TWI782140B - Laser module for optical data communication system within silicon interposer - Google Patents

Laser module for optical data communication system within silicon interposer Download PDF

Info

Publication number
TWI782140B
TWI782140B TW107141213A TW107141213A TWI782140B TW I782140 B TWI782140 B TW I782140B TW 107141213 A TW107141213 A TW 107141213A TW 107141213 A TW107141213 A TW 107141213A TW I782140 B TWI782140 B TW I782140B
Authority
TW
Taiwan
Prior art keywords
optical
module
chip
laser
light
Prior art date
Application number
TW107141213A
Other languages
Chinese (zh)
Other versions
TW201931794A (en
Inventor
晨 孫
羅伊 愛德華 米德
馬克 韋德
亞歷山德拉 瑞特
夫拉地米爾 斯托亞諾維奇
拉吉夫 拉姆
米洛斯 波波维奇
奥登 德瑞克 凡
麥可 大文波特
Original Assignee
美商爾雅實驗室公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/194,250 external-priority patent/US10749603B2/en
Application filed by 美商爾雅實驗室公司 filed Critical 美商爾雅實驗室公司
Publication of TW201931794A publication Critical patent/TW201931794A/en
Application granted granted Critical
Publication of TWI782140B publication Critical patent/TWI782140B/en

Links

Images

Abstract

An interposer device includes a substrate that includes a laser source chip interface region, a silicon photonics chip interface region, an optical amplifier module interface region. A fiber-to-interposer connection region is formed within the substrate. A first group of optical conveyance structures is formed within the substrate to optically connect a laser source chip to a silicon photonics chip when the laser source chip and the silicon photonics chip are interfaced to the substrate. A second group of optical conveyance structures is formed within the substrate to optically connect the silicon photonics chip to an optical amplifier module when the silicon photonics chip and the optical amplifier module are interfaced to the substrate. A third group of optical conveyance structures is formed within the substrate to optically connect the optical amplifier module to the fiber-to-interposer connection region when the optical amplifier module is interfaced to the substrate.

Description

矽插入件內用於光資料通訊系統的雷射模組Laser module in silicon interposer for optical data communication system

本發明係關於光數據通訊。 The present invention relates to optical data communication.

光數據通訊系統係藉由調制雷射光對數化數據圖案編碼而操作。經調制的雷射光自發送節點傳輸通過光數據網路而到達接收節點。到達接收節點之經調制的雷射光受到去調制而獲得原始之數位數據圖案。因此,光數據通訊系統之實施與操作係取決於具有可靠與有效率的雷射光源及光處理系統。又,一般期望光數據通訊系統之雷射光源與光處理裝置可具有最小形式要件且可被設計得在成本與耗能上盡可能地有效率。本發明係於此背景下產生。 Optical data communication systems operate by modulating laser light to encode a digital data pattern. The modulated laser light is transmitted from the sending node through the optical data network to the receiving node. The modulated laser light reaching the receiving node is demodulated to obtain the original digital data pattern. Therefore, the implementation and operation of optical data communication systems depend on reliable and efficient laser light sources and optical processing systems. Also, it is generally expected that the laser light source and light processing device of an optical data communication system can have minimal form factors and can be designed to be as efficient as possible in terms of cost and power consumption. It is against this background that the present invention was produced.

在一例示性的實施例中,揭露一種插入件裝置。該插入件裝置包含一基板,該基板包含用以接收一雷射源晶片的一雷射源晶片界面區域。該基板亦包含用以接收一矽光子晶片的一矽光子晶片界面區域。該基板亦包含用以接收一光放大器模組的一光放大器模組界面區域。一光纖對插入件連接區域係形成於該基板內。該插入件裝置亦包含一第一組光傳輸結構,該第一組光傳輸結構係形成於該基板內以在該雷射源晶片與該矽光子晶片係與該基板交界時將該雷射源晶片光連接至該矽光子晶片。該插入件裝置亦包含一第二組光傳輸結 構,該第二組光傳輸結構係形成於該基板內以在該矽光子晶片與該光放大器模組係與該基板交界時將該矽光子晶片光連接至該光放大器模組。該插入件裝置亦包含一第三組光傳輸結構,該第三組光傳輸結構係形成於該基板內以在該光放大器模組係與該基板交界時將該光放大器模組連接至該光纖對插入件連接區域。 In an exemplary embodiment, an insert device is disclosed. The interposer device includes a substrate including a laser source chip interface region for receiving a laser source chip. The substrate also includes a silicon photonics chip interface region for receiving a silicon photonics chip. The substrate also includes an optical amplifier module interface area for receiving an optical amplifier module. A fiber-to-interposer connection area is formed in the substrate. The interposer device also includes a first set of light transmissive structures formed in the substrate to provide the laser source when the laser source chip and the silicon photonics chip interface with the substrate. A chip is optically connected to the silicon photonics chip. The interposer device also includes a second set of optical transmission junctions structure, the second group of optical transmission structures is formed in the substrate to optically connect the silicon photonic chip to the optical amplifier module when the silicon photonic chip and the optical amplifier module are at the interface with the substrate. The interposer device also includes a third set of optical transmission structures formed in the substrate to connect the optical amplifier module to the optical fiber when the optical amplifier module interfaces with the substrate to the insert connection area.

在一例示性的實施例中,揭露一種多晶片模組。該多晶片模組包含一插入件裝置。該多晶片模組亦包含連接至該插入件裝置的一雷射源晶片。該多晶片模組亦包含連接至該插入件裝置的一矽光子晶片。該多晶片模組亦包含連接至該插入件裝置的一光放大器模組。該插入件裝置包含用以將該雷射源晶片光連接至該矽光子晶片的一第一組光傳輸結構。該插入件裝置亦包含用以將該矽光子晶片光連接至該光放大器模組的一第二組光傳輸結構。該插入件裝置亦包含用以將該光放大器模組光連接至形成在該插入件裝置內之一光纖對插入件連接區域的一第三組光傳輸結構。 In an exemplary embodiment, a multi-chip module is disclosed. The multi-chip module includes an interposer device. The multi-chip module also includes a laser source chip connected to the interposer device. The multi-chip module also includes a silicon photonics chip connected to the interposer device. The multi-chip module also includes an optical amplifier module connected to the interposer device. The interposer device includes a first set of optical transmission structures for optically connecting the laser source chip to the silicon photonics chip. The interposer device also includes a second set of optical transmission structures for optically connecting the silicon photonics chip to the optical amplifier module. The interposer device also includes a third set of optical transmission structures for optically connecting the optical amplifier module to a fiber-to-interposer connection area formed in the interposer device.

在一例示性的實施例中,揭露一種機械傳輸套圈。該機械傳輸套圈包含一上半構件,該上半構件包含一上對準鑰。該機械傳輸套圈亦包含一下半構件,該下半構件包含一下對準鑰。該上對準鑰與該下對準鑰係用以適配在一起以對該上半構件與該下半構件提供對準與適配。該上半構件與該下半構件中的每一者係用以接收在該上半構件與該下半構件之間之一插入件裝置的一外緣部,俾以當該上半構件係適配至該下半構件時,使在該插入件裝置之該外緣部之一邊緣處暴露的一光導在該上半構件與該下半構件之間的一位置處受到暴露。 In an exemplary embodiment, a mechanical transmission ferrule is disclosed. The mechanical transmission ferrule includes an upper half that includes an upper alignment key. The mechanical transmission ferrule also includes a lower half that includes an alignment key. The upper alignment key and the lower alignment key are adapted to fit together to provide alignment and fit between the upper half and the lower half. Each of the upper half and the lower half is adapted to receive an outer edge of an insert device between the upper half and the lower half, so that when the upper half is suitable When mated to the lower half-member, a light guide exposed at an edge of the outer edge portion of the interposer device is exposed at a location between the upper half-member and the lower half-member.

在一例示性的實施例中,揭露一種多晶片模組的製造方法。該方法包含提供一插入件裝置。該方法亦包含將一雷射源晶片連接至該插入件裝置。該方法亦包含將一矽光子晶片連接至該插入件裝置。該方法亦包含將一光放大 器模組連接至該插入件裝置。該插入件裝置包含將該雷射源晶片光連接至該矽光子晶片的一第一組光傳輸結構。該插入件裝置亦包含將該矽光子晶片光連接至該光放大器模組的一第二組光傳輸結構。該插入件裝置亦包含將該光放大器模組光連接至形成在該插入件裝置內之一光纖對插入件連接區域的一第三組光傳輸結構。 In an exemplary embodiment, a method for manufacturing a multi-chip module is disclosed. The method includes providing an insert device. The method also includes attaching a laser source chip to the interposer device. The method also includes connecting a silicon photonics chip to the interposer device. The method also involves amplifying a light Connector module to the inserter device. The interposer device includes a first set of optical transmission structures optically connecting the laser source chip to the silicon photonics chip. The interposer device also includes a second set of optical transmission structures optically connecting the silicon photonics chip to the optical amplifier module. The interposer device also includes a third set of optical transmission structures optically connecting the optical amplifier module to a fiber-to-interposer connection region formed within the interposer device.

