TWI784720B - Electromagnetic susceptibility tesing method based on computer-vision - Google Patents

Electromagnetic susceptibility tesing method based on computer-vision Download PDF

Info

Publication number
TWI784720B
TWI784720B TW110134845A TW110134845A TWI784720B TW I784720 B TWI784720 B TW I784720B TW 110134845 A TW110134845 A TW 110134845A TW 110134845 A TW110134845 A TW 110134845A TW I784720 B TWI784720 B TW I784720B
Authority
TW
Taiwan
Prior art keywords
test
template
processor
difference
pixel
Prior art date
Application number
TW110134845A
Other languages
Chinese (zh)
Other versions
TW202314267A (en
Inventor
陳佩君
李皓軒
柯立德
李明峰
陳誌昌
林信宏
Original Assignee
英業達股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英業達股份有限公司 filed Critical 英業達股份有限公司
Priority to TW110134845A priority Critical patent/TWI784720B/en
Application granted granted Critical
Publication of TWI784720B publication Critical patent/TWI784720B/en
Publication of TW202314267A publication Critical patent/TW202314267A/en

Links

Images

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The present disclosure proposes an electromagnetic susceptibility (EMS) tesing method based on computer-vision, wherein the method is applicable to an electronic device with a monitor. The method includes a training stage and a testing stage. During the training stage, the electronic deivce receives a testing data and the monitor displays a first picture. A camera captures the first picture to generate a template video. The processor generates a plurality of template image according to the template video at least. During the testing stage, after the processor generates the plurality of template images, an antenna emits an interference signal to the electronic deivce. The electronic device receives the testing data an the monitor displays a second picture. The camera captures the second picture to generate a testing video. The processor generates a testing image according to the testing video and calculates a difference ratio between the testing image and each template image. The processor sends an alert signal when the difference ratio is greater than a threshold.

Description

基於電腦視覺的電磁敏感性測試方法Electromagnetic Susceptibility Testing Method Based on Computer Vision

本發明關於電磁敏感性測試及影像比對,特別是一種基於電腦視覺的電磁敏感性測試方法。 The invention relates to electromagnetic susceptibility testing and image comparison, in particular to an electromagnetic susceptibility testing method based on computer vision.

電磁敏感性(Electromagnetic Susceptibility,EMS)指的是對電磁干擾(Electromagnetic Interference,EMI)或射頻干擾(Radio Frequency Interference,RFI)的耐受性或抗擾度(Immunity)。若一個電子裝置不對其他裝置產生EMI或RFI,而且具有良好的EMS,則電子裝置具有良好的電磁相容性(Electromagnetic Compatibility,EMC)。換言之,EMC的目標是不同裝置在共同的電磁環境中正確運行。 Electromagnetic susceptibility (Electromagnetic Susceptibility, EMS) refers to the tolerance or immunity to electromagnetic interference (Electromagnetic Interference, EMI) or radio frequency interference (Radio Frequency Interference, RFI). If an electronic device does not generate EMI or RFI to other devices, and has good EMS, then the electronic device has good electromagnetic compatibility (EMC). In other words, the goal of EMC is the correct operation of different devices in a common electromagnetic environment.

針對EMS的輻射場敏感性測試通常使用一個高功率的射頻或電磁裝置,以及一個輻射天線,以將能量引導到待測電子裝置,例如筆記型電腦。待測電子裝置被放置在射頻消聲室(RF anechoic chamber)中,並透過螢幕輪流顯示多種測試資料中的一種。在天線發射電磁波的同時,攝影機拍攝待測電子裝置的螢幕,而射頻消聲室外的測試人員則觀看拍攝到的測試影像是否有異常,並 記錄異常發生時所使用的電磁波頻率和設置參數。所謂的異常例如畫面全黑、畫面閃爍、測試圖案中的線條失真等。 Radiated field susceptibility testing for EMS typically uses a high-power radio frequency or electromagnetic device and a radiating antenna to direct energy to the electronic device under test, such as a laptop computer. The electronic device to be tested is placed in an RF anechoic chamber, and one of various test data is displayed on the screen in turn. While the antenna emits electromagnetic waves, the camera shoots the screen of the electronic device under test, and the testers outside the RF anechoic room watch the captured test images for abnormalities and check Record the electromagnetic wave frequency and setting parameters used when the abnormality occurs. The so-called anomalies include complete black screen, flickering screen, distorted lines in the test pattern, etc.

然而,勞動密集型的測試容易使眼睛疲累,而且測試人員有可能忽略掉一些異常現象。 However, labor-intensive testing is easy on the eyes, and testers may overlook some anomalies.

有鑑於此,本發明提出一種基於電腦視覺的電磁敏感性測試方法,使用基於電腦視覺的EMS測試系統,連續接收來自射頻消聲室內的攝影機拍攝到的測試影像,並模仿測試人員觀看影像、進行判斷的機制,從而判斷測試影像中是否有任何異常,然後自動記錄出現異常時的各種設定參數。 In view of this, the present invention proposes a computer vision-based electromagnetic susceptibility test method, using a computer vision-based EMS test system to continuously receive test images from cameras in a radio frequency anechoic chamber, and imitate testers to watch the images and conduct Judgment mechanism, so as to judge whether there is any abnormality in the test image, and then automatically record various setting parameters when abnormality occurs.

依據本發明一實施例的一種基於電腦視覺的電磁敏感性測試方法,適用於具有一螢幕的一電子裝置,所述方法包括:一訓練階段,包括:該電子裝置接收一測試資料,並以該螢顯示對應於該測試資料的一第一畫面;一攝影機拍攝該第一畫面以產生一模板視訊;以及一處理器至少依據該模板視訊產生多個模板影像;以及一測試階段,包括:在產生該些模板影像之後,以一天線對該電子裝置發出一干擾訊號;收到該干擾訊號的該電子裝置接收該測試資料,並以該螢幕顯示對應於該測試資料的一第二畫面;該攝影機拍攝該第二畫面以產生一測試視訊;該處理器依據該測試視訊產生一測試影像;該處理器計算該測試影像與每一該些模板影像的一差異比例;以及當該差異比例大於一閾值時,該處理器發出一警示訊號。 According to an embodiment of the present invention, a method for testing electromagnetic susceptibility based on computer vision is applicable to an electronic device with a screen. The method includes: a training phase, including: the electronic device receives a test data, and uses the A firefly display corresponds to a first frame of the test data; a camera shoots the first frame to generate a template video; and a processor at least generates a plurality of template images according to the template video; and a test phase includes: After the template images, an antenna is used to send an interference signal to the electronic device; the electronic device receiving the interference signal receives the test data, and displays a second picture corresponding to the test data on the screen; the video camera shooting the second frame to generate a test video; the processor generates a test image according to the test video; the processor calculates a difference ratio between the test image and each of the template images; and when the difference ratio is greater than a threshold , the processor sends out a warning signal.

