TWI782470B - Fingerprint identification module, chip and electronic device - Google Patents

Fingerprint identification module, chip and electronic device Download PDF

Info

Publication number
TWI782470B
TWI782470B TW110111977A TW110111977A TWI782470B TW I782470 B TWI782470 B TW I782470B TW 110111977 A TW110111977 A TW 110111977A TW 110111977 A TW110111977 A TW 110111977A TW I782470 B TWI782470 B TW I782470B
Authority
TW
Taiwan
Prior art keywords
switch
sub
metal layer
switch group
control signal
Prior art date
Application number
TW110111977A
Other languages
Chinese (zh)
Other versions
TW202136985A (en
Inventor
孫天奇
蔣新喜
程珍娟
張靖愷
Original Assignee
大陸商敦泰電子(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商敦泰電子(深圳)有限公司 filed Critical 大陸商敦泰電子(深圳)有限公司
Publication of TW202136985A publication Critical patent/TW202136985A/en
Application granted granted Critical
Publication of TWI782470B publication Critical patent/TWI782470B/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/94Hardware or software architectures specially adapted for image or video understanding
    • G06V10/955Hardware or software architectures specially adapted for image or video understanding using specific electronic processors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • G06V40/1359Extracting features related to ridge properties; Determining the fingerprint type, e.g. whorl or loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

The present application provides a fingerprint identification module, a fingerprint identification chip and an electronic device. The fingerprint identification module includes an encapsulation layer and a die. The die includes a pixel array sensing circuit, which includes a number of pixel circuits with matrix distribution. Each pixel circuit includes a first metal layer that detects fingerprint of the finger. A distance between a curved outer surface of the encapsulation layer and the first metal layer of the pixel circuit on each column of the encapsulation layer changes linearly proportionally to an arc of the curved outer surface of the encapsulation layer, and the surface area of the first metal layer of the pixel circuit on each column of the pixel array sensing circuit changes linearly proportionally to the arc of the curved outer surface of the package layer. The present application can solve a problem of poor fingerprint signal quality collected by the pixel array sensing circuit with the curved package layer, and a problem of an uneven noise volume.

Description

指紋識別模組、晶片及電子設備 Fingerprint identification module, chip and electronic equipment

本申請涉及無線通訊技術領域,尤其涉及一種指紋識別模組、晶片及具有指紋採集晶片的電子設備。 The present application relates to the technical field of wireless communication, in particular to a fingerprint identification module, a chip and an electronic device with a fingerprint collection chip.

隨著智慧手機全面屏普及,指紋採集與識別方案趨於光學式屏下指紋識別和電容式側邊指紋識別兩種方案。其中,電容式側邊式指紋識別方案不受光源影響,主動解鎖的體驗尤佳。然而,現有的指紋採集與識別方案,出於信號量均勻性考慮,幾乎所有方案都採取平面式注塑封裝(molding)的結構。然而,電容式側邊指紋識別方案中的側邊式指紋識別模組位於手機的側方位(如左側或右側,一般設計在右側),目前95%以上的手機側邊外觀都是圓弧曲面型結構設計,導致平面式molding結構的指紋識別模組與手機嵌合不佳,外觀上手機的側邊凹凸不平,藉由指紋進行解鎖的體驗也不理想。 With the popularization of full-screen smartphones, fingerprint collection and recognition solutions tend to be optical under-screen fingerprint recognition and capacitive side fingerprint recognition. Among them, the capacitive side fingerprint recognition solution is not affected by the light source, and the active unlocking experience is especially good. However, in consideration of the uniformity of the signal quantity, almost all existing fingerprint collection and identification schemes adopt a planar molding structure. However, the side fingerprint recognition module in the capacitive side fingerprint recognition solution is located on the side of the mobile phone (such as the left or right side, generally designed on the right side). At present, more than 95% of the mobile phone sides are arc-shaped. Due to the structural design, the fingerprint identification module with a flat molding structure does not fit well with the mobile phone. The side of the mobile phone is uneven in appearance, and the unlocking experience by fingerprint is not ideal.

另外,現有指紋識別方案的感測器陣列(Sensor Array)的每個圖元(Pixel)單位面積大小是一致的,對應平面型molding,Sensor Array採集的信號量和雜訊量偏差不大,採集的信號的信噪比(Signal Noise Ratio,SNR)均勻性很好,獲得的圖像清晰,對比度高。但是,對應曲面型molding,由於曲面型molding的厚度在每列Pixel上存在差異,各列pixel上的信號量和雜訊量都存在明顯梯度差異,SNR也呈明顯梯度趨勢。然而,曲面型molding在各列資料(如厚度)存在固定梯度的偏差,使得SNR進一步降低,並導致採集的指紋圖像品質下降,指紋識別效果差。 In addition, the unit area size of each pixel (Pixel) in the sensor array (Sensor Array) of the existing fingerprint identification scheme is consistent, corresponding to the planar molding, the deviation of the signal amount and noise amount collected by the Sensor Array is not large, and the acquisition The signal-to-noise ratio (Signal Noise Ratio, SNR) uniformity of the signal is very good, and the obtained image is clear and high in contrast. However, for curved surface molding, since the thickness of curved surface molding differs on each column of Pixels, there are obvious gradient differences in the signal and noise quantities on each column of pixels, and the SNR also shows an obvious gradient trend. However, there is a fixed gradient deviation in each column of data (such as thickness) in curved surface molding, which further reduces the SNR, and leads to a decrease in the quality of the collected fingerprint image and poor fingerprint recognition effect.

有鑑於此,提供一種指紋識別模組、晶片及具有指紋採集晶片的電子設備以解決具有曲面型的封裝層的圖元陣列感應電路採集的指紋信號品質差和雜訊量不均勻的問題。 In view of this, a fingerprint identification module, a chip and an electronic device with a fingerprint collection chip are provided to solve the problems of poor quality of fingerprint signal and uneven noise amount collected by a picture element array sensing circuit with a curved packaging layer.

本申請一實施方式中提供一種指紋識別模組,包括封裝層和晶粒,所述封裝層包覆所述晶粒,所述晶粒包含圖元陣列感應電路,所述圖元陣列感應電路包括多個呈矩陣分佈的圖元電路,所述圖元電路包括用於對手指指紋進行檢測的第一金屬層,且所述第一金屬層設置於所述晶粒朝向所述封裝層的一面,所述封裝層具有弧形外表面,所述封裝層的弧形外表面到所述圖元陣列感應電路的每列上的圖元電路的第一金屬層的距離與所述封裝層的弧形外表面的弧度成線性比例變化,且所述圖元陣列感應電路的每列上的圖元電路的第一金 屬層的表面面積與所述封裝層的弧形外表面的弧度成線性比例變化。 In one embodiment of the present application, a fingerprint recognition module is provided, including an encapsulation layer and a die, the encapsulation layer covers the die, the die contains a picture element array sensing circuit, and the picture element array sensing circuit includes A plurality of graphic element circuits distributed in a matrix, the graphic element circuits include a first metal layer for detecting fingerprints, and the first metal layer is arranged on the side of the crystal grain facing the packaging layer, The encapsulation layer has an arc-shaped outer surface, and the distance from the arc-shaped outer surface of the encapsulation layer to the first metal layer of the element circuit on each column of the element array sensing circuit is equal to the arc shape of the encapsulation layer The curvature of the outer surface varies linearly, and the first gold element circuit on each column of the element array induction circuit The surface area of the metal layer varies linearly with the curvature of the curved outer surface of the encapsulation layer.

在本申請的一些實施例中,所述封裝層的弧形外表面到所述圖元陣列感應電路的n列上的圖元電路的第一金屬層的距離d與所述圖元陣列感應電 路的n列上的圖元電路的第一金屬層的表面面積s滿足

Figure 110111977-A0305-02-0003-1
,其中,d1、d2...dn分別為所述封裝層的弧形外表面到所述圖元陣列感應電路的第1、2...n列上的圖元電路的第一金屬層的距離;S1、S2...Sn分別為所述圖元陣列感應電路上n列的第一金屬層的表面面積,n為正整數。 In some embodiments of the present application, the distance d from the arc-shaped outer surface of the encapsulation layer to the first metal layer of the graphic element circuit on the n columns of the graphic element array sensing circuit is the same as that of the graphic element array sensing circuit The surface area s of the first metal layer of the primitive circuit on the n columns satisfies
Figure 110111977-A0305-02-0003-1
, wherein, d1, d2...dn are the distances from the arc-shaped outer surface of the packaging layer to the first metal layer of the picture element circuit on the 1st, 2...n columns of the picture element array sensing circuit The distances; S1, S2...Sn are respectively the surface areas of the first metal layers in n columns on the sensing circuit of the graphic element array, and n is a positive integer.

在本申請的一些實施例中,所述圖元電路還包括第二金屬層、第三金屬層、襯底層,所述第二金屬層及所述第三金屬層設置於所述第一金屬層及所述襯底層之間,所述第二金屬層和所述第三金屬層在所述襯底層的投影覆蓋所述第一金屬層在所述襯底層的投影,從而將所述第一金屬層與所述襯底層進行隔離,所述第一金屬層在手指接近後生成指紋信號,所述第二金屬層和所述第三金屬層交疊或錯開設置。 In some embodiments of the present application, the graphic element circuit further includes a second metal layer, a third metal layer, and a substrate layer, and the second metal layer and the third metal layer are disposed on the first metal layer and the substrate layer, the projection of the second metal layer and the third metal layer on the substrate layer covers the projection of the first metal layer on the substrate layer, so that the first metal layer The layer is isolated from the substrate layer, the first metal layer generates a fingerprint signal when a finger approaches, and the second metal layer and the third metal layer are overlapped or staggered.

在本申請的一些實施例中,所述指紋識別模組還包括積分電路,所述積分電路與所述圖元陣列感應電路連接,用於對所述圖元陣列感應電路生成的指紋信號進行放大;所述圖元陣列感應電路包括第一開關組、第二開關組,所述第一開關組包括第一子開關、第二子開關、第三子開關,所述第二開關組包括第一子開關、第二子開關、第三子開關;所述第二金屬層藉由所述第一開關組的第一子開關與電源電壓連接及藉由所述第二開關組的第一子開關與浮動接地端連接;所述第三金屬層藉由所述第一開關組的第二子開關與所述電源電壓連接及藉由所述第二開關組的第二子開關與第一參考電壓連接;所述第一金屬層藉由所述第一開關組的第三子開關與第一參考電壓連接及藉由所述第二開關組的第三子開關與積分電路連接。 In some embodiments of the present application, the fingerprint identification module further includes an integrating circuit, and the integrating circuit is connected to the sensing circuit of the array of graphic elements, and is used to amplify the fingerprint signal generated by the sensing circuit of the array of graphic elements ; The picture element array sensing circuit includes a first switch group and a second switch group, the first switch group includes a first sub-switch, a second sub-switch, and a third sub-switch, and the second switch group includes a first A sub-switch, a second sub-switch, and a third sub-switch; the second metal layer is connected to the power supply voltage through the first sub-switch of the first switch group and connected to the power supply through the first sub-switch of the second switch group connected to the floating ground; the third metal layer is connected to the power supply voltage through the second sub-switch of the first switch group and connected to the first reference voltage through the second sub-switch of the second switch group connected; the first metal layer is connected to the first reference voltage through the third sub-switch of the first switch group and connected to the integration circuit through the third sub-switch of the second switch group.

在本申請的一些實施例中,當外設狀態控制信號Tx=0時,浮動接地端的電壓VNVSS=0,當外設狀態控制信號Tx=1時,所述浮動接地端連接預設負電壓,浮動接地端的電壓VNVSS=-VTX,其中-VTX為所述預設負電壓。 In some embodiments of the present application, when the peripheral state control signal Tx=0, the voltage of the floating ground terminal VNVSS=0, and when the peripheral state control signal Tx=1, the floating ground terminal is connected to a preset negative voltage, The voltage of the floating ground terminal VNVSS=-VTX, wherein -VTX is the preset negative voltage.

在本申請的一些實施例中,包括負壓輸出電路,用於提供-VTX給浮動接地端。 In some embodiments of the present application, a negative voltage output circuit is included for providing -VTX to the floating ground terminal.

在本申請的一些實施例中,所述積分電路包括運算放大器及回饋環路,所述運算放大器包括同相輸入端、反向輸入端及輸出端,所述同相輸入端與所述第一參考電壓相連接,藉由調整所述第一參考電壓來調整所述輸出端的輸出電壓,所述第一金屬層藉由所述第二開關組的第三子開關與所述反向輸入端連接,所述輸出端藉由所述回饋環路與所述反向輸入端連接;所述回饋環路包括回饋電容、第三開關組及第四開關組,所述回饋電容的上極板藉由所述第三開關組的第一子開關與第二參考電壓連接,所述回饋電容的下極板藉由所述第三開關組的第二子開關與所述電源電壓連接,所述回饋電容的上極板藉由所述第四開關組的第一子開關與所述反向輸入端連接,所述回饋電容的下極板藉由所述第四開關組的第二子開關與所述輸出端連接,所述反向輸入端藉由所述第三開關組的第三子開關與所述輸出端連接。 In some embodiments of the present application, the integration circuit includes an operational amplifier and a feedback loop, the operational amplifier includes a non-inverting input terminal, an inverting input terminal and an output terminal, and the non-inverting input terminal and the first reference voltage The output voltage of the output terminal is adjusted by adjusting the first reference voltage, and the first metal layer is connected to the inverting input terminal through the third sub-switch of the second switch group, so The output end is connected to the reverse input end through the feedback loop; the feedback loop includes a feedback capacitor, a third switch group and a fourth switch group, and the upper plate of the feedback capacitor is connected by the The first sub-switch of the third switch group is connected to the second reference voltage, the lower plate of the feedback capacitor is connected to the power supply voltage through the second sub-switch of the third switch group, and the upper plate of the feedback capacitor The pole plate is connected to the reverse input terminal through the first sub-switch of the fourth switch group, and the lower plate of the feedback capacitor is connected to the output terminal through the second sub-switch of the fourth switch group. connected, the inverting input terminal is connected to the output terminal through the third sub-switch of the third switch group.

