TWI782583B - 無線通訊中的頻寬協商的方法及通信裝置 - Google Patents

無線通訊中的頻寬協商的方法及通信裝置 Download PDF

Info

Publication number
TWI782583B
TWI782583B TW110122372A TW110122372A TWI782583B TW I782583 B TWI782583 B TW I782583B TW 110122372 A TW110122372 A TW 110122372A TW 110122372 A TW110122372 A TW 110122372A TW I782583 B TWI782583 B TW I782583B
Authority
TW
Taiwan
Prior art keywords
bandwidth
eht
bits
control frame
frame
Prior art date
Application number
TW110122372A
Other languages
English (en)
Other versions
TW202201985A (zh
Inventor
開穎 呂
石鎔豪
志熹 易
王超群
劍函 劉
Original Assignee
新加坡商聯發科技(新加坡)私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡商聯發科技(新加坡)私人有限公司 filed Critical 新加坡商聯發科技(新加坡)私人有限公司
Publication of TW202201985A publication Critical patent/TW202201985A/zh
Application granted granted Critical
Publication of TWI782583B publication Critical patent/TWI782583B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)
  • Communication Control (AREA)

Abstract

本發明提供頻寬協商的方法及通信裝置,其中該方法包括:使用頻寬擴展指示在第一站點(STA)和第二STA之間執行頻寬協商;以及根據所述頻寬協商在第一STA和第二STA之間進行無線通訊。使用該方法,使得第一STA和第二STA能夠進行頻寬協商。