綜上所述,本發明提出一種基於電腦視覺的電磁敏感性測試方法,在訓練階段中,從攝影機拍攝的視訊中動態地更新屬於正常畫面的模板影像,在測試階段中,從攝影機拍攝的視訊中擷取測試影像與模板影像進行比對,從而自動檢測出螢幕顯示的畫面中的任何異常。此外,本發明可依據過去的異常檢測記錄動態地調整用於異常判斷的閾值。 To sum up, the present invention proposes a method for testing electromagnetic susceptibility based on computer vision. In the training phase, the template image belonging to the normal picture is dynamically updated from the video captured by the camera. The test image is captured in the test image and compared with the template image, so as to automatically detect any abnormalities in the screen displayed on the screen. In addition, the present invention can dynamically adjust the threshold for abnormality judgment according to past abnormality detection records.

以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。 The above description of the disclosure and the following description of the implementation are used to demonstrate and explain the spirit and principle of the present invention, and provide a further explanation of the patent application scope of the present invention.

S:訓練階段 S: training phase

T:測試階段 T: testing stage

S1~S3,S31~S33,S331~S334,T1~T7,T51~T53,T5’,T51’~T52’:步驟 S1~S3, S31~S33, S331~S334, T1~T7, T51~T53, T5’, T51’~T52’: steps

圖1是本發明一實施例的基於電腦視覺的電磁敏感性測試方法的流程圖;圖2是圖1中步驟S3的細部流程圖;圖3是圖2中步驟S33的細部流程圖;圖4是圖1中步驟T5的一實施例的細部流程圖;以及圖5是圖1中步驟T5的另一實施例的細部流程圖。 Fig. 1 is the flowchart of the electromagnetic susceptibility testing method based on computer vision of an embodiment of the present invention; Fig. 2 is the detailed flowchart of step S3 among Fig. 1; Fig. 3 is the detailed flowchart of step S33 among Fig. 2; Fig. 4 is a detailed flowchart of an embodiment of step T5 in FIG. 1 ; and FIG. 5 is a detailed flowchart of another embodiment of step T5 in FIG. 1 .

以下在實施方式中詳細敘述本發明之詳細特徵以及特點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之構想及特點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。 The detailed features and characteristics of the present invention are described in detail below in the implementation mode, and its content is enough to enable any person familiar with the relevant art to understand the technical content of the present invention and implement it accordingly, and according to the content disclosed in this specification, the scope of the patent application and the drawings , anyone who is familiar with the related art can easily understand the ideas and features related to the present invention. The following examples are to further describe the concept of the present invention in detail, but not to limit the scope of the present invention in any way.

本發明提出一種基於電腦視覺的電磁敏感性(Electromagnetic Susceptibility,EMS)測試方法,適用於測試具有螢幕的待測電子裝置(以下簡稱電子裝置)。 The present invention proposes an electromagnetic susceptibility (EMS) testing method based on computer vision, which is suitable for testing electronic devices under test (hereinafter referred to as electronic devices) with screens.

圖1是本發明一實施例的基於電腦視覺的電磁敏感性測試方法的流程圖,所述方法包括訓練階段S及測試階段T。訓練階段S包括步驟S1~S3,測試階段T包括步驟T1~T6,以下按順序介紹每個步驟的實施細節。 FIG. 1 is a flowchart of a method for testing electromagnetic susceptibility based on computer vision according to an embodiment of the present invention, the method includes a training phase S and a testing phase T. The training stage S includes steps S1~S3, and the testing stage T includes steps T1~T6. The implementation details of each step are introduced in order below.

步驟S1為「電子裝置接收測試資料,螢幕顯示第一畫面」。第一畫面對應於測試資料,測試資料的種類包括靜態測試圖、半靜態測試圖及動態測試圖。圖2是對應於上述三種測試資料的示意圖,靜態測試圖是一張圖片,畫面中的每個像素的顏色始終不變;動態測試圖是一段影片,畫面中的每個像素的顏色隨時間改變;半靜態測試圖相當於靜態測試圖及動態測試圖的整合,換言之,將畫面中的所有像素分為兩部分,其中一部分像素的顏色始終不變,另一部分像素的顏色隨時間改變。 Step S1 is "the electronic device receives the test data, and the screen displays the first picture". The first frame corresponds to test data, and the types of test data include static test charts, semi-static test charts and dynamic test charts. Figure 2 is a schematic diagram corresponding to the above three test data. The static test chart is a picture, and the color of each pixel in the picture is always the same; the dynamic test chart is a video, and the color of each pixel in the picture changes with time. ;The semi-static test pattern is equivalent to the integration of the static test pattern and the dynamic test pattern. In other words, all the pixels in the screen are divided into two parts, the color of some pixels is always the same, and the color of the other part of pixels changes with time.

步驟S2為「攝影機拍攝第一畫面以產生模板視訊」。模板視訊是拍攝螢幕而得到的影片。 Step S2 is "the camera captures the first frame to generate a template video". A template video is a video obtained by taking a screen shot.

步驟S3為「處理器至少依據模板視訊產生多個模板影像」,請參考圖2,其為步驟S3的細部流程圖。步驟S31為「在模板視訊中設置感興趣區域」,步驟S32為「依據感興趣區域執行校正操作」,步驟S33為「執行演算法以產生多個模板影像」。 Step S3 is "the processor generates a plurality of template images at least according to the template video", please refer to FIG. 2 , which is a detailed flow chart of step S3. Step S31 is "setting ROI in the template video", step S32 is "performing correction operation according to ROI", and step S33 is "executing algorithm to generate multiple template images".

在步驟S31中,處理器在模板視訊中設置感興趣區域(region of interest,ROI)。實務上,攝影機拍攝到的影像可能包含螢幕周邊的環境,例如電子裝置放置的桌面及螢幕背後的牆面,但後續流程只需要模板影像中屬於第 一畫面的部分,因此需要執行步驟S31過濾掉無關於第一畫面的部分。步驟S31可分為自動和手動兩種實施方式。 In step S31, the processor sets a region of interest (ROI) in the template video. In practice, the image captured by the camera may include the surrounding environment of the screen, such as the desktop on which the electronic device is placed and the wall behind the screen, but the subsequent process only requires that the template image belongs to the first Therefore, it is necessary to perform step S31 to filter out the parts irrelevant to the first frame. Step S31 can be divided into automatic and manual implementations.