100A:雷射模組 100A:Laser module

100B:雷射模組 100B:Laser module

100C:雷射模組 100C:Laser module

100D:雷射模組 100D:Laser module

100E:雷射模組 100E:Laser module

100F:雷射模組 100F:Laser module

102:雷射源 102: Laser source

102A:雷射源 102A: Laser source

103-1至103-N:雷射 103-1 to 103-N: Laser

104-1至104-N:光輸出接口 104-1 to 104-N: optical output interface

105:光導 105: light guide

107:光編排模組 107:Optical arrangement module

107A:光編排模組 107A: Optical arrangement module

107B:光編排模組 107B: Optical arrangement module

107C:光編排模組 107C: Optical arrangement module

106-1至106-N:線 106-1 to 106-N: Wire

108-1至108-N:光輸入接口 108-1 to 108-N: optical input interface

109-1至109-M:光輸出接口 109-1 to 109-M: optical output interface

110:基板 110: Substrate

111:構件 111: Component

200:PLC 200:PLC

201-1至201-N:雷射光束 201-1 to 201-N: Laser Beam

301:光導 301: light guide

303-1至303-N:光放大器模組 303-1 to 303-N: optical amplifier module

303:光放大模組 303: Optical amplifier module

303A:光放大模組 303A: optical amplifier module

304-1至304-M:光輸入接口 304-1 to 304-M: optical input interface

305-1至305-M:光放大器 305-1 to 305-M: optical amplifiers

306-1至306-M:光輸出接口 306-1 to 306-M: optical output interface

307:構件 307: Component

401:構件 401: Component

501-1至501-M:線 501-1 to 501-M: Line

503:PLC 503:PLC

601:PLC 601:PLC

701:波長結合器 701: wavelength combiner

703:光導 703: light guide

705:寬頻功率分割器 705: Broadband Power Splitter

801:陣列式的波導 801: Arrayed waveguide

803:光導 803: light guide

805:寬頻功率分割器 805: Broadband Power Splitter

901:階梯光柵 901: Ladder grating

903:光導 903: light guide

905:寬頻功率分割器 905: Broadband Power Splitter

1001:蝶形波導網路 1001: Butterfly waveguide network

1021:基板 1021: Substrate

1022:磊晶層 1022: epitaxial layer

1023:磊晶層 1023: epitaxial layer

1024:磊晶層 1024: epitaxial layer

1025:平坦化層 1025: planarization layer

1026:導電內連線結構 1026: Conductive interconnection structure

1027:部分 1027: part

1101:星形耦合器 1101: star coupler

1201:諧振環陣列 1201: resonant ring array

1203:諧振環 1203: Resonant ring

1701:操作 1701: Operation

1703:操作 1703: Operation

1705:操作 1705: Operation

1801:插入件裝置 1801: Insert device

1801A:插入件裝置 1801A: Insert Device

1801B:插入件裝置 1801B: Insert device

1801C:插入件裝置 1801C: Insert device

1803:矽光子晶粒/晶片 1803: Silicon photonics die/chip

1805A至1805D:晶粒/晶片 1805A to 1805D: die/wafer

1901:極化旋轉器 1901: Polarization Rotator

1903:光纖對插入件連接件 1903: Fiber-to-insert connectors

1905:光導結構 1905: Light guide structure

1907:光導結構 1907: Light guide structure

1909-1至1909-N:光導結構 1909-1 to 1909-N: light guide structures

1911:光導 1911: Light guide

1913:光導 1913: Light guide

1915-1至1915-N:光導 1915-1 to 1915-N: Light guides

2100:空腔/凹陷 2100: Cavities/Depressions

2101:光導 2101: light guide

2103:側突出物 2103: Side protrusions

2103A:側突出物 2103A: side protrusions

2103B:側突出物 2103B: Side protrusions

2201:晶粒/晶片 2201: grain/wafer

2301:上半部 2301: upper part

2303:下半部 2303: the lower half

2305:對準鑰 2305: Alignment key

2307:部分孔 2307: Partial hole

2309:部分孔 2309: partial hole

2311:拉耳(tab) 2311: pull ear (tab)

2313:光導 2313: light guide

2601:插入件裝置 2601: Insert device

2701:操作 2701: Operation

2703:操作 2703: Operation

2705:操作 2705: Operation

2707:操作 2707: Operation

AMWL-1至AMWL-M:多波長雷射輸出 AMWL-1 to AMWL-M: Multi-wavelength laser output

MWL-1至MWL-M:多波長雷射輸出 MWL-1 to MWL-M: Multi-wavelength laser output

R1至RN:諧振環列 R 1 to R N : Resonant Ring Column

圖1A顯示根據本發明之某些實施例之一雷射模組的結構圖。 FIG. 1A shows a structural diagram of a laser module according to some embodiments of the present invention.

圖1B顯示根據本發明之某些實施例之圖1A之雷射模組的側面圖。 FIG. 1B shows a side view of the laser module of FIG. 1A according to some embodiments of the present invention.

圖1C顯示根據本發明之某些實施例之圖1A之雷射模組的側面圖,其中光導不存在。 1C shows a side view of the laser module of FIG. 1A without the light guide, according to some embodiments of the present invention.

圖1D顯示根據本發明之某些實施例之圖1C之雷射模組結構的側面圖,其中雷射源與光編排模組之間的空的空間係被一構件覆蓋及/或密封。 1D shows a side view of the laser module structure of FIG. 1C according to some embodiments of the present invention, wherein the empty space between the laser source and the light editing module is covered and/or sealed by a member.

圖1E顯示根據本發明之某些實施例之圖1A之雷射模組的側面圖,其中光導不存在且雷射源與光編排模組係以並排接觸方式配置。 1E shows a side view of the laser module of FIG. 1A in which light guides are absent and the laser source and light programming module are arranged in side-by-side contact, according to some embodiments of the present invention.

圖1F顯示根據本發明之某些實施例之圖1A之雷射模組的側面圖,其中光導不存在且雷射源與光編排模組係以垂直重疊接觸方式配置。 FIG. 1F shows a side view of the laser module of FIG. 1A in which light guides are absent and the laser source and light programming module are arranged in vertical overlapping contact, according to some embodiments of the present invention.

圖1G顯示根據本發明之某些實施例之圖1F之雷射模組結構的側面圖,其中光編排模組係延伸橫跨雷射源俾使光編排模組為雷射源在雷射模組內的設置提供物理支撐。 1G shows a side view of the laser module structure of FIG. 1F according to some embodiments of the present invention, wherein the optical programming module is extended across the laser source so that the optical programming module is the laser source in the laser mode. The settings within the group provide physical support.

圖2A顯示根據本發明之某些實施例之一雷射模組的結構圖。 FIG. 2A shows a structural diagram of a laser module according to some embodiments of the present invention.

圖2B顯示根據本發明之某些實施例之PLC的側面圖。 Figure 2B shows a side view of a PLC according to some embodiments of the invention.

圖3A顯示根據本發明之某些實施例之一雷射模組的結構圖,雷射模組包含雷射源、光編排模組及光放大模組。 FIG. 3A shows a structural diagram of a laser module according to some embodiments of the present invention. The laser module includes a laser source, an optical editing module and an optical amplification module.

圖3B顯示根據本發明之某些實施例之圖3A之雷射模組的側面圖,其中光導105存在且光導301存在。 Figure 3B shows a side view of the laser module of Figure 3A with light guide 105 present and light guide 301 present, according to some embodiments of the present invention.

圖3C顯示根據本發明之某些實施例之圖3A之雷射模組的側面圖,其中光導105存在且光導301不存在。 Figure 3C shows a side view of the laser module of Figure 3A with light guide 105 present and light guide 301 absent, according to some embodiments of the present invention.

圖3D顯示根據本發明之某些實施例之圖3C之雷射模組結構的側面圖,其中光編排模組與光放大模組之間的空的空間係被一構件覆蓋及/或密封。 3D shows a side view of the laser module structure of FIG. 3C according to some embodiments of the present invention, wherein the empty space between the optical editing module and the optical amplification module is covered and/or sealed by a member.

圖3E顯示根據本發明之某些實施例之圖3A之雷射模組的側面圖,其中光導105存在且光導301不存在且光編排模組與光放大模組係以並排接觸方式配置。 3E shows a side view of the laser module of FIG. 3A with light guide 105 present and light guide 301 absent and the optical programming module and optical amplification module arranged in side-by-side contact, according to some embodiments of the present invention.

圖3F顯示根據本發明之某些實施例之圖3A之雷射模組的側面圖,其中光導不存在且光編排模組與光放大模組係以垂直重疊接觸方式配置。 3F shows a side view of the laser module of FIG. 3A in accordance with some embodiments of the present invention, wherein the light guide is not present and the optical programming module and the optical amplification module are arranged in vertical overlapping contact.

圖3G顯示根據本發明之某些實施例之圖3F之雷射模組結構的側面圖,其中光放大模組係延伸橫跨光編排模組、光導及電射源俾使光放大模組為光編排模組、光導及雷射源中的每一者在雷射模組內的設置提供物理支撐。 3G shows a side view of the laser module structure of FIG. 3F according to some embodiments of the present invention, wherein the optical amplification module extends across the optical programming module, light guide and electric radiation source so that the optical amplification module is The placement of each of the light programming module, light guide, and laser source within the laser module provides physical support.