Description

無線通訊中的頻寬協商的方法及通信裝置
本發明總體涉及無線通訊,並且更具體地涉及無線通訊中的頻寬擴展指示和協商。
除非本文另有說明,本節中描述的方法不是下面列出的請求項的先前技術,並且不能由於包含在本節中而被認為是先前技術。
在諸如基於電氣和電子工程師協會 (Institute Electrical and Electronics Engineer,IEEE) 標準的超高輸送量 (extreme-high-throughput,EHT) 無線局域網 (wireless local area network,WLAN) 等下一代無線通訊中,其中IEEE標準包括 IEEE 802.11be及更高版本,每個80MHz頻率段可以支援一些基於EHT信號欄位B (EHT SIG B) 內容通道設計“1212”的穿孔樣式(patterns of puncturing)。在320MHz非正交頻分多址(non-orthogonal frequency-division multiple access,non-OFDMA)、240MHz非OFDMA、160MHz非OFDMA和80MHz非OFDMA中的每一個中,支持某些有條件的強制的(以支持穿孔為條件)的大資源單元(large resource unit,RU)組合。特別是在320MHz 非OFDMA中,總共10個穿孔選項(不包括主(primary)80MHz頻段)可以用4個位元表示。在240MHz非OFDMA中,共有7個穿孔選項(不包括主80MHz頻段)可以用3個位元表示。在160MHz非OFDMA 中,共有10個穿孔選項(不包括主80MHz頻段)可以用4個位元表示。在 80MHz非OFDMA 中,共有3個穿孔選項(不包括主20MHz 頻段)可以用2個位元表示。
關於頻寬指示和穿孔支援,回應者需要根據發起者的頻寬來協商要使用的頻寬和穿孔樣式。為了支援最大320MHz的實體層協定資料單元 (physical-layer protocol data unit,PPDU) 頻寬指示,需要6位元來指示聚合頻寬(例如總共 33 個具有不同穿孔樣式的頻寬,頻寬包括一個或者多個RU)以及不具有穿孔的頻寬(例如,20MHz、40MHz、80MHz、160MHz 和 320MHz)的可能協商頻寬。然而,目前尚不清楚如何使用傳統的請求發送 (request-to-send,RTS)/清除發送 (clear-to-send,CTS) 訊框(frame)或其他控制訊框來用於頻寬指示和靜態/動態頻寬協商,以便在必要時啟用通道保護和網路分配向量 (network allocation vector,NAV)重置(reset)。因此,需要一種頻寬擴展指示和協商的解決方案來解決這個問題。
以下概述僅是說明性的,並不旨在以任何方式進行限制。即,提供以下概要以介紹本文描述的新穎且非顯而易見的技術的概念、亮點、益處和優點。 下面在詳細描述中進一步描述了選擇的實現方式。因此,以下概述不旨在確定要求保護的主題的基本特徵,也不旨在用於確定要求保護的主題的範圍。
本發明的目的是提供與無線通訊中的頻寬擴展指示和協商有關的方案、概念、設計、技術、方法和裝置。在基於本發明的各種提議方案下,可以解決或以其他方式減輕上述問題。
在一個方面,一種方法可以涉及使用頻寬擴展指示在第一站點(station,STA)和第二STA之間執行頻寬協商。該方法還可以涉及根據頻寬協商在第一STA和第二STA之間進行無線通訊。
在另一方面,一種裝置可以包括收發器和耦接到該收發器的處理器。收發器可以被配置為無線通訊。處理器可以被配置為經由收發器使用頻寬擴展指示在第一STA和第二STA之間執行頻寬協商。處理器還可以被配置為根據頻寬協商經由收發器在第一STA和第二STA之間進行通信。
值得注意的是,儘管本文提供的描述可能是在某些無線電接入技術、網路和網路拓撲(例如,Wi-Fi)的環境中,所提出的概念、方案和任何變體/衍生 其可以在其他類型的無線接入技術、網路和網路拓撲中實現、針對其他類型的無線接入技術、網路和網路拓撲來實現,例如但不限於藍牙、ZigBee、第五代(5th Generation,5G)/新無線電(New Radio,NR)、長期演進(Long-Term Evolution,LTE)、LTE-Advanced、LTE-Advanced Pro、物聯網 (Internet-of-Things,IoT)、工業物聯網 (Industrial IoT,IIoT) 和窄帶物聯網 (narrowband IoT,NB-IoT)。 因此,本發明的範圍不限於在此描述的示例。
通過本申請提供的頻寬協商的方法以及通信裝置,使得STA能夠進行頻寬協商。
本文公開了要求保護的主題的詳細實施例和實施方式。然而,應當理解,所公開的實施例和實施方式僅是對可以以各種形式體現的所要求保護的主題的說明。然而,本發明可以以許多不同的形式體現並且不應被解釋為限於這裡闡述的示例性實施例和實施方式。相反,提供這些示例性實施例和實施方式是為了使本發明的描述徹底和完整,並且將向所屬領域具有通常知識者充分傳達本發明的範圍。在下面的描述中,可以省略眾所周知的特徵和技術的細節以避免不必要地混淆所呈現的實施例和實施方式。概述
基於本發明的實施方式涉及與無線通訊中的頻寬擴展指示和協商有關的各種技術、方法、方案和/或解決方案。根據本發明,多種可能的解決方案可以單獨或聯合實施。即,雖然下面可以分別描述這些可能的解決方案,但是這些可能的解決方案中的兩個或更多個可以以一種組合或另一種組合來實施。
第1圖示出了示例網路環境100,在該示例網路環境100中可以實施基於本發明的各種解決方案和方案。第2圖到第15圖示出了基於本發明的在網路環境100中的各種提議方案的示例實施方式。參照第1圖-第15圖,提供了各種提議方案的以下描述。
參照第1圖,網路環境100至少包括STA 110和STA 120,STA 110和STA 120可根據一個或多個IEEE 802.11標準(例如,IEEE 802.11be及更高標準)彼此無線通訊。STA 110(在此可互換地表示為“STA1”)和STA 120(在此可互換地表示為“STA2”)中的每一個都可以用作可作為接入點(AP)的STA或非AP的STA。另外,STA 110和STA 120中的每一個可以被配置為根據以下描述的各種提議方案在無線通訊中執行頻寬擴展指示和協商。值得注意的是,在本發明中,術語“主通道(primary channel)”是指允許通過通道競爭進行媒體接入的20MHz通道。術語“非主通道(non-primary channel)”是指在操作通道(operating channel)中不是主通道的20MHz通道。術語“主頻段”是指在操作頻寬(例如,80MHz、160MHz、80+80MHz、240MHz、160+80MHz、320MHz或160+160MHz)內的包含主通道的頻率段(例如,80MHz頻率段)。術語“輔助頻段(secondary segment)”是指操作頻寬內不包含主通道的頻率段(例如,80MHz 頻率段)。
在當前的頻寬指示設計中,Scramble Sequence(加擾序列)中的前7位元為非零,以確保Scramble Seed(加擾種子)為非零。在RTS中,B0~B3位元構成偽隨機(pseudorandom)非零整數,B4位元用於靜態或動態頻寬協商,B5~B6位元用於頻寬指示。在CTS中,B0~B4位元構成偽隨機非零整數,B5~B6位元用於頻寬指示。 頻寬指示可以指20MHz、40MHz、80MHz、160MHz、80+80MHz的指示。
第2圖示出了基於本發明實施方式的關於不支援前導碼穿孔(preamble puncturing)指示的頻寬擴展指示的示例設計200。特別地,設計200示出了控制訊框(例如,RTS)和回應訊框(例如,CTS)的示例設計。參考第2圖,控制訊框(例如RTS)中的某些位元,例如B3位元和B5~B6位元,可以指示20MHz、40MHz、80MHz、160MHz、80+80MHz,以及大於160MHz的頻寬,例如240MHz、160+80MHz、320MHz和160+160MHz。例如,當B3位元設為1時,B5~B6位元可以被設置為固定值或者可變值以用於指示大於160MHz的頻寬。因此,B3位元在本文中可被稱為“頻寬擴展位元”。一些組合可以被保留(reserved)。當頻寬不是 20MHz時,B4位元可用於指示靜態或動態頻寬協商。當頻寬不是20MHz時,B0~B2的3位元或B0~B3的4位元可以構成偽隨機非零整數作為加擾序列的開始。相似的,如第2圖所示,回應訊框(例如CTS)中的某些位元,例如B4~B6位元,在加擾序列中可以用來指示20MHz、40MHz、80MHz、160MHz、80+80MHz、240MHz、160+80MHz、320MHz和160+160MHz。其他兩種組合可以是保留的(reserved)。 B0~B3的4位元可以構成偽隨機非零整數,用於加擾序列的開始。
第3圖示出了根據本發明實施方式的關於包括前導碼穿孔指示的頻寬擴展指示的示例設計300。其中,前導碼穿孔指示可以表示前導碼穿孔樣式指示,特別地,設計300示出了控制訊框(例如,RTS)和回應訊框(例如,CTS)的示例設計。參考第3圖,控制訊框(例如RTS)中的某些位元,例如加擾序列的前7位元中的B5~B6位元,以及某些保留位元,例如在SERVICE欄位的保留位元中的R0~R3位元,可以是用於分別指示所有支援的具有前導碼穿孔樣式的頻寬。例如,一個或多個位元(例如,R0~R3)可以用於指示具有或者不具有前導碼穿孔樣式的頻寬擴展(例如,R0被設置為1以及SERVICE欄位的其他保留位元被設置為0,以指示頻寬320MHz,該頻寬也是具有前導碼穿孔組合的可用頻寬之一)。相似的,如第3圖所示,回應訊框(例如,CTS)中的某些位元可以以與控制訊框中相同的方式用於具有前導碼穿孔樣式的頻寬指示。
在根據本發明的提議方案下,可能存在以下描述的若干選項,其可用於完成頻寬擴展信令指示。在提出的方案下,可以利用控制訊框的媒體接入控制 (medium access control,MAC) 報頭中MAC位址欄位的不同組合來指示控制訊框在控制訊框的SERVICE 欄位中攜帶具有或者不具有前導碼穿孔樣式的擴展頻寬指示。在第一個選項(選項 1)下,為了指示加擾位元的前7位元或SERVICE欄位的保留位元被 EHT 設備(例如,STA 110 和/或 STA 120)修改,EHT 發起者(例如,STA 110或 STA 120) 可以交換發送到 EHT 接收者(例如,STA 120 或 STA 110)的非高輸送量 (non-high-throughput,non-HT) PPDU 中攜帶的控制訊框 (例如 RTS) 中的接收機地址 (receiver address,RA) 和發射機地址 (transmitter address,TA) 欄位。例如,EHT發起者可以使用RA欄位來指示控制訊框的發射機的MAC位址。另外,EHT發起者可以使用TA欄位來指示控制訊框的接收機的MAC位址。相應地,EHT接收者可以將接收到的控制訊框的TA和RA欄位與自己的MAC位址進行匹配。如果EHT接收者的MAC位址與接收到的控制訊框的TA欄位匹配,則EHT接收者可以複製RA欄位並將其作為非HT PPDU攜帶的回應訊框(例如CTS)的RA插入。
在第二選項(選項2)下,為了指示加擾位元的前7位元或SERVICE欄位的保留位元被EHT設備(例如,STA 110和/或STA 120)修改,EHT發起者(例如,STA 110 或 STA 120) 可以在發送給 EHT 接收者 (例如,STA 120 或 STA 110) 的非 HT PPDU 中攜帶的控制訊框 (例如,RTS) 的 TA和RA欄位中將Unicast/Multicast(單播/多播)位元設置為Multicast。例如,EHT發起者可以將TA欄位中的Unicast/Multicast位元設置為Multicast,以指示控制訊框的發射機的MAC位址。另外,EHT發起者可以將RA欄位中的Unicast/Multicast位元設置為Multicast,以指示控制訊框的接收機的MAC位址。相應地,當EHT接收者收到TA和RA欄位的Unicast/Multicast位元分別設置為Multicast的控制訊框時,EHT接收者可以在將RA欄位與自己的MAC位址匹配之前將Unicast/Multicast位元改為Unicast。如果在將RA欄位中的Unicast/Multicast位元改為Unicast之後,EHT 接收者的 MAC 位址與接收到的控制訊框的RA欄位匹配,則 EHT 接收者可以複製 TA 欄位並將TA 欄位的Unicast/Multicast位元更改為Unicast,然後插入更改後的TA 欄位作為在非HT PPDU中攜帶的回應訊框(例如CTS)的 RA。
在第三個選項(選項3)下,為了指示加擾位元的前7位元或SERVICE欄位的保留位元被EHT設備(例如,STA 110和/或STA 120)修改,EHT發起者(例如STA 110 或 STA 120) 可以交換 RA和TA欄位,另外,將在發送到EHT接收者(例如,STA 120或STA 110)的非HT PPDU 中攜帶的控制訊框(例如,RTS)的TA 欄位中的Unicast/Multicast位元設置為Multicast。例如,EHT發起者可以使用RA欄位來指示控制訊框的發射機的MAC位址。另外,EHT 發起者可以使用 TA 欄位並將TA 欄位的Unicast/Multicast位元設置為Multicast,以指示控制訊框的接收機的 MAC 位址。相應地,EHT接收者可以將接收到的控制訊框的TA欄位與自己的MAC位址進行匹配。具體來說,EHT接收者可以在將TA欄位與其自己的 MAC 位址匹配之前將Unicast/Multicast位元更改為Unicast。如果EHT接收者的MAC位址與接收到的控制訊框的TA欄位匹配,則EHT接收者可以複製RA欄位並將其作為非HT PPDU攜帶的回應訊框(例如CTS)的RA插入。
在第四個選項(選項 4)下,為了指示加擾位元的前 7位元或SERVICE欄位的保留位元被 EHT 設備(例如,STA 110和/或STA 120)修改,EHT 發起者(例如,STA 110或STA 120)可以交換RA和TA欄位,另外,將在發送給 EHT 接收者 (例如,STA 120 或 STA 110) 的非 HT PPDU 中攜帶的控制訊框 (例如,RTS) 的 TA欄位中的Unicast/Multicast位元設置為Multicast。例如,EHT 發起者可以使用 RA 欄位並將RA 欄位的Unicast/Multicast位元設置為Multicast,以指示控制訊框的發射機的 MAC 位址。另外,EHT發起者可以使用TA欄位來指示控制訊框的接收機的MAC位址。相應地,EHT接收者可以將接收到的控制訊框的TA和RA欄位與自己的MAC位址進行匹配。如果接收到的控制訊框的 TA 欄位與 EHT 接收者的 MAC 位址匹配,則 EHT 接收者可以複製 RA 欄位並將Unicast/Multicast位元更改為Unicast,然後將修改後的RA欄位作為非HT PPDU攜帶的回應訊框(例如CTS)的RA插入。
在根據本發明的關於沒有前導碼穿孔指示的頻寬協商的提議方案下,可以執行控制訊框交換(例如,RTS和CTS交換)以用於沒有前導碼穿孔指示的動態頻寬協商。在所提出的方案下,上述四個選項之一下的頻寬擴展信令可以與使用控制訊框的加擾序列中的B3位元的頻寬擴展指示(如上面關於設計200所述)相結合。即,具有頻寬擴展信令指示(例如,使用上述四個選項之一)的控制訊框(例如,RTS)可用於指示沒有前導碼穿孔指示的協商頻寬。因此,現有的點協調功能(point coordination function,PCF)訊框間空間(PCF inter-frame space,PIFS)媒體接入方案可以直接擴展到320MHz頻寬中的操作。例如,STA可以在主通道上退避並且在一個或多個輔助通道(secondary channel)上執行空閒通道評估(clear channel access,CCA)。如果當退避計數器達到零時對於 PIFS 媒體已經是空閒的,則相應的輔助通道可以被認為是可用的並且可以用於傳輸。