在本申請的一些實施例中,所述圖元陣列感應電路提供第一時序控制信號、第二時序控制信號、第三時序控制信號及第四時序控制信號,所述第一時序控制信號與所述第二時序控制信號為相位相差180°的時鐘信號,所述第三時序控制信號φ1與所述第四時序控制信號φ2是相位相差180°的非交疊時鐘信號,所述第一時序控制信號用於控制所述第三開關組的第一子開關、第二子開關、第三子開關的開合與關閉,所述第二時序控制信號用於控制所述第四開關組的第一子開關、第二子開關的開合與關閉,所述第三時序控制信號用於控制所述第一開關組的第一子開關、第二子開關、第三子開關的開合與關閉,所述第四時序控制信號用於控制所述第二開關組的第一子開關、第二子開關、第三子開關的開合與關閉。 In some embodiments of the present application, the graphic element array sensing circuit provides a first timing control signal, a second timing control signal, a third timing control signal and a fourth timing control signal, and the first timing control signal The second timing control signal is a clock signal with a phase difference of 180°, the third timing control signal φ1 and the fourth timing control signal φ2 are non-overlapping clock signals with a phase difference of 180°, and the first The timing control signal is used to control the opening and closing of the first sub-switch, the second sub-switch, and the third sub-switch of the third switch group, and the second timing control signal is used to control the fourth switch group The opening and closing of the first sub-switch and the second sub-switch of the first switch group, the third timing control signal is used to control the opening and closing of the first sub-switch, the second sub-switch, and the third sub-switch of the first switch group and closing, the fourth timing control signal is used to control the opening and closing of the first sub-switch, the second sub-switch and the third sub-switch of the second switch group.

(a)起始階段;第一時序控制信號為高電平,第二時序控制信號為低電平,所述第三開關組的第一子開關、第二子開關、第三子開關同時導通,所述第四開關組的第一子開關、第二子開關同時斷開;(b)掃描階段:所述第一時序控制信號為低電平,所述第二時序控制信號為高電平,所述第三開關組的第一子開關、第二子開關、第三子開關同時斷開,所述第四開關組的第一子開關、第二子開關同時導通;(c)預充電階段:外設狀態控制信號TX=0,浮動接地端與接地端連接,浮動接地端的電壓VNVSS=0,所述第一開關組的第一子開關、第一開關組的第二子開關斷開,所述第一開關組的第三子開關導通,所述第二開關組的第一子開關、第二開關組的第二子開關同時導通,所述第二開關組的第三子開關斷開,所述第二金屬層連接接地端,所述第一金屬層及所述第三金屬層同時連接第一參考電壓,所述第一金屬層與所述放大器斷開;(d)電荷轉移階段,外設狀態控制信號Tx=1,浮動接地端連接預設負電壓,所述第一開關組的第三子開關由導通轉變為斷開,第二開關組的第三子開關由斷開轉變為導通,所述第一開關組的第一子開關、第一開關組的第二子開關、第二開關組的第一子開關、第二開關組的第二子開關保持狀態不變,預設負電壓-VTX=(-1)*VDD,其中VDD為電源電壓,所述第二開關組的第二子開關導通,所述放大器的反相輸入端藉由所述第二開關組的第三子開關連接至所述第一金屬層,所述放大器的輸出端和所述反相輸入端藉由所述回饋電容連接。 (a) Initial stage; the first timing control signal is high level, the second timing control signal is low level, and the first sub-switch, the second sub-switch, and the third sub-switch of the third switch group are simultaneously turn on, the first sub-switch and the second sub-switch of the fourth switch group are turned off at the same time; (b) scanning phase: the first timing control signal is low, and the second timing control signal is high Level, the first sub-switch, the second sub-switch, and the third sub-switch of the third switch group are turned off at the same time, and the first sub-switch and the second sub-switch of the fourth switch group are turned on at the same time; (c) Pre-charging stage: the peripheral state control signal TX=0, the floating ground terminal is connected to the ground terminal, the voltage V NVSS of the floating ground terminal =0, the first sub-switch of the first switch group, the second sub-switch of the first switch group The switch is turned off, the third sub-switch of the first switch group is turned on, the first sub-switch of the second switch group and the second sub-switch of the second switch group are turned on at the same time, the third sub-switch of the second switch group The sub-switch is turned off, the second metal layer is connected to the ground terminal, the first metal layer and the third metal layer are connected to the first reference voltage at the same time, and the first metal layer is disconnected from the amplifier; (d ) In the charge transfer stage, the peripheral state control signal Tx=1, the floating ground terminal is connected to a preset negative voltage, the third sub-switch of the first switch group changes from on to off, and the third sub-switch of the second switch group From off to on, the first sub-switch of the first switch group, the second sub-switch of the first switch group, the first sub-switch of the second switch group, and the second sub-switch of the second switch group maintain the state unchanged, the preset negative voltage -VTX=(-1)*VDD, wherein VDD is the power supply voltage, the second sub-switch of the second switch group is turned on, and the inverting input terminal of the amplifier is connected by the second The third sub-switch of the switch group is connected to the first metal layer, and the output terminal of the amplifier is connected to the inverting input terminal through the feedback capacitor.

在本申請的一些實施例中,所述指紋識別模組還包括PCB板及柔性電路板,所述PCB板設置在所述柔性電路板上,所述晶粒設置在所述PCB板上,所述封裝層包覆所述晶粒及所述PCB板。 In some embodiments of the present application, the fingerprint recognition module further includes a PCB board and a flexible circuit board, the PCB board is arranged on the flexible circuit board, the crystal grain is arranged on the PCB board, and the The encapsulation layer covers the die and the PCB board.

本申請的實施例還提供一種指紋識別晶片包括上述提供的晶粒,所述晶粒包含圖元陣列感應電路,所述圖元陣列感應電路包括多個呈矩陣分佈的圖元電路,所述圖元電路包括用於對手指指紋進行檢測的第一金屬層,且所述第一金屬層設置於所述晶粒且朝向覆蓋所述晶粒的封裝層,所述第一金屬層的表面面積與覆蓋其上方的封裝層的厚度成線性比例變化。 An embodiment of the present application also provides a fingerprint identification chip including the above-mentioned die, the die includes a picture element array sensing circuit, and the picture element array sensing circuit includes a plurality of picture element circuits distributed in a matrix. The element circuit includes a first metal layer for detecting fingerprints, and the first metal layer is arranged on the die and faces the encapsulation layer covering the die, and the surface area of the first metal layer is the same as The thickness of the overlying encapsulation layer scales linearly.

本申請的實施例還提供一種電子設備,所述電子設備採用上述提供的指紋晶片。 The embodiment of the present application also provides an electronic device, which adopts the fingerprint chip provided above.

本申請根據封裝層的弧形外表面到第一金屬層的距離,將第一金屬層的表面面積進行差異化設計,保證圖元陣列感應電路採集的單位電容值一致,解決了具有曲面型的封裝層的圖元陣列感應電路採集的指紋信號品質差和雜訊量不均勻的問題。 According to the distance from the arc-shaped outer surface of the packaging layer to the first metal layer, the application differentiates the surface area of the first metal layer to ensure that the unit capacitance value collected by the sensor array sensor circuit of the graphics element is consistent, and solves the problem of having a curved surface. The quality of the fingerprint signal collected by the graphic element array sensing circuit on the packaging layer is poor and the amount of noise is uneven.

10:指紋識別系統 10:Fingerprint identification system

12:圖元陣列感應電路 12: Graphic element array sensing circuit

13:積分電路 13: Integrator circuit

14:模數轉換電路 14: Analog-to-digital conversion circuit

15:數位訊號處理器 15: Digital signal processor

16:主機 16: Host

121:圖元電路 121:Picture circuit

131:積分器 131: Integrator

1211:第一金屬層 1211: the first metal layer

1212:第二金屬層 1212: second metal layer

1213:第三金屬層 1213: the third metal layer

1214:襯底層 1214: substrate layer

GND:接地端 GND: ground terminal

Cfinger:第一寄生電容 C finger : the first parasitic capacitance

2:指紋識別模組 2: Fingerprint identification module

3:電子設備 3: Electronic equipment

21:封裝層 21: Encapsulation layer

22:晶粒 22: grain

23:PCB板 23: PCB board

24:柔性電路板 24:Flexible circuit board

212:弧形外表面 212: Curved outer surface

211:外平面 211: outer plane

25:連接器 25: Connector

16:主機 16: Host

φ11:第一子開關 φ11: The first sub-switch

φ12:第二子開關 φ12: Second sub-switch

φ13:第三子開關 φ13: The third sub-switch

φ21:第一子開關 φ21: The first sub-switch

φ22:第二子開關 φ22: Second sub-switch

φ23:第三子開關 φ23: The third sub-switch

VDD:電源電壓 V DD : power supply voltage

NVSS:浮動接地端 NVSS: floating ground

222:第二電容 222: second capacitor

VREF:第一參考電壓 V REF : first reference voltage

1218:電阻 1218: resistance

131:運算放大器 131: Operational amplifier

132:回饋環路 132: Feedback loop

1311:同相輸入端 1311: Non-inverting input terminal

1312:反向輸入端 1312: reverse input terminal

1313:輸出端 1313: output terminal

CFB:回饋電容 C FB : Feedback capacitance

rst_a1:第一子開關 rst_a1: the first sub-switch

rst_a2:第二子開關 rst_a2: the second sub-switch

rst_a3:第三子開關 rst_a3: the third sub-switch

rst_b1:第一子開關 rst_b1: the first sub-switch

rst_b2:第二子開關 rst_b2: the second sub-switch

reset_a:第一時序控制信號 reset_a: the first timing control signal

reset_b:第二時序控制信號 reset_b: the second timing control signal

φ1:第三時序控制信號 φ1: The third timing control signal

φ2:第四時序控制信號 φ2: The fourth timing control signal

14:模數轉換電路 14: Analog-to-digital conversion circuit

圖1為本申請一實施方式中指紋識別系統的系統框體。 FIG. 1 is a system frame of a fingerprint recognition system in an embodiment of the present application.

圖2為本申請一實施方式中圖元陣列感應電路與積分電路連接的示意圖。 FIG. 2 is a schematic diagram of a connection between a picture element array sensing circuit and an integrating circuit in an embodiment of the present application.

圖3為本申請一實施方式中圖元電路的電路結構圖。 FIG. 3 is a circuit structure diagram of a graphic element circuit in an embodiment of the present application.

圖4為本申請一實施方式中指紋識別模組安裝在電子設備上的示意圖。 FIG. 4 is a schematic diagram of a fingerprint identification module installed on an electronic device in an embodiment of the present application.

圖5為圖4的指紋識別模組沿V-V面進行剖面的剖面圖。 FIG. 5 is a cross-sectional view of the fingerprint recognition module of FIG. 4 along the V-V plane.

圖6為現有指紋識別模組的剖面圖。 FIG. 6 is a cross-sectional view of an existing fingerprint identification module.

圖7a為現有指紋識別模組的封裝層的示意圖。 Fig. 7a is a schematic diagram of the encapsulation layer of the existing fingerprint identification module.

圖7b為本申請一實施方式中指紋識別模組的封裝層的示意圖。 Fig. 7b is a schematic diagram of the encapsulation layer of the fingerprint identification module in an embodiment of the present application.

圖8a為現有的封裝層的圖元陣列感應電路採集的指紋信號示意圖。 Fig. 8a is a schematic diagram of a fingerprint signal collected by a picture element array sensing circuit of an existing encapsulation layer.

圖8b為本申請一實施方式中的圖元陣列感應電路採集的指紋信號示意圖。 Fig. 8b is a schematic diagram of fingerprint signals collected by the pixel array sensing circuit in an embodiment of the present application.

圖9為本申請一實施方式中曲面型封裝層的弧度與圖元電路的第一金屬層的面積關係的示意圖。 9 is a schematic diagram of the relationship between the curvature of the curved surface packaging layer and the area of the first metal layer of the graphic element circuit in an embodiment of the present application.

圖10為本申請一實施方式中圖元陣列感應電路與積分電路的具體連接示意圖。 FIG. 10 is a schematic diagram of a specific connection between a picture element array sensing circuit and an integrating circuit in an embodiment of the present application.

圖11為本申請一實施方式中圖元陣列感應電路進行指紋採集的時序圖。 FIG. 11 is a timing diagram of fingerprint collection performed by the pixel array sensing circuit in an embodiment of the present application.