圖3H顯示根據本發明之某些實施例之圖3B之雷射模組結構之修改的側面圖,其中光導不存在。 Figure 3H shows a side view of a modification of the laser module structure of Figure 3B in which the light guide is not present, according to some embodiments of the present invention.

圖3I顯示根據本發明之某些實施例之圖3C之雷射模組結構之修改的側面圖,其中光導不存在。 Figure 3I shows a side view of a modification of the laser module structure of Figure 3C in which the light guide is not present, according to some embodiments of the present invention.

圖3J顯示根據本發明之某些實施例之圖3E之雷射模組結構之修改的側面圖,其中光導不存在。 Figure 3J shows a side view of a modification of the laser module structure of Figure 3E in which the light guide is not present, according to some embodiments of the present invention.

圖3K顯示根據本發明之某些實施例之圖3F之雷射模組結構之修改的側面圖,其中光導不存在。 Figure 3K shows a side view of a modification of the laser module structure of Figure 3F in which the light guide is not present, according to some embodiments of the present invention.

圖3L顯示根據本發明之某些實施例之圖3G之雷射模組結構之修改的側面圖,其中光導不存在。 Figure 3L shows a side view of a modification of the laser module structure of Figure 3G in which the light guide is not present, according to some embodiments of the present invention.

圖3M顯示根據本發明之某些實施例之圖3B之雷射模組結構之修改的側面圖,其中雷射源與光編排模組係以並排接觸方式配置。 Figure 3M shows a side view of a modification of the laser module structure of Figure 3B in which the laser source and optical programming module are arranged in side-by-side contact, according to some embodiments of the present invention.

圖3N顯示根據本發明之某些實施例之圖3C之雷射模組結構之修改的側面圖,其中雷射源與光編排模組係以並排接觸方式配置。 3N shows a side view of a modification of the laser module structure of FIG. 3C in which the laser source and optical programming module are arranged in side-by-side contact, according to some embodiments of the present invention.

圖3O顯示根據本發明之某些實施例之圖3E之雷射模組結構之修改的側面圖,其中雷射源與光編排模組係以並排接觸方式配置。 3O shows a side view of a modification of the laser module structure of FIG. 3E in which the laser source and optical programming module are arranged in side-by-side contact, according to some embodiments of the present invention.

圖3P顯示根據本發明之某些實施例之圖3F之雷射模組結構之修改的側面圖,其中雷射源與光編排模組係以並排接觸方式配置。 3P shows a side view of a modification of the laser module structure of FIG. 3F in which the laser source and optical programming module are arranged in side-by-side contact, according to some embodiments of the present invention.

圖3Q顯示根據本發明之某些實施例之圖3G之雷射模組結構之修改的側面圖,其中雷射源與光編排模組係以並排接觸方式配置。 3Q shows a side view of a modification of the laser module structure of FIG. 3G in which the laser source and optical programming module are arranged in side-by-side contact, according to some embodiments of the present invention.

圖3R顯示根據本發明之某些實施例之圖3B之雷射模組結構之修改的側面圖,其中雷射源與光編排模組係以垂直重疊接觸方式配置。 3R shows a side view of a modification of the laser module structure of FIG. 3B in which the laser source and optical programming module are arranged in vertical overlapping contact, according to some embodiments of the present invention.

圖3S顯示根據本發明之某些實施例之圖3R之雷射模組結構之修改的側面圖,其中光編排模組延伸橫跨雷射源、光導及光放大模組。 Figure 3S shows a side view of a modification of the laser module structure of Figure 3R in which the light editing module extends across the laser source, light guide, and light amplification module, according to some embodiments of the present invention.

圖3T顯示根據本發明之某些實施例之圖3R之雷射模組結構之修改的側面圖,其中光導不存在。 Figure 3T shows a side view of a modification of the laser module structure of Figure 3R in which the light guide is not present, according to some embodiments of the present invention.

圖3U顯示根據本發明之某些實施例之圖3S之雷射模組結構之修改的側面圖,其中光導不存在。 Figure 3U shows a side view of a modification of the laser module structure of Figure 3S in which the light guide is not present, according to some embodiments of the present invention.

圖3V顯示根據本發明之某些實施例之圖3T之雷射模組結構之修改的側面圖,其中光導不存在且光編排模組與光放大模組係以並排接觸方式配置。 3V shows a side view of a modification of the laser module structure of FIG. 3T in which light guides are absent and the optical programming module and optical amplification module are arranged in side-by-side contact, according to some embodiments of the present invention.

圖3W顯示根據本發明之某些實施例之圖3S之雷射模組結構之修改的側面圖,其中光導不存在且光編排模組與光放大模組係以並排接觸方式配置。 Figure 3W shows a side view of a modification of the laser module structure of Figure 3S in which light guides are absent and the optical programming module and optical amplification module are arranged in side-by-side contact, according to some embodiments of the present invention.

圖3X顯示根據本發明之某些實施例之圖3R之雷射模組結構之修改的側面圖,其中光導不存在且光編排模組與光放大模組係以垂直重疊接觸方式配置。 Figure 3X shows a side view of a modification of the laser module structure of Figure 3R in which light guides are absent and the optical programming module and optical amplification module are arranged in vertical overlapping contact, according to some embodiments of the present invention.

圖3Y顯示根據本發明之某些實施例之圖3X之雷射模組結構之修改的側面圖,其中光編排模組係延伸橫跨雷射源與光放大模組俾使光編排模組為雷射源與光放大模組中的每一者在雷射模組內的設置提供物理支撐。 Figure 3Y shows a side view of a modification of the laser module structure of Figure 3X in accordance with some embodiments of the present invention, wherein the optical programming module is extended across the laser source and the optical amplification module so that the optical editing module is The arrangement of each of the laser source and the optical amplification module within the laser module provides physical support.

圖4A顯示根據本發明之某些實施例之一雷射模組的結構圖。 FIG. 4A shows a structural diagram of a laser module according to some embodiments of the present invention.

圖4B顯示根據本發明之某些實施例之圖4A之雷射模組結構的側面圖。 FIG. 4B shows a side view of the laser module structure of FIG. 4A according to some embodiments of the present invention.

圖4C顯示根據本發明之某些實施例之圖4B之雷射模組的側面圖,其中光導不存在。 4C shows a side view of the laser module of FIG. 4B without the light guide, according to some embodiments of the present invention.

圖4D顯示根據本發明之某些實施例之圖4C之雷射模組結構的側面圖,其中PLC與光放大模組之間的空的空間係被一構件覆蓋及/或密封。 4D shows a side view of the laser module structure of FIG. 4C according to some embodiments of the present invention, wherein the empty space between the PLC and the optical amplification module is covered and/or sealed by a member.

圖4E顯示根據本發明之某些實施例之圖4A之雷射模組的側面圖,其中光導不存在且PLC與光放大模組係以並排接觸方式配置。 4E shows a side view of the laser module of FIG. 4A in which the light guide is absent and the PLC and optical amplification module are arranged in side-by-side contact, according to some embodiments of the present invention.

圖5A顯示根據本發明之某些實施例之一雷射模組之結構圖,其中光編排模組與光放大模組係共同在一相同的PLC中實施。 FIG. 5A shows a structural diagram of a laser module according to some embodiments of the present invention, wherein the optical editing module and the optical amplification module are implemented together in the same PLC.

圖5B顯示根據本發明之某些實施例之圖5A之雷射模組結構的側面圖。 FIG. 5B shows a side view of the laser module structure of FIG. 5A according to some embodiments of the present invention.

圖5C顯示根據本發明之某些實施例之圖5B之雷射模組結構的側面圖,其中光導不存在。 5C shows a side view of the laser module structure of FIG. 5B without the light guide, according to some embodiments of the present invention.

圖5D顯示根據本發明之某些實施例之圖5C之雷射模組結構的側面圖,其中雷射源與PLC之間的空的空間係被一構件覆蓋及/或密封。 5D shows a side view of the laser module structure of FIG. 5C according to some embodiments of the present invention, wherein the empty space between the laser source and the PLC is covered and/or sealed by a member.

圖5E顯示根據本發明之某些實施例之圖5A之雷射模組的側面圖,其中光導不存在且雷射源與PLC係以並排接觸方式配置。 Figure 5E shows a side view of the laser module of Figure 5A, in which the light guide is absent and the laser source and PLC are arranged in side-by-side contact, according to some embodiments of the present invention.

圖6A顯示根據本發明之某些實施例之一雷射模組之結構圖,其中雷射源、光編排模組及放大模組係共同在一相同的PLC中實施。 FIG. 6A shows a block diagram of a laser module according to some embodiments of the present invention, wherein the laser source, light editing module and amplification module are implemented together in the same PLC.

圖6B顯示根據本發明之某些實施例之圖6A之雷射模組結構的側面圖。 6B shows a side view of the laser module structure of FIG. 6A according to some embodiments of the present invention.

