquid electrolytes.

再者,固態電解質相對於液態電解質而言,材料本身成本也提高不少,為了降低成本並控制與改良材料本身的相容性,近年來也發展出各種不同的材料;其中,譬如磷酸鈦鋁鋰(LATP)固態電解質,除了離子導電度良好外,其更具有相當的成本優勢,然而,磷酸鈦鋁鋰(LATP)固態電解質的低電壓電化學抗性不佳,因為其含有鈦成份,當析出時會與鋰(離子)進行反應而汙染負極極層,進而影響電化學反應的正常效能,因此難以擴大其應用範圍。 Furthermore, compared with liquid electrolytes, the cost of materials for solid electrolytes has also increased a lot. In order to reduce costs and control and improve the compatibility of materials themselves, various materials have been developed in recent years; among them, titanium aluminum phosphate Lithium (LATP) solid electrolyte, in addition to good ionic conductivity, has a considerable cost advantage. However, the low-voltage electrochemical resistance of lithium aluminum titanium phosphate (LATP) solid electrolyte is not good because it contains titanium components. When When it is precipitated, it will react with lithium (ion) to pollute the negative electrode layer, thereby affecting the normal performance of the electrochemical reaction, so it is difficult to expand its application range.

如何能有效且大量的應用固態電解質,同時又能兼顧成本以及固態電解質表面狀態的改良,係為本領域亟待解決的問題。 How to effectively and massively apply solid electrolytes while taking into account the cost and the improvement of the surface state of the solid electrolytes is an urgent problem to be solved in this field.

有鑒於此,本發明的主要目的在於提供一種固態電解質結構,可解決上述習知技術之缺失,不僅材料成本較為低廉,且能不受限制地應用於各極層。 In view of this, the main purpose of the present invention is to provide a solid electrolyte structure that can solve the shortcomings of the above-mentioned conventional technology, not only the material cost is relatively low, but also can be applied to each electrode layer without limitation.

發明的另一目的在於提供一種固態電解質結構,可利用保護層的設置,除了防止內部鈦成份的析出,對外而言,更能解決固態電解質接觸面所產生的高電荷轉移電阻與低接觸面積等各種問題。 Another object of the invention is to provide a solid electrolyte structure, which can use the protective layer to prevent the precipitation of internal titanium components, and externally, it can solve the problem of high charge transfer resistance and low contact area caused by the contact surface of the solid electrolyte. various problems.

為達到上述目的,本發明提供一種固態電解質結構,係包含 有固態電解質顆粒以及保護層,固態電解質顆粒為含鈦(Ti)成份之固態電解質,保護層則完整包覆於固態電解質顆粒外,來防止固態電解質顆粒中之鈦成份還原反應,提高其低電壓下的電化學抗性,有效防止鈦成份對於極層的汙染,而能擴大含鈦之固態電解質的應用範疇。 In order to achieve the above object, the present invention provides a solid electrolyte structure comprising There are solid electrolyte particles and a protective layer. The solid electrolyte particles are solid electrolytes containing titanium (Ti), and the protective layer is completely covered outside the solid electrolyte particles to prevent the reduction reaction of titanium components in the solid electrolyte particles and improve its low voltage. The high electrochemical resistance can effectively prevent the pollution of the titanium component to the electrode layer, and can expand the application range of the titanium-containing solid electrolyte.

其中,保護層可為固態氧化金屬、聚合物型態或其組合的成份所構成,對固態電解質顆粒而言,可有效防止鈦成份的還原,提高低電壓下的電化學抗性;對固態電解質顆粒外部而言,亦可藉由保護層的設置,解決固態電解質的接觸界面所產生的高電荷轉移電阻與低接觸面積所衍生的問題,因而可在兼顧成本與安全性的情況下達到最佳的離子傳導方式。 Among them, the protective layer can be composed of solid oxide metal, polymer type or a combination thereof. For solid electrolyte particles, it can effectively prevent the reduction of titanium components and improve electrochemical resistance at low voltage; for solid electrolyte particles For the outside of the particle, the problem of high charge transfer resistance and low contact area generated by the contact interface of the solid electrolyte can also be solved by setting the protective layer, so it can achieve the best performance while taking into account cost and safety. ion conduction mode.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 In the following detailed description by means of specific embodiments, it will be easier to understand the purpose, technical content, characteristics and effects of the present invention.