為了能夠更清楚地理解本申請實施例的上述目的、特徵和優點,下面結合附圖和具體實施方式對本申請進行詳細描述。需要說明的是,在不衝突的情況下,本申請的實施方式中的特徵可以相互組合。 In order to better understand the above purpose, features and advantages of the embodiments of the present application, the present application will be described in detail below in conjunction with the accompanying drawings and specific implementation methods. It should be noted that, in the case of no conflict, the features in the embodiments of the present application may be combined with each other.

在下面的描述中闡述了很多具體細節以便於充分理解本申請實施例,所描述的實施方式是本申請一部分實施方式,而不是全部的實施方式。 A lot of specific details are set forth in the following description so as to fully understand the embodiments of the present application, and the described implementation manners are part of the implementation manners of the present application, but not all of the implementation manners.

除非另有定義,本文所使用的所有的技術和科學術語與屬於本申請實施例的技術領域的技術人員通常理解的含義相同。在本申請的說明書中所使用的術語只是為了描述具體的實施方式的目的,不是旨在於限制本申請實施例。 Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field of the embodiments of this application. The terminology used in the description of the present application is only for the purpose of describing specific implementation manners, and is not intended to limit the embodiments of the present application.

請參考圖1,所示為本申請一實施方式中指紋識別系統10的系統框體。本實施方式中,指紋識別系統10包括圖元陣列感應電路12、積分電路13、模數轉換電路14、數位訊號處理器15及主機16。本實施方式中,所述圖元陣列 感應電路12、積分電路13、模數轉換電路14、數位訊號處理器15及主機16依此連接,即所述圖元陣列感應電路12與所述積分電路13連接,所述積分電路13與所述模數轉換電路14連接,所述模數轉換電路14與所述數位訊號處理器15連接,所述數位訊號處理器15與所述主機16連接。 Please refer to FIG. 1 , which shows a system frame of a fingerprint identification system 10 in an embodiment of the present application. In this embodiment, the fingerprint identification system 10 includes a pixel array sensing circuit 12 , an integrating circuit 13 , an analog-to-digital conversion circuit 14 , a digital signal processor 15 and a host 16 . In this embodiment, the graphic element array The induction circuit 12, the integration circuit 13, the analog-to-digital conversion circuit 14, the digital signal processor 15 and the host computer 16 are connected in this way, that is, the picture element array induction circuit 12 is connected with the integration circuit 13, and the integration circuit 13 is connected with the integration circuit 13. The analog-to-digital conversion circuit 14 is connected, the analog-to-digital conversion circuit 14 is connected to the digital signal processor 15 , and the digital signal processor 15 is connected to the host computer 16 .

本實施方式中,所述圖元陣列感應電路12按照一定的時序控制進行掃描以檢測使用者的指紋信號。所述積分電路13將採集到的指紋信號的電荷變化量同時進行多次積分,並將指紋信號進行放大處理。所述模數轉換電路14將放大處理後的指紋信號轉換成帶有指紋資訊的數位信號。所述數位訊號處理器15對帶有指紋資訊的數位信號進行數文書處理得到數文書處理結果。所述主機16根據所述數文書處理結果識別所述指紋資訊。 In this embodiment, the graphic element array sensing circuit 12 scans according to a certain timing control to detect the user's fingerprint signal. The integration circuit 13 integrates the charge variation of the collected fingerprint signal multiple times at the same time, and amplifies the fingerprint signal. The analog-to-digital conversion circuit 14 converts the amplified fingerprint signal into a digital signal with fingerprint information. The digital signal processor 15 performs digital file processing on the digital signal with fingerprint information to obtain a digital file processing result. The host 16 identifies the fingerprint information according to the digital document processing result.

本實施方式中,由於模數轉換電路14、數位訊號處理器15及主機16為本領域現有的電路結構,且本申請並未對模數轉換電路14、數位訊號處理器15及主機16的電路結構進行改進。本申請對模數轉換電路14、數位訊號處理器15及主機16不作詳細介紹,如下僅對本申請的圖元陣列感應電路12及積分電路13的改進方案作具體描述。 In this embodiment, since the analog-to-digital conversion circuit 14, the digital signal processor 15, and the host computer 16 are existing circuit structures in the art, and this application does not discuss the circuits of the analog-to-digital conversion circuit 14, the digital signal processor 15, and the host computer 16. The structure is improved. This application does not introduce the analog-to-digital conversion circuit 14, the digital signal processor 15, and the host computer 16 in detail. The following only specifically describes the improvement schemes of the pixel array sensing circuit 12 and the integration circuit 13 of the present application.

本實施方式中,圖元陣列感應電路12包括m行n列的圖元電路121(Pixel)組成的感測器矩陣陣列(Sensor Array),其中,m,n為正整數。請參考圖2,所示為本申請一實施方式中圖元陣列感應電路12與積分電路13連接的示意圖。本實施方式中,所述積分電路13包括多個積分器131。本實施方式中,所示積分器131的數量與感測器陣列的列數相同。例如,感測器陣列包括n列的圖元電路121,則積分電路13的積分器131的數量為n。本實施方式中,所述感測器陣列中每列的圖元電路121連接同一個積分電路13的積分器131,且不同列的圖元電路121連接不同的積分器131。 In this embodiment, the pixel array sensing circuit 12 includes a sensor matrix array (Sensor Array) composed of pixel circuits 121 (Pixels) in m rows and n columns, where m and n are positive integers. Please refer to FIG. 2 , which is a schematic diagram of the connection between the pixel array sensing circuit 12 and the integrating circuit 13 in an embodiment of the present application. In this embodiment, the integration circuit 13 includes a plurality of integrators 131 . In this embodiment, the number of integrators 131 shown is the same as the number of columns of the sensor array. For example, if the sensor array includes n columns of primitive circuits 121 , then the number of integrators 131 of the integrating circuit 13 is n. In this embodiment, the primitive circuits 121 of each column in the sensor array are connected to the integrator 131 of the same integrating circuit 13 , and the primitive circuits 121 of different columns are connected to different integrators 131 .

本實施方式中,由於圖元陣列感應電路12中每個圖元電路121的結構及工作原理相同,本申請只介紹單一圖元電路121的電路結構。請參考圖3,所示為本申請一實施方式中圖元電路121的電路結構圖。圖元電路121包括第一金屬層1211、第二金屬層1212、第三金屬層1213、襯底層1214。本實施方式中,第一金屬層1211用於對使用者的指紋進行檢測。當使用者的手指觸摸到第一金屬層1211時,由於人體本身是良導體,可以看作是接地端GND,用戶的手指與指紋識別模組的第一金屬層1211形成第一寄生電容Cfinger。本實施方式中,手指指紋的紋穀和紋脊到第一金屬層1211的距離有差異,第一寄生電容Cfinger的大小隨之產生差異,因此將第一寄生電容Cfinger作為檢測手指指紋的指紋信號。本實施方式中,指紋信號為第一寄生電容Cfinger的電荷量。 In this embodiment, since the structure and working principle of each picture element circuit 121 in the picture element array sensing circuit 12 are the same, this application only introduces the circuit structure of a single picture element circuit 121 . Please refer to FIG. 3 , which shows a circuit structure diagram of the graphic element circuit 121 in an embodiment of the present application. The graphic element circuit 121 includes a first metal layer 1211 , a second metal layer 1212 , a third metal layer 1213 , and a substrate layer 1214 . In this embodiment, the first metal layer 1211 is used to detect the user's fingerprint. When the user's finger touches the first metal layer 1211, since the human body itself is a good conductor, it can be regarded as the ground terminal GND, and the user's finger and the first metal layer 1211 of the fingerprint recognition module form a first parasitic capacitance C finger . In this embodiment, the distance between the valleys and ridges of the fingerprint and the first metal layer 1211 is different, and the size of the first parasitic capacitance Cfinger is different accordingly . fingerprint signal. In this embodiment, the fingerprint signal is the charge amount of the first parasitic capacitor C finger .

手指觸摸第一金屬層1211後,第一金屬層1211與人體產生Cfinger,並且第一金屬層1211與襯底層1214之間還會形成第二寄生電容Cpex,從而第一金屬層1211到襯底層(GND)的總寄生電容Ctop=C1+C2,表示為其中C1為第一寄生電容Cfinger,C2為第二寄生電容Cpex。這樣從第一金屬層1211l檢測到的電容不僅僅有第一寄生電容Cfinger,還會有第二寄生電容Cpex。而要提高指紋檢測精度會希望第一寄生電容Cfinger無限接近於寄生總電容Ctop,第二寄生電容Cpex越接近於零 越好。為了降低第二寄生電容Cpex對指紋的檢測精度的影響,本申請在第一金屬層1211與襯底層1214之間設置第二金屬層1212及第三金屬層1213以將第一金屬層1211與襯底層1214進行隔離,第二金屬層1212和第三金屬層1213在襯底層1214的投影覆蓋第一金屬層1211在襯底層1214的投影,以消除第一金屬層1211與襯底層1214之間形成的第二寄生電容Cpex,提高指紋信號的檢測準確度。具體地,第一金屬層1211與第二金屬層1212間隔設置,且第一金屬層1211與第二金屬層1212之間形成第一電容21。第一金屬層1211與第三金屬層1213間隔設置,且第一金屬層1211與第三金屬層1213之間形成第二電容222。第二金屬層1212與第三金屬層1213可以交疊或錯開設置,第二金屬層1212與第三金屬層1213的總覆蓋範圍應大於或等於第一金屬層的範圍。 After the finger touches the first metal layer 1211, C finger is formed between the first metal layer 1211 and the human body, and a second parasitic capacitance C pex is also formed between the first metal layer 1211 and the substrate layer 1214, so that the first metal layer 1211 and the substrate layer The total parasitic capacitance C top of the bottom layer (GND) =C 1 +C 2 , expressed as where C 1 is the first parasitic capacitance C finger , and C 2 is the second parasitic capacitance C pex . In this way, the capacitance detected from the first metal layer 1211l includes not only the first parasitic capacitance C finger , but also the second parasitic capacitance C pex . To improve the fingerprint detection accuracy, it is hoped that the first parasitic capacitance C finger is infinitely close to the total parasitic capacitance C top , and the closer the second parasitic capacitance C pex is to zero, the better. In order to reduce the impact of the second parasitic capacitance Cpex on the detection accuracy of fingerprints, the present application sets the second metal layer 1212 and the third metal layer 1213 between the first metal layer 1211 and the substrate layer 1214 to combine the first metal layer 1211 with the substrate layer 1214. The substrate layer 1214 is isolated, and the projection of the second metal layer 1212 and the third metal layer 1213 on the substrate layer 1214 covers the projection of the first metal layer 1211 on the substrate layer 1214, so as to eliminate the formation between the first metal layer 1211 and the substrate layer 1214. The second parasitic capacitance C pex improves the detection accuracy of the fingerprint signal. Specifically, the first metal layer 1211 and the second metal layer 1212 are spaced apart, and the first capacitor 21 is formed between the first metal layer 1211 and the second metal layer 1212 . The first metal layer 1211 and the third metal layer 1213 are spaced apart, and a second capacitor 222 is formed between the first metal layer 1211 and the third metal layer 1213 . The second metal layer 1212 and the third metal layer 1213 can overlap or be staggered, and the total coverage of the second metal layer 1212 and the third metal layer 1213 should be greater than or equal to the range of the first metal layer.

參考圖2,本實施方式中,圖元陣列感應電路12在進行指紋掃描工作時,圖元電路121將手指和第一金屬層1211之間的第一寄生電容Cfinger信號變化量採集並轉換為電荷變化量,與所述圖元電路121連接的積分器131將採集到的指紋信號的電荷變化量同時進行多次積分,將指紋信號進行放大處理,並將處理過後的指紋信號傳輸至後級的模數轉換電路14。本實施方式中,圖元陣列感應電路12在掃描時,感測器陣列的n個圖元電路121和n個積分器131同時動作,每次n個圖元電路121採集的n個指紋信號變化量經過n個積分器131積分及放大後同時輸出至後級的模數轉換電路14,一行圖元電路121掃描結束後再進行下一行圖元電路121的掃描,直至掃描至第m行,指紋識別系統10完成整幀掃描。 Referring to FIG. 2 , in this embodiment, when the graphic element array sensing circuit 12 performs fingerprint scanning work, the graphic element circuit 121 collects and converts the first parasitic capacitance C finger signal variation between the finger and the first metal layer 1211 into The amount of charge change, the integrator 131 connected to the graphic element circuit 121 integrates the charge change amount of the collected fingerprint signal multiple times at the same time, amplifies the fingerprint signal, and transmits the processed fingerprint signal to the subsequent stage The analog-to-digital conversion circuit 14. In this embodiment, when the picture element array sensing circuit 12 scans, the n picture element circuits 121 and n integrators 131 of the sensor array operate simultaneously, and the n fingerprint signals collected by the n picture element circuits 121 change each time. After being integrated and amplified by n integrators 131, the quantity is output to the analog-to-digital conversion circuit 14 of the subsequent stage at the same time. After the scanning of a row of graphic element circuits 121 is completed, the scanning of the next row of graphic element circuits 121 is performed until the mth row is scanned. The recognition system 10 completes the entire frame scan.