圖7顯示根據本發明之某些實施例之光編排模組的一例示性實施例,其包含Nx1(極化維持)波長結合器與1xM(極化維持)寬頻功率分割器。 FIG. 7 shows an exemplary embodiment of an optical programming module including Nx1 (polarization maintaining) wavelength combiners and IxM (polarization maintaining) broadband power splitters according to some embodiments of the present invention.

圖8顯示根據本發明之某些實施例之光編排模組的一例示性實施例,其包含陣列式的波導及寬頻功率分割器。 FIG. 8 shows an exemplary embodiment of an optical programming module including arrayed waveguides and broadband power splitters according to some embodiments of the present invention.

圖9顯示根據本發明之某些實施例之光編排模組的一例示性實施例,其包含階梯光柵及寬頻功率分割器。 Figure 9 shows an exemplary embodiment of an optical programming module including an echelle grating and a broadband power divider according to some embodiments of the present invention.

圖10顯示根據本發明之某些實施例之光編排模組的一例示性實施例,其包含蝶形波導網路。 Figure 10 shows an exemplary embodiment of an optical programming module including a butterfly waveguide network in accordance with some embodiments of the present invention.

圖11顯示根據本發明之某些實施例之光編排模組的一例示性實施例,其包含星形耦合器。 Figure 11 shows an exemplary embodiment of a light orchestration module including star couplers according to some embodiments of the present invention.

圖12A顯示根據本發明之某些實施例之光編排模組的一例示性實施例,其包含諧振環陣列。 Figure 12A shows an exemplary embodiment of a light orchestration module comprising an array of resonant rings according to some embodiments of the present invention.

圖12B顯示根據本發明之諧振環陣列的詳細圖示。 Figure 12B shows a detailed diagram of a resonant ring array according to the present invention.

圖13顯示根據本發明之某些實施例之PLC上之圖6A之雷射模組的一例示性實施例,其中施用編排模組以包含陣列式的波導及寬頻功率分割器。 FIG. 13 shows an exemplary embodiment of the laser module of FIG. 6A on a PLC in accordance with some embodiments of the present invention, where the programming module is applied to include an arrayed waveguide and broadband power splitter.

圖14顯示根據本發明之某些實施例之PLC上之圖6A之雷射模組的一例示性實施例,其中施用編排模組以包含階梯光柵與寬頻功率分割器。 FIG. 14 shows an exemplary embodiment of the laser module of FIG. 6A on a PLC in accordance with certain embodiments of the present invention, where the programming module is applied to include an echelle grating and a broadband power divider.

圖15顯示根據本發明之某些實施例之PLC上之圖6A之雷射模組的一例示性實施例,其中施用編排模組以包含蝶形波導網路。 FIG. 15 shows an exemplary embodiment of the laser module of FIG. 6A on a PLC applying an orchestration module to include a butterfly waveguide network in accordance with certain embodiments of the present invention.

圖16顯示根據本發明之某些實施例之PLC上之圖6A之雷射模組的一例示性實施例,其中施用編排模組以包含星形耦合器。 FIG. 16 shows an exemplary embodiment of the laser module of FIG. 6A on a PLC in accordance with certain embodiments of the present invention, where the programming module is applied to include a star coupler.

圖17顯示根據本發明之某些實施例之一雷射模組操作方法的流程圖。 FIG. 17 shows a flowchart of a laser module operating method according to some embodiments of the present invention.

圖18A顯示根據本發明之某些實施例之一例示性插入件裝置,其中基板及波導的功能係加以結合。 Figure 18A shows an exemplary interposer device in which the functions of substrate and waveguide are combined, according to some embodiments of the present invention.

圖18B顯示根據本發明之某些實施例之插入件裝置的上結構圖以例示將晶粒/晶片相對於插入件裝置設置的彈性。 Figure 18B shows a top view of an interposer device according to some embodiments of the present invention to illustrate the flexibility of disposing the die/wafer relative to the interposer device.

圖19顯示根據本發明之某些實施例之插入件裝置的平面方塊示圖,插入件裝置係作為MCM整合產品的一部分。 Figure 19 shows a plan block diagram of an interposer device as part of an MCM integrated product according to some embodiments of the present invention.

圖20A顯示根據本發明之某些實施例之插入件裝置的垂直橫剖面方塊圖,插入件裝置係作為MCM整合產品的一部分。 Figure 20A shows a vertical cross-sectional block diagram of an interposer device as part of an MCM integrated product, according to some embodiments of the present invention.

圖20B顯示根據本發明之某些實施例之插入件裝置的另一垂直橫剖面方塊圖,插入件裝置係作為MCM整合產品的一部分。 Figure 20B shows another vertical cross-sectional block diagram of an interposer device as part of an MCM integrated product according to some embodiments of the present invention.

圖20C顯示根據本發明之某些實施例之插入件裝置的另一垂直橫剖面方塊圖,插入件裝置係作為MCM整合產品的一部分。 Figure 20C shows another vertical cross-sectional block diagram of an interposer device as part of an MCM integrated product, according to some embodiments of the present invention.

圖21顯示根據本發明之某些實施例之一例示性插入件裝置之上表面的等角視圖。 Figure 21 shows an isometric view of the upper surface of an exemplary interposer device according to some embodiments of the present invention.

圖22顯示根據本發明之某些例示性實施例之圖21之例示性插入件裝置,其在空腔/凹陷內設有晶粒/晶片。 FIG. 22 shows the exemplary interposer device of FIG. 21 with a die/wafer disposed within a cavity/recess according to certain exemplary embodiments of the invention.

圖23A至23F顯示根據本發明之某些實施例之用以連接至插入件裝置的一整合性MT套圈。 23A-23F show an integral MT ferrule for connection to an inserter device, according to some embodiments of the present invention.

圖24顯示根據本發明之某些實施例之貫穿雷射源之例示性垂直橫剖面。 Figure 24 shows an exemplary vertical cross-section through a laser source according to some embodiments of the present invention.

圖25顯示根據本發明之某些實施例之在蝕刻平坦化層以顯露部分磊晶層(第三光子層)後圖24的垂橫剖面圖。 25 shows a vertical cross-sectional view of FIG. 24 after etching the planarization layer to reveal part of the epitaxial layer (third photonic layer), according to some embodiments of the present invention.

圖26顯示根據本發明之某些實施例之覆晶連接至插入件裝置之圖25之雷射源的垂直橫剖面圖。 Figure 26 shows a vertical cross-sectional view of the laser source of Figure 25 in a flip-chip attached to interposer device according to some embodiments of the present invention.

圖27顯示根據本發明之某些實施例之一多晶片模組(MCM)製造方法的流程圖。 FIG. 27 shows a flowchart of a multi-chip module (MCM) manufacturing method according to some embodiments of the present invention.

在下列的說明中列舉出許多特定細節以提供對本發明的全面瞭解。然而應明白,熟知本發明領域技術者可在缺乏部分或所有此些特定細節的情況下實施本發明。在其他情況中,不詳細說明已知的處理操作以免不必要地模糊本發明。 In the following description, numerous specific details are set forth in order to provide a thorough understanding of the invention. It will be understood, however, that one skilled in the art of the invention may practice the invention without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.

文中揭露雷射模組的各種實施例及相關的方法。設計及配置雷射模組,使其供給具有一或多波長的雷射光。應瞭解,文中所用之「波長」一詞係指電磁輻射的波長。又,文中所用之「光」一詞係指落在光數據通訊系統可使用之電磁譜之一部分內的電磁輻射。在某些實施例中,電磁譜的一部分包含 波長範圍自約1100奈米延伸至約1565奈米(涵蓋電磁譜之O-頻段至C-頻段且包含端點)之波長的光。然而應瞭解,文中所指之電磁譜的一部分可包含波長小於1100奈米或大於1565奈米之的光,只要經由光之調制/去調制編碼、傳輸及解編數位數據之光數據通訊系統能使用此類光。在某些實施例中,在光數據通訊系統中所用的光具有電磁譜之近紅外紅部分中的波長。又,文中所用之「雷射光束」一詞係指雷射裝置所產生之光束。應瞭解,可限制雷射光束使其在光導如(但不限於)光纖平面光波電路(PLC)內之光導中傳播。在某些實施例中,雷射光束為極化的。又,在某些實施例中,一特定雷射光束之光具有單一波長,其中單一波長可指實質上一波長或可指光數據通訊系統可識別及處理之彷彿可視為是單一波的窄頻波長。 Various embodiments of laser modules and related methods are disclosed herein. Design and configure the laser module to supply laser light with one or more wavelengths. It should be understood that the term "wavelength" as used herein refers to the wavelength of electromagnetic radiation. Also, the term "light" as used herein refers to electromagnetic radiation falling within a portion of the electromagnetic spectrum usable by optical data communication systems. In some embodiments, a portion of the electromagnetic spectrum includes Light having wavelengths in the range extending from about 1100 nanometers to about 1565 nanometers (covering the O-band to the C-band of the electromagnetic spectrum, inclusive). It should be understood, however, that a portion of the electromagnetic spectrum referred to herein may include light having wavelengths less than 1100 nm or greater than 1565 nm, so long as an optical data communication system that encodes, transmits, and decodes digital data via modulation/demodulation of light is capable of Use this type of light. In some embodiments, the light used in the optical data communication system has wavelengths in the near-infrared red portion of the electromagnetic spectrum. Also, the term "laser beam" as used herein refers to a beam of light generated by a laser device. It will be appreciated that the laser beam can be confined to propagate in a light guide such as, but not limited to, a light guide within a fiber optic planar lightwave circuit (PLC). In some embodiments, the laser beam is polarized. Also, in some embodiments, the light of a particular laser beam has a single wavelength, where a single wavelength may refer to substantially one wavelength or may refer to a narrow frequency band that an optical data communication system can recognize and process as if it were a single wave wavelength.