在所提出的方案下,基於EHT發起者處的輔助通道上的CCA,控制訊框(例如,RTS)中加擾序列的3個位元可用於指示可用頻寬,如設計200中所示。另外,如設計200所示,控制訊框(例如,RTS)中加擾序列的1個位元可用於指示靜態或動態頻寬協商。基於上述四個選項之一下的頻寬信令指示方案,具有頻寬信令指示的控制訊框的EHT接收者可將接收到的控制訊框的TA或RA欄位與自己的MAC地址匹配。EHT接收者可以在接收到的控制訊框中指示為可用並且在回應者側確定為空閒(空閒可用於傳輸)的通道上發送回應。在這種情況下,可以允許在20MHz、40MHz、80MHz、160MHz、80+80MHz、240MHz、160+80MHz、320MHz 和 160+160MHz 的傳輸。
在根據本發明的關於具有前導碼穿孔的頻寬協商的提議方案下,可以執行控制訊框交換(例如,RTS和CTS交換)以用於具有前導碼穿孔的動態頻寬協商。在所提出的方案下,上述四個選項之一下的頻寬擴展信令可以與頻寬擴展指示和/或使用保留位元R0~R3的前導碼穿孔指示相結合,如上面關於設計300所述。即,具有頻寬擴展信令指示(例如,使用上述四個選項之一)的控制訊框(例如,RTS)可以用於指示具有前導碼穿孔的協商頻寬。因此,現有的PIFS媒體接入(medium access)方案可以直接擴展到320MHz頻寬中的操作。例如,STA可以在主通道上退避並且在一個或多個輔助通道上執行CCA。如果當退避計數器達到零時對於 PIFS 媒體已經空閒,則相應的輔助通道可以被認為是可用的並且可以用於傳輸。
在所提出的方案下,基於 EHT 發起者處的輔助通道上的 CCA,控制訊框(例如,RTS)中加擾序列的2個位元和保留服務位元的4個位元可用於指示具有前導碼穿孔模式的可用頻寬,如設計300中所示。另外,如設計300所示,控制訊框(例如,RTS)中加擾序列的1個位元(例如B4位元)可用於指示靜態或動態頻寬協商。基於上述四個選項之一的頻寬信令指示方案,具有頻寬信令指示的控制訊框的EHT接收者可以將接收的控制訊框的TA或RA欄位與自己的MAC地址匹配。EHT接收者可以在接收到的控制訊框中指示為可用並且在回應者側確定為空閒(空閒可用於傳輸)的通道上發送回應。在這種情況下,可以允許前導碼穿孔樣式。
在根據本發明的提議方案下,頻寬協商可以基於前導碼穿孔能力。在提議的方案下,非AP STA可以向其關聯的AP或其對等設備(例如,另一個非AP STA)指示自己支持前導碼穿孔的能力。而且,能夠進行前導碼穿孔的AP可以通過使用不同的選項,例如上述四個選項中的一個或多個,來指示有或沒有前導碼穿孔指示的頻寬協商。例如,AP 可以使用上述選項 1 進行沒有前導碼穿孔指示的頻寬協商。類似地,AP可以使用上述選項3進行具有前導碼穿孔指示的頻寬協商。
在根據本發明的提議方案下,可以執行針對多個用戶(或多用戶)的頻寬協商。在所提出的方案下,當AP在寬操作頻寬上進行多用戶調度傳輸時,多用戶頻寬協商可能有多種選擇,其中,該多用戶調度傳輸在每個80MHz頻段上調度一個用戶進行傳輸。例如,AP可以在具有兩個80MHz頻段的160MHz操作頻寬中執行多用戶傳輸,一個STA工作在160MHz操作頻寬的主80MHz頻段,而另一個STA工作在160MHz操作頻寬的輔助80MHz頻段。在所提出的方案下,可以在每個頻率段中發送用於單用戶的控制訊框(例如,RTS),使得該控制訊框可以用於與停放(parked)在相應80MHz頻率段上的相應STA協商頻寬。第4圖示出了在所提出的方案下的示例場景400。參考第4圖,非HT複製的第一RTS(RTS1)可以在主80MHz頻率段中發送到第一STA(STA1),而非HT複製的第二RTS(RTS2)可以在輔助80MHz頻率段中發送到第二STA(STA2)。
第5圖示出了根據本發明實施方式的關於不支援前導碼穿孔的頻寬擴展指示的示例設計500。特別地,設計500示出了控制訊框(例如,RTS)和回應訊框(例如,CTS)的示例設計。參考第5圖,當控制訊框的MAC報頭中的MAC地址欄位指示擴展頻寬信令時,加擾序列的前6位元中的B5~B6位元可用於分別指示具有主160+80的240MHz,具有主80+160的240MHz,320MHz(或160+160MHz)。B4位元可用於指示靜態或動態頻寬協商。B0~B3 這4位元可以構成偽隨機非零整數,用於加擾序列的開始。相應地,在具有擴展頻寬信令的回應訊框中,擾碼序列的前7位元中的B4~B6位元可用於分別指示20MHz、40MHz、80MHz、160MHz、80+80MHz、240MHz、160+80MHz、320MHz和160+160MHz。B0~B3 這4位元可以構成偽隨機非零整數,用於加擾序列的開始。
在根據本發明的提議方案下,可能存在以下描述的若干選項,其可用於實現頻寬擴展信令。在所提出的方案下,可以利用控制訊框的MAC報頭中MAC位址欄位的不同組合來指示控制訊框攜帶擴展頻寬信令。在第一個選項(選項1)下,為了指示頻寬擴展信令,EHT發起者(例如,STA 110或STA 120)可以交換發送到 EHT 接收者(例如,STA 120或STA 110)的非HT PPDU中攜帶的控制訊框(例如,RTS)中的RA和TA欄位。例如,EHT發起者可以使用RA欄位來指示控制訊框的發射機的MAC位址。另外,EHT發起者可以使用TA欄位來指示控制訊框的接收機的MAC位址。相應地,EHT接收者可以將接收到的控制訊框的TA和RA欄位與自己的MAC位址進行匹配。如果EHT接收者的MAC位址與接收到的控制訊框的TA欄位匹配,則EHT接收者可以複製RA欄位並將其作為非HT PPDU攜帶的回應訊框(例如CTS)的RA插入。而且,EHT接收者可以在回應訊框中使用加擾序列的前7位元中的B4~B6位元來指示頻寬。
在第二選項(選項2)下,為了指示頻寬擴展信令,EHT發起者(例如,STA 110或STA 120)可以在發送到 EHT 接收者(例如,STA 120 或 STA 110)的非 HT PPDU 中攜帶的控制訊框(例如,RTS)的TA和RA欄位中將Individual/Group(個體/組)位元設置為Group。例如,EHT發起者可以將TA欄位中的Individual/Group位元設置為Group,以指示控制訊框的發射機的MAC位址。另外,EHT發起者可以將RA欄位中的Individual/Group位元設置為Group,以指示控制訊框的接收機的MAC位址。相應地,當EHT接收者接收到具有擴展頻寬信令的控制訊框時,EHT接收者在將RA欄位與自己的MAC位址匹配之前,將Individual/Group位元改為Individual。如果 EHT 接收者的 MAC 位址與接收到的控制訊框的更改後的 RA 欄位匹配,則EHT 接收者可以複製 TA 欄位,並將Individual/Group 位元更改為 Individual,然後將更改後的TA欄位作為非HT PPDU中攜帶的回應訊框(例如,CTS)的RA插入。而且,EHT接收者可以使用回應訊框中加擾序列的前7位元中的B4~B6位元來指示頻寬。
在第三選項(選項3)下,為了指示擴展頻寬信令,EHT發起者(例如,STA 110或STA 120)可以交換RA和TA欄位,另外,在發送給EHT接收者(例如,STA 120或STA 110)的非HT PPDU中攜帶的控制訊框(例如,RTS)的TA欄位中,將Individual/Group位元設置為Group。例如,EHT發起者可以使用RA欄位來指示控制訊框的發射機的MAC位址。另外,EHT發起者可以使用TA 欄位並將TA 欄位的Individual/Group位元設置為Group,以指示控制訊框的接收機的 MAC 位址。相應地,EHT接收者可以將接收到的控制訊框的TA欄位與自己的MAC位址進行匹配。具體來說,EHT 接收者可以在將 TA 欄位與自己的 MAC 位址匹配之前將 Individual/Group位元更改為 Individual。如果EHT接收者的MAC位址與接收到的控制訊框的TA欄位匹配,則EHT接收者可以複製RA欄位並將其作為非HT PPDU攜帶的回應訊框(例如CTS)的RA插入。另外,EHT接收者可以在回應訊框使用加擾序列的前7位元中的B4~B6位元來指示頻寬。
在第四個選項(選項 4)下,為了指示擴展頻寬信令,EHT 發起者(例如,STA 110 或 STA 120)可以交換 RA 和 TA 欄位,另外,在發送給EHT接收者(例如STA 120或STA 110)的非HT PPDU中攜帶的控制訊框(例如RTS)的RA欄位中將Individual/Group位元設置為Group。例如,EHT發起者可以使用RA欄位並將RA欄位的Individual/Group位元設置為Group來指示控制訊框的發射機的MAC位址。另外,EHT發起者可以使用TA欄位來指示控制訊框的接收機的MAC位址。相應地,EHT接收者可以將接收到的控制訊框的TA和RA欄位與自己的MAC位址進行匹配。如果接收到的控制訊框的 TA 欄位與 EHT 接收者的 MAC 位址匹配,則 EHT 接收者可以複製 RA 欄位並將 Individual/Group 位元更改為 Individual,然後將修改後的RA 欄位作為攜帶在非HT PPDU的回應訊框(例如, CTS)的 RA 插入。另外,EHT接收者可以在回應訊框中使用加擾序列的前7位元中的B4~B6位元來指示頻寬。
在第五選項(選項5)下,為了指示擴展頻寬信令,EHT發起者(例如,STA 110或STA 120)可以交換RA和TA欄位,另外,在發送給EHT接收者(例如STA 120或STA 110)的非HT PPDU中攜帶的控制訊框(例如RTS)的TA和RA欄位中將Individual/Group位元設置為Group。例如,EHT發起者可以使用RA欄位並將RA欄位的Individual/Group位元設置為Group來指示控制訊框的發射機的MAC位址。而且,EHT發起者可以使用TA欄位並將TA欄位的Individual/Group位元設置為Group來指示控制訊框的接收機的MAC位址。相應地,EHT接收者可以將接收到的控制訊框的TA和RA欄位與自己的MAC位址進行匹配。EHT 接收者可以將TA 和 RA 欄位中每個欄位的Individual/Group位元更改為Individual。如果接收到的控制訊框的 TA 欄位與 EHT 接收者的 MAC 位址匹配,則 EHT 接收者可以複製 RA 欄位並將 Individual/Group 位元更改為 Individual,然後將修改後的RA 欄位作為非 HT PPDU 中攜帶的回應訊框(例如, CTS)的 RA 插入。而且,EHT接收者可以在回應訊框中使用加擾序列的前7位元中的B4~B6位元來指示頻寬。
在根據本發明提出的方案中,可以利用觸發訊框(trigger frame)來執行頻寬指示和協商。在所提出的方案下,諸如多用戶RTS(multi-user RTS,MU-RTS)的觸發訊框可以被重用以在寬的操作頻寬(例如,80MHz、160MHz、80+80MHz、240MHz、160+80MHz、320MHz 或 160+160MHz)中向單個STA指示或者協商具有或者不具有前導碼穿孔的頻寬。例如,MU-RTS的TA欄位可以是信令TA,用於指示頻寬指示和協商,其中信令TA可以用於將發射機的MAC位址中的Individual/Group位元設置為Group(例如,使用上述五個選項之一作為用於頻寬指示和協商的信令)。或者,MU-RTS的Common Info欄位中的一個位元可以作為頻寬指示和協商的信令傳遞給STA。或者,MU-RTS的User Info欄位中的一個或多個位元可以作為頻寬指示和協商的信令傳遞給STA。例如,MU-RTS可以攜帶User Info欄位來指示分配的RU,並且RU Allocation子欄位(RU Allocation subfield)可以用於指示穿孔樣式(例如,6個位元用於指示具有穿孔樣式的頻寬)。即,RU Allocation子欄位的B0位元可以用於指示靜態/動態頻寬協商,RU Allocation子欄位的B1位元可以保留,RU Allocation子欄位的B7~B2位元可以設置為指示前導碼穿孔樣式。
在所提出的方案下,可以在非HT PPDU或非HT複製PPDU(non-HT duplicate PPDU)中攜帶MU-RTS。下行鏈路(DL)傳輸中的MU-RTS可以將RA設置為期望的STA的MAC位址。上行鏈路(UL)傳輸中的MU-RTS可以將RA設置為AP的MAC位址。 期望的接收者可以使用EHT-CTS對具有頻寬指示和協商信令的 MU-RTS進行回應。第6圖示出了在所提出的方案下的實施方式中的動態前導碼穿孔下的動態頻寬協商的示例設計600。參照第6圖,EHT-CTS框架格式可以通過添加長度為八位元位元組(octet)的頻寬欄位(bandwidth field,BW)建立在傳統的CTS上。BW欄位可以包括6個位元的BW子欄位的和2個保留位元。BW子欄位可以指示具有前導碼穿孔樣式的頻寬。
在基於本發明提出的方案中,可以執行針對多個用戶(或多用戶)的頻寬協商。在所提出的方案下,當支援多使用者的動態前導碼穿孔時,MU-RTS可以在每個頻率段(例如,80MHz頻率段)中分別用於單個用戶。例如,AP可以向第一STA(STA1)和第二STA(STA2)發送非HT複製MU-RTS(non-HT duplicate MU-RTS)。用於每個STA的RU Allocation子欄位可以指示前導碼穿孔樣式。MU-RTS 可以在所有頻率段上複製,該MU-RTS攜帶每個STA的具有前導碼穿孔樣式指示的User Info 欄位, 或者,每個用於單個STA的頻率段上的MU-RTS可以僅攜帶對應STA的具有前導碼穿孔樣式指示的User Info欄位。 STA1和STA2中的每一個都可以在一個或多個可用的20MHz通道上發送帶有前導碼穿孔樣式指示的CTS或EHT-CTS。值得注意的是,STA1 和 STA2 的 RU 分配不能重疊。第7圖示出了在所提出的方案下的示例場景700。參考第7圖,非HT複製MU-RTS可以在主80MHz頻段的主20MHz通道中發送給STA1,而另一個非HT複製MU-RTS可以在輔助80MHz頻段中20MHz通道中發送給STA2。在場景700中,在接收到MU-RTS時,STA1和STA2中的每一個可以分別用擴展的CTS(在第7圖中表示為“eCTS”)以如上文關於第6圖描述的設計600的格式進行回應。對於STA1和STA 2中的每一個,在MU-RTS和eCTS的交換之後,可以發送/接收一個或多個EHT PPDU,隨後跟著塊確認(block acknowledgement,BA)。對於STA1和STA2 中的每一個,eCTS,EHT PPDU 和 BA 的傳輸可以在協商的頻寬(例如,場景700中的40MHz)中執行,對於STA1,如 MU- RTS所示的可用/支持的頻寬可能更大(例如,80MHz)。
第8圖示出了根據本發明實施方式的關於EHT頻寬信令的示例設計800。在設計800中,可以利用EHT控制訊框的SERVICE欄位中的保留位元B7來指示擴展的通道頻寬。例如,位元B7 可以設置為 1 以指示擴展的通道頻寬(例如,320MHz),而設置為 0 以指示其他情況。另外,可以利用加擾序列的前7位元中的B5~B6位元來表示通道頻寬指示。例如,當B7 位元設置為 1 時,B5~B6 位元可以設置為固定值(例如,“11”代表對於傳統 STA 而言的160MHz 或80+80MHz 的組合頻寬)。或者,基於靜態的前導碼穿孔,當 B7位元設置為 1 時,B5~B6 位元可以動態設置為代表對於傳統的STA而言的 20MHz、40MHz、80MHz、160/80+80MHz 的“00”、“01”、“10”或“11”。否則,當B7位元設為0時,B5~B6位元可設為分別代表20MHz、40MHz、80MHz、160/80+80MHz的“00”、“01”、“10”或“11”。在提出的方案下,可以使用加擾序列的前7位元中的B4位元來指示靜態或動態頻寬指示。