請參考圖4,所示為本申請一實施方式中指紋識別模組2安裝在電子設備3上的示意圖。本實施方式中,所述電子設備3可以為但不限於智慧手機、平板電腦、筆記型電腦或遊戲裝置。所述指紋識別模組2安裝在所述電子設備3的側邊。本實施方式中,所述指紋識別模組2安裝在電子設備3的區域可以單獨形成指紋識別區域或與電子設備3的電源鍵區域合二為一。 Please refer to FIG. 4 , which is a schematic diagram showing the fingerprint identification module 2 installed on the electronic device 3 in an embodiment of the present application. In this embodiment, the electronic device 3 may be, but not limited to, a smart phone, a tablet computer, a notebook computer or a game device. The fingerprint identification module 2 is installed on the side of the electronic device 3 . In this embodiment, the area where the fingerprint identification module 2 is installed on the electronic device 3 can form a fingerprint identification area alone or be integrated with the power key area of the electronic device 3 .

請參考圖5,所示為本申請一實施方式中指紋識別模組2沿V-V面進行剖面的剖面圖。本實施方式中,所述指紋識別模組2包括封裝層21、晶粒(Die)22、PCB(Printed Circuit Board)板23、柔性電路板24。本實施方式中,封裝層21以曲面型實現。曲面型的封裝層21具有弧形外表面212。本實施方式中,所述PCB板23設置在柔性電路板24上。所述晶粒22設置在PCB板23。所述封裝層21至少包覆晶粒22及所述PCB板23。本實施方式中,圖元陣列感應電路121植入在晶粒22上。本實施方式中,所述指紋識別模組2為長條形結構。在其他實施方式中,所述指紋識別模組2還可以為正方形、圓形及不規則形狀結構。 Please refer to FIG. 5 , which is a cross-sectional view of the fingerprint recognition module 2 taken along the V-V plane in an embodiment of the present application. In this embodiment, the fingerprint recognition module 2 includes a packaging layer 21 , a die 22 , a PCB (Printed Circuit Board) board 23 , and a flexible circuit board 24 . In this embodiment, the encapsulation layer 21 is realized in a curved shape. The curved encapsulation layer 21 has a curved outer surface 212 . In this embodiment, the PCB board 23 is arranged on the flexible circuit board 24 . The die 22 is disposed on the PCB board 23 . The encapsulation layer 21 at least covers the die 22 and the PCB board 23 . In this embodiment, the graphic element array sensing circuit 121 is implanted on the die 22 . In this embodiment, the fingerprint recognition module 2 has a long strip structure. In other implementations, the fingerprint recognition module 2 can also be in a square, circular or irregular shape.

本實施方式中,圖元陣列感應電路12設置在晶粒22的表面且晶粒22的表面進行封裝形成封裝層21。具體地,所述圖元陣列感應電路12設置於所述晶粒朝22向所述封裝層21的一面。當用戶的手指觸摸到封裝層21的弧形外表面212時,圖元陣列感應電路12能夠對手指指紋進行採集,如此避免手指與晶粒22直接接觸時造成圖元陣列感應電路12表面的刮花、損壞的問題。本實施方式中,封裝層是指進行注塑封裝及塗層處理後得到的注塑層。本實施方式中,封裝層21的作用一是對圖元陣列感應電路12進行防護,二是將晶粒22、PCB板23、 柔性電路板24形成一體,實現模組化。本實施方式中,圖元陣列感應電路12需要採集的信號是觸摸封裝層21的弧形外表面212的手指表面和圖元陣列感應電路12的第一金屬層1211之間的第一寄生電容Cfinger信號,而封裝層21位於手指表面與第一金屬層1211之間,封裝層21的厚度為封裝層21的弧形外表面212與第一金屬層1211之間的距離。 In this embodiment, the graphic element array sensing circuit 12 is disposed on the surface of the die 22 and the surface of the die 22 is packaged to form the encapsulation layer 21 . Specifically, the graphic element array sensing circuit 12 is disposed on a side of the die facing 22 facing the encapsulation layer 21 . When the user's finger touches the arc-shaped outer surface 212 of the encapsulation layer 21, the picture element array sensing circuit 12 can collect the fingerprint of the finger, so as to avoid scratches on the surface of the picture element array sensing circuit 12 when the finger is in direct contact with the die 22. Flower, damage problem. In this embodiment, the encapsulation layer refers to the injection molding layer obtained after injection molding encapsulation and coating treatment. In this embodiment, the function of the encapsulation layer 21 is to protect the picture element array sensing circuit 12, and to protect the chip 22, the PCB board 23, The flexible circuit board 24 is integrated to realize modularization. In this embodiment, the signal that the graphic element array sensing circuit 12 needs to collect is the first parasitic capacitance Cfinger between the finger surface touching the arc-shaped outer surface 212 of the packaging layer 21 and the first metal layer 1211 of the graphic element array sensing circuit 12. signal, and the encapsulation layer 21 is located between the surface of the finger and the first metal layer 1211 , the thickness of the encapsulation layer 21 is the distance between the arc-shaped outer surface 212 of the encapsulation layer 21 and the first metal layer 1211 .

參考圖6,所示為現有的指紋識別模組2的剖面圖。所述指紋識別模組2的封裝層21為平面型。平面型的封裝層21具有外平面211。在具體實施方式中,具有外平面211的封裝層21厚度要儘量小,平坦程度要儘量好,以保障被採集信號的均勻性。 Referring to FIG. 6 , it is a cross-sectional view of a conventional fingerprint recognition module 2 . The packaging layer 21 of the fingerprint identification module 2 is planar. The planar encapsulation layer 21 has an outer plane 211 . In a specific implementation manner, the thickness of the encapsulation layer 21 with the outer plane 211 should be as small as possible, and the flatness should be as good as possible, so as to ensure the uniformity of the collected signals.

參考圖4,本實施方式中,所述指紋識別模組2藉由連接器25安裝在電子設備3中。具體地,所述指紋識別模組2的晶粒22藉由晶片打線(Bonding)連接所述PCB板23。所述PCB板23藉由焊盤(PAD)與所述柔性電路板24焊接在一起,所述柔性電路板24藉由連接器25(如排線)連接所述電子設備3,例如連接所述電子設備3的主機16。 Referring to FIG. 4 , in this embodiment, the fingerprint identification module 2 is installed in the electronic device 3 through a connector 25 . Specifically, the die 22 of the fingerprint recognition module 2 is connected to the PCB 23 by bonding. The PCB board 23 is welded together with the flexible circuit board 24 through a pad (PAD), and the flexible circuit board 24 is connected to the electronic device 3 through a connector 25 (such as a cable), such as connecting the The host 16 of the electronic device 3 .

本實施方式中,在將所述指紋識別模組2設置在電子設備3的側邊的方案中,由於所述電子設備3的側邊表面為弧形,因而指紋識別模組2中具有弧形外表面212的封裝層21可以消除電子設備3側邊的凹凸不平感,使得安裝有指紋識別模組2的電子設備3外觀上的側邊弧形一體化。 In this embodiment, in the scheme of setting the fingerprint recognition module 2 on the side of the electronic device 3, since the side surface of the electronic device 3 is arc-shaped, the fingerprint recognition module 2 has an arc shape. The encapsulation layer 21 of the outer surface 212 can eliminate the uneven feeling of the side of the electronic device 3 , so that the appearance of the electronic device 3 installed with the fingerprint identification module 2 is curved and integrated.

在一實施方式中,參考圖6,在將所述指紋識別模組2設置在電子設備3的前置玻璃蓋板的方案或設置在電子設備3的後置塗層蓋板的方案中,由於電子設備3的表面為平面,出於封裝層21的厚度和平整度的考慮,所述指紋識別模組2的封裝層21以平面型實現。也即,所述指紋識別模組2的封裝層21具有外平面211。 In one embodiment, referring to FIG. 6 , in the scheme of setting the fingerprint recognition module 2 on the front glass cover of the electronic device 3 or on the rear coating cover of the electronic device 3 , since The surface of the electronic device 3 is plane, and in consideration of the thickness and flatness of the packaging layer 21 , the packaging layer 21 of the fingerprint recognition module 2 is realized in a planar shape. That is, the encapsulation layer 21 of the fingerprint identification module 2 has an outer plane 211 .

參考圖7a,所示為現有平面型的封裝層21的示意圖。參考圖7b所示為本申請一實施方式中的曲面型的封裝層21。所述封裝層21的外平面211到所述圖元陣列感應電路12的每列上的圖元電路121的第一金屬層1211(也即晶粒22表面)的距離(也即封裝層21的厚度)均相等。例如,指紋識別模組2的平面型的封裝層21的外平面211的任意三點到圖元陣列感應電路12的第一金屬層1212(也即晶粒22表面)的距離d1、d2、d3均相等。本實施方式中,所述圖元陣列感應電路12的每列上的圖元電路121的第一金屬層1211的表面面積均相等。參考圖8a,所示為現有平面型的封裝層21的圖元陣列感應電路12採集的指紋信號示意圖。所述圖元陣列感應電路12各列上的圖元電路121採集到的指紋信號(第一寄生電容Cfinger)量是均勻的。 Referring to FIG. 7 a , it is a schematic diagram of a conventional planar encapsulation layer 21 . Referring to FIG. 7 b , it shows a curved encapsulation layer 21 in an embodiment of the present application. The distance from the outer plane 211 of the encapsulation layer 21 to the first metal layer 1211 (that is, the surface of the die 22 ) of the picture element circuit 121 on each column of the picture element array sensing circuit 12 (that is, the distance of the encapsulation layer 21 thickness) are equal. For example, the distances d1, d2, d3 from any three points on the outer plane 211 of the planar encapsulation layer 21 of the fingerprint recognition module 2 to the first metal layer 1212 (that is, the surface of the crystal grain 22) of the graphic element array sensing circuit 12 Both are equal. In this embodiment, the surface area of the first metal layer 1211 of the picture element circuit 121 on each column of the picture element array sensing circuit 12 is equal. Referring to FIG. 8 a , it is a schematic diagram of fingerprint signals collected by the picture element array sensing circuit 12 of the conventional planar encapsulation layer 21 . The amount of fingerprint signals (first parasitic capacitance Cfinger) collected by the picture element circuits 121 on each column of the picture element array sensing circuit 12 is uniform.

參考圖7b,指紋識別模組2的曲面型的封裝層21的弧形外表面212的任意三點到圖元陣列感應電路12的第一金屬層1212(也即晶粒22表面)的距離d1、d2、d3不相等,封裝層21的厚度與封裝層21外表面212的弧度成線性比例變化。參考圖8b,所示為本申請一實施方式中的曲面型的封裝層21的圖元陣列感應電路12採集的指紋信號示意圖。所述圖元陣列感應電路12各列上的圖元電路121採集到的指紋信號量(第一寄生電容Cfinger信號)呈梯度式分佈。曲面型的 封裝層21的指紋識別模組2採集的指紋信號的資料不均勻特性,會對後續指紋識別演算法對指紋脊和穀的區分造成困擾,並且造成誤判斷率提高。 Referring to FIG. 7 b , the distance d1 between any three points on the curved outer surface 212 of the curved encapsulation layer 21 of the fingerprint recognition module 2 and the first metal layer 1212 (that is, the surface of the die 22 ) of the array sensing circuit 12 , d2, and d3 are not equal, and the thickness of the encapsulation layer 21 varies linearly with the curvature of the outer surface 212 of the encapsulation layer 21 . Referring to FIG. 8 b , it is a schematic diagram of fingerprint signals collected by the pixel array sensing circuit 12 of the curved encapsulation layer 21 in an embodiment of the present application. The fingerprint signal amount (the first parasitic capacitance Cfinger signal) collected by the picture element circuit 121 on each column of the picture element array sensing circuit 12 is distributed in a gradient manner. Curved The inhomogeneous characteristics of the fingerprint signal collected by the fingerprint recognition module 2 of the encapsulation layer 21 will cause troubles for the subsequent fingerprint recognition algorithm to distinguish between fingerprint ridges and valleys, and increase the misjudgment rate.