圖1A顯示根據本發明之某些實施例之雷射模組100A的結構圖。雷射模組100A包含雷射源102及光編排模組107。雷射源102係用以產生及輸出複數雷射光束,即,(N)雷射光束。複數雷射光束彼此具有不同波長(λ1-λN),其中不同波長(λ1-λN)對一光數據通訊系統而是是可分辨的。在某些實施例中,雷射源102包含用以分別產生複數(N)雷射光束的複數雷射103-1至103-N,其中雷射103-1至103-N中的每一者分別產生及輸出不同波長(λ1-λN)中之一對應波長的雷射光束。複數雷射103-1至103-N所產生之每一雷射光束分別被提供至雷射源102之各個光輸出接口104-1至104-N以自雷射源102傳輸。在某些實施例中,複數雷射103-1至103-N中的每一者皆為用以產生不同波長(λ1-λN)中之一特定波長處之雷射光的一分佈回饋雷射。在某些實施例中,雷射源102可被定義為一分離的元件如一分離的晶片。然而在其他實施例中,雷射源102可被整合於除了雷射源102外尚包含其他元件之一晶片上之平面光波電路(PLC)內。 FIG. 1A shows a block diagram of a laser module 100A according to some embodiments of the present invention. The laser module 100A includes a laser source 102 and an optical editing module 107 . The laser source 102 is used to generate and output a plurality of laser beams, ie, (N) laser beams. The plurality of laser beams have different wavelengths (λ1-λN) from each other, wherein the different wavelengths (λ1-λN) are distinguishable for an optical data communication system. In some embodiments, the laser source 102 includes a plurality of lasers 103-1 to 103-N for respectively generating a plurality (N) of laser beams, wherein each of the lasers 103-1 to 103-N Generate and output laser beams corresponding to one of the different wavelengths (λ1-λN) respectively. Each of the laser beams generated by the plurality of lasers 103 - 1 to 103 -N is provided to the respective light output interfaces 104 - 1 to 104 -N of the laser source 102 for transmission from the laser source 102 . In some embodiments, each of the plurality of lasers 103-1 to 103-N is a distributed feedback laser for generating laser light at a specific one of different wavelengths (λ1-λN). In some embodiments, laser source 102 may be defined as a separate component such as a separate wafer. However, in other embodiments, the laser source 102 may be integrated in a planar lightwave circuit (PLC) on a chip that includes other components in addition to the laser source 102 .

在圖1A之例示性實施例中,雷射源102被定義為附接至基板110如電子封裝基板的一分離元件。在各種實施例中,基板110可為有機基板或陶瓷基板、或其上可安裝電子裝置及/光電裝置及/或光導及/或光纖(複數光纖)/光纖帶(複數光纖帶)之基本上任何其他類型的基板。例如,在某些實施例中,基板110可為磷化銦(III-V)基板。或在另一實例中,基板110可為Al2O3結構。應瞭解,在各種實施例中,雷射源102可實質上利用任何已知的電子封裝處理如覆晶接合附接/安裝至基板110,電子封裝處理可選擇性地包含在雷射源102與基板110之間設置球柵陣列(BGA)、凸塊、焊料、底填料及/或其他成分(複數成分)且包含接合技術如質量回流、熱壓接合(TCB)、或實質上任何其他適合的接合技術。在各種實施例中,基板110可為矽、矽插入件裝置、玻璃、或其他適合的基板。 In the exemplary embodiment of FIG. 1A, laser source 102 is defined as a discrete component attached to a substrate 110, such as an electronic packaging substrate. In various embodiments, the substrate 110 can be an organic substrate or a ceramic substrate, or a basic structure on which electronic devices and/or optoelectronic devices and/or light guides and/or optical fibers (plural optical fibers)/fiber optic ribbons (plural optical fiber ribbons) can be mounted. Any other type of substrate. For example, in some embodiments, the substrate 110 may be an indium (III-V) phosphide substrate. Or in another example, the substrate 110 may have an Al 2 O 3 structure. It should be appreciated that in various embodiments, laser source 102 may be attached/mounted to substrate 110 using substantially any known electronic packaging process, such as flip-chip bonding, which may optionally be included between laser source 102 and A ball grid array (BGA), bumps, solder, underfill, and/or other component(s) are disposed between substrates 110 and include bonding techniques such as mass reflow, thermocompression bonding (TCB), or substantially any other suitable bonding technique. In various embodiments, the substrate 110 may be silicon, a silicon interposer device, glass, or other suitable substrates.

光編排模組107係用以在光編排模組107之複數對應光輸入接口108-1至108-N處接收來自雷射源102之具有不同波長(λ1-λN)的複數雷射光束。光編排模組107係亦用以將複數雷射光束中之每一光束的一部分分配至光編排模組107之複數光輸出接口109-1至109-M中的每一者,其中(M)為光編排模組107之光輸出接口的數目。光編排模組107操作以分配複數雷射光束,俾使複數雷射光束之所有不同波長(λ1-λN)被提供至光編排模組107之複數光輸出接口109-1至109-M中的每一者。因此應瞭解,如圖1A中所示,光編排模組107操作以將具有不同波長(λ1-λN)之複數雷射光束的光提供至光編排模組107之光輸出接口109-1至109-M的每一者。以此方式,對於雷射模組100A而言,光編排模組107之光輸出接口109-1至109-M中的每一者提供複數多波長雷射輸出MWL-1至MWL-M中的一對應者。 The optical editing module 107 is used to receive a plurality of laser beams with different wavelengths (λ1-λN) from the laser source 102 at the plurality of corresponding optical input interfaces 108-1 to 108-N of the optical editing module 107. The optical editing module 107 is also used to distribute a portion of each of the plurality of laser beams to each of the plurality of optical output interfaces 109-1 to 109-M of the optical editing module 107, wherein (M) is the number of optical output interfaces of the optical programming module 107 . The optical programming module 107 operates to distribute the plurality of laser beams so that all the different wavelengths (λ1-λN) of the plurality of laser beams are provided to the plurality of optical output interfaces 109-1 to 109-M of the optical programming module 107 each. It should therefore be appreciated that, as shown in FIG. 1A , the optical programming module 107 operates to provide light of a plurality of laser beams having different wavelengths (λ1-λN) to the optical output interfaces 109-1 to 109 of the optical programming module 107 Each of -M. In this way, for the laser module 100A, each of the optical output interfaces 109-1 to 109-M of the optical programming module 107 provides one of the complex multi-wavelength laser outputs MWL-1 to MWL-M One counterpart.

在某些實施例中,光編排模組107係用以維持光編排模組107之複數光輸入接口108-1至108-N與光編排模組107之複數光輸出接口109-1至 109-M之間之複數雷射光束中之每一光束的極化。又,在某些實施例中,光編排模組107之配置俾使光編排模組107之複數光輸出接口109-1至109-M中的每一者接收複數雷射光束中任何一特定光束之五倍內的類似光學功率量。換言之,在某些實施例中,光編排模組107提供給光輸出接口109-1至109-M中之一特定接口之特定波長(即不同波長(λ1-λN)中之一波長)之光的量係等於五倍之內光編排模組107提供給光輸出接口109-1至109-M中之其他接口之特定波長之光的量。應瞭解,上述之五倍為一例示性實施例。在其他實施例中,可將上述之五倍改變為兩倍、三倍、四倍或六倍等或介於或小於或大於之任何其他值。應瞭解,光編排模組107可用以控制光編排模組107之光輸出接口109-1至109-M中每一者提供之特定波長之光的量,因此可用以控制光編排模組107之光輸出接口109-1至109-M中每一者提供之特定波長之光之量的均勻度。 In some embodiments, the optical arrangement module 107 is used to maintain the plurality of optical input interfaces 108-1 to 108-N of the optical arrangement module 107 and the plurality of optical output interfaces 109-1 to 108-N of the optical arrangement module 107 Polarization of each of the plurality of laser beams between 109-M. Also, in some embodiments, the optical arrangement module 107 is configured such that each of the plurality of optical output interfaces 109-1 to 109-M of the optical arrangement module 107 receives any specific beam in the plurality of laser beams A similar amount of optical power within five times. In other words, in some embodiments, the optical programming module 107 provides light of a specific wavelength (that is, one of different wavelengths (λ1-λN)) to a specific interface among the optical output interfaces 109-1 to 109-M The amount of is equal to the amount of light of a specific wavelength provided by the optical editing module 107 to other interfaces among the optical output interfaces 109-1 to 109-M within five times. It should be understood that the above five times is an exemplary embodiment. In other embodiments, the above five times may be changed to two times, three times, four times or six times, etc. or any other value between or less than or greater than. It should be understood that the optical editing module 107 can be used to control the amount of light of a specific wavelength provided by each of the optical output interfaces 109-1 to 109-M of the optical editing module 107, and thus can be used to control the optical output of the optical editing module 107. The uniformity of the amount of light of a specific wavelength provided by each of the optical output interfaces 109-1 to 109-M.