10:固態電解質結構 10: Solid electrolyte structure

11:固態電解質顆粒 11: Solid electrolyte particles

12:保護層 12: Protective layer

第1圖為本發明之實施例所提供之固態電解質結構之示意圖。 Figure 1 is a schematic diagram of a solid electrolyte structure provided by an embodiment of the present invention.

第2圖為本發明之實施例所提供之固態電解質結構的鈦濃度分佈曲線圖。 Fig. 2 is a titanium concentration distribution curve diagram of the solid electrolyte structure provided by the embodiment of the present invention.

如第1圖所示,係為本發明之實施例所提供之固態電解質結構之示意圖。本發明所揭露之固態電解質結構10主要係由固態電解質顆粒11以及保護層12所構成,其中固態電解質顆粒11含鈦(Ti)成份之固態電解質,譬如為磷酸鈦鋁鋰(LATP;Li1+xAlxTi2-x(PO4)3)固態電解質,其具有相 當高的離子導電度、良好的化學與熱穩定性,同時又具有較低的原料與製造成本,因此,近年後受到不少的關注;但其化學抗性不佳,當其中的鈦成份析出時(尤其於低壓狀態下),不僅會改變其表面性質,進而降低表面的離子導電度,同時因為鈦會與鋰(離子)發生反應,使得界面阻抗大幅增加,導致電化學反應的性質與效能大幅降低。 As shown in Figure 1, it is a schematic diagram of the solid electrolyte structure provided by the embodiment of the present invention. The solid electrolyte structure 10 disclosed in the present invention is mainly composed of solid electrolyte particles 11 and a protective layer 12, wherein the solid electrolyte particles 11 contain a solid electrolyte of titanium (Ti), such as lithium aluminum titanium phosphate (LATP; Li 1+ x Al x Ti 2-x (PO 4 ) 3 ) solid electrolyte, which has high ionic conductivity, good chemical and thermal stability, and low raw material and manufacturing costs. However, its chemical resistance is not good. When the titanium component in it is precipitated (especially under low pressure), it will not only change its surface properties, but also reduce the ionic conductivity of the surface. At the same time, because titanium will interact with lithium (ion ) reacts, which greatly increases the interfacial impedance, resulting in a significant decrease in the nature and efficiency of the electrochemical reaction.

因此,本發明藉由保護層12完整包覆於固態電解質顆粒11,防止固態電解質顆粒11中之鈦成份析出,保護層12之厚度係為10-500奈米,並完整覆蓋於固態電解質顆粒11表面,在此需特別注意,圖中所繪示固態電解質顆粒11的態樣僅為示意,並非限制其形狀僅能為圓形(球體)、其他類球體、片狀、頁狀等皆可適用。 Therefore, the present invention completely covers the solid electrolyte particles 11 by the protective layer 12 to prevent the precipitation of titanium components in the solid electrolyte particles 11. The thickness of the protective layer 12 is 10-500 nanometers and completely covers the solid electrolyte particles 11. On the surface, special attention should be paid here. The appearance of the solid electrolyte particles 11 shown in the figure is only for illustration, and its shape is not limited to a circle (sphere). Other spheres, flakes, and pages are all applicable. .

