TWI784580B - Piezoelectric mems accelerometer and method for manufacturing the same - Google Patents

Piezoelectric mems accelerometer and method for manufacturing the same Download PDF

Info

Publication number
TWI784580B
TWI784580B TW110122327A TW110122327A TWI784580B TW I784580 B TWI784580 B TW I784580B TW 110122327 A TW110122327 A TW 110122327A TW 110122327 A TW110122327 A TW 110122327A TW I784580 B TWI784580 B TW I784580B
Authority
TW
Taiwan
Prior art keywords
layer
piezoelectric
electrode layer
mems accelerometer
electrode
Prior art date
Application number
TW110122327A
Other languages
Chinese (zh)
Other versions
TW202300918A (en
Inventor
朱聖緣
李承穎
陳澤輝
李翊嘉
陳約翰
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW110122327A priority Critical patent/TWI784580B/en
Application granted granted Critical
Publication of TWI784580B publication Critical patent/TWI784580B/en
Publication of TW202300918A publication Critical patent/TW202300918A/en

Links

Images

Abstract

A piezoelectric MEMS accelerometer includes a carrier, a first electrode layer, a piezoelectric layer and a second electrode layer. The carrier includes a first surface and a second surface opposite to the first surface. The first surface incudes a first protruding portion and a second protruding portion. The first protruding portion protrudes from the first surface. The second protruding portion protrudes from the first surface and is spaced apart from the first protruding portion. The first electrode layer is disposed on the second surface, the piezoelectric layer is disposed on the first electrode layer, and the second electrode layer is disposed on the piezoelectric layer. A distribution area of the first electrode layer and a distribution area of the second electrode layer are both located within a distribution area of the piezoelectric layer. The first protruding portion is the main component of a proof mass of the piezoelectric MEMS accelerometer, and the second protruding portion is the main component of a connecting portion of the piezoelectric MEMS accelerometer.

Description

壓電式微機電加速規及其製造方法 Piezoelectric MEMS accelerometer and manufacturing method thereof

本發明是有關於一種加速規及其製造方法,且特別是有關於一種壓電式微機電加速規及其製造方法。 The present invention relates to an accelerometer and its manufacturing method, and in particular to a piezoelectric micro-electromechanical accelerometer and its manufacturing method.

加速規(Accelerometer)是藉由量測加速度來獲得物體受力程度的慣性感測器。隨著微機電(Micro Electro-Mechanical Systems,MEMS)製程的發展,加速規的尺寸可大幅縮小且可大量製造,而被廣泛應用於各個領域。 An accelerometer is an inertial sensor that obtains the degree of force on an object by measuring acceleration. With the development of micro-electro-mechanical systems (MEMS) manufacturing processes, the size of accelerometers can be greatly reduced and mass-manufactured, and are widely used in various fields.

然而,當使用MEMS製程製造加速規時,需要經過複數道微影製程(photolithography),曝光顯影時容易因為曝光機對準誤差、光罩圖形誤差等因素,而導致加速規短路損壞,降低製作良率。 However, when using the MEMS process to manufacture accelerometers, it needs to go through multiple photolithography processes. During exposure and development, it is easy to cause short-circuit damage to accelerometers due to factors such as exposure machine alignment errors and mask pattern errors, reducing the production quality. Rate.

本發明之目的在於提供一種壓電式微機電加速規及其製造方法,以解決上述問題。 The object of the present invention is to provide a piezoelectric MEMS accelerometer and its manufacturing method to solve the above problems.

依據本發明之一實施方式是提供一種壓電式微機電加速規,包含一 載體、一第一電極層、一壓電層及一第二電極層。載體包含一第一表面及一第二表面相對於第一表面。第一表面包含一第一突塊部及一第二突塊部,第一突塊部突出於第一表面,第二突塊部突出於第一表面,且與第一突塊部間隔設置。第一電極層設置於第二表面上,壓電層設置於第一電極層上,第二電極層設置於壓電層上。第一電極層及第二電極層的分布範圍皆位於壓電層的分布範圍內。第一突塊部是壓電式微機電加速規的質量塊的主要構成物,第二突塊部是壓電式微機電加速規的連接部的主要構成物。 According to one embodiment of the present invention, a piezoelectric MEMS accelerometer is provided, comprising a Carrier, a first electrode layer, a piezoelectric layer and a second electrode layer. The carrier includes a first surface and a second surface opposite to the first surface. The first surface includes a first protrusion and a second protrusion, the first protrusion protrudes from the first surface, and the second protrusion protrudes from the first surface and is spaced apart from the first protrusion. The first electrode layer is arranged on the second surface, the piezoelectric layer is arranged on the first electrode layer, and the second electrode layer is arranged on the piezoelectric layer. The distribution ranges of the first electrode layer and the second electrode layer are both within the distribution range of the piezoelectric layer. The first protruding part is the main component of the mass block of the piezoelectric microelectromechanical accelerometer, and the second protruding part is the main component of the connection part of the piezoelectric microelectromechanical accelerometer.

依據本發明之另一實施方式是提供一種壓電式微機電加速規的製造方法,包含以下步驟。提供一基板,基板包含一頂面及一底面相對於頂面。形成一第一電極層,使第一電極層位於頂面上且局部覆蓋頂面。形成一壓電層,使壓電層位於第一電極層上。形成一第二電極層,使第二電極層位於壓電層上。進行一蝕刻步驟,移除基板的一部份,使基板形成一載體,其中載體包含一第一表面及一第二表面相對於第一表面,第一表面包含一第一突塊部及一第二突塊部,第一突塊部突出於第一表面,第二突塊部突出於第一表面且與第一突塊部間隔設置,第一表面、第一突塊部及第二突塊部係底面受蝕刻後往內凹陷所形成,第二表面係頂面經蝕刻後所餘留的部分。壓電式微機電加速規中,第一電極層及第二電極層皆位於壓電層的分布範圍內。第一突塊部是壓電式微機電加速規的質量塊的主要構成物,第二突塊部是壓電式微機電加速規的連接部的主要構成物。 Another embodiment of the present invention provides a method for manufacturing a piezoelectric MEMS accelerometer, which includes the following steps. A substrate is provided, and the substrate includes a top surface and a bottom surface opposite to the top surface. A first electrode layer is formed so that the first electrode layer is located on the top surface and partially covers the top surface. A piezoelectric layer is formed such that the piezoelectric layer is located on the first electrode layer. A second electrode layer is formed so that the second electrode layer is located on the piezoelectric layer. An etching step is performed to remove a portion of the substrate so that the substrate forms a carrier, wherein the carrier includes a first surface and a second surface opposite to the first surface, the first surface includes a first bump portion and a first surface Two protrusions, the first protrusion protrudes from the first surface, the second protrusion protrudes from the first surface and is spaced apart from the first protrusion, the first surface, the first protrusion and the second protrusion The part is formed by inward depression after the bottom surface is etched, and the second surface is the remaining part after the top surface is etched. In the piezoelectric MEMS accelerometer, both the first electrode layer and the second electrode layer are located within the distribution range of the piezoelectric layer. The first protruding part is the main component of the mass block of the piezoelectric microelectromechanical accelerometer, and the second protruding part is the main component of the connection part of the piezoelectric microelectromechanical accelerometer.