第9圖示出了根據本發明實施方式的關於EHT-RTS 320MHz頻寬信令的示例設計900。在設計900中,可以利用EHT-RTS的SERVICE欄位中的保留位元B7來指示擴展的通道頻寬。例如,位元 B7可以設置為 1 以指示 320MHz 的擴展通道頻寬。另外,可以利用加擾序列的前7位元中的B5~B6位元來表示通道頻寬指示。例如,位元B5~B6 可以設置為固定值(例如,“11”代表對於傳統 STA而言 的 160MHz 或 80+80MHz 的組合頻寬)。或者,基於靜態前導碼穿孔,位元B5~B6可以動態地設置為代表對於傳統 STA而言 的20MHz、40MHz、80MHz、160/80+80MHz的“00”、“01”、“10”或“11”。在所提出的方案下,加擾序列的前7位元中的B4位元可以用來指示靜態或動態頻寬指示,而用於加擾序列的B0~B3位元,ScramblingSequenceStart4(加擾序列開始4),可以從1~15的值中隨機選擇。
第10圖示出了根據本發明實施方式的關於EHT-CTS 320MHz頻寬信令的示例設計1000。在設計1000中,可以利用EHT-CTS的SERVICE欄位中的保留位元B7來指示擴展的通道頻寬。例如,位元 B7可以設置為 1 以指示 320MHz 的擴展通道頻寬。另外,可以利用加擾序列的前7位元中的B5~B6位元來指示對於傳統STA 而言的通道頻寬指示。例如,B5~B6位元可以被設置為固定值(例如,“11”代表對於傳統STA而言的160MHz或80+80MHz的組合頻寬或“10”代表對於傳統STA而言的80MHz的組合頻寬)。或者,根據靜態的前導碼穿孔,B5~B6位元可以動態地設置為“00”、“01”、“10”或“11”,該“00”、“01”、“10”或“11”代表對於傳統STA而言的20MHz、40MHz、80MHz、160/80+80MHz。在所提出的方案下,可以從1~15的值中隨機選擇用於加擾序列的B0~B4位元,ScramblingSequenceStart5(加擾序列開始5)。在所提出的方案下,也可以應用基準信令(baseline signaling)TA。例如,MAC報頭中的TA欄位可以被設置作為頻寬信令TA欄位。
第11圖示出了根據本發明實施方式的關於用於頻寬指示和協商的EHT RTS和EHT CTS的示例場景1100。在所提出的方案下,當EHT發起者發送20MHz、40MHz、80MHz、160MHz或80+80MHz RTS訊框時,EHT發起者可以使用具有基準頻寬信令TA的甚高輸送量(very-high-throughput,VHT)RTS訊框。在這種情況下,EHT回應者可以使用 VHT CTS 訊框來執行靜態或動態頻寬協商和指示。 值得注意的是,當操作頻寬小於或等於160MHz時,該流程可能與VHT RTS/CTS的傳統流程相同。另外,VHT RTS訊框和VHT CTS訊框也可以被發送到一個或多個其他STA(如第11圖中所示出的“第三方”)。
第12圖示出了根據本發明實施方式的關於用於頻寬指示和協商的EHT RTS和EHT CTS的示例場景1200。在所提出的方案下,當EHT發起者發送320MHz RTS訊框時,EHT發起者可以使用具有320MHz頻寬信令的EHT RTS訊框(並且SERVICE欄位中的B7位元設置為1)。也可以應用基準頻寬信令TA。而且,當EHT RTS指示靜態頻寬協商時,如果非HT複製PPDU中的回應為320MHz頻寬,則EHT回應者可以使用具有320MHz頻寬信令的EHT CTS訊框。否則,EHT 回應者可能不會回應。值得注意的是,當操作頻寬等於320MHz或大於160MHz時,在指示靜態頻寬協商的情況下,可以使用EHT RTS和EHT CTS。另外,還可以將EHT RTS訊框和EHT CTS訊框發送給一個或多個其他STA(如第12圖中所示的“第三方”)。
第13圖示出了根據本發明實施方式的關於用於頻寬指示和協商的EHT RTS和EHT CTS的示例場景1300。在所提出的方案下,當EHT發起者發送320MHz RTS訊框時,EHT發起者可以使用具有320MHz頻寬信令的EHT RTS訊框(並且SERVICE欄位中的B7位元設置為1)。也可以應用基準頻寬信令TA。而且,當EHT RTS指示動態頻寬協商時,如果非HT複製PPDU中的回應為320MHz頻寬,則EHT回應者可以使用具有320MHz頻寬信令的EHT CTS訊框,如第13圖的(A)部分所示。否則,如果非HT複製PPDU中的回應具有小於320MHz的頻寬,則EHT回應者可以使用VHT CTS訊框,如第13圖的(B)部分所示。值得注意的是,當操作頻寬等於320MHz並指示動態頻寬協商時,如果回應頻寬為320MHz,則可以使用EHT RTS和EHT CTS。否則,在回應頻寬小於 320MHz 的情況下,可以使用 EHT RTS 和 VHT CTS。另外,還可以將EHT RTS訊框和EHT CTS訊框/VHT CTS訊框發送給一個或多個其他STA(如第13圖中所示的“第三方”)。
在根據本發明所提出的方案下,當 EHT 發起者在沒有頻寬協商(例如,塊確認請求(Block Ack Request,BAR)、省电-轮询(Power-Save–Poll,PS-Poll)、空資料包宣告(null data packet announcement,NDPA)、CTS、無競爭結束(contention-free end,CF-END) 等)的情況下發送 320MHz 控制訊框時,EHT 發起者可以使用具有 320MH 頻寬信令的 EHT 訊框(SERVICE 欄位中的位元 B7 設置為 1)。也可以應用基準信令TA。例如,MAC頭中的TA欄位可以設置作為頻寬信令TA欄位。說明性實施方式
第14圖示出了根據本發明實施方式的至少具有示例裝置1410和示例裝置1420的示例系統1400。裝置1410和裝置1420中的每一個可以執行各種功能以實現這裡描述的與無線通訊中的頻寬擴展指示和協商有關的方案、技術、過程和方法,包括上面關於各種提議的設計、概念、方案、 上面描述的系統和方法以及下面描述的過程。例如,裝置1410可以在STA 110中實施並且裝置1420可以在STA 120中實施,反之亦然。
裝置1410和裝置1420中的每一個可以是電子裝置的一部分,電子裝置可以是非AP STA或AP STA,例如可擕式或移動裝置、可穿戴裝置、無線通訊裝置或計算裝置。當在非AP STA中實施時,裝置1410和裝置1420中的每一個都可以在智慧手機、智慧手錶、個人數位助理、數碼相機或諸如平板電腦、膝上型電腦或筆記型電腦的計算設備中實施。裝置1410和裝置1420中的每一個也可以是機器類型裝置的一部分,機器類型裝置可以是IoT裝置,例如固定或靜態裝置、家用裝置、有線通信裝置或計算裝置。例如,裝置1410和裝置1420中的每一個都可以在智慧恒溫器(thermostat)、智慧冰箱、智慧門鎖、無線揚聲器或家庭控制中心中實施。當在網路設備中實施或作為網路設備實施時,裝置1410和/或裝置1420可以在網路節點中實施,例如WLAN中的AP。
在一些實施方式中,裝置1410和裝置1420中的每一個可以以一個或多個積體電路(IC)晶片的形式實施,例如但不限於一個或多個單核處理器、一個或多個單核處理器,一個或多個多核處理器、一個或多個精簡指令集計算 (reduced-instruction set computing,RISC) 處理器或一個或多個複雜指令集計算 (complex-instruction-set-computing,CISC) 處理器。在上述各種方案中,裝置1410和裝置1420中的每一個可以在非AP STA或AP STA中實施或作為非AP STA或AP STA來實施。裝置1410和裝置1420中的每一個可以包括第14圖中所示的那些組件中的至少一些,例如,分別是處理器1412和處理器1422。裝置1410和裝置1420中的每一個還可以包括一個或多個與本發明所提出的方案不相關的其他組件(例如,內部電源、顯示裝置和/或使用者介面設備),因此,裝置1410和裝置1420的這樣的組件的均未在第14圖中示出,為了簡潔起見也沒有在下面描述。
在一方面,處理器1412和處理器1422可以以一個或多個單核處理器、一個或多個多核處理器、一個或多個RISC處理器或一個或多個CISC處理器的形式實現。也就是說,即使在本文中使用單數術語“處理器”來指代處理器1412和處理器1422,但是根據本發明,處理器1412和處理器1422在一些實施方式中可以包括多個處理器並且在其他實施方式中可以包括單個處理器。在另一方面,處理器 1412 和處理器 1422 可以以具有電子組件的硬體(和可選地,固件)的形式實現,電子組件包括例如但不限於一個或多個電晶體、一個或多個二極體、一個或多個電容器、一個或多個電阻器、一個或多個電感器、一個或多個憶阻器(memristor)和/或一個或多個可變電抗器(varactor),其被配置和佈置以實現根據本發明的特定目的。換言之,在至少一些實施方式中,基於本發明的各種實施方式,處理器1412和處理器1422是專門設計、佈置和配置為執行特定任務的專用機器,特定任務包括與無線通訊中的頻寬擴展指示和協商有關的任務。
在一些實施方式中,裝置1410還可以包括耦接到處理器1412的收發器1416。收發器1416可以包括能夠無線發送資料的發送器和能夠無線接收資料的接收器。在一些實施方式中,裝置1420還可以包括耦接到處理器1422的收發器1426。收發器1426可以包括能夠無線發送資料的發送器和能夠無線接收資料的接收器。
在一些實施方式中,裝置1410還可以包括耦接到處理器1412並且能夠被處理器1412訪問並且在其中存儲資料的記憶體1414。在一些實施方式中,裝置1420還可以包括耦接到處理器1422並且能夠被處理器1422訪問並且在其中存儲資料的記憶體1424。記憶體1414和記憶體1424中的每一個可以包括一種隨機存取記憶體(random-access memory,RAM),例如動態RAM(dynamic RAM,DRAM)、靜態RAM(static RAM,SRAM)、晶閘管RAM(thyristor RAM,T-RAM)和/或零電容RAM(zero-capacitor-RAM)。替代地或另外地,記憶體1414和記憶體1424中的每一個可以包括唯讀記憶體(read-only memory,ROM)類型,例如掩模ROM、可程式設計ROM(programmable ROM,PROM)、可擦除可程式設計ROM(erasable programmable ROM,EPROM)和/或電可擦除可程式設計ROM(electrically erasable programmable ROM,EEPROM))。替代地或附加地,記憶體1414和記憶體1424中的每一個可以包括非易失性隨機存取記憶體(non-volatile random-access memory,NVRAM)類型,例如快閃記憶體、固態記憶體、鐵電RAM(ferroelectric RAM,FeRAM)、磁阻RAM(magnetoresistive RAM,MRAM)和/或相變記憶體(phase-change memory)。
裝置1410和裝置1420中的每一個可以是能夠使用根據本發明提出的各種方案彼此通信的通信實體。出於說明性目的而非限制,下面提供了作為STA 110(例如AP STA)的裝置1410和作為STA 120(例如非AP STA)的裝置1420的能力的描述。值得注意的是,雖然下面描述的示例實施方式是在WLAN的環境中提供的,但同樣可以在其他類型的網路中實施。還值得注意的是,雖然下面描述的示例是在裝置 1410 的環境中提供的,但是這些示例也可以適用於裝置 1420 或以其他方式由裝置 1420實施。
在根據本發明的與無線通訊中的頻寬擴展指示和協商有關的所提出的方案下,基於多個IEEE 802.11標準中的一個或多個,在網路環境11中,裝置1410實施在STA 110中或者作為STA 110實施,以及裝置1420實施在STA 120中或者作為STA 120實施,裝置1410的處理器1412和裝置1420的處理器1422可以(分別經由收發器1416和收發器1426)利用頻寬擴展指示來執行STA 110和STA 120之間的頻寬協商。另外,處理器1412和處理器1422可以根據頻寬協商彼此無線通訊(分別經由收發器1416和收發器1426)。
在一些實施方式中,在執行頻寬協商時,處理器1412和處理器1422可以通過發送或接收控制訊框(例如,RTS)執行沒有前導碼穿孔指示的頻寬協商,其中,該控制訊框在控制訊框的SERVICE欄位具有指示頻寬擴展的一個頻寬擴展位元。
在一些實施方式中,一個頻寬擴展位元可以包括控制訊框的SERVICE欄位中攜帶的加擾序列的前7位元中的一個位元(例如,B3位元),或者包括SERVICE欄位中的保留位元(例如,B7位元) 。在這種情況下,B3位元 可以設置為 0 以指示操作頻寬小於或等於 160MHz,或設置為 1 以指示操作頻寬大於 160MHz。例如,當頻寬擴展位元設置為0時,控制訊框的SERVICE欄位中攜帶的加擾序列的前7位元中的兩個或更多位元(例如,B5~B6位元)可以指示可用頻寬為20MHz、40MHz、80MHz、160MHz、80+80MHz。當頻寬擴展位元設置為 1 時,控制訊框的SERVICE欄位中攜帶的加擾序列的前7位元的兩個位元或更多位元(例如B5~B6位元)可以設置為固定值或可變值以指示可用頻寬為 320MHz。
在一些實施方式中,在執行頻寬協商時,處理器1412和處理器1422可以通過(例如,當發起訊框是EHT訊框時)接收或發送回應訊框(例如,CTS)執行沒有前導碼打孔指示的頻寬協商,其中,在該回應訊框的SERVICE欄位中具有當設置為1時指示可用頻寬大於160MHz(例如,當可用頻寬為320MHz時)的一個頻寬擴展位元。例如,位元B3可用於指示傳輸頻寬大於160MHz。當頻寬大於160MHz時,B3位元可設置為1,B5~B6位元可設為固定值或可變值。否則,B3 位元可設置為 0,B5~B6 位元可指示頻寬 20MHz、40MHz、80MHz 或 160/80+80MHz。
在一些實施方式中,回應訊框的頻寬擴展位元可以在SERVICE欄位中攜帶的加擾序列的前7位元中或在SERVICE欄位的保留位元中。
在一些實施方式中,在執行頻寬協商時,處理器1412和處理器1422可以通過發送或接收控制訊框(例如,RTS)或回應訊框(例如,CTS),執行具有前導碼穿孔指示的頻寬協商,其中,該控制訊框(例如,RTS)或回應訊框(例如,CTS)在該控制訊框或回應訊框的SERVICE欄位具有指示具有前導碼穿孔指示的可用頻寬的至少一個或多個位元。在這種情況下,SERVICE欄位中攜帶的加擾序列的前7位元中的兩個或更多位元(例如,B5~B6位元)和SERVICE欄位中的多個保留服務位元(例如,R0~R3位元)可以指示具有前導碼穿孔指示的可用頻寬。
在一些實施方式中,在執行頻寬協商時,處理器1412和處理器1422可以通過執行某些操作來執行分別作為EHT發起者和EHT回應者的STA 110和STA 120之間的頻寬協商。例如,作為 EHT 發起者的裝置 1410 的處理器1412,可以向 EHT 回應者發送控制訊框(例如,RTS),使得:(a)控制訊框的 RA 欄位指示控制訊框的發射機的位址,以及(b)控制訊框的TA欄位指示控制訊框的接收機的位址。另外,作為EHT回應者的裝置1420的處理器1422可以接收控制訊框並將控制訊框的RA欄位和TA欄位與EHT回應者的地址相匹配。回應於控制訊框的TA欄位與EHT回應者的位址匹配,處理器1422可執行某些操作。例如,處理器1422可以複製控制訊框的RA欄位並將其插入在非HT PPDU中攜帶的回應訊框(例如,CTS)的RA欄位中。另外,處理器1422可以將非HT PPDU傳送到EHT發起者。在一些實施方式中,EHT發起者可以修改控制訊框中的加擾序列的前7位元或一個或多個保留服務位元。