在圖1A的例示性實施例中,光編排模組107被定義為附接至基板110的分離元件。因此應瞭解,在雷射模組100A的例示性實施例中,雷射源102與光編排模組107為實體分離的元件。應瞭解,在各種實施例中,光編排模組107可實質上利用任何已知的電子封裝處理附接/安裝至基板110。又,在某些實施例中,光編排模組107被配置為非電子元件如被動元件且可利用不涉及在光編排模組107與基板110間建立電接觸的技術如利用環氧樹脂或其他類型的黏著材料附接/安裝至基板110。在某些實施例中,光編排模組107可整合至包含除了光編排模組107外之其他元件之晶片上的PLC內,而非被定義為一分離元件。在某些實施例中,光編排模組107與雷射源102兩者可在一相同的PLC內實施。 In the exemplary embodiment of FIG. 1A , light orchestration module 107 is defined as a separate component attached to substrate 110 . It should therefore be understood that in the exemplary embodiment of the laser module 100A, the laser source 102 and the light editing module 107 are physically separate components. It should be appreciated that, in various embodiments, optical programming module 107 may be attached/mounted to substrate 110 using substantially any known electronic packaging process. Also, in some embodiments, optical programming module 107 is configured as a non-electronic component such as a passive component and may utilize techniques that do not involve establishing electrical contact between optical programming module 107 and substrate 110, such as utilizing epoxy or other type of adhesive material is attached/mounted to the substrate 110 . In some embodiments, the optical programming module 107 may be integrated into a PLC on a chip including other components in addition to the optical programming module 107, rather than being defined as a separate component. In some embodiments, both the light programming module 107 and the laser source 102 may be implemented in the same PLC.

雷射源102係與光編排模組107對準以引導自雷射源102之光輸出104-1至104-N傳輸的複數雷射光束分別進入光編排模組107之光輸入接口108-1至108-N的對應者。在某些實施例中,光編排模組107係與雷射源102分 離。在某些實施例中,光編排模組107係與雷射源102接觸。又,在某些實施例中,光編排模組107的一部分與雷射源102的一部分在位置上重疊。在圖1A所示之雷射模組100A之例示性實施例中,光編排模組107係與雷射源102分離且光導105係位於雷射源102與光編排模組107之間。光導105係用以將來自雷射源102的複數雷射光束引導至光編排模組107之複數光輸入接口108-1至108-N的對應者,如線106-1至106-N所示。 The laser source 102 is aligned with the optical arrangement module 107 to guide the complex laser beams transmitted from the optical outputs 104-1 to 104-N of the laser source 102 to enter the optical input interface 108-1 of the optical arrangement module 107 respectively To the counterpart of 108-N. In some embodiments, optical programming module 107 is separate from laser source 102 Leave. In some embodiments, the light editing module 107 is in contact with the laser source 102 . Also, in some embodiments, a portion of the light editing module 107 overlaps a portion of the laser source 102 in position. In the exemplary embodiment of laser module 100A shown in FIG. 1A , light editing module 107 is separate from laser source 102 and light guide 105 is located between laser source 102 and light editing module 107 . The light guide 105 is used to guide the plurality of laser beams from the laser source 102 to the corresponding ones of the plurality of optical input interfaces 108-1 to 108-N of the optical editing module 107, as shown by the lines 106-1 to 106-N .

在各種實施例中,光導105實質上可由任何材料所形成,只要光能經由此材料自光導105上之入口位置傳輸到光導105之出口位置。例如,在各種實施例中,光導105尤其可由玻璃、SiN、SiO2、氧化鍺及/或二氧化矽所形成。在某些實施例中,光導105係用以維持雷射源102與光編排模組107之間之複數雷射光束的極化。在某些實施例中,光導105包含(N)光傳輸通道,其中每一光傳輸通道係自雷射源102之光輸出接口104-1至104-N中的一對應者延伸至光編排模組107之光輸入接口108-1至108-N的一對應者。在某些實施例中,光導105之(N)光傳輸通道中的每一通道在垂直雷射光束傳播方向(即如圖1A所示垂直於x方向)的平面上有實質上矩形的橫剖面,其作用在於在雷射源102傳播至光編排模組107時維持雷射光束的極化。 In various embodiments, the light guide 105 may be formed of virtually any material so long as light energy is transmitted through the material from the entry location on the light guide 105 to the exit location of the light guide 105 . For example, in various embodiments, the light guide 105 may be formed of glass, SiN, SiO 2 , germanium oxide, and/or silicon dioxide, among others. In some embodiments, the light guide 105 is used to maintain the polarization of the plurality of laser beams between the laser source 102 and the light editing module 107 . In some embodiments, the light guide 105 includes (N) optical transmission channels, wherein each optical transmission channel extends from a corresponding one of the optical output interfaces 104-1 to 104-N of the laser source 102 to the optical programming mode A corresponding one of the optical input interfaces 108-1 to 108-N of the group 107. In some embodiments, each of the (N) optical transmission channels of the light guide 105 has a substantially rectangular cross-section in a plane perpendicular to the direction of propagation of the laser beam (i.e., perpendicular to the x-direction as shown in FIG. 1A ). , whose function is to maintain the polarization of the laser beam when the laser source 102 propagates to the optical programming module 107 .

在圖1A之例示性實施例中,光導105被定義為附接至基板110的分離元件。因此應瞭解,在雷射模組100A的例示性實施例中,雷射源102、光導105及光編排模組107為實體分離的元件。應瞭解,在各種實施例中,光導105可實質上利用任何已知的電子封裝處理附接/安裝至基板110。又,在某些實施例中,光導105被配置為非電子元件如被動元件且可利用不涉及在光導105與基板110間建立電接觸的技術如利用環氧樹脂或其他類型的黏著材料附接/安裝至基板110。在某些實施例中,光導105可整合至包含除了光導105外之其他 元件之晶片上的PLC內,而非被定義為一分離元件。在某些實施例中,雷射源102、光導105及光編排模組107可在一相同的PLC內實施。 In the exemplary embodiment of FIG. 1A , light guide 105 is defined as a separate element attached to substrate 110 . It should therefore be appreciated that in the exemplary embodiment of laser module 100A, laser source 102, light guide 105, and light editing module 107 are physically separate components. It should be appreciated that in various embodiments, the light guide 105 may be attached/mounted to the substrate 110 using substantially any known electronic packaging process. Also, in some embodiments, the light guide 105 is configured as a non-electronic component, such as a passive component, and can be attached using techniques that do not involve establishing electrical contact between the light guide 105 and the substrate 110, such as using epoxy or other types of adhesive materials. / mounted to the substrate 110 . In some embodiments, the light guide 105 may be integrated into other components in addition to the light guide 105 The device is within the PLC on the die and is not defined as a separate device. In some embodiments, laser source 102, light guide 105, and light editing module 107 may be implemented in the same PLC.

在某些實施例中,雷射模組100A包含設置在雷射源102鄰近的熱分散元件。熱分散元件係用以分散複數雷射103-1至103-N的熱輸出以在複數雷射103-1至103-N之間提供溫度相依之波長漂移的實質均勻度。在某些實施例中,熱分散元件係包含於雷射源102內。在某些實施例中,熱分散元件係包含於基板110內。在某些實施例中,熱分散元件之形成有別於雷射源102、光編排模組107及基板110每一者。在某些實施例中,熱分散元件係包含於光編排模組107內且光編排模組107之熱分散元件部分係與雷射源102實體重疊。在某些實施例中,熱分散元件係包含於光導105內且光導105之熱分散元件部分係與雷射源102實體重疊。在各種實施例中,熱分散元件係由導熱材料如金屬材料形成。在某些實施例中,熱分散元件可包含用以使熱自複數雷射103-1至103-N主動傳輸離開的元件如熱電冷卻元件。又,在某些實施例中,熱分散元件係形成具有充分的大質量俾以具有將熱自雷射源102之複數雷射103-1至103-N發散之熱沉的功能。 In some embodiments, the laser module 100A includes a heat dissipating element disposed adjacent to the laser source 102 . The heat spreading element is used to spread the thermal output of the plurality of lasers 103-1 to 103-N to provide substantial uniformity of temperature-dependent wavelength shift among the plurality of lasers 103-1 to 103-N. In some embodiments, a heat spreading element is included within the laser source 102 . In some embodiments, heat spreading elements are included in the substrate 110 . In some embodiments, the heat spreading element is formed separately from each of the laser source 102 , the light editing module 107 and the substrate 110 . In some embodiments, the heat spreading element is included in the light programming module 107 and the heat spreading element portion of the light programming module 107 physically overlaps the laser source 102 . In some embodiments, the heat spreading element is included within the light guide 105 and the heat spreading element portion of the light guide 105 physically overlaps the laser source 102 . In various embodiments, the heat spreading element is formed of a thermally conductive material, such as a metallic material. In some embodiments, the heat dissipating element may include an element such as a thermoelectric cooling element to actively transfer heat away from the plurality of lasers 103-1 through 103-N. Also, in some embodiments, the heat spreading element is formed with sufficient mass to function as a heat sink for dissipating heat from the plurality of lasers 103 - 1 to 103 -N of the laser source 102 .