自動設置ROI的方式是依據電子裝置所處環境的顏色(或亮度)以及適應性閾值設定(adaptive thresholding)演算法從模板視訊的每一個訊框(frame)中分割出屬於第一畫面的部分。所述適應性閾值設定演算法例如大津演算法(OTSU),K-均值(K-means)或OpenCV中的adaptiveThreshold函數。另外,若射頻消聲室中除了螢幕外沒有其他發光元件,則電子裝置所處環境的顏色即為黑色,因此很容易地從模板視訊中分離出發光區域作為模板影像。 The method of automatically setting the ROI is to segment the part belonging to the first frame from each frame of the template video according to the color (or brightness) of the environment where the electronic device is located and an adaptive threshold setting (adaptive thresholding) algorithm. The adaptive threshold setting algorithm is, for example, the Otsu algorithm (OTSU), K-means (K-means) or the adaptiveThreshold function in OpenCV. In addition, if there are no other light-emitting elements except the screen in the RF anechoic chamber, the color of the environment where the electronic device is located is black, so it is easy to separate the light-emitting area from the template video as a template image.

手動設置ROI的方式則是使用另一個螢幕顯示模板視訊,使用者在另一個螢幕顯示的畫面中自行決定第一畫面的範圍。 The way to manually set the ROI is to use another screen to display the template video, and the user decides the range of the first frame on the screen displayed on the other screen.

實務上,電子裝置被放置在旋轉桌上,透過旋轉讓電子裝置在測試階段T時可以均勻地受到干擾訊號的影響,而攝影機通常設置在固定位置,因此攝影機拍攝的模板視訊中,螢幕的形狀及位置會隨著旋轉角度而改變。因此,若攝影機可以隨著電子裝置同步旋轉,使得鏡頭總是正對螢幕,則在其他實施例中,步驟S31也可以被省略。舉例來說,處理器先判斷模板視訊是否包含第一畫面以外的部分,若判斷結果為「否」,則可以跳過步驟S31,若判斷結果為「是」,才執行步驟S31。 In practice, the electronic device is placed on a rotating table, and the electronic device can be evenly affected by the interference signal during the test stage T through rotation, and the camera is usually set at a fixed position, so in the template video captured by the camera, the shape of the screen And the position will change with the rotation angle. Therefore, if the camera can rotate synchronously with the electronic device so that the lens is always facing the screen, in other embodiments, step S31 can also be omitted. For example, the processor first judges whether the template video contains parts other than the first frame, if the judgment result is "No", step S31 can be skipped, and if the judgment result is "Yes", step S31 is executed.

在步驟S32中,所述校正操作例如是透視變換(perspective transformation)。假設以另一個螢幕顯示模板視訊,則使用者在另一個螢幕上看到的畫面與第一畫面相比可能具有視覺上的差異,這是因為攝影機本身的內部參數及鏡頭的光學參數所導致。例如:若攝影機使用魚眼鏡頭,則另一個螢幕上顯示的畫面的邊緣相較於第一畫面的邊緣可能有變形或彎曲的現象,因此需藉 由校正操作將模板視訊中變形的ROI回復到第一畫面的形狀(通常是矩形,但本發明不以此為限)。 In step S32, the correcting operation is, for example, perspective transformation. Assuming another screen is used to display the template video, the picture that the user sees on the other screen may have a visual difference compared with the first picture, which is caused by the internal parameters of the camera itself and the optical parameters of the lens. For example: if the camera uses a fisheye lens, the edge of the picture displayed on the other screen may be distorted or curved compared with the edge of the first picture, so it is necessary to borrow The deformed ROI in the template video is restored to the shape of the first frame (usually a rectangle, but the invention is not limited thereto) by the correction operation.

在步驟S33中,處理器可依據指定的取樣頻率從模板視訊擷取多個訊框,然後根據這些訊框執行一演算法以決定每個訊框中的每個像素的前景屬性及背景屬性,具有背景屬性的像素為後續比對時的標準,具有前景屬性的像素在大部分情況下將被視為異常的像素。 In step S33, the processor can extract a plurality of frames from the template video according to the specified sampling frequency, and then execute an algorithm based on these frames to determine the foreground attribute and the background attribute of each pixel in each frame, Pixels with background attributes are the standard for subsequent comparisons, and pixels with foreground attributes will be regarded as abnormal pixels in most cases.

在步驟S33的第一實施例中,所述演算法為高斯混合模型或視覺背景提取(ViBE,Visual Background Extractor)。 In the first embodiment of step S33, the algorithm is Gaussian mixture model or Visual Background Extractor (ViBE, Visual Background Extractor).

在步驟S33的第二實施例中,所述演算法的細節如下:首先處理器依據測試資料的類型而執行對應的程序來產生模板影像。 In the second embodiment of step S33, the details of the algorithm are as follows: first, the processor executes a corresponding program according to the type of test data to generate a template image.

若測試資料為動態測試圖,則處理器擷取模板影像的至少一訊框作為模板影像,本發明並不限制訊框的擷取數量,也不限制訊框的擷取規則。例如:模板視訊包含30個訊框F1~F30,則處理器可以將所有的訊框F1~F30都設為模板影像;也可以只選擇F1~F10作為模板影像。選擇愈多模板影像,則測試階段T時的比對精確度愈高。 If the test data is a dynamic test pattern, the processor captures at least one frame of the template image as the template image, and the present invention does not limit the number of frames to be captured, nor the rules for frame capture. For example, if the template video includes 30 frames F1~F30, the processor can set all the frames F1~F30 as the template image; or only select F1~F10 as the template image. The more template images are selected, the higher the alignment accuracy in the test stage T will be.

若測試資料為靜態測試圖,處理器將根據模板影像的第一個訊框執行背景初始化程序,依據第二個訊框執行背景更新程序,其中第二個訊框為多個訊框中的一者,且這些訊框的時序都在第一個訊框的時序之後。請參考圖3,其為步驟S33在測試資料為靜態測試圖時的流程圖。 If the test data is a static test pattern, the processor will execute the background initialization procedure according to the first frame of the template image, and execute the background update procedure according to the second frame, wherein the second frame is one of multiple frames Or, and the timing of these frames is after the timing of the first frame. Please refer to FIG. 3 , which is a flowchart of step S33 when the test data is a static test pattern.