在一些實施方式中,在執行頻寬協商時,處理器1412和處理器1422可以通過執行某些操作來執行分別作為EHT發起者和EHT回應者的STA 110和STA 120之間的頻寬協商。例如,作為EHT發起者的裝置1410的處理器1412,可以向EHT回應者發送控制訊框(例如,RTS),其中該控制訊框在MAC報頭中具有信令以用於指示控制訊框中SERVICE欄位中攜帶的加擾序列的前7位元以及SERVICE欄位中的一個或者多個保留位元中的任一者或者兩者至少攜帶不具有前導碼打孔指示的頻寬擴展指示或具有前導碼打孔指示的頻寬擴展指示。在這種情況下:(a) 控制訊框的 TA 欄位可以指示控制訊框的發射機位址,TA 欄位中的Unicast/Multicast位元設置為Multicast,以及 (b) 控制訊框的 RA 欄位可以指示控制訊框的接收機的位址,其中RA欄位中的Unicast/Multicast位元設置為Multicast。另外,作為EHT回應者的裝置1420的處理器1422可以接收控制訊框並執行某些操作。值得注意的是,EHT回應者可能會先將值從Multicast改為Unicast,然後比較來看是否匹配,因為EHT回應者的MAC位址具有設置為Unicast的Unicast/Multicast位元。例如,處理器1422可以將控制訊框的RA欄位中的Unicast/Multicast位元改變為Unicast。另外,處理器1422可以將控制訊框的RA欄位與EHT回應者的位址進行匹配。回應於控制訊框的RA欄位與EHT回應者的位址匹配,處理器1422可執行某些操作。例如,處理器1422可以將控制訊框的TA欄位中的Unicast/Multicast位元改變為Unicast。另外,處理器1422可以複製控制訊框的TA欄位並將其插入到回應訊框(例如,CTS)的RA欄位中。另外,處理器1422可以向EHT發起者發送回應訊框。在一些實施方式中,EHT發起者和EHT回應者可以修改(a)控制訊框中的SERVICE欄位中攜帶的加擾序列的前7位元和(b)SERVICE欄位中的一個或多個保留位元中的一個或兩個。
在一些實施方式中,在執行頻寬協商時,處理器1412和處理器1422可以通過執行某些操作來執行分別作為EHT發起者和EHT回應者的STA 110和STA 120之間的頻寬協商。例如,作為EHT發起者的裝置1410的處理器1412可以向EHT回應者發送控制訊框(例如,RTS),使得:(a)控制訊框的RA欄位指示該控制訊框的發射機的位址,以及(b)控制訊框的TA欄位指示控制訊框的接收機的位址,TA欄位中的Unicast/Multicast位元設置為Multicast。另外,作為EHT回應者的裝置1420的處理器1422可以接收控制訊框並執行某些操作。例如,處理器1422可以將控制訊框的TA欄位中的Unicast/Multicast位元改為Unicast。另外,處理器1422可以將控制訊框的TA欄位與EHT回應者的位址進行匹配。回應於控制訊框的TA欄位與EHT回應者的位址匹配,處理器1422可執行某些操作。例如,處理器1422可以複製控制訊框的RA欄位並將其插入在非HT PPDU中攜帶的回應訊框(例如,CTS)的RA欄位中。另外,處理器1422可以向EHT發起者發送非HT PPDU。在一些實施方式中,EHT發起者可以修改控制訊框中的加擾序列的前7位元或一個或多個保留服務位元。
在一些實施方式中,在執行頻寬協商時,處理器1412和處理器1422可以通過執行某些操作來執行分別作為EHT發起者和EHT回應者的STA 110和STA 120之間的頻寬協商。例如,作為EHT發起者的裝置1410的處理器1412可以向EHT回應者發送控制訊框(例如,RTS),使得:(a)控制訊框的RA欄位指示該控制訊框的發射機的位址,其中RA欄位中的Unicast/Multicast位元設置為Multicast,並且(b)控制訊框的TA欄位指示控制訊框的接收機的位址。另外,作為EHT回應者的裝置1420的處理器1422可以接收控制訊框並將控制訊框的RA欄位和TA欄位與EHT回應者的地址相匹配。回應於控制訊框的TA欄位與EHT回應者的位址匹配,處理器1422可執行某些操作。例如,處理器1422可以將控制訊框的RA欄位中的Unicast/Multicast位元改變為Unicast。而且,處理器1422可以複製控制訊框的RA欄位並將其插入到非HT PPDU中攜帶的回應訊框(例如,CTS)的RA欄位中。而且,處理器1422可以向EHT發起者發送非HT PPDU。在一些實施方式中,EHT發起者可以修改控制訊框中的加擾序列的前7位元或一個或多個保留服務位元。
在一些實施方式中,在執行頻寬協商時,處理器1412和處理器1422可以通過執行某些操作來執行分別作為EHT發起者和EHT回應者的STA 110和STA 120之間的頻寬協商。例如,作為 EHT發起者的裝置 1410 的處理器 1412可以向 EHT 回應者發送控制訊框(例如,RTS),使得:(a)控制訊框的 RA 欄位指示控制訊框的發射機的位址,RA 欄位中的Individual/Group位元設置為Group;(b)控制訊框的TA欄位指示控制訊框的接收機的位址,TA欄位中的Individual/Group位元設置為Group。而且,作為EHT回應者的裝置1420的處理器1422可以接收控制訊框並執行某些操作。例如,處理器1422可以將控制訊框的RA欄位中的Individual/Group位元改為Individual。另外,處理器1422可以將控制訊框的TA欄位中的Individual/Group位元改為Individual。而且,處理器1422可以將控制訊框的TA欄位與EHT回應者的位址進行匹配。回應於控制訊框的TA欄位與EHT回應者的位址匹配,處理器1422可執行某些操作。例如,處理器1422可以將控制訊框的RA欄位中的Individual/Group位元改為Individual。另外,處理器1422可以複製控制訊框的RA欄位並將其插入到非HT PPDU中攜帶的回應訊框(例如,CTS)的RA欄位中。另外,處理器1422可以將向EHT發起者發送非HT PPDU。在一些實施方式中,回應訊框中加擾序列的前7位元中的位元B4~B6可以指示可用頻寬。
在一些實施方式中,在執行頻寬協商時,處理器1412和處理器1422可以在STA 110和STA 120之間交換控制訊框(例如,RTS)和回應訊框(例如,CTS)以用於沒有前導碼穿孔指示的動態頻寬協商。在這種情況下,當控制訊框的SERVICE欄位中的頻寬擴展指示設置為1時,可以指示可用頻寬大於160MHz的(例如,可用頻寬=320MHz)。而且,當回應訊框的SERVICE欄位中的頻寬擴展指示設置為1時,可以指示可用頻寬大於160MHz(例如,可用頻寬=320MHz),並且在設置為 0 時,指示可用頻寬小於或等於160MHz。
在一些實施方式中,在執行頻寬協商時,處理器1412可以在第一STA和第二STA之間交換控制訊框和回應訊框,用於沒有前導碼穿孔指示的靜態頻寬協商。 在這種情況下,當控制訊框的SERVICE欄位中的頻寬擴展指示設置為1時,可以指示可用頻寬大於160MHz。而且,回應訊框的SERVICE欄位中的頻寬擴展指示可以設置為1。
在一些實施方式中,在執行頻寬協商時,處理器1412和處理器1422可以在STA 110和STA 120之間交換控制訊框(例如,RTS)和回應訊框(例如,CTS)以用於用於沒有前導碼穿孔指示的頻寬指示。在這種情況下,控制訊框的MAC報頭中的MAC位址欄位可以指示擴展頻寬信令。另外,控制訊框的SERVICE欄位中攜帶的加擾序列的前7位元中的B5~B6位元可以設置為固定值,也可以動態設置為四個值之一,以指示頻寬為320MHz。 另外,回應訊框的SERVICE欄位中攜帶的加擾序列的前7位元中的B4~B6位元可以指示20MHz、40MHz、80MHz、160MHz、80+80MHz或320MHz的頻寬。
在一些實施方式中,在執行頻寬協商時,處理器1412和處理器1422可以在STA 110和STA 120之間交換攜帶EHT頻寬信令的控制訊框(例如,RTS)和回應訊框(例如,CTS),其中,控制訊框SERVICE欄位中的B7位元設置為1指示擴展通道頻寬為320MHz,設置為0指示頻寬等於或小於160MHz。在B7位元設為1的情況下,加擾序列的前7位元中的B5~B6位元可以設為固定值或者動態的設為四個值之一。否則,在位元B7被設置為0的情況下,加擾序列的前7位元中的B5~B6位元可以被設置為四個值之一指示頻寬為20MHz、40MHz、80MHz或160MHz(或80+80MHz)。例如,當B7位元設置為1時,對於EHT STA(例如,STA 110和STA 120)頻寬為320MHz同時B5~B6位元不指示實際頻寬。然而,對於傳統(非EHT)STA,傳統(非EHT)STA可以採用B5~B6位元的值作為頻寬指示。
在一些實施方式中,在執行頻寬協商時,處理器1412和處理器1422可以分別執行作為EHT發起者的STA 110和作為EHT回應者的STA 120之間的頻寬協商。例如,作為EHT發起者的裝置1410的處理器1412可以向EHT回應者發送具有頻寬信令TA欄位的20MHz、40MHz、80MHz、160MHz或80+80MHz VHT RTS訊框。而且,作為EHT回應者的裝置1420的處理器1422可以向EHT發起者發送VHT CTS訊框以執行靜態或動態頻寬協商和指示。
在一些實施方式中,在執行頻寬協商時,處理器1412和處理器1422可以分別執行作為EHT發起者的STA 110和作為EHT回應者的STA 120之間的頻寬協商。例如,作為EHT發起者的裝置1410的處理器1412可以向EHT回應者發送320MHz EHT RTS訊框,該EHT RTS訊框具有:(a)靜態頻寬協商指示,(b)EHT RTS訊框的SERVICE欄位中的B7位元設置為 1,以及 (c) 頻寬信令TA欄位。而且,作為EHT回應者的裝置1420的處理器1422可以向EHT發起者發送320MHz EHT CTS訊框。
在一些實施方式中,在執行頻寬協商時,處理器1412和處理器1422可以分別執行作為EHT發起者的STA 110和作為EHT回應者的STA 120之間的頻寬協商。例如,作為EHT發起者的裝置1410的處理器1412可以向EHT回應者發送320MHz EHT RTS訊框,該EHT RTS訊框具有:(a)動態頻寬協商指示,(b)EHT RTS訊框的SERVICE欄位中的B7位元設置為1,以及 (c)頻寬信令TA欄位。而且,作為EHT回應器的裝置1420的處理器1422可以執行某些操作。例如,在EHT回應者的回應訊框的頻寬為320MHz的情況下,處理器1422可以向EHT發起者發送320MHz EHT CTS訊框。或者,在EHT回應者的回應訊框具有等於或小於160MHz的頻寬的情況下,處理器1422可以向EHT發起者發送VHT CTS訊框。示例性過程
第15圖示出根據本發明實施方式的示例過程1500。過程1500可以表示實施上述各種提議的設計、概念、方案、系統和方法的一個方面。更具體地,過程1500可以表示根據本發明在無線通訊中與無線通訊中的頻寬擴展指示和協商有關的所提出的概念和方案的方面。過程1500可包括如框1510和1520中的一個或多個所示的一個或多個操作、動作或功能。儘管示出為離散框,但是過程1500的各個框可被劃分為額外的框、組合成更少的框或被刪除,取決於所需的實現。另外,過程1500的框/子框可以按第15圖所示的順序執行,或者,以不同的循序執行。另外,過程1500的框/子框中的一者或多者可重複或迭代地執行。過程1500可以由裝置1410和裝置1420以及它們的任何變形來實施或在裝置1410和裝置1420中實施。僅出於說明的目的而不用於限制本發明的範圍,如下描述的過程1500在無線網路的裝置1410(在STA110中實施或者作為STA110)的環境中或在裝置1420(在STA 120中實施或者作為STA 120)的環境中實施,該無線網路例如符合一項或多項 IEEE 802.11 標準的網路環境100中的WLAN。值得注意的是,雖然下面描述的示例是在裝置1410的環境中提供的,但是這些示例也可以適用於裝置1420或以其他方式由裝置1420實施。過程1500可以開始於框1510。
在1510,過程1500可以涉及裝置1410的處理器1412使用頻寬擴展指示,經由收發器1416在STA 110和STA 120之間執行頻寬協商。過程1500可以從 1510進行到1520。
在1520,過程1500可以涉及處理器1412根據頻寬協商經由收發器1416在STA 110和STA 120之間進行無線通訊。
在一些實施方式中,在執行頻寬協商時,過程1500可以涉及處理器1412通過發送或接收控制訊框執行沒有前導碼穿孔指示的頻寬協商,其中,該控制訊框在控制訊框的SERVICE欄位中具有指示頻寬擴展的一個頻寬擴展位元。
在一些實施方式中,一個頻寬擴展位元可以包括控制訊框的SERVICE欄位中攜帶的加擾序列的前7位元中的位元(例如,B3),或者SERVICE欄位中的保留位元(例如,B7)。在這種情況下,B3位元可以設置為0以指示操作頻寬小於或等於160MHz或設置為1以指示操作頻寬大於160MHz。例如,當頻寬擴展位元設置為0時,控制訊框的SERVICE欄位中攜帶的加擾序列的前7位元中的兩個位元或更多位元(例如,B5~B6位元)可以指示可用頻寬為20MHz、40MHz、80MHz、160MHz、80+80MHz。而且,當頻寬擴展位元設置為1時,控制訊框的SERVICE欄位中攜帶的加擾序列的前7位元的兩個位元或更多位元(例如B5~B6位元)可以設置為固定值或可變值,以指示可用頻寬為 320MHz。
在一些實施方式中,在執行頻寬協商時,過程1500可以涉及處理器1412通過(例如,當發起訊框是EHT訊框時)接收或發送回應訊框,執行沒有前導碼穿孔指示的頻寬協商,其中,在該回應訊框的SERVICE欄位中具有當設置為1時指示可用頻寬大於160MHz(例如,當可用頻寬為320MHz時)的一個頻寬擴展位元。例如, B4位元可用於指示傳輸頻寬大於160MHz。當頻寬大於160MHz時,B4位元可設為1,B5~B6位元可設為固定值或可變值。否則,B4位元可設置為0,B5~B6位元可指示頻寬 20MHz、40MHz、80MHz或160/80+80MHz。
在一些實施方式中,回應訊框的頻寬擴展位元可以在SERVICE欄位中攜帶的加擾序列的前7位元或SERVICE欄位的保留位元中。
在一些實施方式中,在執行頻寬協商時,過程1500可以涉及處理器1412通過發送或接收控制訊框(例如,RTS)或回應訊框(例如,CTS)執行具有前導碼穿孔指示的頻寬協商,其中,該控制訊框(例如,RTS)或回應訊框(例如,CTS)在該控制訊框或回應訊框的SERVICE欄位中具有指示具有前導碼穿孔指示的可用頻寬的至少一個或多個位元。在這種情況下,SERVICE欄位中攜帶的加擾序列的前7個位元中的兩個位元或多個位元(例如B5~B6位元)和SERVICE欄位中的多個保留位元(例如R0~R3位元)可以指示具有前導碼穿孔指示的可用頻寬。
在一些實施方式中,在執行頻寬協商時,過程1500可以涉及處理器1412通過執行某些操作來在作為EHT發起者的STA 110和作為EHT回應者的STA 120之間執行頻寬協商。例如,過程1500可以涉及作為EHT發起者的裝置1410的處理器1412向EHT回應者發送控制訊框(例如,RTS),使得:(a)控制訊框的RA欄位指示控制訊框的發射機的位址,以及(b)控制訊框的TA欄位指示控制訊框的接收機的位址。而且,過程1500可以涉及作為EHT回應者的裝置1420的處理器1422接收控制訊框並將控制訊框的RA欄位和TA欄位與EHT回應者的地址相匹配。回應於控制訊框的TA欄位匹配EHT回應者的位址,過程1500可以涉及處理器1422執行某些操作。例如,過程1500可以涉及處理器1422複製控制訊框的RA欄位並將其插入在非HT PPDU中攜帶的回應訊框(例如,CTS)的RA欄位中。另外,過程1500可以涉及處理器1422向EHT發起者發送非HT PPDU。在一些實施方式中,EHT發起者可以修改控制訊框中的加擾序列的前7位元或一個或多個保留服務位元。