圖1B顯示根據本發明之某些實施例之雷射模組100A的側面圖,其中光導105存在。在圖1B之實施例中,雷射源102及光編排模組107係以實質上共平面之方式設置於基板110上俾使雷射源102之光輸出接口104-1至104-N係分別與光編排模組107的光輸入接口108-1至108-N水平對準,俾以在雷射源102之光輸出接口104-1至104-N處或在光編排模組107之光輸入接口108-1至108-N處不需要轉動雷射光束。 Figure IB shows a side view of a laser module 100A in which a light guide 105 is present, according to some embodiments of the present invention. In the embodiment of FIG. 1B, the laser source 102 and the optical editing module 107 are arranged on the substrate 110 in a substantially coplanar manner so that the optical output interfaces 104-1 to 104-N of the laser source 102 are respectively Horizontally aligned with the optical input interfaces 108-1 to 108-N of the optical arrangement module 107, so as to be at the optical output interfaces 104-1 to 104-N of the laser source 102 or at the optical input of the optical arrangement module 107 There is no need to rotate the laser beam at interfaces 108-1 to 108-N.

圖1C顯示根據本發明之某些實施例之雷射模組100A的側面圖,其中光導105不存在。在圖1C之實施例中,雷射源102及光編排模組107係以實質上共平面之方式設置於基板110上俾使雷射源102之光輸出接口104-1至 104-N係分別與光編排模組107之光輸入接口108-1至108-N水平對準,俾以在雷射源102之光輸出接口104-1至104-N處或在光編排模組107之光輸入接口108-1至108-N處不需要轉動雷射光束。在圖1C之實施例中,雷射源102之光輸出接口104-1至104-N與光編排模組107之光輸入接口108-1至108-N之間存在空的空間。因此在圖1C之實施例中,自雷射源102輸出之雷射光束行經通過雷射源102與光編排模組107間之空的空間的各別直線路徑。 FIG. 1C shows a side view of laser module 100A without light guide 105 in accordance with some embodiments of the present invention. In the embodiment of FIG. 1C, the laser source 102 and the optical editing module 107 are arranged on the substrate 110 in a substantially coplanar manner so that the light output interface 104-1 of the laser source 102 can reach the 104-N is respectively horizontally aligned with the optical input interfaces 108-1 to 108-N of the optical arrangement module 107, so that at the optical output interfaces 104-1 to 104-N of the laser source 102 or at the optical arrangement module There is no need to rotate the laser beams at the optical input interfaces 108-1 to 108-N of the group 107. In the embodiment of FIG. 1C , empty spaces exist between the light output interfaces 104 - 1 to 104 -N of the laser source 102 and the light input interfaces 108 - 1 to 108 -N of the light editing module 107 . Therefore, in the embodiment of FIG. 1C , the laser beams output from the laser source 102 travel through respective linear paths through the empty space between the laser source 102 and the light editing module 107 .

圖1D顯示根據本發明之某些實施例之圖1C之雷射模組100A結構的側面圖,其中雷射源102與光編排模組107之間的空的空間係被一構件111覆蓋及/或密封。在各種實施例中,構件111可為在封裝期間設置之另一晶片、或在封裝期間設置之另一材料、或可為雷射源102的一整合部件、或可為光編排模組107的一整合部件。 FIG. 1D shows a side view of the structure of the laser module 100A of FIG. 1C according to some embodiments of the present invention, wherein the empty space between the laser source 102 and the optical editing module 107 is covered by a member 111 and/or or sealed. In various embodiments, component 111 may be another chip provided during packaging, or another material provided during packaging, or may be an integral part of laser source 102, or may be an integral part of optical programming module 107. an integrated component.

圖1E顯示根據本發明之某些實施例之雷射模組100A的側面圖,其中光導105不存在且雷射源102與光編排模組107係以並排接觸方式配置。在圖1E之例示性雷射模組100A的結構中,雷射源102及光編排模組107係以實質上共平面之方式設置於基板110上,俾使雷射源102之光輸出接口104-1至104-N係分別與光編排模組107之光輸入接口108-1至108-N水平對準,俾以在雷射源102之光輸出接口104-1至104-N處或在光編排模組107之光輸入接口108-1至108-N處不需要轉動雷射光束。 1E shows a side view of laser module 100A in which light guide 105 is absent and laser source 102 and light programming module 107 are arranged in side-by-side contact, according to some embodiments of the present invention. In the structure of the exemplary laser module 100A of FIG. 1E , the laser source 102 and the light editing module 107 are arranged on the substrate 110 in a substantially coplanar manner, so that the light output interface 104 of the laser source 102 -1 to 104-N are horizontally aligned with the optical input interfaces 108-1 to 108-N of the optical arrangement module 107, so that the optical output interfaces 104-1 to 104-N of the laser source 102 or at The optical input interfaces 108 - 1 to 108 -N of the optical editing module 107 do not need to rotate the laser beams.

圖1F顯示根據本發明之某些實施例之雷射模組100A的側面圖,其中光導105不存在且雷射源102與光編排模組107係以垂直重疊接觸方式配置。在圖1F之例示性雷射模組100A的結構中,基板110係用以支撐雷射源102及光編排模組107兩者。在圖1F之例示性雷射模組100A的結構中,雷射源102之光輸出接口104-1至104-N係分別與光編排模組107之光輸入接口108-1至108-N垂直對準,俾以在雷射源102之光輸出接口104-1至104-N處及在光編排 模組107之光輸入接口108-1至108-N處完成雷射光束的轉動。圖1G顯示根據本發明之某些實施例之圖1F之雷射模組100A之結構的側面圖,其中光編排模組107係延伸橫跨雷射源102俾使光編排模組107為雷射源102在雷射模組100A內的設置提供物理支撐。在圖1G之例示性雷射模組100A的結構中,若光編排模組107之形成具有足以物理支撐其本身及雷射源102的充分機械強度,則可省略基板110。 FIG. 1F shows a side view of laser module 100A according to some embodiments of the present invention, wherein light guide 105 is absent and laser source 102 and optical programming module 107 are arranged in vertical overlapping contact. In the structure of the exemplary laser module 100A of FIG. 1F , the substrate 110 is used to support both the laser source 102 and the light editing module 107 . In the structure of the exemplary laser module 100A of FIG. 1F, the optical output interfaces 104-1 to 104-N of the laser source 102 are respectively perpendicular to the optical input interfaces 108-1 to 108-N of the optical arrangement module 107. Align, so that at the light output interface 104-1 to 104-N of the laser source 102 and at the light arrangement The rotation of the laser beam is completed at the optical input interfaces 108 - 1 to 108 -N of the module 107 . 1G shows a side view of the structure of the laser module 100A of FIG. 1F according to some embodiments of the present invention, wherein the light editing module 107 is extended across the laser source 102 so that the light editing module 107 is a laser The placement of source 102 within laser module 100A provides physical support. In the structure of the exemplary laser module 100A of FIG. 1G , the substrate 110 may be omitted if the optical programming module 107 is formed with sufficient mechanical strength to physically support itself and the laser source 102 .

圖2A顯示根據本發明之某些實施例之雷射模組100B的結構圖。雷射模組100B包含在一相同之PLC 200內實施的雷射源102A及光編排模組107A。雷射源102A之功能基本上與上面針對雷射模組100A所述之雷射源102的功能相同。光編排模組107A之功能基本上與上面針對雷射模組100A所述之光編排模組107的功能相同。圖2B顯示根據本發明之某些實施例之PLC 200的側面圖。在PLC 200中,雷射源102A與光編排模組107A係以彼此整合的方式實施,俾以在毋須使複數雷射103-1至103-N所產生之雷射光束201-1至201-N分別通過光輸出接口與光輸入接口的情況下將雷射光束201-1至201-N引導至光編排模組107A中。又,在PLC 200中,由於雷射源102A與光編排模組107A間的光學整合,故不需要分離的光導105。 FIG. 2A shows a structural diagram of a laser module 100B according to some embodiments of the present invention. Laser module 100B includes laser source 102A and light scheduling module 107A implemented within a same PLC 200 . The function of the laser source 102A is basically the same as that of the laser source 102 described above for the laser module 100A. The function of the optical programming module 107A is basically the same as that of the optical programming module 107 described above for the laser module 100A. Figure 2B shows a side view of PLC 200 according to some embodiments of the invention. In the PLC 200, the laser source 102A and the light editing module 107A are implemented in an integrated manner so that the laser beams 201-1 to 201- N guides the laser beams 201 - 1 to 201 -N into the optical editing module 107A through the optical output interface and the optical input interface respectively. Also, in PLC 200, a separate light guide 105 is not required due to the optical integration between laser source 102A and light editing module 107A.