相較於先前技術,本發明的壓電式微機電加速規藉由第一電極層及第二電極層皆位於壓電層的分布範圍內,可通過壓電層有效分隔第一電極層及第二電極層,可降低第一電極層及第二電極層發生短路的情況,而有利於提升 壓電式微機電加速規的良率。 Compared with the prior art, the piezoelectric MEMS accelerometer of the present invention can effectively separate the first electrode layer and the second electrode layer through the piezoelectric layer because the first electrode layer and the second electrode layer are located within the distribution range of the piezoelectric layer. The electrode layer can reduce the short circuit of the first electrode layer and the second electrode layer, which is conducive to improving the Yield of piezoelectric MEMS accelerometers.

100:壓電式微機電加速規 100: Piezoelectric MEMS Acceleration Gauge

110:載體 110: carrier

110a:本體 110a: Ontology

110b:絕緣層 110b: insulating layer

111:第一表面 111: first surface

112:第一突塊部 112: the first protrusion

113:第二突塊部 113: the second protrusion

115:第二表面 115: second surface

116:第一區域 116: The first area

117:第二區域 117: Second area

130:第一電極層 130: the first electrode layer

140:電極黏著層 140: electrode adhesive layer

150:壓電層 150: piezoelectric layer

170:第二電極層 170: second electrode layer

190:蝕刻保護層 190: etching protective layer

210:基板 210: Substrate

211:底面 211: Bottom

215:頂面 215: top surface

221,222,223:凹槽 221,222,223: Groove

300:光阻層 300: photoresist layer

900:壓電式微機電加速規的製造方法 900: Manufacturing method of piezoelectric MEMS accelerometer

910~980:步驟 910~980: steps

A:連接部 A: Connecting part

B:懸臂樑 B: cantilever beam

C:質量塊 C: mass block

P:部位 P: part

D1:縱向方向 D1: Portrait direction

D2:橫向方向 D2: Horizontal direction

E1,E2,L1,L2:長度 E1, E2, L1, L2: Length

H1,H2:高度 H1, H2: Height

X1:第一長度 X1: first length

X2:第二長度 X2: second length

X3:距離 X3: Distance

W1,W2:寬度 W1, W2: width

X,Y,Z:坐標軸 X, Y, Z: coordinate axes

第1圖是依據本發明一實施方式的壓電式微機電加速規的外觀立體示意圖。 FIG. 1 is a schematic perspective view of the appearance of a piezoelectric MEMS accelerometer according to an embodiment of the present invention.

第2圖是第1圖中壓電式微機電加速規的俯視示意圖。 Fig. 2 is a schematic top view of the piezoelectric MEMS accelerometer in Fig. 1.

第3圖是第1圖中壓電式微機電加速規的側視示意圖。 Fig. 3 is a schematic side view of the piezoelectric MEMS accelerometer in Fig. 1.

第4圖是第1圖中壓電式微機電加速規的剖視示意圖。 Figure 4 is a schematic cross-sectional view of the piezoelectric MEMS accelerometer in Figure 1 .

第5圖是第4圖中壓電式微機電加速規的局部俯視示意圖。 Fig. 5 is a schematic partial top view of the piezoelectric MEMS accelerometer in Fig. 4.

第6圖至第8圖是第4圖中壓電式微機電加速規的製造流程示意圖。 Figures 6 to 8 are schematic diagrams of the manufacturing process of the piezoelectric MEMS accelerometer in Figure 4 .

第9圖是依據本發明另一實施方式的壓電式微機電加速規的製造方法的步驟流程圖。 FIG. 9 is a flow chart of the steps of the manufacturing method of the piezoelectric MEMS accelerometer according to another embodiment of the present invention.

有關本發明之前述及其它技術內容、特點與功效,在以下配合參考圖式之較佳實施方式的詳細說明中,將可清楚地呈現。以下實施方式所提到的方向用語,例如:上、下、左、右、前、後、頂、底等,僅是參考附加圖式的方向。因此,使用的方向用語是用以說明,而非對本發明加以限制。圖式各元件的尺寸僅為相對位置或配置的示意,並非對本發明元件之尺寸加以限制。在下列各實施方式中,相同或相似的元件將採用相同或相似的標號。 The aforementioned and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of preferred embodiments with reference to the drawings. The directional terms mentioned in the following embodiments, such as: up, down, left, right, front, back, top, bottom, etc., are only directions referring to the attached drawings. Accordingly, the directional terms used are illustrative rather than limiting of the invention. The dimensions of the components in the drawings are only indicative of relative positions or configurations, and do not limit the dimensions of the components of the present invention. In each of the following embodiments, the same or similar components will use the same or similar symbols.

本發明中,一元件設置於/位於另一元件的上方,可指所述元件直接設置於/位於所述另一元件的上方,二者之間不存在其他元件,也可指所述元件間接設置於/位於所述另一元件的上方,二者之間可存在有其他元件。 In the present invention, an element is arranged/located on another element, may mean that said element is directly arranged/located on said another element, there is no other element between them, and it may also mean that said element is indirectly Disposed/located above said another element, with other elements interposed therebetween.

下文中,為便於說明各元件的方向,係配合XYZ直角坐標系進行描述。 In the following, for the convenience of explaining the directions of each element, the description is made in conjunction with the XYZ rectangular coordinate system.

下文中,為了簡潔的緣故,可將第一電極層、壓電層、第二電極層、電極黏著層、蝕刻保護層、絕緣層等膜層簡稱為「膜層」,「膜層」實際代表的意義係配合上、下文及圖式。 Hereinafter, for the sake of brevity, the first electrode layer, the piezoelectric layer, the second electrode layer, the electrode adhesion layer, the etching protection layer, the insulating layer and other film layers may be referred to as "film layers" for short, and "film layers" actually represent The meaning of "coordinates" with upper, lower and schema.