同時,因為固態電解質顆粒11於披覆保護層12後,仍需要具有一定的離子導電度、以及良好的化學與熱穩定性,因此,材料的選擇部份,可採用固態氧化金屬、有機高分子或其組合等,而其形成方式,則可利用燒結、浸潤、塗佈等,本發明並不限定為特定的製程。固態電解質顆粒11除了為前述LATP外,也可為各種含鈦成份之氧化物系固態電解質,舉例來說Li1+x+y(Al,Ga)x(Ti,Ge)2-xSiyP3-yO12結晶,其中0≦x≦1且0≦y≦1、Li2O-Al2O3-SiO2-P2O5-TiO2、Li2O-Al2O3-SiO2-P2O5-TiO2-GeO2、Li3xLa2/3xTiO3、Li0.38La0.56Ti0.99Al0.01O3、Li0.34LaTiO2.94At the same time, because the solid electrolyte particles 11 still need to have a certain ionic conductivity and good chemical and thermal stability after coating the protective layer 12, the selected part of the material can be solid oxide metal, organic polymer Or a combination thereof, and its formation method can be sintering, infiltration, coating, etc., and the present invention is not limited to a specific process. In addition to the aforementioned LATP, the solid electrolyte particles 11 can also be various oxide-based solid electrolytes containing titanium components, such as Li 1+x+y (Al,Ga) x (Ti,Ge) 2-x Si y P 3-y O 12 crystal, where 0≦x≦1 and 0≦y≦1, Li 2 O-Al 2 O 3 -SiO 2 -P 2 O 5 -TiO 2 , Li 2 O-Al 2 O 3 -SiO 2 -P 2 O 5 -TiO 2 -GeO 2 , Li 3x La 2/3x TiO 3 , Li 0.38 La 0.56 Ti 0.99 Al 0.01 O 3 , Li 0.34 LaTiO 2.94 .

請參閱第2圖,當固態電解質顆粒11表面具有保護層12後,可明顯看出,因為受到保護層12的阻礙,鈦成份析出(一般為離子狀下析出)將會受到完全的限制,而僅會出現於固態電解質顆粒11內部,因此,對於固態電解質顆粒11而言,保護層12的主要功效與目的在於防止鈦成份析 出至固態電解質結構10外部。 Please refer to Fig. 2, when the surface of the solid electrolyte particles 11 has a protective layer 12, it can be clearly seen that because of being hindered by the protective layer 12, the precipitation of titanium components (generally in the form of ions) will be completely restricted, and It will only appear inside the solid electrolyte particles 11. Therefore, for the solid electrolyte particles 11, the main function and purpose of the protective layer 12 is to prevent the titanium components from decomposing. out to the outside of the solid electrolyte structure 10.

具體而言,當保護層12為固態氧化金屬時,厚度較佳約為10-50奈米,其可譬如為氧化鈮(NbOx)及其衍生物,譬如為三氧化二鈮(Nb2O3),或是硝酸鋰(LiNOx)及其衍生物等。另一方面,保護層12也可為鋰鑭鋯氧固態電解質(lithium lanthanum zirconium oxide;Li7La3Zr2O12;LLZO),LLZO具有相對穩定的化學抗性,且離子導電度、化學與熱穩定性也都相當優異,但其材料與製造成本相對較高,因此,利用LLZO形成保護層12的型態於含鈦之固態電解質顆粒11(譬如為LATP)表面,則不僅成本能大幅降低,同時又能藉由LLZO相對穩定的界面,使得固態電解質結構10的化學抗性提高,大幅增加應用的範圍。 Specifically, when the protective layer 12 is a solid metal oxide, the thickness is preferably about 10-50 nanometers, which can be, for example, niobium oxide (NbO x ) and its derivatives, such as niobium trioxide (Nb 2 O3 ), or lithium nitrate (LiNO x ) and its derivatives. On the other hand, the protective layer 12 can also be lithium lanthanum zirconium oxide solid electrolyte (lithium lanthanum zirconium oxide; Li 7 La 3 Zr 2 O 12 ; LLZO), LLZO has relatively stable chemical resistance, and ionic conductivity, chemical and Thermal stability is also quite excellent, but its material and manufacturing costs are relatively high. Therefore, using LLZO to form the protective layer 12 on the surface of titanium-containing solid electrolyte particles 11 (such as LATP) can not only greatly reduce the cost , and at the same time, the chemical resistance of the solid electrolyte structure 10 can be improved by virtue of the relatively stable interface of LLZO, greatly increasing the range of applications.