背景初始化程序如步驟S331所示,「取得鄰接於第一中心像素的多個參考像素」。第一中心像素為第一訊框的每個像素。假設訊框尺寸為3×3, 此訊框具有9個像素排列為九宮格的形式。此時第一中心像素位於九宮格的中央位置,而參考像素可從其餘八個像素中挑選出N個,N

Figure 110134845-A0305-02-0009-1
8。N代表參考像素的取樣深度,除非位置位於訊框的邊緣,每一個第一中心像素基本上都可從周邊的多個像素中選擇N個參考像素做為像素比對時的標準。鄰接於第一中心像素的距離依據取樣深度N進行調整,例如當取樣深度N為20時,參考像素的選擇範圍須擴展至一個5×5的區域,此區域為以第一中心像素為中心,向四周各延伸兩個像素的距離所形成的範圍。 The background initialization procedure is shown in step S331, "obtain a plurality of reference pixels adjacent to the first central pixel". The first central pixel is each pixel of the first frame. Assuming that the frame size is 3×3, the frame has 9 pixels arranged in a nine-square grid. At this time, the first central pixel is located in the central position of the nine-square grid, and the reference pixel can be selected from the remaining eight pixels N, N
Figure 110134845-A0305-02-0009-1
8. N represents the sampling depth of the reference pixel. Unless the position is located at the edge of the frame, each first central pixel can basically select N reference pixels from the surrounding pixels as a standard for pixel comparison. The distance adjacent to the first central pixel is adjusted according to the sampling depth N. For example, when the sampling depth N is 20, the selection range of reference pixels must be extended to a 5×5 area, which is centered on the first central pixel. The range formed by extending a distance of two pixels in each direction.

背景更新程序如步驟S332、S333、S334所示,步驟S332為「判斷第二中心像素與每一參考像素的相似度」,步驟S333為「依據相似度決定第二中心像素的屬性」,步驟S334為「依據指定機率、屬性及連續訊框數,以第二中心像素取代第一中心像素或參考像素」。 The background update procedure is shown in steps S332, S333, and S334. Step S332 is "judging the similarity between the second central pixel and each reference pixel", step S333 is "determining the attribute of the second central pixel according to the similarity", and step S334 is "replacing the first central pixel or reference pixel with the second central pixel according to the specified probability, attribute and number of consecutive frames".

在步驟S332、S333中,第二中心像素為第二訊框的每個像素。當第一訊框的N個參考像素中相似於第二中心像素的像素數量小於門檻值m時,處理器設置第二中心像素的前景屬性。反之,當第一訊框的N個參考像素中相似於第二中心像素的像素數量不小於門檻值時,處理器設置第二中心像素的背景屬性。在一實施例中,判斷兩個像素相似的條件為這兩個像素的歐氏距離(Euclidean distance)的差小於預設值。在另一實施例中,判斷兩個像素相似的條件為這兩個像素的像素強度(pixel intensity)的差小於預設值。 In steps S332 and S333, the second center pixel is each pixel of the second frame. When the number of pixels similar to the second central pixel among the N reference pixels of the first frame is less than the threshold value m, the processor sets the foreground attribute of the second central pixel. On the contrary, when the number of pixels similar to the second central pixel among the N reference pixels of the first frame is not less than the threshold value, the processor sets the background attribute of the second central pixel. In one embodiment, the condition for judging that two pixels are similar is that the difference between the Euclidean distances of the two pixels is smaller than a preset value. In another embodiment, the condition for judging that two pixels are similar is that the difference between the pixel intensities of the two pixels is smaller than a preset value.

在步驟S334中,當第二中心像素具有背景屬性時,依據指定機率r,以第二中心像素取代第一中心像素或參考像素。 In step S334, when the second central pixel has the background attribute, the first central pixel or the reference pixel is replaced by the second central pixel according to a specified probability r.

在步驟S334中,若在模板視訊的連續C個訊框中,位於相同位置的第二中心像素都具有前景屬性,則處理器將此第二中心像素取代第一訊框中 的第一中心像素。舉一場景為例:在訓練階段S期間,使用者在某個時間點不慎將滑鼠游標從畫面左上角移動到右下角,然後持續停留在右下角。在此場景中,組成此游標的多個像素在訓練階段S的初期會被設置前景屬性,因為滑鼠游標並非測試資料的一部份,但是由於這些像素在連續多個訊框中持續存在,因此這些像素將被認定為模板影像的一部份。 In step S334, if in the consecutive C frames of the template video, the second center pixel at the same position has the foreground attribute, then the processor replaces the second center pixel in the first frame The first center pixel of . Take a scenario as an example: during the training phase S, the user accidentally moves the mouse cursor from the upper left corner of the screen to the lower right corner at a certain point in time, and then stays in the lower right corner. In this scenario, the multiple pixels that make up the cursor will be set to the foreground attribute at the beginning of the training phase S, because the mouse cursor is not part of the test data, but since these pixels persist in multiple consecutive frames, Therefore these pixels will be considered as part of the template image.

在一實施例中,基於運算速度和精確度的考量,採用如下參數設置:參考像素取樣深度N=5,門檻值m=2,指定機率r=1/16,且連續訊框數C=15。 In one embodiment, based on considerations of computing speed and accuracy, the following parameter settings are adopted: reference pixel sampling depth N=5, threshold value m=2, specified probability r=1/16, and number of consecutive frames C=15 .

若測試資料為半靜態測試圖,則可以將測試資料分成動態部份及靜態部分,針對這兩個部分,各自參考上述動態測試圖和靜態測試圖的方法進行適應性調整,進而產生模板影像。 If the test data is a semi-static test chart, the test data can be divided into a dynamic part and a static part. For these two parts, refer to the methods of the dynamic test chart and the static test chart for adaptive adjustment, and then generate a template image.

在訓練階段S期間,處理器持續依據模板視訊中新的第二訊框以及圖3所示的流程更新背景模型。背景模型由一個基礎模板影像和一個參考像素字典組成,基礎模板影像由多個第一中心像素組成(相當於更新後的第一訊框),參考像素字典記錄了基礎模板影像的每個像素所對應的多個參考像素。換個角度來看,可將背景模型視為由多個模板影像組成,其中每個模板影像相當於基礎模板影像的每個像素位置從第一中心像素及多個參考像素中選擇一者所形成的組合。 During the training phase S, the processor continuously updates the background model according to the new second frame in the template video and the process shown in FIG. 3 . The background model is composed of a basic template image and a reference pixel dictionary. The basic template image is composed of a plurality of first central pixels (equivalent to the updated first frame), and the reference pixel dictionary records the position of each pixel of the basic template image. Corresponding multiple reference pixels. From another point of view, the background model can be regarded as composed of multiple template images, where each template image is equivalent to each pixel position of the basic template image selected from the first center pixel and a plurality of reference pixels. combination.

在訓練階段S完成後,處理器已經產生一或多個模板影像並將其記錄至儲存裝置中,以便於測試階段T時讀取這些模板影像當作範本(norm)。 After the training phase S is completed, the processor has generated one or more template images and recorded them into the storage device, so that these template images can be read as norms during the testing phase T.