<壓電式微機電加速規> <Piezoelectric MEMS accelerometer>

請參照第1圖至第3圖,第1圖是依據本發明一實施方式的壓電式微機電加速規100的外觀立體示意圖,第2圖是第1圖中壓電式微機電加速規100的俯視示意圖,第3圖是第1圖中壓電式微機電加速規100的側視示意圖。壓電式微機電加速規100包含一連接部A、一懸臂樑(Cantilever beam)B以及一質量塊(Proof mass)C,懸臂樑B連接於連接部A以及質量塊C之間,其中當質量塊C受到外力產生運動,可將能量傳遞至懸臂樑B,並藉由位於懸臂樑B的壓電層(可參照第4圖的壓電層150)可將能量轉變為電訊號,而連接部A係用於將壓電式微機電加速規100連接至一目的物,例如,目的物可為電路板,而使壓電式微機電加速規100可整合至電子電路中,並可將前述電訊號傳送至電子電路中以換算成加速度。換句話說,壓電式微機電加速規100在此例示為懸臂樑加速規,然而,本發明不以此為限,在其他實施方式中,壓電式微機電加速規100可為高頻寬圓盤型加速規或三軸加速規。 Please refer to Figures 1 to 3, Figure 1 is a schematic perspective view of the appearance of a piezoelectric MEMS accelerometer 100 according to an embodiment of the present invention, and Figure 2 is a top view of the piezoelectric MEMS accelerometer 100 in Figure 1 Schematic diagram, Fig. 3 is a schematic side view of the piezoelectric MEMS accelerometer 100 in Fig. 1 . The piezoelectric MEMS accelerometer 100 includes a connection part A, a cantilever beam (Cantilever beam) B and a mass block (Proof mass) C, and the cantilever beam B is connected between the connection part A and the mass block C, wherein the mass block C is subjected to external force to generate motion, which can transfer energy to the cantilever beam B, and through the piezoelectric layer on the cantilever beam B (refer to the piezoelectric layer 150 in Figure 4), the energy can be converted into electrical signals, and the connecting part A It is used to connect the piezoelectric microelectromechanical accelerometer 100 to an object, for example, the object can be a circuit board, so that the piezoelectric microelectromechanical accelerometer 100 can be integrated into the electronic circuit, and the aforementioned electrical signal can be transmitted to In the electronic circuit, it is converted into acceleration. In other words, the piezoelectric MEMS accelerometer 100 is exemplified here as a cantilever beam accelerometer, however, the present invention is not limited thereto. In other implementations, the piezoelectric MEMS accelerometer 100 can be a high-bandwidth disk-type accelerometer. gauge or triaxial accelerometer.

請參照第4圖,其是第1圖中壓電式微機電加速規100的剖視示意圖。壓電式微機電加速規100包含一載體110、一第一電極層130、一壓電層150及一第二電極層170,且可選擇第包含二電極黏著層140以及一蝕刻保護層190。 Please refer to FIG. 4 , which is a schematic cross-sectional view of the piezoelectric MEMS accelerometer 100 in FIG. 1 . The piezoelectric MEMS accelerometer 100 includes a carrier 110 , a first electrode layer 130 , a piezoelectric layer 150 and a second electrode layer 170 , and optionally includes a second electrode adhesive layer 140 and an etching protection layer 190 .

載體110包含一第一表面111及一第二表面115,第二表面115與第一表面111相對。第一表面111包含一第一突塊部112及一第二突塊部113,第一突塊部112突出於第一表面111,第二突塊部113突出於第一表面111,且與第一突塊部112間隔設置。第一電極層130設置於第二表面115上,壓電層150設置於第一電極層130上,第二電極層170設置於壓電層150上。 The carrier 110 includes a first surface 111 and a second surface 115 , and the second surface 115 is opposite to the first surface 111 . The first surface 111 includes a first protrusion portion 112 and a second protrusion portion 113, the first protrusion portion 112 protrudes from the first surface 111, the second protrusion portion 113 protrudes from the first surface 111, and is in contact with the second protrusion portion 113 A protrusion portion 112 is arranged at intervals. The first electrode layer 130 is disposed on the second surface 115 , the piezoelectric layer 150 is disposed on the first electrode layer 130 , and the second electrode layer 170 is disposed on the piezoelectric layer 150 .

質量塊C包含第一突塊部112與其下方的蝕刻保護層190及其上方的壓電層150,連接部A包含第二突塊部113與其下方的蝕刻保護層190及其上方的二電極黏著層140、第一電極層130、壓電層150、第二電極層170。實務上,各膜層的厚度(約0.2μm~1.0μm)遠低於第一突塊部112及第二突塊部113的厚度(約400μm),因此,第一突塊部112是壓電式微機電加速規100的質量塊C的主要構成物,第二突塊部113是壓電式微機電加速規100的連接部A的主要構成物。第4圖中為了清楚表示各膜層,因此放大各膜層的厚度,即各膜層、第一突塊部112及第二突塊部113的厚度並未依據實際比例繪製。另外,由於各膜層的厚度很薄,因此,第1圖至第3圖中並未繪示出各膜層於壓電式微機電加速規100所造成的表面高度差。 The proof mass C includes the first protrusion part 112 and the etching protection layer 190 below it and the piezoelectric layer 150 above it, and the connection part A includes the second protrusion part 113 and the etching protection layer 190 below it and the two electrodes above it. layer 140 , first electrode layer 130 , piezoelectric layer 150 , and second electrode layer 170 . In practice, the thickness of each film layer (about 0.2 μm ~ 1.0 μm) is much lower than the thickness (about 400 μm) of the first bump portion 112 and the second bump portion 113, therefore, the first bump portion 112 is piezoelectric The mass block C of the piezoelectric MEMS accelerometer 100 is the main component, and the second protrusion portion 113 is the main component of the connecting portion A of the piezoelectric MEMS accelerometer 100 . In order to clearly show each film layer in FIG. 4 , the thickness of each film layer is enlarged, that is, the thicknesses of each film layer, the first bump portion 112 and the second bump portion 113 are not drawn according to the actual scale. In addition, since the thickness of each film layer is very thin, the surface height difference caused by each film layer on the piezoelectric MEMS accelerometer 100 is not shown in FIGS. 1 to 3 .

第一電極層130及第二電極層170的分布範圍皆位於壓電層150的分布範圍內,前述「第一電極層130及第二電極層170的分布範圍皆位於壓電層150的分布範圍內」是指第一電極層130於第二表面115上具有一覆蓋面積(未另標號),第二電極層170於第二表面115上具有一覆蓋面積(未另標號),壓電層150於第二表面115上具有一覆蓋面積(未另標號),第一電極層130及第二電極層170於第二表面115上的覆蓋面積皆小於壓電層150於第二表面115的覆蓋面積,且皆位 於壓電層150於第二表面115的覆蓋面積內,如第4圖所示,第一電極層130於X軸上的長度E1等於第二電極層170於X軸上的長度E1,壓電層150於X軸上的長度E2大於第一電極層130及第二電極層170的長度E1。藉此,壓電層150可有效分隔第一電極層130及第二電極層170,可降低第一電極層130及第二電極層170發生短路的情況,而有利於提升壓電式微機電加速規100的良率。 The distribution ranges of the first electrode layer 130 and the second electrode layer 170 are all within the distribution range of the piezoelectric layer 150, and the aforementioned "the distribution ranges of the first electrode layer 130 and the second electrode layer 170 are all within the distribution range of the piezoelectric layer 150." Inner" means that the first electrode layer 130 has a coverage area (not otherwise labeled) on the second surface 115, the second electrode layer 170 has a coverage area (not otherwise labeled) on the second surface 115, and the piezoelectric layer 150 There is a coverage area (not otherwise labeled) on the second surface 115, and the coverage areas of the first electrode layer 130 and the second electrode layer 170 on the second surface 115 are smaller than the coverage area of the piezoelectric layer 150 on the second surface 115 , and both Within the coverage area of the piezoelectric layer 150 on the second surface 115, as shown in FIG. The length E2 of the layer 150 on the X axis is greater than the length E1 of the first electrode layer 130 and the second electrode layer 170 . Thereby, the piezoelectric layer 150 can effectively separate the first electrode layer 130 and the second electrode layer 170, which can reduce the occurrence of short circuit between the first electrode layer 130 and the second electrode layer 170, and is beneficial to improve the piezoelectric MEMS accelerometer. 100% yield.