本實施方式中,手指與圖元陣列感應電路12的第一金屬層1212間 的電容表示為

Figure 110111977-A0305-02-0009-2
,ε表示介質介電常數,S表示兩極板間正對面積,即正對手指的第一金屬層1212的面積,d表示手指到第一金屬層1212的距離。本實施方式中,假設封裝層21在圖元陣列感應電路12的n列上的厚度分別為d1、d2...dn,且d1=x2*d2=...xn*dn,x2、x3...xn分別為封裝層21在圖元陣列感應電路12的第2、3......n列上的厚度相比於封裝層21在圖元陣列感應電路12的第1列的厚度係數。圖元陣列感應電路12上n列的第一金屬層1212的表面面積為S1、 S2...Sn,根據
Figure 110111977-A0305-02-0009-4
,則S1=x2*S2=...=xn*Sn。因而,封裝層21在圖元陣列感應電路12的n列上的厚度與圖元陣列感應電路12的n列上的圖元電路的第一 金屬層的表面面積滿足
Figure 110111977-A0305-02-0009-9
。本實施方式中,根據曲面型的封裝層21的弧形外表面212的弧度特性,得出封裝層21在圖元陣列感應電路12不同列上的厚度係數,進而推算出圖元陣列感應電路12在不同列上的圖元電路121的第一金屬層1212的表面面積。 In this embodiment, the capacitance between the finger and the first metal layer 1212 of the array sensing circuit 12 is expressed as
Figure 110111977-A0305-02-0009-2
, ε represents the dielectric constant of the medium, S represents the facing area between the two plates, that is, the area of the first metal layer 1212 facing the finger, and d represents the distance from the finger to the first metal layer 1212. In this embodiment, it is assumed that the thicknesses of the encapsulation layer 21 on the n columns of the picture element array sensing circuit 12 are d1, d2...dn, and d1=x2*d2=...xn*dn, x2, x3. ..xn are the thicknesses of the encapsulation layer 21 on the second, third...n columns of the picture element array sensing circuit 12 compared to the thickness of the encapsulation layer 21 on the first column of the picture element array sensing circuit 12 coefficient. The surface area of the first metal layer 1212 in n columns on the picture element array sensing circuit 12 is S1, S2...Sn, according to
Figure 110111977-A0305-02-0009-4
, then S1=x2*S2=...=xn*Sn. Therefore, the thickness of the encapsulation layer 21 on the n columns of the picture element array sensing circuit 12 and the surface area of the first metal layer of the picture element circuit on the n columns of the picture element array sensing circuit 12 satisfy
Figure 110111977-A0305-02-0009-9
. In this embodiment, according to the radian characteristics of the curved outer surface 212 of the curved packaging layer 21, the thickness coefficients of the packaging layer 21 on different columns of the graphic element array sensing circuit 12 are obtained, and then the graphic element array sensing circuit 12 is calculated. The surface area of the first metal layer 1212 of the primitive circuit 121 on different columns.

參考圖9,所示為本申請一實施方式中曲面型的封裝層21的弧度與圖元電路121的第一金屬層1212的面積關係的示意圖。 Referring to FIG. 9 , it is a schematic diagram showing the relationship between the curvature of the curved encapsulation layer 21 and the area of the first metal layer 1212 of the graphic element circuit 121 in an embodiment of the present application.

本實施方式中,曲面型的封裝層21的弧形外表面212到不同列的圖元陣列感應電路12的第一金屬層1212的距離不同,圖元陣列感應電路12上對應列的第一金屬層1212的表面面積也不同,封裝層21的弧形外表面212到圖元陣列感應電路12的第一金屬層1212的距離與第一金屬層1212的表面面積呈線性比例關係。 In this embodiment, the distances from the curved outer surface 212 of the curved encapsulation layer 21 to the first metal layer 1212 of the picture element array sensing circuit 12 in different columns are different, and the first metal layer 1212 of the corresponding column on the picture element array sensing circuit 12 The surface area of the layer 1212 is also different. The distance from the arc-shaped outer surface 212 of the packaging layer 21 to the first metal layer 1212 of the array sensing circuit 12 is linearly proportional to the surface area of the first metal layer 1212 .

本申請根據封裝層21的弧形外表面212的曲面弧度的不同,計算得到封裝層21的弧形外表面212到第一金屬層1212的距離,並根據距離計算出對應弧度下單個圖元電路121的第一金屬層1212的表面面積,藉由將第一金屬層1212的表面面積進行差異化設計,保證圖元陣列感應電路12採集的單位電容值一致,解決了具有曲面型封裝層21的圖元陣列感應電路12的信號品質差和SNR不均勻的問題。 This application calculates the distance from the arc-shaped outer surface 212 of the encapsulation layer 21 to the first metal layer 1212 according to the curvature of the arc-shaped outer surface 212 of the encapsulation layer 21, and calculates a single graphic element circuit under the corresponding arc according to the distance The surface area of the first metal layer 1212 of 121, by differentially designing the surface area of the first metal layer 1212, ensures that the unit capacitance value collected by the pixel array sensing circuit 12 is consistent, and solves the problem of having a curved packaging layer 21 The signal quality of the picture element array sensing circuit 12 is poor and the SNR is not uniform.

在一實施方式中,所述指紋識別模組2還包括積分電路13。所述圖元陣列感應電路12與積分電路13相連接。請參考圖10,為本申請一實施方式中圖元陣列感應電路12與積分電路13的具體連接示意圖。本實施方式中,第一金屬層1211與視為GND的人體形成第一寄生電容Cfinger。第一電容21為第一金屬層1211與第二金屬層1212之間形成的寄生電容。圖元陣列感應電路12包括第一開關組、第二開關組。第一開關組包括第一子開關φ11、第二子開關φ12、第三子開關φ13。第二開關組包括第一子開關φ21、第二子開關φ22、第三子開關φ23。 In one embodiment, the fingerprint recognition module 2 further includes an integrating circuit 13 . The graphic element array sensing circuit 12 is connected with an integrating circuit 13 . Please refer to FIG. 10 , which is a schematic diagram of specific connections between the pixel array sensing circuit 12 and the integrating circuit 13 in an embodiment of the present application. In this embodiment, the first metal layer 1211 forms a first parasitic capacitance C finger with the human body regarded as GND. The first capacitor 21 is a parasitic capacitor formed between the first metal layer 1211 and the second metal layer 1212 . The picture element array sensing circuit 12 includes a first switch group and a second switch group. The first switch group includes a first sub-switch φ11, a second sub-switch φ12, and a third sub-switch φ13. The second switch group includes a first sub-switch φ21, a second sub-switch φ22, and a third sub-switch φ23.

第一金屬層1211與第二金屬層1212形成第一電容21。第二金屬層1212藉由第一開關組的第一子開關φ11與電源電壓VDD連接,第二金屬層1212藉由第二開關組的第一子開關φ21與浮動接地端NVSS連接。第三子開關φ23 The first metal layer 1211 and the second metal layer 1212 form the first capacitor 21 . The second metal layer 1212 is connected to the power supply voltage V DD through the first sub-switch φ11 of the first switch group, and the second metal layer 1212 is connected to the floating ground terminal NVSS through the first sub-switch φ21 of the second switch group. The third sub-switch φ23

第一金屬層與第三金屬層1213形成第二電容222。第三金屬層1213藉由第一開關組的第二子開關φ12與電源電壓VDD連接,藉由第二開關組的第二子開關φ22與第一參考電壓VREF連接。 The first metal layer and the third metal layer 1213 form a second capacitor 222 . The third metal layer 1213 is connected to the power supply voltage V DD through the second sub-switch φ12 of the first switch group, and connected to the first reference voltage V REF through the second sub-switch φ22 of the second switch group.

第一金屬層1211藉由第一開關組的第三子開關φ13與第一參考電壓VREF連接及藉由所述第二開關組的第三子開關φ23與積分電路連接13連接。具體地,圖元陣列感應電路12還設有電阻1218,第一金屬層1211與電阻1218的一端連接。電阻1218的另一端藉由第一開關組的第三子開關φ13與電源電壓VDD連接,及藉由第二開關組的第二子開關φ23與積分電路13連接。 The first metal layer 1211 is connected to the first reference voltage V REF through the third sub-switch φ13 of the first switch group and connected to the integrating circuit connection 13 through the third sub-switch φ23 of the second switch group. Specifically, the graphic element array sensing circuit 12 is further provided with a resistor 1218 , and the first metal layer 1211 is connected to one end of the resistor 1218 . The other end of the resistor 1218 is connected to the power supply voltage VDD through the third sub-switch φ13 of the first switch group, and connected to the integration circuit 13 through the second sub-switch φ23 of the second switch group.

本實施方式中,積分電路13用於對圖元陣列感應電路12檢測到的指紋信號進行放大。本實施方式中,積分電路13包括運算放大器131及回饋環路132。運算放大器131包括同相輸入端1311、反向輸入端1312及輸出端1313。同相輸入端1311與第一參考電壓VREF相連接。電阻1218藉由第二開關組的第二子開關φ23與反向輸入端1312連接。輸出端1313藉由回饋環路132與反向輸入端1312連接。 In this embodiment, the integration circuit 13 is used to amplify the fingerprint signal detected by the pixel array sensing circuit 12 . In this embodiment, the integration circuit 13 includes an operational amplifier 131 and a feedback loop 132 . The operational amplifier 131 includes a non-inverting input terminal 1311 , an inverting input terminal 1312 and an output terminal 1313 . The non-inverting input terminal 1311 is connected to the first reference voltage V REF . The resistor 1218 is connected to the inverting input terminal 1312 through the second sub-switch φ23 of the second switch group. The output terminal 1313 is connected to the inverting input terminal 1312 through the feedback loop 132 .

本實施方式中,回饋環路132包括回饋電容CFB、第三開關組及第四開關組。第三開關組包括第一子開關rst_a1、第二子開關rst_a2、第三子開關rst_a3。第四開關組包括第一子開關rst_b1、第二子開關rst_b2。回饋電容CFB的上極板藉由第三開關組的第一子開關rst_a1與第二參考電壓VDC_OS連接。回饋電容CFB的下極板藉由第三開關組的第二子開關rst_a2與電源電壓VDD連接。回饋電容CFB的上極板藉由第四開關組的第一子開關rst_b1與反向輸入端1312連接。回饋電容CFB的下極板藉由第四開關組的第二子開關rst_b2與輸出端連接1313。反向輸入端1312還藉由第三開關組的第三子開關rst_a3與輸出端1313連接。 In this embodiment, the feedback loop 132 includes a feedback capacitor C FB , a third switch group and a fourth switch group. The third switch group includes a first sub-switch rst_a1, a second sub-switch rst_a2, and a third sub-switch rst_a3. The fourth switch group includes a first sub-switch rst_b1 and a second sub-switch rst_b2. The upper plate of the feedback capacitor C FB is connected to the second reference voltage V DC_OS through the first sub-switch rst_a1 of the third switch group. The lower plate of the feedback capacitor C FB is connected to the power supply voltage VDD through the second sub-switch rst_a2 of the third switch group. The upper plate of the feedback capacitor C FB is connected to the inverting input terminal 1312 through the first sub-switch rst_b1 of the fourth switch group. The lower plate of the feedback capacitor C FB is connected to the output terminal 1313 through the second sub-switch rst_b2 of the fourth switch group. The inverting input terminal 1312 is also connected to the output terminal 1313 through the third sub-switch rst_a3 of the third switch group.

請參考圖11,為本申請一實施方式中圖元陣列感應電路12進行指紋採集的時序圖。圖元陣列感應電路12提供第一時序控制信號reset_a、第二時序控制信號reset_b、第三時序控制信號φ1及第四時序控制信號φ2。第一時序控制信號reset_a與第二時序控制信號reset_b是相位相差180°的時鐘信號。第三時序控制信號φ1與第四時序控制信號φ2是相位相差180°的非交疊時鐘信號。 Please refer to FIG. 11 , which is a timing diagram of fingerprint collection performed by the pixel array sensing circuit 12 in an embodiment of the present application. The pixel array sensing circuit 12 provides a first timing control signal reset_a, a second timing control signal reset_b, a third timing control signal φ1 and a fourth timing control signal φ2. The first timing control signal reset_a and the second timing control signal reset_b are clock signals with a phase difference of 180°. The third timing control signal φ1 and the fourth timing control signal φ2 are non-overlapping clock signals with a phase difference of 180°.

第一時序控制信號reset_a用於控制第三開關組的第一子開關rst_a1、第二子開關rst_a2、第三子開關rst_a3的開合與關閉。第三開關組的第一子開關rst_a1、第二子開關rst_a2、第三子開關rst_a3的開合與關閉的時序完全相同。第二時序控制信號reset_b用於控制第四開關組的第一子開關rst_b1、第二子開關rst_b2的開合與關閉。第四開關組的第一子開關rst_b1、第二子開關rst_b2的開合與關閉的時序完全相同。第三時序控制信號φ1用於控制第一開關組的第一子開關φ11、第二子開關φ12、第三子開關φ13的開合與關閉。第一開關組的第一子開關φ11、第二子開關φ12、第三子開關φ13的開合與關閉的時序相同。第四時序控制信號φ2用於控制第二開關組的第一子開關φ21、第二子開關φ22、第三子開關φ23的開合與關閉。第二開關組的第一子開關φ21、第二子開關φ22、第三子開關φ23的開合與關閉的時序相同。 The first timing control signal reset_a is used to control the opening and closing of the first sub-switch rst_a1 , the second sub-switch rst_a2 and the third sub-switch rst_a3 of the third switch group. The timings of switching on and off of the first sub-switch rst_a1 , the second sub-switch rst_a2 and the third sub-switch rst_a3 of the third switch group are exactly the same. The second timing control signal reset_b is used to control the opening and closing of the first sub-switch rst_b1 and the second sub-switch rst_b2 of the fourth switch group. The opening and closing timings of the first sub-switch rst_b1 and the second sub-switch rst_b2 of the fourth switch group are exactly the same. The third timing control signal φ1 is used to control the opening and closing of the first sub-switch φ11 , the second sub-switch φ12 and the third sub-switch φ13 of the first switch group. The opening and closing timings of the first sub-switch φ11 , the second sub-switch φ12 and the third sub-switch φ13 of the first switch group are the same. The fourth timing control signal φ2 is used to control the opening and closing of the first sub-switch φ21 , the second sub-switch φ22 and the third sub-switch φ23 of the second switch group. The timing of switching on and off of the first sub-switch φ21 , the second sub-switch φ22 and the third sub-switch φ23 of the second switch group is the same.