當保護層12屬於聚合物(polymer)類別時,厚度較佳約為20-500奈米,其可為聚合物離子導通材料或者是聚合物型態的固態電解質。舉例來說,當保護層12是聚合物離子導通材料時可選自於聚氧化乙烯(PEO)、聚偏氟乙烯(PVDF)、聚丙烯晴(PAN)、聚甲基丙烯酸鉀(PMMA)和聚偏氯乙烯(PVC)等,並且添加有成膜劑(譬如為交聯(cross-linked)成膜材料)與塑形劑來加以改質,進一步提高其成膜性。當加入成膜劑後,前述的塑形劑可選擇予以保留、或是去除(僅於成模過程中加入,成模後予以去除)。上述的塑形劑可以選自於碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、二甲基甲醯胺(DMF)、二甲基亞風(DMSO)。 When the protection layer 12 belongs to polymer, the thickness is preferably about 20-500 nm, and it can be a polymer ion-conducting material or a polymer-type solid electrolyte. For example, when the protective layer 12 is a polymer ion-conducting material, it can be selected from polyethylene oxide (PEO), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), potassium polymethacrylate (PMMA) and Polyvinylidene chloride (PVC), etc., are modified by adding a film-forming agent (such as a cross-linked film-forming material) and a plasticizer to further improve its film-forming property. After the film-forming agent is added, the aforementioned plasticizer can be retained or removed (only added during molding and removed after molding). The plasticizer mentioned above can be selected from propylene carbonate (PC), ethylene carbonate (EC), dimethylformamide (DMF), dimethylsulfoxide (DMSO).

在另一實施例中,保護層12是聚合物離子導通材料添加有成膜劑(譬如為交聯(cross-linked)成膜材料)與離子液態(ion liquid)。此類的固態聚合物電解質作為保護層12,除了能防止固態電解質顆粒11之鈦成份析 出外,因其質地較軟,披覆於固態電解質顆粒11外緣,將可使得固態電解質顆粒11之間、或是固態電解質顆粒11與活性材料之間的接觸界面狀態大幅改善,有效解決所產生的高電荷轉移電阻與低接觸面積所衍生的問題,因而可在兼顧成本與安全性的情況下達到最佳的離子傳導方式。 In another embodiment, the protection layer 12 is a polymer ion conducting material added with a film-forming agent (such as a cross-linked film-forming material) and an ion liquid. This type of solid polymer electrolyte is used as the protective layer 12, in addition to preventing the titanium composition of the solid electrolyte particles 11 from analysing. Going out, because of its soft texture, covering the outer edge of the solid electrolyte particles 11 will greatly improve the state of the contact interface between the solid electrolyte particles 11, or between the solid electrolyte particles 11 and the active material, and effectively solve the problem. The problems derived from the high charge transfer resistance and low contact area, so the best ion conduction method can be achieved while taking into account cost and safety.

在前述聚合物形態保護層12的實施例中更可添加有離子供給性材料(ion donor material),例如鹽類,來增加離子導通能力,成為聚合物型態的固態電解質。或者,是採離子導通材料加上成膜劑與離子供給性材料所構成的固態電解質型態。 In the aforementioned embodiment of the protective layer 12 in the form of a polymer, ion donor materials, such as salts, can be added to increase the ion conduction capacity and become a solid electrolyte in the form of a polymer. Alternatively, it is in the form of a solid electrolyte composed of an ion-conducting material plus a film-forming agent and an ion-donating material.

綜合上述,本發明所提供之固態電解質結構,利用保護層的設置,對固態電解質顆粒內部而言,可有效防止鈦成份的析出,提高化學抗性;而對固態電解質顆粒外部而言,亦可藉由保護層的設置,解決固態電解質的接觸界面所產生的高電荷轉移電阻與低接觸面積所衍生的問題,因而可在兼顧成本與安全性的情況下達到最佳的離子傳導方式。 In summary, the solid electrolyte structure provided by the present invention can effectively prevent the precipitation of titanium components inside the solid electrolyte particles and improve chemical resistance by utilizing the setting of the protective layer; and for the outside of the solid electrolyte particles, it can also Through the setting of the protective layer, the problems derived from the high charge transfer resistance and low contact area generated by the contact interface of the solid electrolyte are solved, so that the best ion conduction mode can be achieved while taking into account cost and safety.

唯以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍。故即凡依本發明申請範圍所述之特徵及精神所為之均等變化或修飾,均應包括於本發明之申請專利範圍內。 The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Therefore, all equivalent changes or modifications based on the features and spirit described in the scope of the application of the present invention shall be included in the scope of the patent application of the present invention.