第2圖中,懸臂樑B具有一長度L1,質量塊C具有一長度L2,長度L1、L2皆平行於X軸,其可滿足下列條件:L1/L2=5。懸臂樑B具有一寬度W1,質量塊C具有一寬度W2,長度W1、W2皆平行於Y軸,其可滿足下列條件:1/3

Figure 110122327-A0305-02-0009-12
W1/W2
Figure 110122327-A0305-02-0009-13
2。第3圖中,懸臂樑B具有一高度H1,質量塊C具有一高度H2,高度H1、H2皆平行於Z軸,其可滿足下列條件:1/40
Figure 110122327-A0305-02-0009-14
H1/H2
Figure 110122327-A0305-02-0009-15
3/20。藉此尺寸配置,有利於提升壓電式微機電加速規100的靈敏度。 In Fig. 2 , the cantilever beam B has a length L1, and the proof mass C has a length L2. The lengths L1 and L2 are both parallel to the X-axis, which can satisfy the following condition: L1/L2=5. The cantilever beam B has a width W1, the proof mass C has a width W2, and the lengths W1 and W2 are both parallel to the Y axis, which can satisfy the following conditions: 1/3
Figure 110122327-A0305-02-0009-12
W1/W2
Figure 110122327-A0305-02-0009-13
2. In Figure 3, the cantilever beam B has a height H1, and the mass block C has a height H2. The heights H1 and H2 are both parallel to the Z-axis, which can satisfy the following conditions: 1/40
Figure 110122327-A0305-02-0009-14
H1/H2
Figure 110122327-A0305-02-0009-15
3/20. This size configuration is beneficial to improve the sensitivity of the piezoelectric MEMS accelerometer 100 .

請同時參照第4圖及第5圖,第5圖是第4圖中壓電式微機電加速規100的局部俯視示意圖。第5圖中為了表示第一電極層130及壓電層150的關係,因此省略電極黏著層140及第二電極層170,並將第一電極層130用撒點表示,將壓電層150用斜線表示。第二表面115包含一第一區域116及一第二區域117,第二區域117與第一區域116相連,第一區域116對應第一突塊部112,第一電極層130設置於第二區域117上。壓電層150設置於第一電極層130上並完整覆蓋第二區域117,同時,壓電層150延伸至第一區域116並完整覆蓋第一區域116。藉此,設置於第一區域116上方的壓電層150,在製造壓電式微機電加速規100的過程中可作為載體110的保護層,而有利於減少一次濺鍍步驟、一次微影步驟,而可提升製程效率及降低成本。此外,第二區域117具有一縱向方向D1平行於X軸,第二區域117具有一橫向方向D2平行於Y軸,縱向方向D1與橫向方向D2互相垂直,第一 電極層130的分布範圍沿著橫向方向D2具有一第一長度X1,壓電層150的分布範圍沿著橫向方向D2具有一第二長度X2,第二長度X2平行於第一長度X1,第二長度X2大於第一長度X1,優選地,第一長度X1為第二長度X2的85%至95%,藉此,有利於在壓電層150的邊緣及第一電極層130的邊緣之間的預留足夠的距離X3,有利於提升壓電層150分隔第一電極層130及第二電極層170的效果。 Please refer to FIG. 4 and FIG. 5 at the same time. FIG. 5 is a partial top view of the piezoelectric MEMS accelerometer 100 in FIG. 4 . In order to show the relationship between the first electrode layer 130 and the piezoelectric layer 150 in Fig. 5, the electrode adhesive layer 140 and the second electrode layer 170 are omitted, and the first electrode layer 130 is represented by dots, and the piezoelectric layer 150 is represented by dots. indicated by a slash. The second surface 115 includes a first region 116 and a second region 117, the second region 117 is connected to the first region 116, the first region 116 corresponds to the first bump portion 112, and the first electrode layer 130 is disposed in the second region 117 on. The piezoelectric layer 150 is disposed on the first electrode layer 130 and completely covers the second region 117 . Meanwhile, the piezoelectric layer 150 extends to the first region 116 and completely covers the first region 116 . In this way, the piezoelectric layer 150 disposed above the first region 116 can be used as a protective layer for the carrier 110 in the process of manufacturing the piezoelectric MEMS accelerometer 100, which is beneficial to reduce one sputtering step and one lithography step, Therefore, the process efficiency can be improved and the cost can be reduced. In addition, the second region 117 has a longitudinal direction D1 parallel to the X axis, the second region 117 has a transverse direction D2 parallel to the Y axis, the longitudinal direction D1 and the transverse direction D2 are perpendicular to each other, the first The distribution range of the electrode layer 130 has a first length X1 along the lateral direction D2, the distribution range of the piezoelectric layer 150 has a second length X2 along the lateral direction D2, the second length X2 is parallel to the first length X1, and the second The length X2 is greater than the first length X1, preferably, the first length X1 is 85% to 95% of the second length X2, thereby facilitating the contact between the edge of the piezoelectric layer 150 and the edge of the first electrode layer 130 Reserving a sufficient distance X3 is beneficial to improve the effect of separating the first electrode layer 130 and the second electrode layer 170 by the piezoelectric layer 150 .

詳細來說,載體110可包含本體110a以及二絕緣層110b分別設置於本體110a的上、下表面。本體110a可為矽晶圓,或其他具有高阻抗、耐高溫及抗蝕刻的材料,例如,電阻率大於或等於0.5Ωcm,可承受600℃以上高溫,以及可抵抗丙酮、異丙醇及顯影劑腐蝕的材料。絕緣層110b可為二氧化矽,或其他絕緣可降低導線漏電流影響的材質,例如氮化矽(Si3N4)或氮氧化摻雜物。當本體110a本身的絕緣能力優良且足以降低導線漏電流影響時,可省略絕緣層110b。 In detail, the carrier 110 may include a main body 110a and two insulating layers 110b respectively disposed on the upper and lower surfaces of the main body 110a. The body 110a can be a silicon wafer, or other materials with high resistance, high temperature resistance and etching resistance, for example, the resistivity is greater than or equal to 0.5Ωcm, can withstand high temperatures above 600°C, and can resist acetone, isopropanol and developer corroded material. The insulating layer 110b can be silicon dioxide, or other insulating materials that can reduce the influence of wire leakage current, such as silicon nitride (Si 3 N 4 ) or oxynitride dopant. When the insulating ability of the body 110a itself is good enough to reduce the influence of the wire leakage current, the insulating layer 110b can be omitted.