在一些實施方式中,在執行頻寬協商時,過程1500可以涉及處理器1412通過執行某些操作來執行作為EHT發起者的STA 110和作為EHT回應者的STA 120之間的頻寬協商。例如,過程1500可以涉及作為EHT發起者的裝置1410的處理器1412向EHT回應者發送控制訊框(例如,RTS),其中該控制訊框在MAC報頭中具有信令以用於指示控制訊框中SERVICE欄位中攜帶的加擾序列的前7位元以及SERVICE欄位中的一個或者多個保留位元中的任一者或者兩者至少攜帶不具有前導碼打孔指示的頻寬擴展指示或具有前導碼打孔指示的頻寬擴展指示。在這種情況下:(a) 控制訊框的 TA 欄位可以指示控制訊框的發射機的位址,TA 欄位中的Unicast/Multicast位元設置為Multicast,以及 (b) 控制訊框的 RA 欄位可以指示控制訊框的接收機的位址,其中RA欄位中的Unicast/Multicast位設置為Multicast。而且,過程1500可以涉及作為EHT回應者的裝置1420的處理器1422接收控制訊框並執行某些操作。例如,過程1500可以涉及處理器1422將控制訊框的RA欄位中的Unicast/Multicast位元改變為Unicast。另外,過程1500可以涉及處理器1422將控制訊框的RA欄位與EHT回應者的位址進行匹配。回應於控制訊框的 RA 欄位與 EHT 回應者的位址匹配,過程 1500 可以涉及處理器 1422 執行某些操作。值得注意的是,EHT回應者可能會先將值從Multicast改為Unicast,然後比較看是否匹配,因為EHT回應者的MAC位址具有設置為Unicast的Unicast/Multicast位元。例如,過程1500可以涉及處理器1422將控制訊框的TA欄位中的Unicast/Multicast位元改變為Unicast。另外,過程1500可以涉及處理器1422複製控制訊框的TA欄位並將其插入到回應訊框(例如,CTS)的RA欄位中。而且,過程1500可以涉及處理器1422向EHT發起者發送回應訊框。在一些實施方式中,EHT發起者和EHT回應者可以修改(a)控制訊框中的SERVICE欄位中攜帶的加擾序列的前7位元和(b)SERVICE欄位中的一個或多個保留位元,中的一者或兩者。
在一些實施方式中,在執行頻寬協商時,過程1500可以涉及處理器1412通過執行某些操作來執行作為EHT發起者的STA 110和作為EHT回應者的STA 120之間的頻寬協商。例如,過程1500可以涉及作為EHT發起者的裝置1410的處理器1412向EHT回應者發送控制訊框(例如,RTS),使得:(a)控制訊框的RA欄位指示控制訊框的發射機的位址,以及(b)控制訊框的TA欄位指示控制訊框的接收機位址,TA欄位中的Unicast/Multicast位元設置為Multicast。而且,過程1500可以涉及作為EHT回應者的裝置1420的處理器1422接收控制訊框並執行某些操作。例如,過程1500可以涉及處理器1422將控制訊框的TA欄位中的Unicast/Multicast位元改為Unicast。另外,過程1500可以涉及處理器1422將控制訊框的TA欄位與EHT回應者的位址進行匹配。回應於控制訊框的TA欄位匹配EHT回應者的位址,過程1500可以涉及處理器1422執行某些操作。例如,過程1500可以涉及處理器1422複製控制訊框的RA欄位並將其插入在非HT PPDU中攜帶的回應訊框(例如,CTS)的RA欄位中。另外,過程1500可以涉及處理器1422向EHT發起者發送非HT PPDU。在一些實施方式中,EHT發起者可以修改控制訊框中的加擾序列的前7位元或一個或多個保留服務位元。
在一些實施方式中,在執行頻寬協商時,過程1500可以涉及處理器1412通過執行某些操作執行來執行作為EHT發起者的STA 110和作為EHT回應者的STA 120之間的頻寬協商。例如,過程1500可以涉及作為EHT發起者的裝置1410的處理器1412向EHT回應者發送控制訊框(例如,RTS),使得:(a)控制訊框的RA欄位指示控制訊框的發射機的位址,RA欄位中的Unicast/Multicast位元設置為Multicast,(b)控制訊框的TA欄位指示控制訊框的接收機的位址。而且,過程1500可以涉及作為EHT回應者的裝置1420的處理器1422接收控制訊框並將控制訊框的RA欄位和TA欄位與EHT回應者的地址相匹配。回應於控制訊框的TA欄位匹配EHT回應者的位址,過程1500可以涉及處理器1422執行某些操作。例如,過程1500可以涉及處理器1422將控制訊框的RA欄位中的Unicast/Multicast位元改變為Unicast。另外,過程1500可以涉及處理器1422複製控制訊框的RA欄位並將其插入到非HT PPDU中攜帶的回應訊框(例如,CTS)的RA欄位中。而且,過程1500可以涉及處理器1422向EHT發起者發送非HT PPDU。在一些實施方式中,EHT發起者可以修改控制訊框中加擾序列的前7位元或控制訊框中的一個或多個保留服務位元。
在一些實施方式中,在執行頻寬協商時,過程1500可以涉及處理器1412通過執行某些操作來執行作為EHT發起者的STA 110和作為EHT回應者的STA 120之間的頻寬協商。例如,過程1500可以涉及作為EHT發起者的裝置1410的處理器1412,向EHT回應者發送控制訊框(例如,RTS),使得:(a)控制訊框的RA欄位指示控制訊框的發射機的位址,RA 欄位中的Individual/Group位元設置為Group;(b)控制訊框的TA欄位指示控制訊框的接收機的位址,TA欄位中的Individual/Group位元設置為Group。而且,過程1500可以涉及作為EHT回應者的裝置1420的處理器1422接收控制訊框並執行某些操作。例如,過程1500可以涉及處理器1422將控制訊框的RA欄位中的Individual/Group位元改變為Individual。而且,過程1500可以涉及處理器1422將控制訊框的TA欄位中的Individual/Group位元改變為Individual。而且,過程1500可以涉及處理器1422將控制訊框的TA欄位與EHT回應者的位址進行匹配。回應於控制訊框的TA欄位匹配EHT回應者的位址,過程1500可以涉及處理器1422執行某些操作。例如,過程1500可以涉及處理器1422將控制訊框的RA欄位中的Individual/Group位元改變為Individual。另外,過程1500可以涉及處理器1422複製控制訊框的RA欄位並將其插入到非HT PPDU中攜帶的回應訊框(例如,CTS)的RA欄位中。另外,過程1500可以涉及處理器1422向EHT發起者發送非HT PPDU。在一些實施方式中,回應訊框中加擾序列的前7位元中的B4~B6位元可以指示可用頻寬。
在一些實施方式中,在執行頻寬協商時,過程1500可以涉及處理器1412在STA 110和STA 120之間交換控制訊框(例如,RTS)和回應訊框(例如,CTS)以用於沒有前導碼穿孔指示的動態頻寬協商。在這種情況下,當控制訊框的SERVICE欄位中的頻寬擴展指示設置為1時,可以指示可用頻寬大於160MHz(例如,可用頻寬=320MHz)。而且,在回應訊框的SERVICE欄位中的頻寬擴展指示設置為1時,可以指示可用頻寬大於 160MHz(例如,可用頻寬= 320MHz),當設置為0時,可以指示可用頻寬小於或等於160MHz。
在一些實施方式中,在執行頻寬協商時,過程1500可以涉及處理器1412在第一STA和第二STA之間交換控制訊框和回應訊框以用於沒有前導碼穿孔指示的靜態頻寬協商。在這種情況下,當控制訊框的SERVICE欄位中的頻寬擴展指示設置為1時,可以指示可用頻寬大於160MHz。而且,回應訊框的SERVICE欄位中的頻寬擴展指示可以設置為1。
在一些實施方式中,在執行頻寬協商時,過程1500可以涉及處理器1412在STA 110和STA 120之間交換控制訊框(例如,RTS)和回應訊框(例如,CTS)以用於沒有前導碼穿孔指示的頻寬指示。在這種情況下,控制訊框的MAC報頭中的MAC位址欄位可以指示擴展頻寬信令。另外,控制訊框的SERVICE欄位中攜帶的加擾序列的前7位元中的B5~B6位元可以設置為固定值,或者動態設置為四個值之一,以指示頻寬為320MHz。另外,回應訊框的SERVICE欄位中攜帶的加擾序列的前7位元中的B4~B6位元可以指示20MHz、40MHz、80MHz、160MHz、80+80MHz或320MHz的頻寬。
在一些實施方式中,在執行頻寬協商時,過程1500可以涉及處理器1412在STA 110和STA 120之間交換攜帶EHT頻寬信令的控制訊框(例如,RTS)和回應訊框(例如,CTS),在所述控制訊框的SERVICE欄位具有設置為1指示擴展通道頻寬為320MHz,設置為0指示頻寬等於或小於160MHz的B7位元。在B7位元設置為1的情況下,加擾序列的前7位元中的B5~B6位元可以設為固定值,或者動態設為四個值之一。否則,在B7位元被設置為0的情況下,加擾序列的前7位元中的B5~B6位元可以被設置為四個值之一,指示頻寬20MHz、40MHz、80MHz或者160MHz(或 80+80MHz)。例如,當B7位元設置為1時,對於EHT STA(例如,STA 110 和 STA 120)指示頻寬為320MHz,同時B5~B6位元不指示實際頻寬。然而,傳統(非EHT)STA可以採用B5~B6位元的值作為頻寬指示。
在一些實施方式中,在執行頻寬協商時,過程1500可以涉及處理器1412在作為EHT發起者的STA 110和作為EHT回應者的STA 120之間執行頻寬協商。 例如,過程1500可以涉及作為EHT發起者的裝置1410的處理器1412向EHT回應者發送具有頻寬信令TA欄位的20MHz、40MHz、80MHz、160MHz或80+80MHz VHT RTS訊框。另外,過程1500可以涉及作為EHT回應者的裝置1420的處理器1422向EHT發起者發送VHT CTS訊框以執行靜態或動態頻寬協商和指示。
在一些實施方式中,在執行頻寬協商時,過程1500可以涉及處理器1412在作為EHT發起者的STA 110和作為EHT回應者的STA 120之間執行頻寬協商。 例如,過程1500可以涉及作為EHT發起者的裝置1410的處理器1412向EHT回應者發送320MHz EHT RTS訊框,其中EHT RTS訊框包括:(a)靜態頻寬協商指示,(b) EHT RTS 訊框的SERVICE欄位中的B7位元設置為1,以及(c)頻寬信令TA欄位。另外,過程1500可以涉及作為EHT回應者的裝置1420的處理器1422向EHT發起者發送320MHz EHT CTS訊框。
在一些實施方式中,在執行頻寬協商時,過程1500可以涉及處理器1412在作為EHT發起者的STA 110和作為EHT回應者的STA 120之間執行頻寬協商。例如,過程1500可以涉及作為EHT發起者的裝置1410的處理器1412向EHT回應者發送320MHz EHT RTS訊框,其中EHT RTS訊框包括:(a)動態頻寬協商指示,(b) EHT RTS 訊框的SERVICE欄位中的B7位元設置為1,以及(c)頻寬信令TA欄位。另外,過程1500可以涉及作為EHT回應者的裝置1420的處理器1422執行某些操作。例如,在EHT回應者的回應訊框具有320MHz頻寬的情況下,過程1500可以涉及處理器1422向EHT發起者發送320MHz EHT CTS訊框。或者,在EHT回應者的回應訊框具有等於或小於160MHz的頻寬的情況下,過程1500可以涉及處理器1422向EHT發起者發送VHT CTS訊框。附加說明
本文描述的主題有時說明不同的組件包含在不同的其他組件內或與不同的其他組件連接。需要理解的是,這樣描繪的架構僅僅是示例,並且實際上可以實施許多其他架構,以實現相同的功能。從概念上講,實現相同功能的任何組件佈置都是有效地“關聯”的,從而實現所需的功能。因此,本文中組合以實現特定功能的任何兩個組件可以被視為彼此“關聯”,從而實現期望的功能,而與架構或中間組件無關。同樣,任何兩個如此關聯的組件也可以被視為“可操作地連接”或“可操作地耦接”,以實現所需的功能,並且任何兩個能夠如此關聯的組件也可以被視為“可操作地連接”或“可操作地耦接”,以實現所需的功能。可操作耦接的具體示例包括但不限於物理上可配對和/或物理上相互作用的組件和/或可無線交互和/或無線交互的組件和/或邏輯上相互作用和/或邏輯上可交互的組件。
另外,關於本文中基本上任何複數和/或單數術語的使用,所屬領域具有通常知識者可以根據上下文和/或應用從複數轉換為單數和/或從單數轉換為複數。為清楚起見,這裡可以明確地闡述各種單數/複數置換。
另外,所屬領域具有通常知識者可以理解,通常這裡所使用的術語,特別是在所附的請求項中使用的術語,例如所附請求項的主體,一般旨在作為“開放式”術語,例如術語“包括”應被解釋為“包括但不限於”,術語“包含”應被解釋為“包含但不限於”,術語“具有”應該被解釋為“至少具有”,等。所屬領域具有通常知識者可以進一步理解,如果意指特定數量的所引入請求項要素,這樣的意圖將明確地記載在請求項中,並且在缺少這樣的記載時不存在這樣的意圖。例如,為了有助於理解,所附請求項可包含引導性短語“至少一個”和“一個或多個”的使用以引入請求項要素。然而,使用這樣的短語不應被解釋為暗示由不定冠詞“a”或“an”引入的請求項要素限制含有這樣引入請求項要素的任何特定請求項只包含一個這樣的要素,即使當相同的請求項包含了引導性短語“一個或多個”或“至少一個”和不定冠詞例如“a”或“an”,例如“a”和/或“an”應被解釋為是指“至少一個”或“一個或多個”,這同樣適用於用來引入請求項要素的定冠詞的使用。另外,即使明確記載特定數量的所引入請求項要素,所屬領域具有通常知識者將認識到,這樣的陳述應被解釋為意指至少所列舉的數量,例如沒有其它修飾詞的敘述“兩個要素”,是指至少兩個要素或者兩個或更多要素。另外,在使用類似於“A,B和C等中的至少一個”的情況下,就其目的而言,通常這樣的結構,所屬領域具有通常知識者將理解該慣例,例如“系統具有A,B和C中的至少一個”將包括但不限於系統具有單獨的A、單獨的B、單獨的C、A和B一起、A和C一起、B和C一起、和/或A、B和C一起等。在使用類似於“A,B或C等中的至少一個”的情況下,就其目的而言,通常這樣的結構,所屬領域具有通常知識者將理解該慣例,例如“系統具有A,B或C中的至少一個”將包括但不限於系統具有單獨的A、單獨的B、單獨的C、A和B一起、A和C一起、B和C一起、和/或A、B和C一起等。所屬領域具有通常知識者將進一步理解,實際上表示兩個或多個可選項的任何轉折詞語和/或短語,無論在說明書、請求項或附圖中,應該被理解為考慮包括多個術語之一、多個術語中任一術語、或兩個術語的可能性。例如,短語“A或B”將被理解為包括“A”或“B”或“A和B”的可能性。
由上可知,可以理解的是,為了說明目的本文已經描述了本申請的各種實施方式,並且可以不脫離本申請的範圍和精神而做出各種修改。因此,本文所公開的各種實施方式並不意味著是限制性的,真正的範圍和精神由所附請求項確定。
100:網路環境 110、120:STA 200:示例設計 300:示例設計 400:示例場景 500:示例場景 600:示例設計 700:示例場景 800:示例設計 900:示例設計 1000:示例設計 1100:示例場景 1200:示例場景 1400:示例系統 1410、1420:裝置 1412、1422:處理器 1416、1426:收發器 1414、1424:記憶體 1500:過程 1510、1520:框
附圖被包括以提供對本發明的進一步理解並且被併入並構成本發明的一部分。附圖示出了本發明的實施方式並且與說明書具體實施方式一起用於解釋本發明的原理。可以理解的是,附圖不一定是按比例繪製的,一些組件以與實際實施中的尺寸不成比例示出,以清楚地說明本發明的概念。 第1圖是示例性網路環境的示意圖,在該實施例網路環境中可以實施基於本發明的各種解決方案和方案。 第2圖是基於本發明的示例設計的示意圖。 第3圖是基於本發明的示例設計的示意圖。 第4圖是基於本發明的示例場景的示意圖。 第5圖是基於本發明的示例設計的示意圖。 第6圖是基於本發明的示例設計的示意圖。 第7圖是基於本發明的示例場景的示意圖。 第8圖是基於本發明的示例設計的示意圖。 第9圖是基於本發明的示例設計的示意圖。 第10圖是基於本發明的示例設計的示意圖。 第11圖是基於本發明的示例場景的示意圖。 第12圖是基於本發明的示例場景的示意圖。 第13圖是基於本發明的示例場景的示意圖。 第14圖是基於本發明的實施方式的示例通信系統的框圖。 第15圖是基於本發明的實施方式的示例過程的流程圖。
1500:過程
1510、1520:框