10:固態電解質結構 10: Solid electrolyte structure

11:固態電解質顆粒 11: Solid electrolyte particles

12:保護層 12: Protective layer

Claims (13)

一種固態電解質結構,係包含有:一固態電解質顆粒,係為含鈦(Ti)成份之固態電解質;以及一保護層,完整包覆於該固態電解質顆粒,防止該固態電解質顆粒中之該鈦成份發生還原反應,提高該固態電解質顆粒之化學抗性;其中該保護層之厚度係為50-500奈米。 A solid electrolyte structure, which includes: a solid electrolyte particle, which is a solid electrolyte containing titanium (Ti) components; and a protective layer, which completely covers the solid electrolyte particles to prevent the titanium component in the solid electrolyte particles from A reduction reaction occurs to improve the chemical resistance of the solid electrolyte particles; wherein the thickness of the protective layer is 50-500 nanometers. 根據申請專利範圍第1項之固態電解質結構,其中該固態電解質顆粒係為磷酸鈦鋁鋰(LATP)固態電解質。 According to the solid electrolyte structure of claim 1, the solid electrolyte particles are lithium aluminum titanium phosphate (LATP) solid electrolytes. 根據申請專利範圍第1項之固態電解質結構,其中該保護層的材料係為固態氧化金屬、聚合物型態或其組合。 According to the solid electrolyte structure of claim 1, the protective layer is made of solid oxide metal, polymer or a combination thereof. 根據申請專利範圍第3項之固態電解質結構,其中該固態氧化金屬係為三氧化二鈮(Nb2O3)及其衍生物。 According to the solid electrolyte structure of claim 3, the solid oxide metal is niobium trioxide (Nb 2 O 3 ) and its derivatives. 根據申請專利範圍第3項之固態電解質結構,其中該固態氧化金屬係為硝酸鋰(LiNOx)及其衍生物。 According to the solid electrolyte structure of claim 3, the solid oxide metal is lithium nitrate (LiNO x ) and its derivatives. 根據申請專利範圍第3項之固態電解質結構,其中該固態氧化金屬係為鋰鑭鋯氧固態電解質(lithium lanthanum zirconium oxide;Li7La3Zr2O12;LLZO)。 According to the solid electrolyte structure of item 3 of the patent application, the solid oxide metal system is lithium lanthanum zirconium oxide (lithium lanthanum zirconium oxide; Li 7 La 3 Zr 2 O 12 ; LLZO). 根據申請專利範圍第3項之固態電解質結構,其中該聚合物型態係以離子導通型材料為主體。 According to the solid electrolyte structure of item 3 of the scope of application, the polymer type is based on ion-conducting materials. 依據申請專利範圍第7項所述之固態電解質結構,其中該離 子導通型材料係選自於聚氧化乙烯(PEO)、聚偏氟乙烯(PVDF)、聚丙烯晴(PAN)、聚甲基丙烯酸鉀(PMMA)或聚偏氯乙烯(PVC)系。 According to the solid electrolyte structure described in item 7 of the scope of the patent application, wherein the ion The subconduction type material is selected from polyethylene oxide (PEO), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), potassium polymethacrylate (PMMA) or polyvinylidene chloride (PVC) system. 根據申請專利範圍第7項之固態電解質結構,其中該保護層的材料係包含有成膜劑。 According to the solid electrolyte structure of claim 7, the material of the protective layer contains a film-forming agent. 根據申請專利範圍第9項之固態電解質結構,其中該保護層的材料包含有塑形劑。 According to the solid electrolyte structure of claim 9, the material of the protective layer contains a plasticizer. 根據申請專利範圍第9項之固態電解質結構,其中該保護層的材料包含有離子液體(ion liquid)。 According to claim 9 of the solid electrolyte structure, the material of the protective layer contains ionic liquid (ion liquid). 根據申請專利範圍第9項、第10項或第11項之固態電解質結構,其中該保護層的材料包含有離子供給性材料(ion donor material)。 According to the solid electrolyte structure of claim 9, claim 10 or claim 11, the material of the protective layer includes an ion donor material. 根據申請專利範圍第12項之固態電解質結構,其中該離子供給性材料為鹽類。 The solid electrolyte structure according to claim 12, wherein the ion-donating material is a salt.
TW110132794A 2021-09-03 2021-09-03 Solid state electrolyte structure TWI786805B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW110132794A TWI786805B (en) 2021-09-03 2021-09-03 Solid state electrolyte structure
DE202022103923.2U DE202022103923U1 (en) 2021-09-03 2022-07-12 solid electrolyte structure
KR2020220001834U KR20230000522U (en) 2021-09-03 2022-07-28 Solid State Electrolyte Structure
CN202222007180.9U CN220086124U (en) 2021-09-03 2022-08-01 Solid electrolyte structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110132794A TWI786805B (en) 2021-09-03 2021-09-03 Solid state electrolyte structure