第一電極層130及第二電極層170的材質可為鉑,或其他適於作為電極且具有導電能力的材質,例如銀、鋁、金、氮化鈦(TiN)、鎳、銅、錫等。 The material of the first electrode layer 130 and the second electrode layer 170 can be platinum, or other materials suitable as electrodes and having electrical conductivity, such as silver, aluminum, gold, titanium nitride (TiN), nickel, copper, tin, etc. .

電極黏著層140可設置於第二表面115及第一電極層130之間,電極黏著層140係用於提升第一電極層130與第二表面115之間的附著力,因此,當一電極層130與載體110的材質可提供彼此足夠的附著力時,第一電極層130與第二表面115之間可省略電極黏著層140。相似地,電極黏著層140係用於提升第二電極層170與壓電層150之間的附著力,當第二電極層170與壓電層150的材質可提供彼此足夠的附著力時,第二電極層170與壓電層150之間可省略電極黏著層140。電極黏著層140的材質可為鈦、氧化鋅、氮化鋁、氧化鋁、氮化鈦或二氧化鈦等。 The electrode adhesive layer 140 can be disposed between the second surface 115 and the first electrode layer 130. The electrode adhesive layer 140 is used to enhance the adhesion between the first electrode layer 130 and the second surface 115. Therefore, when an electrode layer When the materials of the 130 and the carrier 110 can provide sufficient adhesion to each other, the electrode adhesive layer 140 can be omitted between the first electrode layer 130 and the second surface 115 . Similarly, the electrode adhesive layer 140 is used to enhance the adhesion between the second electrode layer 170 and the piezoelectric layer 150. When the materials of the second electrode layer 170 and the piezoelectric layer 150 can provide sufficient adhesion to each other, the second The electrode adhesive layer 140 can be omitted between the two electrode layers 170 and the piezoelectric layer 150 . The electrode adhesive layer 140 can be made of titanium, zinc oxide, aluminum nitride, aluminum oxide, titanium nitride, or titanium dioxide.

壓電層150的材料可為壓電材料,優選地,壓電層150的材料可為Li:ZnO,其中Li的比例為1莫耳百分率~10莫耳百分率,藉此,壓電層150的成分不含鉛,可避免環境污染。 The material of the piezoelectric layer 150 can be a piezoelectric material, preferably, the material of the piezoelectric layer 150 can be Li:ZnO, wherein the ratio of Li is 1 mole percent to 10 mole percent, whereby the piezoelectric layer 150 The ingredients are lead-free to avoid environmental pollution.

蝕刻保護層190設置於第一突塊部112遠離第一表面111的一側,且設置於第二突塊部113遠離第一表面111的一側,蝕刻保護層190是用於進行蝕刻步驟時,保護第一突塊部112及第二突塊部113免於被蝕刻,蝕刻保護層190的材質可為金屬或無機物,例如氧化鋅、氮化鋁、氧化鋁、銀、鋁、金、氮化鈦、鎳、銅、錫等。在其他實施方式中,進行完蝕刻步驟後,可將蝕刻保護層190予以移除,因此蝕刻保護層190為選擇性膜層。 The etch protection layer 190 is disposed on the side of the first protrusion portion 112 away from the first surface 111, and is disposed on the side of the second protrusion portion 113 away from the first surface 111. The etch protection layer 190 is used for the etching step , to protect the first bump portion 112 and the second bump portion 113 from being etched, the material of the etching protection layer 190 can be metal or inorganic, such as zinc oxide, aluminum nitride, aluminum oxide, silver, aluminum, gold, nitrogen Titanium, nickel, copper, tin, etc. In other embodiments, after the etching step, the etching protection layer 190 can be removed, so the etching protection layer 190 is a selective film layer.

<壓電式微機電加速規的製造方法> <Manufacturing method of piezoelectric MEMS accelerometer>

請參照第9圖,其是依據本發明另一實施方式的壓電式微機電加速規的製造方法900的步驟流程圖。壓電式微機電加速規的製造方法900包含步驟910至步驟980,其中步驟920及950為選擇性步驟。請同時參照第6圖至第8圖,其是第4圖中壓電式微機電加速規100的製造流程示意圖,在此以第6圖至第8圖例示說明壓電式微機電加速規的製造方法900。 Please refer to FIG. 9 , which is a flowchart of steps of a method 900 for manufacturing a piezoelectric MEMS accelerometer according to another embodiment of the present invention. The method 900 for manufacturing a piezoelectric MEMS accelerometer includes steps 910 to 980, wherein steps 920 and 950 are optional steps. Please refer to Figures 6 to 8 at the same time, which are schematic diagrams of the manufacturing process of the piezoelectric MEMS accelerometer 100 in Figure 4. Here, Figures 6 to 8 illustrate the manufacturing method of the piezoelectric MEMS accelerometer 900.

步驟910是提供一基板。如第6圖(a)子圖所示,基板210包含一頂面215及一底面211相對於頂面215,基板210可包含本體110a以及二絕緣層110b。 Step 910 is to provide a substrate. As shown in the sub-figure of FIG. 6( a ), the substrate 210 includes a top surface 215 and a bottom surface 211 . Relative to the top surface 215 , the substrate 210 may include a body 110 a and two insulating layers 110 b.

步驟920是形成一電極黏著層。步驟930是形成一第一電極層。如第6圖(b)子圖所示,為了定義電極黏著層140及第一電極層130的圖案,先於頂面215形成圖案化的光阻層300,再依序形成電極黏著層140及第一電極層130。之後利 用舉離(lift-off)製程除去光阻層300及其上方的膜層,結果如第6圖(c)子圖所示,電極黏著層140及第一電極層130位於頂面215上且局部覆蓋頂面215。 Step 920 is to form an electrode adhesive layer. Step 930 is to form a first electrode layer. As shown in the sub-figure of FIG. 6 (b), in order to define the patterns of the electrode adhesive layer 140 and the first electrode layer 130, a patterned photoresist layer 300 is formed on the top surface 215 first, and then the electrode adhesive layer 140 and the first electrode layer 130 are sequentially formed. The first electrode layer 130 . Later profit The photoresist layer 300 and the film layer above it are removed by a lift-off process. As a result, as shown in the sub-figure of FIG. 6 (c), the electrode adhesive layer 140 and the first electrode layer 130 are located on the top surface 215 and The top surface 215 is partially covered.

步驟940是形成一壓電層。如第6圖(d)子圖所示,依序形成壓電層150及圖案化的光阻層300,再利用濕式蝕刻(wet etch)製程除去光阻層300及部分壓電層150,結果如第7圖(a)子圖所示,其中壓電層150位於第一電極層130上,且第一電極層130位於壓電層150的分布範圍內。 Step 940 is to form a piezoelectric layer. As shown in the sub-figure of FIG. 6 (d), the piezoelectric layer 150 and the patterned photoresist layer 300 are sequentially formed, and then the photoresist layer 300 and part of the piezoelectric layer 150 are removed by a wet etching process. The result is shown in the sub-figure (a) of FIG. 7 , wherein the piezoelectric layer 150 is located on the first electrode layer 130 , and the first electrode layer 130 is located within the distribution range of the piezoelectric layer 150 .