下面結合圖10及圖11具體描述本申請的指紋識別系統10的工作過 程。該工作過程包括以下幾個階段。 Below in conjunction with Fig. 10 and Fig. 11 specifically describe the working process of the fingerprint recognition system 10 of the present application Procedure. The working process includes the following stages.

(a)起始階段,第一時序控制信號reset_a為高電平,第二時序控制信號reset_b為低電平,此時第三開關組的第一子開關rst_a1、第二子開關rst_a2、第三子開關rst_a3同時導通,第四開關組的第一子開關rst_b1、第二子開關rst_b2同時斷開。運算放大器的輸出端1313連接反相輸入端1312,運算放大器131為緩衝器(buffer)結構,Vn=VREF。回饋電容CFB的上極板連接第二參考電壓VDC_OS,下極板接電源電壓VDD,回饋電容CFB電壓根據公式V CFB1=V DD -V DC_OS 計算得到,其中,VCFB1表示回饋電容CFB兩端電壓。回饋電容CFB的電荷根據公式Q CFB1=C FB *(V DD -V DC_OS )計算得到,其中,CFB為回饋電容CFB的電容量,QCFB1為回饋電容CFB的電荷量,VDC_OS為第二參考電壓。 (a) In the initial stage, the first timing control signal reset_a is at a high level, and the second timing control signal reset_b is at a low level. At this time, the first sub-switch rst_a1, the second sub-switch rst_a2, and the The three sub-switches rst_a3 are turned on at the same time, and the first sub-switch rst_b1 and the second sub-switch rst_b2 of the fourth switch group are turned off at the same time. The output terminal 1313 of the operational amplifier is connected to the inverting input terminal 1312 , and the operational amplifier 131 has a buffer structure, Vn=VREF. The upper plate of the feedback capacitor C FB is connected to the second reference voltage V DC_OS , the lower plate is connected to the power supply voltage VDD, and the voltage of the feedback capacitor C FB is calculated according to the formula V CFB 1 = V DD - V DC _ OS , where V CFB1 represents The voltage across the feedback capacitor C FB . The charge of the feedback capacitor C FB is calculated according to the formula Q CFB 1 = C FB *( V DD - V DC _ OS ), where, C FB is the capacitance of the feedback capacitor C FB , and Q CFB1 is the charge of the feedback capacitor C FB , V DC_OS is the second reference voltage.

(b)掃描階段,第一時序控制信號reset_a為低電平,第二時序控制信號reset_b為高電平,此時第三開關組的第一子開關rst_a1、第二子開關rst_a2、第三子開關rst_a3同時斷開,第四開關組的第一子開關rst_b1、第二子開關rst_b2同時導通。回饋電容CFB的上極板連接運算放大器131的反向輸入端1312,下極板連接運算放大器131的輸出端1313。回饋電容CFB的電壓根據公式V CFB2=V OUT -V REF 計算得到,其中,VOUT為表示運算放大器131的輸出端1313的輸出電壓,VREF為第一參考電壓。回饋電容CFB的電荷根據公式Q CFB2=C FB *(V OUT -V REF )計算得到。 (b) In the scanning phase, the first timing control signal reset_a is at low level, and the second timing control signal reset_b is at high level. At this time, the first sub-switch rst_a1, the second sub-switch rst_a2, and the third The sub-switch rst_a3 is turned off at the same time, and the first sub-switch rst_b1 and the second sub-switch rst_b2 of the fourth switch group are turned on at the same time. The upper plate of the feedback capacitor C FB is connected to the inverting input terminal 1312 of the operational amplifier 131 , and the lower plate is connected to the output terminal 1313 of the operational amplifier 131 . The voltage of the feedback capacitor C FB is calculated according to the formula V CFB 2 = V OUT V REF , wherein V OUT represents the output voltage of the output terminal 1313 of the operational amplifier 131 , and V REF represents the first reference voltage. The charge of the feedback capacitor C FB is calculated according to the formula Q CFB 2 = C FB *( V OUT - V REF ).

由於回饋電容CFB的電荷在起始階段及掃描階段沒有變化,Q CFB1=Q CFB2所以推導出運算放大器131的輸出端1313的輸出電壓V OUT =V REF +V DD -V DC_OS 。根據電荷守恆定律,回饋電容CFB的電荷根據公式Q CFB =Q CFB1+Q CFB2=C FB *(V DD -V DC_OS )+C FB *(V OUT -V REF )計算得到。 Since the charge of the feedback capacitor C FB does not change during the initial stage and the scanning stage, Q CFB 1 = Q CFB 2 , so the output voltage V OUT of the output terminal 1313 of the operational amplifier 131 is deduced V OUT = V REF + V DD - V DC _ OS . According to the charge conservation law, the charge of the feedback capacitor C FB is calculated according to the formula Q CFB = Q CFB 1 + Q CFB 2 = C FB *( V DD - V DC _ OS )+ C FB *( V OUT - V REF ).

(c)預充電階段,圖元陣列感應電路12中的接地端GND分為浮動接地端NVSS和接地端GND。其中,浮動接地端NVSS的電壓為預設負電壓-VTX或零,接地端GND的電壓為零。本實施方式中,浮動接地端NVSS的電壓收到外設狀態控制信號Tx的控制,當外設狀態控制信號Tx=0時,浮動接地端NVSS與接地端GND連接,浮動接地端NVSS的電壓VNVSS=0;當外設狀態控制信號Tx=1時,浮動接地端NVSS連接預設負電壓-VTX,浮動接地端NVSS的電壓VNVSS=-VTX。當圖元陣列感應電路12進行指紋資訊採集時,外設狀態控制信號TX=0,浮動接地端NVSS與接地端GND連接,浮動接地端NVSS的電壓VNVSS=0,第一開關組的第一子開關φ11、第一開關組的第二子開關φ12斷開,第一開關組的φ13導通,第二開關組的第一子開關φ21、第二開關組的第二子開關φ22同時導通,第二開關組的第三子開關φ23斷開,第二金屬層1212連接接地端GND,第一金屬層1211及第三金屬層1213同時連接第一參考電壓VREF,第一金屬層1211與放大器131斷開,第一金屬層1211上的電荷表示為Q 1=(C finger+C 2V REF ,其中,Q1中包含了指紋信號第一寄生電容Cfinger(c) In the pre-charging stage, the ground terminal GND in the picture element array sensing circuit 12 is divided into a floating ground terminal NVSS and a ground terminal GND. Wherein, the voltage of the floating ground terminal NVSS is a preset negative voltage -VTX or zero, and the voltage of the ground terminal GND is zero. In this embodiment, the voltage of the floating ground terminal NVSS is controlled by the peripheral state control signal Tx. When the peripheral state control signal Tx=0, the floating ground terminal NVSS is connected to the ground terminal GND, and the voltage V of the floating ground terminal NVSS NVSS =0; when the peripheral state control signal Tx=1, the floating ground terminal NVSS is connected to the preset negative voltage -VTX, and the voltage V NVSS of the floating ground terminal NVSS =-VTX. When the graphic element array sensing circuit 12 collects fingerprint information, the peripheral state control signal TX=0, the floating ground terminal NVSS is connected to the ground terminal GND, the voltage V NVSS of the floating ground terminal NVSS =0, the first switch group of the first switch group The sub-switch φ11 and the second sub-switch φ12 of the first switch group are turned off, φ13 of the first switch group is turned on, the first sub-switch φ21 of the second switch group and the second sub-switch φ22 of the second switch group are turned on at the same time, the second The third sub-switch φ23 of the two switch groups is turned off, the second metal layer 1212 is connected to the ground terminal GND, the first metal layer 1211 and the third metal layer 1213 are connected to the first reference voltage VREF at the same time, and the first metal layer 1211 is disconnected from the amplifier 131. On, the charge on the first metal layer 1211 is expressed as Q 1 =( C finger + C 2V REF , where Q1 includes the first parasitic capacitance C finger of the fingerprint signal.

(d)電荷轉移階段,外設狀態控制信號Tx=1時,浮動接地端NVSS連接預設負電壓-VTX,浮動接地端NVSS的電壓VNVSS=-VTX,第一開關組的 第三子開關φ13由導通轉變為斷開,第二開關組的第三子開關φ23由斷開轉變為導通,第一開關組的第一子開關φ11、第一開關組的第二子開關φ12、第二開關組的第一子開關φ21、第二開關組的第二子開關φ22均保持狀態不變。另外,當浮動接地端NVSS與接地端GND的連接關係轉換為浮動接地端NVSS與預設負電壓-VTX的連接關係時,由於預設負電壓-VTX是一個負壓(由外部負壓產生電路產生),設定-VTX=(-1)*VDD,第二開關組的第二子開關φ23導通,放大器131的反相輸入端1312藉由第二開關組的第三子開關φ23連接至第一金屬層1211,放大器131的輸出端1313和反相輸入端1312藉由回饋電容CFB連接,構成回饋結構。放大器131的輸出端1313的電壓等於正相輸入端1311電壓(即第一參考電壓VREF)。第二開關組的第二子開關φ22為導通狀態,第三金屬層1213連接第一參考電壓VREF。第一金屬層1211和第二金屬層之間的電壓,即第二電容222兩端電壓均是第一參考電壓VREF,第二電容222沒有電荷轉移。第二開關組的第一子開關φ21為導通狀態,第二金屬層1212連接預設負電壓-VTX,第一金屬層1211到浮動接地端NVSS的電容為第一電容21,第一參考電壓VREF與浮動接地端NVSS處於相同電壓域,因此第一電容21上的第一參考電壓VREF到浮動接地端NVSS的壓降等於VREF,即第一電容21的電荷量

Figure 110111977-A0305-02-0012-13
=V REF * C 2。手指到第一金屬層1211的第一寄生電容C finger 的兩端電壓(即第一參考電壓VREF到接地端GND的壓降)表示為V REF -V TX ,故第一寄生電容C finger
Figure 110111977-A0305-02-0012-14
=(V REF -V TX )* C finger 。第一金屬層1211到接地端GND的總寄生電容為C 2+C finger ,總寄生電容為C 2+C finger 的電荷量可表示為(V REF -V TX )* C finger +V REF * C 2。第二開關組的第三子開關φ23導通之前,放大器131的反向輸入端1312的電荷量Q CFB =C FB *(V DD -V DC_OS )+C FB *(V OUT -V REF )。第二開關組的第三子開關φ23導通後,總電荷量Q 2=(V REF -V TX )* C finger +V REF * C 2+(V DD -V DC_OS )* C FB +(V REF -V OUT )* C FB (d) In the charge transfer stage, when the peripheral state control signal Tx=1, the floating ground terminal NVSS is connected to the preset negative voltage -VTX, the voltage V NVSS of the floating ground terminal NVSS = -VTX, the third sub-switch of the first switch group φ13 changes from on to off, the third sub-switch φ23 of the second switch group changes from off to on, the first sub-switch φ11 of the first switch group, the second sub-switch φ12 of the first switch group, the second switch Both the first sub-switch φ21 of the group and the second sub-switch φ22 of the second switch group remain unchanged. In addition, when the connection relationship between the floating ground terminal NVSS and the ground terminal GND is converted to the connection relationship between the floating ground terminal NVSS and the preset negative voltage -VTX, since the preset negative voltage -VTX is a negative voltage (generated by the external negative voltage generating circuit Generate), set -VTX=(-1)*VDD, the second sub-switch φ23 of the second switch group is turned on, and the inverting input terminal 1312 of the amplifier 131 is connected to the first sub-switch φ23 of the second switch group. The metal layer 1211, the output terminal 1313 of the amplifier 131 and the inverting input terminal 1312 are connected through the feedback capacitor C FB to form a feedback structure. The voltage of the output terminal 1313 of the amplifier 131 is equal to the voltage of the non-inverting input terminal 1311 (ie, the first reference voltage V REF ). The second sub-switch φ22 of the second switch group is turned on, and the third metal layer 1213 is connected to the first reference voltage V REF . The voltage between the first metal layer 1211 and the second metal layer, that is, the voltage across the second capacitor 222 is the first reference voltage V REF , and the second capacitor 222 has no charge transfer. The first sub-switch φ21 of the second switch group is in the conduction state, the second metal layer 1212 is connected to the preset negative voltage -VTX, the capacitance between the first metal layer 1211 and the floating ground terminal NVSS is the first capacitance 21, and the first reference voltage V REF and the floating ground terminal NVSS are in the same voltage domain, so the voltage drop from the first reference voltage V REF on the first capacitor 21 to the floating ground terminal NVSS is equal to V REF , that is, the charge amount of the first capacitor 21
Figure 110111977-A0305-02-0012-13
= V REF * C 2 . The voltage across the first parasitic capacitance C finger from the finger to the first metal layer 1211 (that is, the voltage drop from the first reference voltage V REF to the ground terminal GND) is expressed as V REF - V TX , so the first parasitic capacitance C finger is
Figure 110111977-A0305-02-0012-14
=( V REF - V TX )* C finger . The total parasitic capacitance from the first metal layer 1211 to the ground terminal GND is C 2 + C finger , and the total parasitic capacitance is C 2 + C finger , and the charge amount of the finger can be expressed as ( V REF - V TX )* C finger + V REF * C 2 . Before the third sub-switch φ23 of the second switch group is turned on, the charge amount Q CFB of the inverting input terminal 1312 of the amplifier 131 = C FB *( V DD - V DC _ OS ) + C FB *( V OUT - V REF ) . After the third sub-switch φ23 of the second switch group is turned on, the total charge Q 2 =( V REF - V TX )* C finger + V REF * C 2 +( V DD - V DC _ OS )* C FB +( V REF - V OUT )* C FB