在以上介紹的實施例中,處理器直接依據模板視訊的第一訊框作為初始的模板影像,然後依據模板視訊的第二訊框更新模板影像。在另一實施例 中,處理器可先使用測試資料作為初始的模板影像,然後再依據模板影像更新模板影像。按照上述方式,可在維持比對精確度的前提下減少訓練階段S時所用的訊框的數量,進而減少訓練時的計算成本。 In the embodiments described above, the processor directly uses the first frame of the template video as the initial template image, and then updates the template image according to the second frame of the template video. In another embodiment In this method, the processor may first use the test data as an initial template image, and then update the template image according to the template image. According to the above method, the number of frames used in the training stage S can be reduced under the premise of maintaining the comparison accuracy, thereby reducing the calculation cost during training.

測試階段T包括步驟T1~T6,其中步驟T1為「天線對電子裝置發出干擾訊號」。 The test phase T includes steps T1~T6, wherein step T1 is "the antenna sends out interference signals to the electronic device".

步驟T2為「電子裝置接收測試資料,螢幕顯示第二畫面」,第二畫面對應於測試資料。在步驟T2與步驟S1中,所使用的測試資料的種類相同。 Step T2 is "the electronic device receives the test data, and the screen displays a second frame", where the second frame corresponds to the test data. In step T2 and step S1, the types of test data used are the same.

步驟T3為「攝影機拍攝第二畫面以產生測試視訊」,步驟T2~T3類似於步驟S1~S2,而差別在於:在訓練階段T中,電子裝置受干擾訊號所影響,因此第二畫面中可能出現異常現象,例如畫面全黑、畫面閃爍、測試圖案中的線條失真等;而在訓練階段S中,電子裝置未受干擾訊號影響,因此可從中歸納出正常畫面的範本。 Step T3 is "the camera shoots a second frame to generate a test video". Steps T2~T3 are similar to steps S1~S2, but the difference is that in the training phase T, the electronic device is affected by the interference signal, so the second frame may be Abnormal phenomena occur, such as black screen, flickering screen, distorted lines in the test pattern, etc. In the training phase S, the electronic device is not affected by the interference signal, so a normal screen model can be derived from it.

步驟T4為「處理器依據測試視訊產生測試影像」,步驟T4類似於步驟S3,其差別在於:在步驟T4中,處理器依據測試視訊的每一個訊框產生一個測試影像。在一實施例中,若步驟S3中包含圖2所示的設置ROI並進行校正的流程,則適應性修改圖2所示的流程使其適用於步驟T4。另外,如果想要加速測試階段T的執行速度,在步驟T4中,處理器從測試視訊的所有訊框中選擇部分的訊框產生多個測試影像。 Step T4 is "the processor generates a test image according to the test video", the step T4 is similar to the step S3, the difference is: in the step T4, the processor generates a test image according to each frame of the test video. In one embodiment, if the process of setting ROI and performing correction shown in FIG. 2 is included in step S3, the process shown in FIG. 2 is adaptively modified to be applicable to step T4. In addition, if it is desired to speed up the execution speed of the test stage T, in step T4, the processor selects some frames from all the frames of the test video to generate a plurality of test images.

步驟T5為「處理器計算測試影像與每一模板影像的差異比例」,依據測試資料的類型,處理器執行對應的程序來計算差異比例。當測試資料為動態測試圖時,計算差異比例的方式如圖4的步驟T5所示;當測試資料為靜態測試圖時,計算差異比例的方式如圖5的步驟T5’所示。 Step T5 is "the processor calculates the difference ratio between the test image and each template image". According to the type of the test data, the processor executes a corresponding program to calculate the difference ratio. When the test data is a dynamic test chart, the method of calculating the difference ratio is shown in step T5 of Figure 4; when the test data is a static test chart, the method of calculating the difference ratio is shown in step T5' of Figure 5.

當測試資料為動態測試圖時,在訓練階段S結束後會產生多個模板影像,且處理器基於感知相似度(Perceptual Similarity Metric)比對每一模板影像與輸入影像在神經網路中的特徵相似度。 When the test data is a dynamic test image, multiple template images will be generated after the training phase S, and the processor compares the features of each template image with the input image in the neural network based on the Perceptual Similarity Metric similarity.

請參考圖4,步驟T51為「輸入測試影像及每一模板影像至神經網路模型」,神經網路具有多個層的卷積運算,神經網路模型例如是AlexNet,用於計算兩個影像的感知差異度。在步驟T51中,也可包含將測試影像的尺寸調整(resize)為模板影像的尺寸的操作。 Please refer to Figure 4, step T51 is "input the test image and each template image to the neural network model", the neural network has multiple layers of convolution operations, and the neural network model is for example AlexNet, which is used to calculate two images perceived difference. In step T51 , an operation of resizing the test image to the size of the template image may also be included.

步驟T52為「依據測試影像的特徵圖與每一模板影像的特徵圖計算多個差異值」,在每一層卷積運算中,都會得到測試影像的特徵圖和每一個模板影像的特徵圖。在一實施例中,在前三層的卷積運算中,處理器上取樣(upsample)模板影像的特徵圖以及測試影像的特徵圖,將這兩個特徵圖放大為相同尺寸之後,計算這兩個特徵圖之間的差異值。計算方式如下:對於兩個特徵圖中位於相同位置L的兩個像素,處理器計算這兩個像素之間的歐氏距離D作為差異圖在位置L的差異值。歐氏距離D愈小,代表這兩個像素愈相似;歐氏距離D愈大,代表這兩個像素愈不相似。在一實施例中,兩個像素之前的歐氏距離D係以各自的RGB值分別計算其歐氏距離,因此差異值是一個三維的資料。 Step T52 is "calculate multiple difference values based on the feature map of the test image and the feature map of each template image". In each layer of convolution operation, the feature map of the test image and the feature map of each template image will be obtained. In one embodiment, in the convolution operation of the first three layers, the processor upsamples the feature map of the template image and the feature map of the test image, and after enlarging the two feature maps to the same size, calculates the two The difference value between feature maps. The calculation method is as follows: for two pixels located at the same position L in two feature maps, the processor calculates the Euclidean distance D between these two pixels as the difference value of the difference map at position L. The smaller the Euclidean distance D, the more similar the two pixels are; the larger the Euclidean distance D, the less similar the two pixels are. In one embodiment, the Euclidean distance D between two pixels is calculated according to the respective RGB values, so the difference value is a three-dimensional data.

步驟T53為「依據多個差異值產生差異圖並計算差異比例」,在差異圖中,若位置L的像素的歐氏距離D大於預設值,則處理器在差異圖的位置L標示為差異像素。差異比例關聯於差異圖中所有差異像素的數量及差異圖的總像素數量,其中每一差異像素的差異值皆大於預設值。在一實施例中,處理器計算所有差異像素組成的區塊的面積,此面積佔差異圖總面積的比例即為差異比例。 Step T53 is "generating a difference map based on multiple difference values and calculating the difference ratio". In the difference map, if the Euclidean distance D of the pixel at position L is greater than the preset value, the processor marks position L of the difference map as a difference pixels. The difference ratio is related to the number of all difference pixels in the difference map and the total number of pixels in the difference map, wherein the difference value of each difference pixel is greater than a preset value. In one embodiment, the processor calculates the area of the block formed by all the difference pixels, and the ratio of the area to the total area of the difference map is the difference ratio.