步驟950是形成一電極黏著層。步驟960是形成一第二電極層。如第7圖(b)子圖所示,為了定義電極黏著層140及第二電極層170的圖案,先形成圖案化的光阻層300,再依序形成電極黏著層140及第二電極層170。之後利用舉離製程除去光阻層300及其上方的膜層,結果如第7圖(c)子圖所示,電極黏著層140及第二電極層170位於壓電層150上,且第二電極層170位於壓電層150的分布範圍內。 Step 950 is to form an electrode adhesive layer. Step 960 is to form a second electrode layer. As shown in the sub-figure of Figure 7 (b), in order to define the pattern of the electrode adhesive layer 140 and the second electrode layer 170, a patterned photoresist layer 300 is formed first, and then the electrode adhesive layer 140 and the second electrode layer are formed in sequence. 170. Afterwards, the photoresist layer 300 and the film layer above it are removed by lift-off process. As a result, as shown in the sub-figure of FIG. 7 (c), the electrode adhesive layer 140 and the second electrode layer 170 are located on the piezoelectric layer 150, and the second The electrode layer 170 is located within the distribution range of the piezoelectric layer 150 .

步驟970是形成一蝕刻阻擋層。如第7圖(d)子圖所示,為了定義蝕刻阻擋層190的圖案,先形成圖案化的光阻層300,再形成蝕刻阻擋層190,之後利用舉離製程除去光阻層300及附著其上的蝕刻阻擋層190,結果如第8圖(a)子圖所示,以獲得圖案化的蝕刻阻擋層190,蝕刻阻擋層190位於底面211上。 Step 970 is to form an etch stop layer. As shown in the sub-figure of Figure 7 (d), in order to define the pattern of the etching stopper layer 190, a patterned photoresist layer 300 is first formed, and then the etching stopper layer 190 is formed, and then the photoresist layer 300 and the adhesion are removed by a lift-off process. The result of the etching stopper layer 190 on it is as shown in the sub-figure of FIG. 8( a ), so as to obtain a patterned etching stopper layer 190 . The etch stopper layer 190 is located on the bottom surface 211 .

步驟980是進行一蝕刻步驟,移除基板210的一部份,使基板210形成載體110。如第8圖(b)子圖所示,先除去部分位於上方的絕緣層110b,以形成凹槽221。並除去部分位於下方的絕緣層110b,以形成凹槽222、223。續於凹槽221處蝕刻掉部分本體110a,使凹槽221加深,結果如第8圖(c)子圖所示。再由凹槽 222、223蝕刻掉部分本體110a,以切除多餘的部位P,並使凹槽223加深,結果如第8圖(d)子圖所示。基板210受蝕刻後變成載體110,載體110的第一表面111、第一突塊部112及第二突塊部113係底面211受蝕刻後往內凹陷所形成,第二表面115係頂面215經蝕刻後所餘留的部分。蝕刻步驟可採用乾式蝕刻,例如,可使用感應耦合式電漿蝕刻系統(Inductive Couple Plasma Etcher,ICP Etcher)進行反應離子刻蝕(Reactive-Ion Etching,RIE)。 Step 980 is to perform an etching step to remove a part of the substrate 210 so that the substrate 210 forms the carrier 110 . As shown in the sub-figure of FIG. 8( b ), part of the upper insulating layer 110 b is removed to form the groove 221 . And part of the insulating layer 110b located below is removed to form the grooves 222 and 223 . Continue to etch away part of the main body 110a at the groove 221 to make the groove 221 deeper, and the result is shown in the sub-figure of FIG. 8 (c). then by the groove 222 and 223 etch away part of the body 110a to cut off the redundant part P and deepen the groove 223, the result is shown in the sub-figure of Figure 8 (d). The substrate 210 becomes the carrier 110 after being etched, the first surface 111 of the carrier 110, the first protruding portion 112 and the second protruding portion 113 are formed by inward depression after the bottom surface 211 is etched, and the second surface 115 is the top surface 215 The remaining part after etching. The etching step may be dry etching, for example, reactive ion etching (Reactive-Ion Etching, RIE) may be performed using an Inductive Couple Plasma Etcher (ICP Etcher).

前述步驟中,各膜層可使用射頻磁控濺鍍系統沉積而得。圖案化的光阻層300可利用微影製程所形成,光阻層300可使用市售產品,如AZ 1500。濕式蝕刻所使用的蝕刻液可為鋁蝕刻液,舉離製程所使用的浸泡溶液可為丙酮。然而,本發明不以此為限,各膜層可採用其他製程形成。關於各膜層的細節可參照上文,在此不予贅述。 In the foregoing steps, each film layer can be deposited using a radio frequency magnetron sputtering system. The patterned photoresist layer 300 can be formed by lithography process, and the photoresist layer 300 can be a commercially available product, such as AZ1500. The etching solution used in the wet etching can be an aluminum etching solution, and the soaking solution used in the lift-off process can be acetone. However, the present invention is not limited thereto, and each film layer can be formed by other processes. The details of each film layer can be referred to above, and will not be repeated here.

<壓電式微機電加速規的性質量測> <Measurement of Properties of Piezoelectric MEMS Accelerometer>

實施例1:依據前述壓電式微機電加速規的製造方法900獲得實施例1的壓電式微機電加速規,實施例1的壓電式微機電加速規為懸臂樑加速規。其尺寸及各膜層的成分如表一、表二所示,其中長度L1、L2、高度H1、H2及寬度W1、W2的定義請參照第2圖及第3圖。 Embodiment 1: According to the manufacturing method 900 of the aforementioned piezoelectric MEMS accelerometer, the piezoelectric MEMS accelerometer in Example 1 is obtained, and the piezoelectric MEMS accelerometer in Example 1 is a cantilever beam accelerometer. Its size and the composition of each film layer are shown in Table 1 and Table 2. For the definition of length L1, L2, height H1, H2 and width W1, W2, please refer to Figure 2 and Figure 3.