Claims (19)

  1. 一種頻寬協商的方法,包括:使用頻寬擴展指示在第一站點(STA)和第二STA之間執行頻寬協商;以及根據所述頻寬協商在第一STA和第二STA之間進行無線通訊;其中,執行頻寬協商包括:通過發送或接收在SERVICE欄位中具有指示頻寬擴展的一個頻寬擴展位元的第一控制訊框或第一回應訊框,來頻寬協商;其中,所述頻寬擴展位元被設置為0時,所述第一控制訊框或第一回應訊框中攜帶的加擾序列的前7位元中兩個位元被設置為指示小於或等於160MHz的頻寬,當所述頻寬擴展位元被設置為1時,用於指示大於160MHz的頻寬。
  2. 如請求項1所述的頻寬協商的方法,其中,所述一個頻寬擴展位元被設置為1时,所述加擾序列的前7位元中的所述两个位元被設置為固定值或者可變值。
  3. 如請求項1所述的頻寬協商的方法,其中,執行頻寬協商包括:通過接收或發送所述第一控制訊框或所述第一回應訊框來執行沒有前導碼穿孔指示的頻寬協商,所述前7位元中兩個位元是B5-B6位元,其中,所述大於160MHz的頻寬是320MHz。
  4. 如請求項1所述的頻寬協商的方法,其中,所述第一控制訊框或者所述第一回應訊框的頻寬擴展位元位於加擾序列的前7位元中或位於SERVICE欄位的保留位元中。
  5. 如請求項1所述的頻寬協商的方法,其中,還包括:通過發送或者接收第二控制訊框或第二回應訊框,來執行具有前導碼穿孔指示的頻寬協商,其中所述第二控制訊框或所述第二回應訊框在所述第二控制訊框或所述第二回應訊框的SERVICE欄位中具有指示帶有前導碼穿孔指示的可用頻寬的至少 一個或多個位元。
  6. 如請求項5所述的頻寬協商的方法,其中,所述加擾序列的前7位元中的兩個位元或多個位元和所述SERVICE欄位中的多個保留位元指示具有前導碼穿孔指示的可用頻寬。
  7. 如請求項1所述的頻寬協商的方法,其中,所述執行頻寬協商包括:通過以下方式在作為超高輸送量(EHT)發起者的第一STA和作為EHT回應者的第二STA之間執行頻寬協商:所述EHT發起者向所述EHT回應者發送第一控制訊框,所述第一控制訊框在媒體存取控制(MAC)標頭中具有信令,該信令用於指示所述第一控制訊框中攜帶的加擾序列的前7位元和SERVICE欄位中一個或多個保留位元中的一者或兩者至少攜帶所述頻寬擴展指示。
  8. 如請求項7所示的頻寬協商的方法,其中,所述第一控制訊框的發射機位址(TA)欄位指示所述第一控制訊框的發射機的位址,所述TA欄位中的單播/多播(Unicast/Multicast)位元設置為Multicast,以及所述第一控制訊框的接收機位址(RA)欄位指示所述第一控制訊框的接收機的位址,所述RA欄位中的Unicast/Multicast位元設置為Multicast;還包括:所述EHT回應者接收所述第一控制訊框並執行包括以下的操作:將所述第一控制訊框的RA欄位中的Unicast/Multicast位元更改為Unicast;將所述第一控制訊框的RA欄位與所述EHT回應者的位址進行匹配;回應於所述第一控制訊框的RA欄位與所述EHT回應者的位址匹配,執行包括如下的操作:將所述第一控制訊框的TA欄位中的Unicast/Multicast位元更改為Unicast;將所述第一控制訊框的更改後的TA欄位複製並插入到第一回應訊框的RA 欄位中;以及向所述EHT發起者發送所述第一回應訊框。
  9. 如請求項1所述的頻寬協商的方法,其中,所述執行頻寬協商包括:在所述第一STA和所述第二STA之間交換第一控制訊框和第一回應訊框,用於沒有前導碼穿孔指示的動態頻寬協商,其中當所述第一控制訊框的SERVICE欄位中的頻寬擴展指示設置為1,指示大於160MHz的頻寬,以及當所述第一回應訊框的SERVICE欄位中的頻寬擴展指示設置為1,指示大於160MHz的頻寬,設置為0指示可用頻寬小於或者等於160MHz。
  10. 如請求項1所述的頻寬協商的方法,其中,所述執行頻寬協商包括:在所述第一STA和所述第二STA之間交換第一控制訊框和第一回應訊框,用於沒有前導碼穿孔指示的靜態頻寬協商,其中,當所述第一控制訊框的SERVICE欄位中的頻寬擴展指示設置為1,指示大於160MHz的頻寬,以及其中所述第一回應訊框的SERVICE欄位中的頻寬擴展指示設置為1,指示大於160MHz的頻寬。
  11. 如請求項1所述的頻寬協商的方法,其中,所述執行頻寬協商包括:在所述第一STA和所述第二STA之間交換第一控制訊框和第一回應訊框以用於沒有前導碼穿孔指示的頻寬指示,其中,所述第一控制訊框的媒體接入控制(MAC)報頭中MAC位址欄位指示擴展頻寬信令,其中所述第一控制訊框中攜帶的加擾序列的前7位元中的B5~B6位元設置為固定值或動態設置為四個值之一,以指示頻寬為320MHz,其中所述第一回應訊框中攜帶的加擾序列的前7位元中B4~B6位元指示20MHz、40MHz、80MHz、160MHz或320MHz的頻寬。
  12. 如請求項1所述的頻寬協商的方法,其中,所述執行頻寬協商包括:在所述第一STA和所述第二STA之間交換攜帶極高輸送量(EHT)頻寬 信令的第一控制訊框和第一回應訊框,其中,在所述第一控制訊框的SERVICE欄位具有設置為1指示擴展通道頻寬為320MHz,設置為0指示頻寬等於或小於160MHz的B7位元,其中:在所述B7位元設置為1情況下,所述加擾序列的前7位元中的B5~B6位元設置為固定值或動態設置為四個值之一,以及在所述B7位元設置為0情況下,所述加擾序列的前7位元中的B5~B6位元設置為指示頻寬20MHz、40MHz、80MHz和160MHz的四個值之一。
  13. 如請求項1所述的頻寬協商的方法,其中,所述執行頻寬協商包括:通過如下方式在作為超高輸送量(EHT)發起者的第一STA和作為EHT回應者的第二STA之間執行頻寬協商:所述EHT發起者向所述EHT回應者發送具有頻寬信令發射機位址TA欄位的20MHz、40MHz、80MHz或160MHz甚高輸送量(VHT)請求發送(RTS)訊框,以及所述EHT回應者向所述EHT發起者發送VHT清除發送(CTS)訊框以執行靜態或動態頻寬協商和指示。
  14. 如請求項1所述的頻寬協商的方法,其中,執行頻寬協商包括:通過如下方式在作為超高輸送量(EHT)發起者的第一STA和作為EHT回應者的第二STA之間執行頻寬協商:所述EHT發起者向所述EHT回應者發送320MHz EHT請求發送(RTS)訊框,所述EHT RTS訊框包含:靜態頻寬協商指示,所述EHT RTS訊框的SERVICE欄位中的位元B7設置為1,以及頻寬信令發射機地址TA欄位;以及所述EHT回應者向所述EHT發起者發送320MHz EHT清除發送(CTS)訊 框。
  15. 如請求項1所述的頻寬協商的方法,其中,執行頻寬協商包括:通過如下方式在作為超高輸送量(EHT)發起者的第一STA和作為EHT回應者的第二STA之間執行頻寬協商:所述EHT發起者向所述EHT回應者發送320MHz EHT請求發送(RTS)訊框,所述EHT RTS訊框包含:動態頻寬協商指示,所述EHT RTS訊框的SERVICE欄位中的B7位元設置為1,以及頻寬信令發射機地址TA欄位;以及在EHT回應者的回應訊框頻寬為320MHz的情況下,所述EHT回應者向所述EHT發起者發送320MHz EHT清除發送(CTS)訊框;或者在EHT回應者的回應訊框頻寬等於或小於160MHz的情況下,所述EHT回應者向所述EHT發起者發送甚高輸送量(VHT)CTS訊框,其中所述SERVICE欄位中的B7位元設置為0。
  16. 一種通信裝置,包括:收發器,用於無線通訊;處理器,與所述收發器耦接,用於經由所述收發器執行包括如下的操作:使用頻寬擴展指示在第一站點(STA)和第二STA之間執行頻寬協商;以及根據所述頻寬協商在所述第一STA和所述第二STA之間進行無線通訊;其中,執行頻寬協商包括:通過發送或接收在SERVICE欄位中具有指示頻寬擴展的一個頻寬擴展位元的第一控制訊框或第一回應訊框,來頻寬協商;其中,所述頻寬擴展位元被設置為0時,所述第一控制訊框或第一回應訊框中攜帶的加擾序列的前7位元中兩個位元被設置為指示小於或等於160MHz 的頻寬,當所述頻寬擴展位元被設置為1時,用於指示大於160MHz的頻寬。
  17. 如請求項16所述的通信裝置,其中,在執行頻寬協商時,所述處理器被配置為通過發送或接收在SERVICE欄位中具有指示頻寬擴展的一個頻寬擴展位元的所述第一控制訊框,來執行沒有前導碼穿孔指示的頻寬協商,所述一個頻寬擴展位元包括所述第一控制訊框的SERVICE欄位中攜帶的加擾序列的前7位元中的位元,或所述SERVICE欄位中的保留位元。
  18. 如請求項16所述的通信裝置,其中,在執行頻寬協商中,所述處理器被配置為通過接收或發送所述第一回應訊框來執行沒有前導碼穿孔指示的頻寬協商,所述第一回應訊框的頻寬擴展位元位於SERVICE欄位中攜帶的加擾序列的前7位元中或位於SERVICE欄位的保留位元中。
  19. 如請求項16所述的通信裝置,其中,在執行頻寬協商中,所述處理器被配置為通過發送或者接收第二控制訊框或第二回應訊框,來執行具有前導碼穿孔指示的頻寬協商,其中所述第二控制訊框或所述第二回應訊框在所述第二控制訊框或所述第二回應訊框的SERVICE欄位具有指示帶有前導碼穿孔指示的可用頻寬的至少一個或多個位元,以及其中,所述SERVICE欄位攜帶的加擾序列的前7位元中的兩個位元或多個位元和所述SERVICE欄位中的多個保留位元指示具有前導碼穿孔指示的可用頻寬。
TW110122372A 2020-06-18 2021-06-18 無線通訊中的頻寬協商的方法及通信裝置 TWI782583B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US202063040558P 2020-06-18 2020-06-18
US63/040,558 2020-06-18
US202063045210P 2020-06-29 2020-06-29
US63/045,210 2020-06-29
US202063073531P 2020-09-02 2020-09-02
US63/073,531 2020-09-02
US17/350,483 2021-06-17
US17/350,483 US11611992B2 (en) 2020-06-18 2021-06-17 Bandwidth extension indication and negotiation in wireless communications