經過步驟T51~T5的流程後,每一模板影像與測試影像都會產生一個差異圖及差異比例,在一實施例中,處理器可從這些差異比例中選擇最大者作為判斷測試影像是否通過測試的標準,也可以計算這些差異比例的加權平均值作為判斷測試影像是否通過測試的標準,本發明對此並不限制當測試資料為靜態測試圖時,計算差異比例的方式如圖5所示的步驟T5’,其包括步驟T51’及步驟T52’。在測試階段T時,背景模型已停止更新。 After the process of steps T51-T5, each template image and test image will generate a difference map and a difference ratio. In one embodiment, the processor can select the largest one from these difference ratios as the criterion for judging whether the test image passes the test. standard, the weighted average of these difference ratios can also be calculated as the standard for judging whether the test image passes the test, and the present invention is not limited to this. When the test data is a static test chart, the method of calculating the difference ratio is as shown in Figure 5. T5', which includes step T51' and step T52'. During the testing phase T, the background model has stopped updating.

步驟T51’為「依據背景模型及測試影像計算每一像素的差異數量」,詳言之,對於測試影像位於位置L的像素PT,以及在背景模型中對應於位置L的像素PM,處理器計算PM中有幾個像素相似於像素PT。處理器依據相似像素的數量(相似數量)以及像素PM的數量可計算出差異像素的數量(差異數量),其中PM包括第一中心像素及其對應的多個參考像素。 Step T51' is "calculate the number of differences for each pixel based on the background model and the test image", in detail, for the pixel PT at the position L of the test image and the pixel PM corresponding to the position L in the background model, the processing The detector calculates how many pixels in PM are similar to pixel PT . The processor can calculate the number of difference pixels (difference number) according to the number of similar pixels (similar number) and the number of pixels PM , wherein PM includes the first central pixel and its corresponding plurality of reference pixels.

步驟T52’為「依據差異數量決定差異像素,並產生差異圖及差異比例」。 Step T52' is "determining difference pixels according to difference quantity, and generating difference map and difference ratio".

在一實施例中,對於測試影像的每一個像素,若此像素的差異數量超過一容忍值,則在差異圖中標示此像素為差異像素,反之則不標示此像素為差異像素;而差異比例則是差異圖中的差異像素佔差異圖中所有像素的比例。 In one embodiment, for each pixel of the test image, if the difference quantity of the pixel exceeds a tolerance value, the pixel is marked as the difference pixel in the difference map, otherwise, the pixel is not marked as the difference pixel; and the difference ratio is the proportion of the difference pixels in the difference map to all the pixels in the difference map.

請參考圖1,步驟T6為「判斷差異比例是否大於閾值」。 Please refer to FIG. 1, step T6 is "judging whether the difference ratio is greater than the threshold".

如果判斷結果為「是」,移至步驟T7,如果判斷結果為「否」,回到步驟S1,且處理器選擇另一種類的測試資料後回到步驟S1執行下一輪的EMS測試。 If the judgment result is "Yes", go to step T7, if the judgment result is "No", go back to step S1, and the processor selects another type of test data and then returns to step S1 to execute the next round of EMS testing.

在步驟S7中,處理器發出警示訊號。此外,處理器將異常類型、干擾訊號的頻率、測試資料的種類、電子裝置的配置資訊、以及當前使用的閾值等資料記錄至儲存裝置的資料庫中。 In step S7, the processor sends out a warning signal. In addition, the processor records the abnormality type, the frequency of the interference signal, the type of test data, the configuration information of the electronic device, and the currently used threshold into the database of the storage device.

在一實施例中,在步驟T6之前更包括一個動態調整閾值的步驟。詳言之,處理器讀取電子裝置的配置資訊,在資料庫尋找類似於此配置資訊的歷史測試記錄。若找到歷史測測試記錄及其中使用的歷史閾值,處理器依據歷史閾值調整接下來步驟T6所用的閾值。 In one embodiment, a step of dynamically adjusting the threshold is further included before step T6. Specifically, the processor reads configuration information of the electronic device, and searches a database for historical test records similar to the configuration information. If the historical test record and the historical threshold used therein are found, the processor adjusts the threshold used in the next step T6 according to the historical threshold.

綜上所述,本發明提出一種基於電腦視覺的電磁敏感性測試方法,在訓練階段中,從攝影機拍攝的視訊中動態地更新屬於正常畫面的模板影像,在測試階段中,從攝影機拍攝的視訊中擷取測試影像與模板影像進行比對,從而自動檢測出螢幕顯示的畫面中的任何異常。此外,本發明可依據過去的異常檢測記錄動態地調整用於異常判斷的閾值。 To sum up, the present invention proposes a method for testing electromagnetic susceptibility based on computer vision. In the training phase, the template image belonging to the normal picture is dynamically updated from the video captured by the camera. The test image is captured in the test image and compared with the template image, so as to automatically detect any abnormalities in the screen displayed on the screen. In addition, the present invention can dynamically adjust the threshold for abnormality judgment according to past abnormality detection records.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。 Although the present invention is disclosed by the aforementioned embodiments, they are not intended to limit the present invention. Without departing from the spirit and scope of the present invention, all changes and modifications are within the scope of patent protection of the present invention. For the scope of protection defined by the present invention, please refer to the appended scope of patent application.

S:訓練階段 S: training phase

T:測試階段 T: testing stage

S1~S3,T1~T7:步驟 S1~S3,T1~T7: steps

Claims (10)