根據電荷守恆定理,Q 1=Q 2 According to the principle of conservation of charge, Q 1 = Q 2

則輸出端1313的輸出電壓

Figure 110111977-A0305-02-0012-6
Then the output voltage of the output terminal 1313
Figure 110111977-A0305-02-0012-6

經過N次積分,輸出端1313的輸出電壓為

Figure 110111977-A0305-02-0012-7
由上式可以看到,輸出端1313的輸出電壓Vout僅與第一寄生電容Cfinger、回饋電容CFB、預設負電壓-Vtx有關,與圖元電路121的第一電容21、第二電容23均無關係。進行空掃時,第一寄生電容C finger =0,因此V OUT_VIR =V DD -V DC_OS +V REF ,無論圖元電路121的表面面積大小如何,空掃的輸出Vout_vir均可以保持恒定,如此解決了指紋識別模組2的封裝層21為曲面或異形封裝的情況下,每一列的圖元電路121的第一金屬層1211的表面面積大小會隨封裝層 21的表面的弧度變化而變化而導致每列的圖元電路121的第一電容22的電容值是不相等,進而造成經過積分過後的信號量必然會過大或過小,超過模數轉換電路14的輸入動態範圍,導致指紋識別系統10無法正常工作的問題。 After N times of integration, the output voltage of the output terminal 1313 is
Figure 110111977-A0305-02-0012-7
It can be seen from the above formula that the output voltage Vout of the output terminal 1313 is only related to the first parasitic capacitor C finger , the feedback capacitor C FB , and the preset negative voltage -Vtx, and is related to the first capacitor 21 and the second capacitor of the primitive circuit 121 23 are not related. During empty scanning, the first parasitic capacitance C finger =0, so V OUT _ VIR = V DD - V DC _ OS + V REF , no matter how large the surface area of the primitive circuit 121 is, the empty scanning output Vout_vir can be maintained constant, thus solving the problem that the encapsulation layer 21 of the fingerprint identification module 2 is a curved surface or a special-shaped encapsulation, the surface area of the first metal layer 1211 of the graphic element circuit 121 of each column will change with the curvature of the surface of the encapsulation layer 21 The change causes the capacitance values of the first capacitors 22 of the graphic element circuits 121 in each column to be unequal, and the signal amount after integration will inevitably be too large or too small, exceeding the input dynamic range of the analog-to-digital conversion circuit 14, resulting in fingerprints. Identify problems with system 10 not functioning properly.

本實施方式中,指紋識別模組2的封裝層21為2.5D曲面或3D曲面。指紋識別模組2的封裝層21的曲面的形狀可以為凹面、鋸齒面。本實施方式中,指紋識別模組2的形狀為長條形、正方形、圓形及其他不規則的形狀。 In this embodiment, the packaging layer 21 of the fingerprint recognition module 2 is a 2.5D curved surface or a 3D curved surface. The shape of the curved surface of the encapsulation layer 21 of the fingerprint recognition module 2 can be concave or sawtooth. In this embodiment, the shape of the fingerprint identification module 2 is strip, square, circle and other irregular shapes.

本實施例中的整個圖元陣列感應電路12和積分電路13結構簡單,所需的電源電壓VDD和地GND都無需特別處理,且相容晶片的其他模組的VDD和GND,無需ng採用特殊製程,藉由普通CMOS製程均可實現。 The entire graphic element array sensing circuit 12 and integrating circuit 13 in this embodiment are simple in structure, and the required power supply voltage V DD and ground GND do not need special treatment, and the V DD and GND of other modules of the compatible chip do not need ng Using a special process, it can be realized by a common CMOS process.

本實施例中感測的指紋信號的靈敏度高,而不需要藉由提高圖元陣列感應電路的面積來提高靈敏度,對比一般的採集電路,本實施例中的圖元陣列感應電路面積可縮小,節約晶片成本。 The sensitivity of the fingerprint signal sensed in this embodiment is high, and there is no need to increase the sensitivity by increasing the area of the sensing circuit of the picture element array. Compared with the general acquisition circuit, the area of the sensing circuit of the picture element array in this embodiment can be reduced. Save wafer cost.

其它實施方式中,本申請中的放大器131的回饋電容CFB可適用不同外界條件的應用情況進行多樣化設置。 In other implementation manners, the feedback capacitor C FB of the amplifier 131 in the present application can be set in a variety of ways to suit the application of different external conditions.

其它實施方式中,指紋識別系統10的圖元陣列感應電路12進行一次指紋採樣後,所述模數轉換電路14進行多次模數轉換;或圖元陣列感應電路12進行多次指紋採樣後,模數轉換電路14進行一次模數轉換;亦或圖元陣列感應電路12進行多次指紋採樣後,模數轉換電路14進行多次模數轉換等不同的工作模式,以有效提升指紋的信號量。 In other embodiments, after the graphic element array sensing circuit 12 of the fingerprint identification system 10 performs one fingerprint sampling, the analog-to-digital conversion circuit 14 performs multiple analog-to-digital conversions; or after the graphic element array sensing circuit 12 performs multiple fingerprint sampling, The analog-to-digital conversion circuit 14 performs an analog-to-digital conversion; or after the graphic element array sensing circuit 12 performs multiple fingerprint samplings, the analog-to-digital conversion circuit 14 performs multiple analog-to-digital conversions and other different working modes to effectively increase the signal amount of the fingerprint .

本申請的實施例還提供了一種指紋晶片,指紋晶片包括晶粒。晶粒如上述實施方式中提供。此處不再贅述。 The embodiment of the present application also provides a fingerprint chip, and the fingerprint chip includes crystal grains. The grains are provided as in the above embodiments. I won't repeat them here.

本申請的實施例還提供了一種電子設備,電子設備包括上述實施方式中提供的指紋晶片。 The embodiment of the present application also provides an electronic device, which includes the fingerprint chip provided in the above embodiment.

綜上所述,本發明符合發明專利要件,爰依法提出專利申請。惟,以上所述僅為本發明之較佳實施方式,舉凡熟悉本案技藝之人士,在援依本案創作精神所作之等效修飾或變化,皆應包含於以下之申請專利範圍內。 In summary, the present invention meets the requirements of an invention patent, and a patent application is filed according to law. However, the above description is only a preferred implementation mode of the present invention. For those who are familiar with the technology of this case, the equivalent modifications or changes made in accordance with the creative spirit of this case should be included in the scope of the following patent application.

21:封裝層 21: Encapsulation layer

22:晶粒 22: grain

23:PCB板 23: PCB board

24:柔性電路板 24:Flexible circuit board

212:弧形外表面 212: Curved outer surface

Claims (12)