Figure 110122327-A0305-02-0013-16
Figure 110122327-A0305-02-0013-16

Figure 110122327-A0305-02-0014-1
Figure 110122327-A0305-02-0014-1

將實施例1的壓電式微機電加速規進行靈敏度測試以及共振頻率測試,係使用振盪系統(THE MPDAL SHOP 9100D)提供一振動源,使實施例1的壓電式微機電加速規產生訊號,並透過軟體(m+p加速規量測軟體)分析訊號,得到實施例1的壓電式微機電加速規的靈敏度為2mV/g~8mV/g,共振頻率為200Hz~1000Hz,其中mV為毫伏特,g為重力加速度,1g=9.8m/s2,顯示依據本發明的壓電式微機電加速規具有優良的靈敏度及共振頻率。 The sensitivity test and resonance frequency test of the piezoelectric MEMS accelerometer in Example 1 is performed by using an oscillation system (THE MPDAL SHOP 9100D) to provide a vibration source, so that the piezoelectric MEMS accelerometer in Example 1 generates a signal, and through Software (m+p accelerometer measuring software) analyzes the signal, and the sensitivity of the piezoelectric MEMS accelerometer in Example 1 is 2mV/g~8mV/g, and the resonance frequency is 200Hz~1000Hz, where mV is millivolts, g is the acceleration of gravity, 1g=9.8m/s 2 , which shows that the piezoelectric MEMS accelerometer according to the present invention has excellent sensitivity and resonance frequency.

相較於先前技術,本發明的壓電式微機電加速規藉由第一電極層及第二電極層皆位於壓電層的分布範圍內,可通過壓電層有效分隔第一電極層及第二電極層,可降低第一電極層及第二電極層發生短路的情況,而有利於提升壓電式微機電加速規的良率。優選地,藉由壓電層延伸至第一區域並完整覆蓋第一區域,在製造壓電式微機電加速規時,有利於減少一次濺鍍步驟、一次微影步驟,而可提升製程效率及降低成本。 Compared with the prior art, the piezoelectric MEMS accelerometer of the present invention can effectively separate the first electrode layer and the second electrode layer through the piezoelectric layer because the first electrode layer and the second electrode layer are located within the distribution range of the piezoelectric layer. The electrode layer can reduce the short circuit between the first electrode layer and the second electrode layer, and is beneficial to improve the yield rate of the piezoelectric MEMS accelerometer. Preferably, by extending the piezoelectric layer to the first region and completely covering the first region, when manufacturing a piezoelectric MEMS accelerometer, it is beneficial to reduce one sputtering step and one lithography step, thereby improving process efficiency and reducing cost.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:壓電式微機電加速規 100: Piezoelectric MEMS Acceleration Gauge

110:載體 110: carrier

110a:本體 110a: Ontology

110b:絕緣層 110b: insulating layer

111:第一表面 111: first surface

112:第一突塊部 112: the first protrusion

113:第二突塊部 113: the second protrusion

115:第二表面 115: second surface

116:第一區域 116: The first area

117:第二區域 117: Second area

130:第一電極層 130: the first electrode layer

140:電極黏著層 140: electrode adhesive layer

150:壓電層 150: piezoelectric layer

170:第二電極層 170: second electrode layer

190:蝕刻保護層 190: etching protective layer

A:連接部 A: Connecting part

B:懸臂樑 B: cantilever beam

C:質量塊 C: mass block

E1,E2:長度 E1, E2: Length

X,Z:坐標軸 X, Z: coordinate axis

Claims (11)

一種壓電式微機電加速規,包含:一載體,包含:一第一表面,包含:一第一突塊部,突出於該第一表面;及一第二突塊部,突出於該第一表面,且與該第一突塊部間隔設置;及一第二表面,相對於該第一表面;一第一電極層,設置於該第二表面上;一壓電層,設置於該第一電極層上;及一第二電極層,設置於該壓電層上;其中該第一電極層及該第二電極層的分布範圍皆位於該壓電層的分布範圍內;其中該第一突塊部係該壓電式微機電加速規的一質量塊的主要構成物,該第二突塊部係該壓電式微機電加速規的一連接部的主要構成物。 A piezoelectric micro-electromechanical accelerometer, comprising: a carrier, including: a first surface, including: a first protruding part, protruding from the first surface; and a second protruding part, protruding from the first surface , and spaced apart from the first bump portion; and a second surface, opposite to the first surface; a first electrode layer, arranged on the second surface; a piezoelectric layer, arranged on the first electrode layer; and a second electrode layer disposed on the piezoelectric layer; wherein the distribution ranges of the first electrode layer and the second electrode layer are both within the distribution range of the piezoelectric layer; wherein the first bump The part is the main component of a mass block of the piezoelectric micro-electromechanical accelerometer, and the second protruding part is the main component of a connection part of the piezoelectric micro-electromechanical accelerometer. 如請求項1所述的壓電式微機電加速規,其中該第二表面包含一第一區域及一第二區域與該第一區域相連,該第一區域對應該第一突塊部,該第一電極層設置於該第二區域上。 The piezoelectric MEMS accelerometer as claimed in claim 1, wherein the second surface includes a first region and a second region connected to the first region, the first region corresponds to the first protrusion, and the first region An electrode layer is disposed on the second region. 如請求項2所述的壓電式微機電加速規,其中該壓電層延伸至該第一區域,且完整覆蓋該第一區域及該第二區域。 The piezoelectric MEMS accelerometer according to claim 2, wherein the piezoelectric layer extends to the first region and completely covers the first region and the second region. 如請求項1所述的壓電式微機電加速規,更包含: 至少一電極黏著層,設置於該第二表面與該第一電極層之間及/或該壓電層與該第二電極層之間。 The piezoelectric MEMS accelerometer as described in Claim 1 further includes: At least one electrode adhesive layer is disposed between the second surface and the first electrode layer and/or between the piezoelectric layer and the second electrode layer. 如請求項1所述的壓電式微機電加速規,更包含:一蝕刻保護層,設置於該第一突塊部遠離該第一表面的一側。 The piezoelectric MEMS accelerometer as claimed in claim 1 further includes: an etching protection layer disposed on a side of the first protrusion part away from the first surface. 如請求項1所述的壓電式微機電加速規,其中該第一電極層的分布範圍具有一第一長度,該壓電層的分布範圍具有一第二長度平行該第一長度,該第一長度為該第二長度的85%至95%。 The piezoelectric MEMS accelerometer as claimed in claim 1, wherein the distribution range of the first electrode layer has a first length, the distribution range of the piezoelectric layer has a second length parallel to the first length, and the first The length is 85% to 95% of the second length. 一種壓電式微機電加速規的製造方法,包含:提供一基板,該基板包含一頂面及一底面相對於該頂面;形成一第一電極層,使該第一電極層位於該頂面上且局部覆蓋該頂面;形成一壓電層,使該壓電層位於該第一電極層上;形成一第二電極層,使該第二電極層位於該壓電層上;以及進行一蝕刻步驟,移除該基板的一部份,使該基板形成一載體,其中該載體包含一第一表面及一第二表面相對於該第一表面,該第一表面包含一第一突塊部及一第二突塊部,該第一突塊部突出於該第一表面,該第二突塊部突出於該第一表面且與該第一突塊部間隔設置,該第一表面、該第一突塊部及該第二突塊部係該底面受蝕刻後往內凹陷所形成,該第二表面係該頂面經蝕刻後所餘留的部分;其中該壓電式微機電加速規中,該第一電極層及該第二電極層皆位於該壓電層的分布範圍內;其中該第一突塊部係該壓電式微機電加速規的一質量塊的主要構成物,該 第二突塊部係該壓電式微機電加速規的一連接部的主要構成物。 A method for manufacturing a piezoelectric MEMS accelerometer, comprising: providing a substrate, the substrate including a top surface and a bottom surface opposite to the top surface; forming a first electrode layer so that the first electrode layer is located on the top surface and partially cover the top surface; forming a piezoelectric layer, such that the piezoelectric layer is located on the first electrode layer; forming a second electrode layer, such that the second electrode layer is located on the piezoelectric layer; and performing an etching step, removing a part of the substrate, so that the substrate forms a carrier, wherein the carrier includes a first surface and a second surface opposite to the first surface, the first surface includes a first bump portion and A second protruding part, the first protruding protruding from the first surface, the second protruding protruding from the first surface and spaced apart from the first protruding part, the first surface, the first protruding A protruding part and the second protruding part are formed by inward depression after the bottom surface is etched, and the second surface is the remaining part after the top surface is etched; wherein in the piezoelectric MEMS accelerometer, Both the first electrode layer and the second electrode layer are located within the distribution range of the piezoelectric layer; wherein the first protruding part is the main component of a mass block of the piezoelectric MEMS accelerometer, the The second protruding part is the main component of a connecting part of the piezoelectric MEMS accelerometer. 如請求項7所述的壓電式微機電加速規的製造方法,其中該第二表面包含一第一區域及一第二區域與該第一區域相連,該第一區域對應該第一突塊部,形成該壓電層更包含使該壓電層覆蓋該頂面未被該第一電極層所覆蓋的部分,以使該壓電式微機電加速規中,該第一電極層設置於該第二區域上,其中該壓電層延伸至該第一區域,且完整覆蓋該第一區域及該第二區域。 The manufacturing method of the piezoelectric MEMS accelerometer according to claim 7, wherein the second surface includes a first region and a second region connected to the first region, and the first region corresponds to the first protrusion , forming the piezoelectric layer further includes making the piezoelectric layer cover the portion of the top surface not covered by the first electrode layer, so that in the piezoelectric MEMS accelerometer, the first electrode layer is disposed on the second area, wherein the piezoelectric layer extends to the first area and completely covers the first area and the second area. 如請求項7所述的壓電式微機電加速規的製造方法,其中在形成該第一電極層之前更包含:形成一電極黏著層,使該電極黏著層位於該頂面上且局部覆蓋該頂面。 The manufacturing method of the piezoelectric MEMS accelerometer according to claim 7, wherein before forming the first electrode layer, it further includes: forming an electrode adhesive layer, so that the electrode adhesive layer is located on the top surface and partially covers the top surface noodle. 如請求項7所述的壓電式微機電加速規的製造方法,其中在形成該第二電極層之前更包含:形成一電極黏著層,使該電極黏著層位於該壓電層上。 The manufacturing method of the piezoelectric MEMS accelerometer according to claim 7, further includes: forming an electrode adhesive layer, so that the electrode adhesive layer is located on the piezoelectric layer before forming the second electrode layer. 如請求項7所述的壓電式微機電加速規的製造方法,其中在進行該蝕刻步驟之前更包含:形成一蝕刻阻擋層,使該蝕刻阻擋層位於該底面上。 The manufacturing method of the piezoelectric micro-electromechanical accelerometer according to claim 7, further comprising: forming an etching barrier layer so that the etching barrier layer is located on the bottom surface before performing the etching step.
TW110122327A 2021-06-18 2021-06-18 Piezoelectric mems accelerometer and method for manufacturing the same TWI784580B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110122327A TWI784580B (en) 2021-06-18 2021-06-18 Piezoelectric mems accelerometer and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110122327A TWI784580B (en) 2021-06-18 2021-06-18 Piezoelectric mems accelerometer and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI784580B true TWI784580B (en) 2022-11-21
TW202300918A TW202300918A (en) 2023-01-01