一種基於電腦視覺的電磁敏感性測試方法,適用於具有一螢幕的一電子裝置,所述方法包括:一訓練階段,包括:該電子裝置接收一測試資料,並以該螢幕顯示對應於該測試資料的一第一畫面;一攝影機拍攝該第一畫面以產生一模板視訊;以及一處理器至少依據該模板視訊產生多個模板影像;以及一測試階段,包括:在產生該些模板影像之後,以一天線對該電子裝置發出一干擾訊號;收到該干擾訊號的該電子裝置接收該測試資料,並以該螢幕顯示對應於該測試資料的一第二畫面;該攝影機拍攝該第二畫面以產生一測試視訊;該處理器依據該測試視訊產生一測試影像;該處理器計算該測試影像與每一該些模板影像的一差異比例;以及當該差異比例大於一閾值時,該處理器發出一警示訊號。 An electromagnetic susceptibility testing method based on computer vision, suitable for an electronic device with a screen, the method includes: a training phase, including: the electronic device receives a test data, and displays the corresponding test data on the screen a first frame of a camera; a camera captures the first frame to generate a template video; and a processor at least generates a plurality of template images according to the template video; and a test stage includes: after generating the template images, using An antenna sends an interference signal to the electronic device; the electronic device receiving the interference signal receives the test data, and displays a second frame corresponding to the test data on the screen; the camera captures the second frame to generate a test video; the processor generates a test image according to the test video; the processor calculates a difference ratio between the test image and each of the template images; and when the difference ratio is greater than a threshold, the processor sends a warning sign. 如請求項1所述基於電腦視覺的電磁敏感性測試方法,該處理器至少依據該模板視訊產生該些模板影像包括:在該模板視訊中設置一感興趣區域;依據該感興趣區域執行一校正操作;以及執行一演算法以產生該些模板影像。 According to the computer vision-based electromagnetic susceptibility testing method described in Claim 1, the processor at least generates the template images according to the template video including: setting an interest region in the template video; performing a calibration according to the interest region operation; and executing an algorithm to generate the template images. 如請求項2所述基於電腦視覺的電磁敏感性測試方法,其中該演算法為高斯混合模型或視覺背景提取(ViBE,Visual Backgound Extractor)。 The electromagnetic susceptibility testing method based on computer vision as described in Claim 2, wherein the algorithm is a Gaussian mixture model or a visual background extractor (ViBE, Visual Background Extractor). 如請求項2所述基於電腦視覺的電磁敏感性測試方法,其中該測試資料為一動態測試圖,且該演算法包括:該處理器擷取該模板影像的至少一訊框作為該些模板影像。 The electromagnetic susceptibility testing method based on computer vision as described in claim 2, wherein the test data is a dynamic test pattern, and the algorithm includes: the processor captures at least one frame of the template image as the template images . 如請求項2所述的基於電腦視覺的電磁敏感性測試方法,其中該測試資料為一靜態測試圖,且該演算法包括:一背景初始化程序,包括:取得鄰接於一第一中心像素的多個參考像素,該第一中心像素為該模板影像中的一第一訊框的每個像素;以及該背景更新程序包括:判斷一第二中心像素與每一該些參考像素的相似度,其中該第二中心像素為該模板影像中的一第二訊框的每個像素,且該第二訊框的時序在該第一訊框的時序之後;當該些參考像素中相似於該第二中心像素的像素數量小於一門檻值時,設置該第二中心像素的一前景屬性;否則設置該第二中心像素的一背景屬性;當該第二中心像素具有該背景屬性時,依據一指定機率,以該第二中心像素取代該第一中心像素或該參考像素;以及在該模板視訊的連續多個訊框中,當該第二中心像素具有該前景屬性時,以該第二中心像素取代該第一中心像素。 The electromagnetic susceptibility test method based on computer vision as described in claim 2, wherein the test data is a static test pattern, and the algorithm includes: a background initialization program, including: obtaining multiple pixels adjacent to a first central pixel a reference pixel, the first center pixel is each pixel of a first frame in the template image; and the background update procedure includes: judging the similarity between a second center pixel and each of the reference pixels, wherein The second central pixel is each pixel of a second frame in the template image, and the timing of the second frame is after the timing of the first frame; when the reference pixels are similar to the second When the number of pixels in the center pixel is less than a threshold value, set a foreground attribute of the second center pixel; otherwise, set a background attribute of the second center pixel; when the second center pixel has the background attribute, according to a specified probability , replace the first center pixel or the reference pixel with the second center pixel; and in a plurality of consecutive frames of the template video, when the second center pixel has the foreground attribute, replace with the second center pixel The first center pixel. 如請求項1所述的基於電腦視覺的電磁敏感性測試方法,其中該測試影像為一動態測試圖,且該處理器計算該測試影像與每一該些模板影像的該差異比例包括:輸入該測試影像及每一該些模板影像至一神經網路模型,該神經網路具有多層卷積運算;在每一該些層卷積運算中,計算該測試影像的一特徵圖與每一該些模板影像的一特徵圖;上取樣每一該些層的該測試影像的該特徵圖及每一該些模板影像的該特徵圖,以及基於像素尺度,對於該測試影像的該特徵圖及每一該些模板影像的該特徵圖,計算一歐氏距離作為一差異圖中的一差異值;其中該差異比例關聯於該差異圖中多個差異像素的數量及該差異圖的一總像素數量,其中每一該些差異像素的該差異值大於預設值。 The electromagnetic susceptibility testing method based on computer vision as described in Claim 1, wherein the test image is a dynamic test chart, and the calculation of the difference ratio between the test image and each of the template images by the processor includes: inputting the The test image and each of the template images are fed to a neural network model, and the neural network has multiple layers of convolution operations; in each of the layers of convolution operations, a feature map of the test image and each of the a feature map of the template image; upsampling the feature map of the test image and the feature map of each of the template images for each of the layers, and based on the pixel scale, for the feature map of the test image and each For the feature map of the template images, a Euclidean distance is calculated as a difference value in a difference map; wherein the difference ratio is related to the number of difference pixels in the difference map and a total number of pixels in the difference map, The difference value of each of the difference pixels is greater than a preset value. 如請求項1所述的基於電腦視覺的電磁敏感性測試方法,其中該測試資料為一靜態測試圖,且該處理器計算該測試影像與每一該些模板影像的該差異比例包括:依據一背景模型及該測試影像計算每一像素的一差異數量,其中該背景模型關聯於該些模板影像;以及依據該差異數量決定一差異像素,並產生一差異圖及該差異比例。 The electromagnetic susceptibility testing method based on computer vision as described in claim 1, wherein the test data is a static test chart, and the calculation of the difference ratio between the test image and each of the template images by the processor includes: according to a The background model and the test image calculate a difference quantity for each pixel, wherein the background model is associated with the template images; and determine a difference pixel according to the difference quantity, and generate a difference map and the difference ratio. 如請求項1所述的基於電腦視覺的電磁敏感性測試方法,其中該處理器至少依據該模板視訊產生該些模板影像包括:該處理器依據該測試資料及該模板視訊產生該些模板影像。 The electromagnetic susceptibility testing method based on computer vision as described in Claim 1, wherein the processor at least generating the template images according to the template video includes: generating the template images according to the test data and the template video by the processor. 如請求項1所述的基於電腦視覺的電磁敏感性測試方法,其中該測試階段更包括:該處理器取得該電子裝置的一配置資訊;該處理器搜索一資料庫以取得一歷史測試記錄中的一歷史閾值,其中該歷史測試記錄的一歷史配置資訊相似於該配置資訊;以及該處理器依據該歷史閾值調整該閾值。 The electromagnetic susceptibility testing method based on computer vision as described in Claim 1, wherein the testing phase further includes: the processor obtains a configuration information of the electronic device; the processor searches a database to obtain a historical test record a historical threshold, wherein a historical configuration information of the historical test record is similar to the configuration information; and the processor adjusts the threshold according to the historical threshold. 如請求項1所述的基於電腦視覺的電磁敏感性測試方法,在該處理器計算該測試影像與每一該些模板影像的該差異比例之前,更包括:依據每一該些模板影像的尺寸調整該測試影像的尺寸。 The electromagnetic susceptibility testing method based on computer vision as described in claim 1, before the processor calculates the difference ratio between the test image and each of the template images, further includes: according to the size of each of the template images Resize the test image.
TW110134845A 2021-09-17 2021-09-17 Electromagnetic susceptibility tesing method based on computer-vision TWI784720B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110134845A TWI784720B (en) 2021-09-17 2021-09-17 Electromagnetic susceptibility tesing method based on computer-vision