一種指紋識別模組,包括封裝層和晶粒,所述封裝層包覆所述晶粒,其中,所述晶粒包含圖元陣列感應電路,所述圖元陣列感應電路包括多個呈矩陣分佈的圖元電路,所述圖元電路包括用於對手指指紋進行檢測的第一金屬層,且所述第一金屬層設置於所述晶粒朝向所述封裝層的一面,所述封裝層具有弧形外表面,所述封裝層的弧形外表面到所述圖元陣列感應電路的每列上的圖元電路的第一金屬層的距離與所述封裝層的弧形外表面的弧度成線性比例變化,且所述圖元陣列感應電路的每列上的圖元電路的第一金屬層的表面面積與所述封裝層的弧形外表面的弧度成線性比例變化。 A fingerprint identification module, comprising a packaging layer and a die, the packaging layer covers the die, wherein the die contains a picture element array sensing circuit, and the picture element array sensing circuit includes a plurality of arrays distributed in a matrix A graphic element circuit, the graphic element circuit includes a first metal layer for detecting fingerprints, and the first metal layer is arranged on the side of the crystal grain facing the encapsulation layer, and the encapsulation layer has The arc-shaped outer surface, the distance from the arc-shaped outer surface of the packaging layer to the first metal layer of the graphic element circuit on each column of the graphic element array induction circuit is proportional to the arc of the arc-shaped outer surface of the packaging layer The linear ratio changes, and the surface area of the first metal layer of the graphic element circuit on each column of the graphic element array sensing circuit changes in linear proportion to the curvature of the arc-shaped outer surface of the packaging layer. 如請求項1所述的指紋識別模組,其中,所述封裝層的弧形外表面到所述圖元陣列感應電路的n列上的圖元電路的第一金屬層的距離d與所述圖元陣列感應電路的n列上的圖元電路的第一金屬層的表面面積s滿足
Figure 110111977-A0305-02-0016-10
,其中,d1、d2...dn分別為所述封裝層的弧形外表面到所述圖元陣列感應電路的第1、2...n列上的圖元電路的第一金屬層的距離;S1、S2...Sn分別為所述圖元陣列感應電路上n列的第一金屬層的表面面積,n為正整數。
The fingerprint identification module according to claim 1, wherein the distance d from the arc-shaped outer surface of the packaging layer to the first metal layer of the graphic element circuit on the n column of the graphic element array sensing circuit is equal to the The surface area s of the first metal layer of the picture element circuit on the n columns of the picture element array sensing circuit satisfies
Figure 110111977-A0305-02-0016-10
, wherein, d1, d2...dn are the distances from the arc-shaped outer surface of the packaging layer to the first metal layer of the picture element circuit on the 1st, 2...n columns of the picture element array sensing circuit The distances; S1, S2...Sn are respectively the surface areas of the first metal layers in n columns on the sensing circuit of the graphic element array, and n is a positive integer.
如請求項2所述的指紋識別模組,其中,所述圖元電路還包括第二金屬層、第三金屬層、襯底層,所述第二金屬層及所述第三金屬層設置於所述第一金屬層及所述襯底層之間,所述第二金屬層和所述第三金屬層在所述襯底層的投影覆蓋所述第一金屬層在所述襯底層的投影,從而將所述第一金屬層與所述襯底層進行隔離,所述第一金屬層在手指接近後生成指紋信號,所述第二金屬層和所述第三金屬層交疊或錯開設置。 The fingerprint identification module as claimed in item 2, wherein the graphic element circuit further includes a second metal layer, a third metal layer, and a substrate layer, and the second metal layer and the third metal layer are arranged on the Between the first metal layer and the substrate layer, the projections of the second metal layer and the third metal layer on the substrate layer cover the projection of the first metal layer on the substrate layer, so that The first metal layer is isolated from the substrate layer, the first metal layer generates a fingerprint signal when a finger approaches, and the second metal layer and the third metal layer are overlapped or staggered. 如請求項3所述的指紋識別模組,其中,所述指紋識別模組還包括積分電路,所述積分電路與所述圖元陣列感應電路連接,用於對所述圖元陣列感應電路生成的指紋信號進行放大;所述圖元陣列感應電路包括第一開關組、第二開關組,所述第一開關組包括第一子開關、第二子開關、第三子開關,所述第二開關組包括第一子開關、第二子開關、第三子開關;所述第二金屬層藉由所述第一開關組的第一子開關與電源電壓連接及藉由所述第二開關組的第一子開關與浮動接地端連接;所述第三金屬層藉由所述第一開關組的第二子開關與所述電源電壓連接及藉由所述第二開關組的第二子開關與第一參考電壓連接;所述第一金屬層藉由所述第一開關組的第三子開關與第一參考電壓連接及藉由所述第二開關組的第三子開關與積分電路連接。 The fingerprint identification module as claimed in claim 3, wherein the fingerprint identification module further includes an integration circuit, the integration circuit is connected to the sensing circuit of the graphic element array, and is used to generate The fingerprint signal is amplified; the picture element array sensing circuit includes a first switch group and a second switch group, and the first switch group includes a first sub-switch, a second sub-switch, and a third sub-switch, and the second The switch group includes a first sub-switch, a second sub-switch, and a third sub-switch; the second metal layer is connected to the power supply voltage through the first sub-switch of the first switch group and connected to the power supply voltage through the second switch group The first sub-switch of the first switch group is connected to the floating ground terminal; the third metal layer is connected to the power supply voltage through the second sub-switch of the first switch group and through the second sub-switch of the second switch group connected to the first reference voltage; the first metal layer is connected to the first reference voltage through the third sub-switch of the first switch group and connected to the integration circuit through the third sub-switch of the second switch group . 如請求項4所述的指紋識別模組,其中,當外設狀態控制信號Tx=0時,浮動接地端的電壓VNVSS=0,當外設狀態控制信號Tx=1時,所述浮動接地端連接預設負電壓,浮動接地端的電壓VNVSS=-VTX,其中-VTX為所述預設負電壓。 The fingerprint identification module as described in claim 4, wherein, when the peripheral state control signal Tx=0, the voltage VNVSS of the floating ground terminal=0, and when the peripheral state control signal Tx=1, the floating ground terminal is connected to A preset negative voltage, the voltage of the floating ground terminal VNVSS=-VTX, wherein -VTX is the preset negative voltage. 如請求項5所述的指紋識別模組,其中,包括負壓輸出電路,用於提供-VTX給浮動接地端。 The fingerprint identification module as claimed in item 5, wherein it includes a negative voltage output circuit for providing -VTX to the floating ground terminal. 如請求項4所述的指紋識別模組,其中,所述積分電路包括運 算放大器及回饋環路,所述運算放大器包括同相輸入端、反向輸入端及輸出端,所述同相輸入端與所述第一參考電壓相連接,藉由調整所述第一參考電壓來調整所述輸出端的輸出電壓,所述第一金屬層藉由所述第二開關組的第三子開關與所述反向輸入端連接,所述輸出端藉由所述回饋環路與所述反向輸入端連接;所述回饋環路包括回饋電容、第三開關組及第四開關組,所述回饋電容的上極板藉由所述第三開關組的第一子開關與第二參考電壓連接,所述回饋電容的下極板藉由所述第三開關組的第二子開關與所述電源電壓連接,所述回饋電容的上極板藉由所述第四開關組的第一子開關與所述反向輸入端連接,所述回饋電容的下極板藉由所述第四開關組的第二子開關與所述輸出端連接,所述反向輸入端藉由所述第三開關組的第三子開關與所述輸出端連接。 The fingerprint identification module as claimed in claim 4, wherein the integration circuit includes An operational amplifier and a feedback loop, the operational amplifier includes a non-inverting input terminal, an inverting input terminal and an output terminal, the non-inverting input terminal is connected to the first reference voltage, and adjusted by adjusting the first reference voltage The output voltage of the output terminal, the first metal layer is connected to the inverting input terminal through the third sub-switch of the second switch group, and the output terminal is connected to the inverting input terminal through the feedback loop. Connected to the input terminal; the feedback loop includes a feedback capacitor, a third switch group and a fourth switch group, the upper plate of the feedback capacitor is connected to the second reference voltage by the first sub-switch of the third switch group The lower plate of the feedback capacitor is connected to the power supply voltage through the second sub-switch of the third switch group, and the upper plate of the feedback capacitor is connected to the power supply voltage through the first sub-switch of the fourth switch group. The switch is connected to the reverse input terminal, the lower plate of the feedback capacitor is connected to the output terminal through the second sub-switch of the fourth switch group, and the reverse input terminal is connected to the output terminal through the third sub-switch. The third sub-switch of the switch group is connected to the output terminal. 如請求項7所述的指紋識別模組,其中,所述圖元陣列感應電路提供第一時序控制信號、第二時序控制信號、第三時序控制信號及第四時序控制信號,所述第一時序控制信號與所述第二時序控制信號為相位相差180°的時鐘信號,所述第三時序控制信號φ1與所述第四時序控制信號φ2是相位相差180°的非交疊時鐘信號,所述第一時序控制信號用於控制所述第三開關組的第一子開關、第二子開關、第三子開關的開合與關閉,所述第二時序控制信號用於控制所述第四開關組的第一子開關、第二子開關的開合與關閉,所述第三時序控制信號用於控制所述第一開關組的第一子開關、第二子開關、第三子開關的開合與關閉,所述第四時序控制信號用於控制所述第二開關組的第一子開關、第二子開關、第三子開關的開合與關閉。 The fingerprint recognition module as claimed in item 7, wherein the graphic element array sensing circuit provides a first timing control signal, a second timing control signal, a third timing control signal and a fourth timing control signal, and the first A timing control signal and the second timing control signal are clock signals with a phase difference of 180°, and the third timing control signal φ1 and the fourth timing control signal φ2 are non-overlapping clock signals with a phase difference of 180° , the first timing control signal is used to control the opening and closing of the first sub-switch, the second sub-switch, and the third sub-switch of the third switch group, and the second timing control signal is used to control the The opening and closing of the first sub-switch and the second sub-switch of the fourth switch group, the third timing control signal is used to control the first sub-switch, the second sub-switch, the third sub-switch of the first switch group The opening and closing of the sub-switches, the fourth timing control signal is used to control the opening and closing of the first sub-switch, the second sub-switch and the third sub-switch of the second switch group. 如請求項8所述的指紋識別模組,其中,所述圖元陣列感應電路工作步驟為:(a)起始階段;第一時序控制信號為高電平,第二時序控制信號為低電平,所述第三開關組的第一子開關、第二子開關、第三子開關同時導通,所述第四開關組的第一子開關、第二子開關同時斷開;(b)掃描階段:所述第一時序控制信號為低電平,所述第二時序控制信號為高電平,所述第三開關組的第一子開關、第二子開關、第三子開關同時斷開,所述第四開關組的第一子開關、第二子開關同時導通;(c)預充電階段:外設狀態控制信號TX=0,浮動接地端與接地端連接,浮動接地端的電壓VNVSS=0,所述第一開關組的第一子開關、第一開關組的第二子開關斷開,所述第一開關組的第三子開關導通,所述第二開關組的第一子開關、第二開關組的第二子開關同時導通,所述第二開關組的第三子開關斷開,所述第二金屬層連接接地端,所述第一金屬層及所述第三金屬層同時連接第一參考電壓,所述第一金屬層與所述放大器斷開;(d)電荷轉移階段,外設狀態控制信號Tx=1,浮動接地端連接預設負電壓,所述第一開關組的第三子開關由導通轉變為斷開,第二開關組的第三子開關由斷開轉變為導通,所述第一開關組的第一子開關、第一開關組的第二子開關、第二開關組的第一子開關、第二開關組的第二子開關保持狀態不變,預設負電壓-VTX=(-1)*VDD,其中VDD為電源電壓,所述第二開關組的第二子開關導通, 所述放大器的反相輸入端藉由所述第二開關組的第三子開關連接至所述第一金屬層,所述放大器的輸出端和所述反相輸入端藉由所述回饋電容連接。 The fingerprint identification module as described in claim 8, wherein the working steps of the graphic element array sensing circuit are: (a) initial stage; the first timing control signal is at high level, and the second timing control signal is at low level Level, the first sub-switch, the second sub-switch, and the third sub-switch of the third switch group are turned on at the same time, and the first sub-switch and the second sub-switch of the fourth switch group are turned off at the same time; (b) Scanning phase: the first timing control signal is at low level, the second timing control signal is at high level, and the first sub-switch, the second sub-switch, and the third sub-switch of the third switch group simultaneously disconnected, the first sub-switch and the second sub-switch of the fourth switch group are turned on at the same time; (c) pre-charging stage: the peripheral state control signal TX=0, the floating ground terminal is connected to the ground terminal, and the voltage of the floating ground terminal V NVSS =0, the first sub-switch of the first switch group and the second sub-switch of the first switch group are turned off, the third sub-switch of the first switch group is turned on, and the second sub-switch of the second switch group A sub-switch and the second sub-switch of the second switch group are turned on at the same time, the third sub-switch of the second switch group is turned off, the second metal layer is connected to the ground terminal, the first metal layer and the second The three metal layers are connected to the first reference voltage at the same time, and the first metal layer is disconnected from the amplifier; (d) in the charge transfer stage, the peripheral state control signal Tx=1, the floating ground terminal is connected to a preset negative voltage, and the The third sub-switch of the first switch group changes from on to off, the third sub-switch of the second switch group changes from off to on, the first sub-switch of the first switch group, the first sub-switch of the first switch group The state of the second sub-switch, the first sub-switch of the second switch group, and the second sub-switch of the second switch group remain unchanged, and the preset negative voltage -VTX=(-1)*VDD, wherein VDD is the power supply voltage, the The second sub-switch of the second switch group is turned on, the inverting input terminal of the amplifier is connected to the first metal layer through the third sub-switch of the second switch group, the output terminal of the amplifier and the The inverting input terminal is connected through the feedback capacitor. 如請求項1所述的指紋識別模組,其中,所述指紋識別模組還包括PCB板及柔性電路板,所述PCB板設置在所述柔性電路板上,所述晶粒設置在所述PCB板上,所述封裝層包覆所述晶粒及所述PCB板。 The fingerprint recognition module according to claim 1, wherein the fingerprint recognition module further includes a PCB board and a flexible circuit board, the PCB board is arranged on the flexible circuit board, and the crystal grain is arranged on the On the PCB, the encapsulation layer covers the die and the PCB. 一種指紋識別晶片,包括請求項1提供的指紋識別模組,其中,所述第一金屬層的表面面積與覆蓋其上方的封裝層的厚度成線性比例變化。 A fingerprint identification chip, comprising the fingerprint identification module provided in claim 1, wherein the surface area of the first metal layer varies linearly with the thickness of the encapsulation layer covering it. 一種電子設備,其中,所述電子設備採用請求項11提供的指紋識別晶片。 An electronic device, wherein the electronic device adopts the fingerprint recognition chip provided by claim 11.
TW110111977A 2021-02-09 2021-03-31 Fingerprint identification module, chip and electronic device TWI782470B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110182854.6 2021-02-09
CN202110182854.6A CN112818890A (en) 2021-02-09 2021-02-09 Fingerprint identification module, chip and electronic equipment

Publications (2)

Publication Number Publication Date
TW202136985A TW202136985A (en) 2021-10-01
TWI782470B true TWI782470B (en) 2022-11-01

Family

ID=75865075

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110203530U TWM620867U (en) 2021-02-09 2021-03-31 Fingerprint identification module, chip and electronic device
TW110111977A TWI782470B (en) 2021-02-09 2021-03-31 Fingerprint identification module, chip and electronic device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110203530U TWM620867U (en) 2021-02-09 2021-03-31 Fingerprint identification module, chip and electronic device

Country Status (2)

Country Link
CN (1) CN112818890A (en)
TW (2) TWM620867U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112818890A (en) * 2021-02-09 2021-05-18 敦泰电子(深圳)有限公司 Fingerprint identification module, chip and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200939133A (en) * 2008-03-10 2009-09-16 Himax Tech Ltd Capacitive fingerprint sensor and the panel thereof
CN105373765A (en) * 2014-08-26 2016-03-02 神盾股份有限公司 Capacitive fingerprint sensing device and method thereof
TW201743184A (en) * 2016-06-01 2017-12-16 指紋卡公司 Fingerprint sensing device and method for manufacturing a fingerprint sensing device
US20180089488A1 (en) * 2016-09-27 2018-03-29 Shenzhen GOODIX Technology Co., Ltd. Fingerprint identification system and electronic device
TWM620867U (en) * 2021-02-09 2021-12-11 大陸商敦泰電子(深圳)有限公司 Fingerprint identification module, chip and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200939133A (en) * 2008-03-10 2009-09-16 Himax Tech Ltd Capacitive fingerprint sensor and the panel thereof
CN105373765A (en) * 2014-08-26 2016-03-02 神盾股份有限公司 Capacitive fingerprint sensing device and method thereof
TW201743184A (en) * 2016-06-01 2017-12-16 指紋卡公司 Fingerprint sensing device and method for manufacturing a fingerprint sensing device
US20180089488A1 (en) * 2016-09-27 2018-03-29 Shenzhen GOODIX Technology Co., Ltd. Fingerprint identification system and electronic device
TWM620867U (en) * 2021-02-09 2021-12-11 大陸商敦泰電子(深圳)有限公司 Fingerprint identification module, chip and electronic device

Also Published As

Publication number Publication date
TWM620867U (en) 2021-12-11
CN112818890A (en) 2021-05-18
TW202136985A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
US6333989B1 (en) Contact imaging device
US10503955B2 (en) Device with improved circuit positioning
US10083336B2 (en) Fingerprint sensor integrated type touch screen panel
EP3090384B1 (en) Sensor pixel circuitry for fingerprint identification
JP6810739B2 (en) Fingerprint detector for common mode suppression
US8005276B2 (en) Apparatus and method for reducing parasitic capacitive coupling and noise in fingerprint sensing circuits
WO2017059725A1 (en) Optical fingerprint/palm print identification apparatus, touch-sensitive display panel and display device
US9103658B2 (en) Optical navigation module with capacitive sensor
US9684811B2 (en) Suspended capacitive fingerprint sensor and method for manufacturing the same
US10205895B2 (en) Capacitive image sensor with noise reduction feature and method operating the same
TW201205403A (en) Touch controller, touch display device and method of compensating for parasitic capacitance in a touch panel
WO2019084832A1 (en) Fingerprint recognition circuit, fingerprint sensor and mobile terminal
CN110210349B (en) Fingerprint sensor and mobile terminal
TWI782470B (en) Fingerprint identification module, chip and electronic device
CN215068273U (en) Fingerprint identification module, chip and electronic equipment
US7978884B1 (en) Fingerprint sensor and interface
KR100473383B1 (en) Unit fixel for capacitive fingerprint sensor and fingerprint sensing device having the same
TWI812959B (en) Fingerprint collection module circuit, chip and electronic device
US11519801B1 (en) Sensor device for transcapacitive sensing with shielding
KR20030073508A (en) Unit fixel for capacitive semiconductor fingerprint sensor and fingerprint sensing device having the same
TWM647051U (en) Fingerprint acquisition circuit, fingerprint chip and electronic device
TWM607385U (en) Light-receiving cell and optical biometrics sensor using the same
WO2022198574A1 (en) Capacitive fingerprint recognition method, capacitive fingerprint recognition apparatus, and electronic device
US11816919B2 (en) Sensor device for transcapacitive sensing with shielding
US20240064432A1 (en) Pixel Output Parasitic Capacitance Reduction and Predictive Settling Assist