Publications (2)

Publication Number Publication Date
TW202201985A TW202201985A (zh) 2022-01-01
TWI782583B true TWI782583B (zh) 2022-11-01

Family

ID=76744595

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110122372A TWI782583B (zh) 2020-06-18 2021-06-18 無線通訊中的頻寬協商的方法及通信裝置

Country Status (4)

Country Link
US (2) US11611992B2 (zh)
EP (1) EP3927013A1 (zh)
CN (1) CN113825178A (zh)
TW (1) TWI782583B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4325765A3 (en) * 2020-01-10 2024-05-01 LG Electronics Inc. Method and apparatus for receiving ppdu in wireless lan system
US11924812B2 (en) * 2020-07-23 2024-03-05 Qualcomm Incorporated Enhanced trigger frame
US20220201665A1 (en) * 2020-12-18 2022-06-23 Mediatek Singapore Pte. Ltd. Bandwidth Indication With Preamble Puncturing In Wireless Communications
US11621798B2 (en) * 2021-02-02 2023-04-04 Cisco Technology, Inc. Signaling of preamble puncturing configuration in a non-high throughput RTS/CTS exchange

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120106426A1 (en) * 2010-11-01 2012-05-03 Brian Hart Bandwidth indication in rts/cts frames
US20120243485A1 (en) * 2010-09-22 2012-09-27 Qualcomm Incorporated Request to send (rts) and clear to send (cts) for multichannel operations
TW201906444A (zh) * 2011-04-01 2019-02-01 美商內數位專利控股公司 控志網路連接性方法及裝置
US20190141570A1 (en) * 2017-11-06 2019-05-09 Qualcomm Incorporated Techniques for preamble puncturing
WO2019242658A1 (zh) * 2018-06-20 2019-12-26 华为技术有限公司 一种带宽模式指示方法、信道指示方法及装置
US20200162963A1 (en) * 2017-08-11 2020-05-21 Yaron Alpert Determining a number of spatial streams and a bandwidth

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550762B1 (en) * 2014-09-28 2021-11-10 Lg Electronics Inc. Method and apparatus for supporting flexible resource allocation in wireless communication system
US20200037342A1 (en) * 2018-07-27 2020-01-30 Mediatek Singapore Pte. Ltd. Eht transmission protection mechanism in 6 ghz
US11539458B2 (en) * 2020-02-07 2022-12-27 Newracom, Inc. Multiple resource unit signaling in a wireless local area network
US11641253B2 (en) * 2020-04-26 2023-05-02 Nxp Usa, Inc. Bandwidth indication, TXOP protection, and bandwidth negotiation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120243485A1 (en) * 2010-09-22 2012-09-27 Qualcomm Incorporated Request to send (rts) and clear to send (cts) for multichannel operations
US20120106426A1 (en) * 2010-11-01 2012-05-03 Brian Hart Bandwidth indication in rts/cts frames
TW201906444A (zh) * 2011-04-01 2019-02-01 美商內數位專利控股公司 控志網路連接性方法及裝置
US20200162963A1 (en) * 2017-08-11 2020-05-21 Yaron Alpert Determining a number of spatial streams and a bandwidth
US20190141570A1 (en) * 2017-11-06 2019-05-09 Qualcomm Incorporated Techniques for preamble puncturing
WO2019242658A1 (zh) * 2018-06-20 2019-12-26 华为技术有限公司 一种带宽模式指示方法、信道指示方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
網路文獻 Liwen Chu BW Negotiation, TXOP Protection with >160MHz PPDU and Puncture Operation IEEE 2020-01-06 IEEE 11-20-0062-00-00be *

Also Published As

Publication number Publication date
US20210400727A1 (en) 2021-12-23
TW202201985A (zh) 2022-01-01
EP3927013A1 (en) 2021-12-22
US20230199848A1 (en) 2023-06-22
US11611992B2 (en) 2023-03-21
CN113825178A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
US11877321B2 (en) Constrained multi-link device operations in wireless communications
TWI782583B (zh) 無線通訊中的頻寬協商的方法及通信裝置
US11516841B2 (en) Enhanced high-throughput multi-link channel access and operation
TWI825424B (zh) 用於多鏈路切換之方法及裝置
US11963097B2 (en) Extreme-high-throughput enhanced subchannel selective transmission operation in wireless communications
US20180014165A1 (en) Triggered wireless access protocol with grouped multi-user transmissions
TWI782763B (zh) 基於觸發的傳輸方法及相關裝置
TW202143788A (zh) 無線通訊方法和裝置
CN115395996A (zh) 用于多链路天线切换之方法及装置
TWI836760B (zh) 執行雙cts模式的通信方法以及相關裝置
EP4224978A1 (en) Emlsr channel access procedure in wireless communications
US20220201665A1 (en) Bandwidth Indication With Preamble Puncturing In Wireless Communications
TWI782635B (zh) 無線通訊方法和裝置
TWI842526B (zh) 執行增強型遠程(elr)通信的方法以及通信裝置
EP4255069A1 (en) Enhanced multi-link single-radio and multi-radio subband operations in wireless communications
US20240098821A1 (en) EHT EMLSR TWT Operation In Wireless Communications
TW202345541A (zh) 執行增強型遠程(elr)通信的方法以及通信裝置
TW202410719A (zh) 無線通訊中的eht uhr動態多鏈路切換方法以及通信裝置
TW202329740A (zh) 執行雙cts模式的通信方法以及相關裝置
CN115942448A (zh) 无线通信方法以及在nstr mld中实现的装置
CN117750542A (zh) 无线通信方法及装置