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110134845A TWI784720B (en) 2021-09-17 2021-09-17 Electromagnetic susceptibility tesing method based on computer-vision

Publications (2)

Publication Number Publication Date
TWI784720B true TWI784720B (en) 2022-11-21
TW202314267A TW202314267A (en) 2023-04-01

Family

ID=85794618

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110134845A TWI784720B (en) 2021-09-17 2021-09-17 Electromagnetic susceptibility tesing method based on computer-vision

Country Status (1)

Country Link
TW (1) TWI784720B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108073A (en) * 1997-01-29 2000-08-22 Kabushiki Kaisha Toshiba Electromagnetic wave detecting system
US20130193984A1 (en) * 2012-01-30 2013-08-01 Samsung Electronics Co., Ltd. Test apparatuses for measuring electromagnetic interference of image sensor integrated circuit devices
US20180157914A1 (en) * 2016-12-07 2018-06-07 Rohde & Schwarz Gmbh & Co. Kg Test system and test method for performing emc test efficiently
TW201828383A (en) * 2017-01-19 2018-08-01 日商濱松赫德尼古斯股份有限公司 Inspection method, inspection device, and marking forming method
TW201913116A (en) * 2017-09-06 2019-04-01 美商富克有限公司 Multi-stage measuring device
TW202004206A (en) * 2015-02-10 2020-01-16 日商濱松赫德尼古斯股份有限公司 Inspection device and inspection method
TW202027028A (en) * 2018-08-15 2020-07-16 美商超精細研究股份有限公司 Deep learning techniques for suppressing artefacts in magnetic resonance images
TW202043786A (en) * 2019-05-21 2020-12-01 仁寶電腦工業股份有限公司 Testing method and testing system
US20200386807A1 (en) * 2019-06-06 2020-12-10 Hitachi, Ltd. Augmented-reality-based testing analysis and modification
TW202131219A (en) * 2020-02-12 2021-08-16 大陸商深圳市商湯科技有限公司 Image recognition method and apparatus, electronic device, and storage medium

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108073A (en) * 1997-01-29 2000-08-22 Kabushiki Kaisha Toshiba Electromagnetic wave detecting system
US20130193984A1 (en) * 2012-01-30 2013-08-01 Samsung Electronics Co., Ltd. Test apparatuses for measuring electromagnetic interference of image sensor integrated circuit devices
TW202004206A (en) * 2015-02-10 2020-01-16 日商濱松赫德尼古斯股份有限公司 Inspection device and inspection method
US20180157914A1 (en) * 2016-12-07 2018-06-07 Rohde & Schwarz Gmbh & Co. Kg Test system and test method for performing emc test efficiently
TW201828383A (en) * 2017-01-19 2018-08-01 日商濱松赫德尼古斯股份有限公司 Inspection method, inspection device, and marking forming method
TW201913116A (en) * 2017-09-06 2019-04-01 美商富克有限公司 Multi-stage measuring device
TW202027028A (en) * 2018-08-15 2020-07-16 美商超精細研究股份有限公司 Deep learning techniques for suppressing artefacts in magnetic resonance images
TW202043786A (en) * 2019-05-21 2020-12-01 仁寶電腦工業股份有限公司 Testing method and testing system
US20200386807A1 (en) * 2019-06-06 2020-12-10 Hitachi, Ltd. Augmented-reality-based testing analysis and modification
TW202131219A (en) * 2020-02-12 2021-08-16 大陸商深圳市商湯科技有限公司 Image recognition method and apparatus, electronic device, and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. Tanaka, H. Inoue, and T. Takagi, "An Experimental Study on Subjective Evaluation of TV Picture Degradation by Electromagnetic Noise--Opinion Tests on Still and Motion Pictures--," IEICE Transactions on Communications. 25 Feb. 1995, Vol. E78-B, No. 2, page 168-175. *

Also Published As

Publication number Publication date
TW202314267A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
WO2022179108A1 (en) Projection correction method and apparatus, storage medium, and electronic device
TWI719493B (en) Image projection system, image projection apparatus and calibrating method for display image thereof
WO2019137038A1 (en) Method for determining point of gaze, contrast adjustment method and device, virtual reality apparatus, and storage medium
US20070091334A1 (en) Method of calculating correction data for correcting display characteristic, program for calculating correction data for correcting display characteristic and apparatus for calculating correction data for correcting display characteristic
CN112272292B (en) Projection correction method, apparatus and storage medium
WO2003003300A2 (en) Automatic digital picture enhancement
CN108063928B (en) A kind of image automatic adjusting method, device and the electronic equipment of projector
CN111031311B (en) Imaging quality detection method and device, electronic equipment and readable storage medium
JP5659623B2 (en) Exposure attribute setting method and computer-readable storage medium
JP2015060012A (en) Image processing system, image processing device, image processing method and image processing program as well as display system
CN107103865B (en) Method and device for detecting display area in display screen
CN111368717A (en) Sight line determining method and device, electronic equipment and computer readable storage medium
US11074742B2 (en) Image processing apparatus, image processing method, and storage medium
WO2022048617A1 (en) Method, device, and system for recognizing projection position, and storage medium
CN117541578B (en) High-performance full-view angle liquid crystal display screen detection method and system
US10657703B2 (en) Image processing apparatus and image processing method
US11127141B2 (en) Image processing apparatus, image processing method, and a non-transitory computer readable storage medium
CN116337412A (en) Screen detection method, device and storage medium
CN109410197B (en) Method and device for positioning detection area of liquid crystal display
US20230085231A1 (en) Electromagnetic susceptibility testing method based on computer-vision
TWI524308B (en) Method and device for detecting grayscale image
TWI784720B (en) Electromagnetic susceptibility tesing method based on computer-vision
WO2024055531A1 (en) Illuminometer value identification method, electronic device, and storage medium
CN111369513B (en) Abnormality detection method, abnormality detection device, terminal equipment and storage medium
TW201445458A (en) Testing device and method for camera