Family

ID=85794569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110122327A TWI784580B (en) 2021-06-18 2021-06-18 Piezoelectric mems accelerometer and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI784580B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200829919A (en) * 2007-01-02 2008-07-16 Polstar Technologies Inc Calibration system for accelerometer and the method of using the same
TW200923369A (en) * 2007-11-19 2009-06-01 Univ Nat Yunlin Sci & Tech High performance acceleration gauge
JP2012159494A (en) * 2011-02-02 2012-08-23 Honeywell Internatl Inc Mems vibrating-beam accelerometer with piezoelectric drive
US20180335443A1 (en) * 2016-03-18 2018-11-22 Rosemount Aerospace Inc. Symmetric mems piezoelectric accelerometer for lateral noise reduction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200829919A (en) * 2007-01-02 2008-07-16 Polstar Technologies Inc Calibration system for accelerometer and the method of using the same
TW200923369A (en) * 2007-11-19 2009-06-01 Univ Nat Yunlin Sci & Tech High performance acceleration gauge
JP2012159494A (en) * 2011-02-02 2012-08-23 Honeywell Internatl Inc Mems vibrating-beam accelerometer with piezoelectric drive
US20180335443A1 (en) * 2016-03-18 2018-11-22 Rosemount Aerospace Inc. Symmetric mems piezoelectric accelerometer for lateral noise reduction

Also Published As

Publication number Publication date
TW202300918A (en) 2023-01-01

Similar Documents

Publication Publication Date Title
US8671757B2 (en) Micromechanical component
CN102667497B (en) Acceleration sensor
JP4688600B2 (en) Manufacturing method of semiconductor sensor
JPH0654327B2 (en) Unidirectional accelerometer and method of making same
US9828242B2 (en) Accelerometer and its fabrication technique
US9745189B1 (en) MEMS device with isolation sub-frame structure
US8940639B2 (en) Methods and structures for using diamond in the production of MEMS
US9557346B2 (en) Accelerometer and its fabrication technique
JP2007298410A (en) Electrostatic capacity sensor
JP4815857B2 (en) Manufacturing method of mechanical quantity detection sensor
TW201524889A (en) Micromechanical component and process to produce a micromechanical component
US8698315B2 (en) Semiconductor device
JP5426906B2 (en) Acceleration sensor
CN108117034B (en) MEMS component and manufacturing method thereof
TWI784580B (en) Piezoelectric mems accelerometer and method for manufacturing the same
US20080028856A1 (en) Capacitive accelerating sensor bonding silicon substrate and glass substrate
KR101459977B1 (en) Wafer level package of mems senser and method for manufacturing the same
JP4214565B2 (en) Manufacturing method of semiconductor dynamic quantity sensor
KR101071915B1 (en) Acceleration sensor and method for manufacturing the same
JP2011196966A (en) Inertia sensor
JP2008039595A (en) Capacitance acceleration sensor
US10710869B2 (en) Micromechanical sensor
CN207986670U (en) A kind of MEMS component
JPWO2015155983A1 (en) Sensor
JP4628018B2 (en) Capacitive mechanical quantity sensor and manufacturing method thereof