Publications (2)

Publication Number Publication Date
TWI786805B true TWI786805B (en) 2022-12-11
TW202312548A TW202312548A (en) 2023-03-16

Family

ID=83806506

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110132794A TWI786805B (en) 2021-09-03 2021-09-03 Solid state electrolyte structure

Country Status (4)

Country Link
KR (1) KR20230000522U (en)
CN (1) CN220086124U (en)
DE (1) DE202022103923U1 (en)
TW (1) TWI786805B (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
期刊 C.C.Cook,M.J.Wagner Ceramic/polymer solid electrolyte based lithium water primary battery Electrochimica Acta 89 Elsevier 1 February 2013 778-783 *
期刊 Shizhao Xiong,angyang Liu,Piotr Jankowski,Qiao Liu,Florian Nitze,Kai Xie,Jiangxuan Song,Aleksandar Matic Design of a Multifunctional Interlayer for NASCION-Based Solid-State Li Metal Batteries Advanced Functional Materials 30(22) Wiley 06 April 2020 2001444; *
期刊 Xingwen Yu,Arumugam Manthiram A Long Cycle Life, All-Solid-State Lithium Battery with a Ceramics-Polymer Composite Electrolyte Appl. Energy Mater. 3(3) ACS 2020 2916-2924; *
期刊 Yizhou Zhu,Xingfeng He,Yifei Mo Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations Appl. Mater. Interfaces 7(42) ACS October 6, 2015 23685–23693; *

Also Published As

Publication number Publication date
TW202312548A (en) 2023-03-16
KR20230000522U (en) 2023-03-10
DE202022103923U1 (en) 2022-10-10
CN220086124U (en) 2023-11-24

Similar Documents

Publication Publication Date Title
JP6840396B2 (en) Modified ceramic separator complex and its manufacturing method
EP1794834B1 (en) Lithium ion secondary battery and a solid electrolyte thereof
TWI338395B (en)
JP4967321B2 (en) Lithium ion secondary battery
CN108232286B (en) Preparation method of composite positive electrode added with polymer and application of composite positive electrode in solid-state battery
KR20090007710A (en) Nonaqueous electrolyte battery and method for manufacturing same
KR20080044217A (en) Lithium ion secondary battery and solid electrolyte therefor
RU2717094C1 (en) Composite electrode materials with improved structure
CN102569881A (en) Lithium ion battery
CN110400964B (en) Solid electrolyte membrane for lithium ion battery
EP3531481B1 (en) Composite electrode materials
TWI786805B (en) Solid state electrolyte structure
JP2010129470A (en) Method for manufacturing positive active material and positive active material
CN110165221B (en) Electrode layer composite material
JP2024056010A (en) Separator, secondary battery including same, and device
CN111244391A (en) Preparation of organic polymer-inorganic particle composite film for protecting lithium metal surface
CN207818723U (en) A kind of isolation film and the lithium ion battery containing the isolation film
TWI756556B (en) Active materials ball electrode layer structure
CN112331906B (en) Active material ball layer structure
Kim et al. Electrochemical characteristics of all-solid lithium ion battery with lithium titanate/lithium lanthanum zirconium oxide composite electrode
JP2007165089A (en) Battery
CN111146411B (en) Electrode layer composite material with improved structure
KR0179723B1 (en) Lithium or lithium ion secondary battery using polyelectrolyte
CN116525767A (en) Lithium-rich positive electrode plate, preparation method thereof and lithium ion battery