在某些實施例中,雷射源102產生在不同波長(λ1-λN)下具有充分功率的複數雷射光束俾使多波長雷射輸出MWL-1至MWL-M自光編排模組107/107A輸出並具有用於光數據通訊中的充分功率。然而在某些實施例中,由於雷射源102輸出功率之限制及/或由於光導105及/或光編排模組107中之光學損失,自光編排模組107/107A輸出的多波長雷射輸出MWL-1至MWL-M不具有用於光數據通訊中的充分功率。因此在某些實施例中,自光編排模組107/107A輸出的多波長雷射輸出MWL-1至MWL-M在用於光數據通訊前需要被光學放大。 多波長雷射輸出MWL-1至MWL-M中的每一者可利用光放大器光學放大。在各種實施例中,光放大器可直接在雷射模組內實施。 In some embodiments, the laser source 102 generates a complex number of laser beams with sufficient power at different wavelengths (λ1-λN) such that the multi-wavelength laser outputs MWL-1 to MWL-M are output from the optical programming module 107/ The 107A output has sufficient power for use in optical data communications. However, in some embodiments, due to limitations in the output power of laser source 102 and/or due to optical losses in light guide 105 and/or optical programming module 107, the multi-wavelength laser output from optical programming module 107/107A Outputs MWL-1 to MWL-M do not have sufficient power for use in optical data communications. Therefore, in some embodiments, the multi-wavelength laser outputs MWL- 1 to MWL-M output from the optical programming module 107 / 107A need to be optically amplified before being used for optical data communication. Each of the multi-wavelength laser outputs MWL-1 through MWL-M may be optically amplified using an optical amplifier. In various embodiments, the optical amplifier may be implemented directly within the laser module.

圖3A顯示根據本發明之某些實施例之雷射模組100C的結構圖,雷射模組100C包含雷射源102、光編排模組107及光放大模組303。雷射源102之配置基本上與上面針對雷射模組100A所述者相同。又,光編排模組107之配置基本上與上面針對雷射模組100A所述者相同。又,在某些實施例中,雷射模組100C可包含位於雷射源102與光編排模組107之間的光導105,其中光導105之配置方式係與前面針對雷射模組100A所述之方式相同。 FIG. 3A shows a structural diagram of a laser module 100C according to some embodiments of the present invention. The laser module 100C includes a laser source 102 , an optical editing module 107 and an optical amplification module 303 . The configuration of the laser source 102 is basically the same as that described above for the laser module 100A. Also, the configuration of the optical editing module 107 is basically the same as that described above for the laser module 100A. Also, in some embodiments, the laser module 100C may include a light guide 105 located between the laser source 102 and the light editing module 107, wherein the arrangement of the light guide 105 is the same as that described above for the laser module 100A in the same way.

光放大模組303係用以在光放大模組303之複數對應光輸入接口304-1至304-M處接收來自光編排模組107之複數對應光輸出接口109-1至109-M複數接收多波長雷射輸出MWL-1至MWL-M。光放大模組303包含複數光放大器305-1至305-M分別用以放大在光放大模組303之複數光輸入接口304-1至304-M處接收的複數多波長雷射輸出MWL-1至MWL-M。在各種實施例中,複數光放大器305-1至305-M尤其可被定義為一或多個半導體光放大器、摻雜鉺/鐿之光纖放大器、拉曼放大器。光放大器305-1至305-M係配置且光學連接以分別對光放大模組303之複數光輸出接口306-1至306-M提供複數多波長雷射輸出AMWL-1至AMWL-M的經放大版本。以此方式,對於雷射模組100C而言,光放大模組303之光輸出接口306-1至306-M中的每一者提供複數經放大之多波長雷射輸出AMWL-1至AMWL-M中的一對應者。在某些實施例中,光放大模組303係用以維持光放大模組303之複數光輸入接口304-1至304-M與光放大模組303之複數光輸出接口306-1至306-M之間之複數雷射光束中之每一光束的極化。 The optical amplification module 303 is used to receive the plurality of corresponding optical output interfaces 109-1 to 109-M from the optical arrangement module 107 at the plural corresponding optical input interfaces 304-1 to 304-M of the optical amplifier module 303. Multi-wavelength laser outputs MWL-1 to MWL-M. The optical amplification module 303 includes a plurality of optical amplifiers 305-1 to 305-M respectively for amplifying the complex multi-wavelength laser output MWL-1 received at the plurality of optical input interfaces 304-1 to 304-M of the optical amplification module 303 to MWL-M. In various embodiments, the plurality of optical amplifiers 305-1 to 305-M can be defined as one or more semiconductor optical amplifiers, erbium/ytterbium-doped fiber amplifiers, Raman amplifiers, among others. The optical amplifiers 305-1 to 305-M are configured and optically connected to provide multiple multi-wavelength laser outputs AMWL-1 to AMWL-M respectively to the multiple optical output interfaces 306-1 to 306-M of the optical amplification module 303. Enlarged version. In this way, for the laser module 100C, each of the optical output interfaces 306-1 to 306-M of the optical amplification module 303 provides a plurality of amplified multi-wavelength laser outputs AMWL-1 to AMWL- A one-to-one counterpart in M. In some embodiments, the optical amplification module 303 is used to maintain the plurality of optical input interfaces 304-1 to 304-M of the optical amplification module 303 and the plurality of optical output interfaces 306-1 to 306-M of the optical amplification module 303 The polarization of each of the plurality of laser beams between M.

在圖3A之例示性實施例中,光放大模組303被定義為附接至基板110的分離元件。因此應瞭解,在雷射模組100C的例示性實施例中,雷射源 102、光編排模組107及光放大模組303為實體分離的元件。應瞭解,在各種實施例中,光放大模組303可實質上利用任何已知的電子封裝處理如覆晶接合附接/安裝至基板110,電子封裝處理可選擇性地包含在光放大模組303與基板110之間設置球柵陣列(BGA)、凸塊、焊料、底填料及/或其他成分(複數成分)且包含接合技術如質量回流、熱壓接合(TCB)、或實質上任何其他適合的接合技術。 In the exemplary embodiment of FIG. 3A , optical amplification module 303 is defined as a separate component attached to substrate 110 . It should therefore be appreciated that in the exemplary embodiment of the laser module 100C, the laser source 102 , the optical editing module 107 and the optical amplification module 303 are physically separated components. It should be appreciated that in various embodiments, optical amplifier module 303 may be attached/mounted to substrate 110 using substantially any known electronic packaging process, such as flip-chip bonding, which may optionally be included in the optical amplifier module. Ball grid array (BGA), bumps, solder, underfill, and/or other component(s) are disposed between 303 and substrate 110 and include bonding techniques such as mass reflow, thermocompression bonding (TCB), or virtually any other Appropriate bonding technique.

光編排模組107係與光放大模組303對準以引導多波長雷射輸出MWL-1至MWL-M進入光放大模組303之光輸入接口304-1至304-M中的對應者。在某些實施例中,光放大模組303係與光編排模組107分離。在某些實施例中,光放大模組303係與光編排模組107接觸。又,在某些實施例中,光放大模組303的一部分係與光編排模組107之一部分及/或雷射源102的一部分重疊。在雷射模組100C的例示性實施例中,如圖3A中所示,光放大模組303之位置係與光編排模組107分離且光導301係位於光編排模組107與光放大模組303之間。光導301係用以將來自光編排模組107之複數多波長雷射輸出MWL-1至MWL-M引導至光放大模組303之複數光輸入接口304-1至304-M中的對應者中。 The optical programming module 107 is aligned with the optical amplification module 303 to direct the multi-wavelength laser outputs MWL- 1 to MWL-M into corresponding ones of the optical input interfaces 304 - 1 to 304 -M of the optical amplification module 303 . In some embodiments, the optical amplification module 303 is separate from the optical editing module 107 . In some embodiments, the optical amplification module 303 is in contact with the optical editing module 107 . Also, in some embodiments, a portion of the optical amplification module 303 overlaps with a portion of the optical editing module 107 and/or a portion of the laser source 102 . In an exemplary embodiment of the laser module 100C, as shown in FIG. 3A , the optical amplification module 303 is located separately from the optical editing module 107 and the light guide 301 is located between the optical editing module 107 and the optical amplification module. Between 303. The light guide 301 is used to guide the plurality of multi-wavelength laser outputs MWL-1 to MWL-M from the optical arrangement module 107 to corresponding ones of the plurality of optical input interfaces 304-1 to 304-M of the optical amplification module 303 .

在各種實施例中,光導301實質上可由任何材料所形成,只要光能經由此材料自光導301上之入口位置傳輸到光導301之出口位置。例如,在各種實施例中,光導301尤其可由玻璃、SiN、SiO2、氧化鍺及/或二氧化矽所形成。在某些實施例中,光導301係用以維持光編排模組107與光放大模組303之間之複數多波長雷射輸出MWL-1至MWL-M的極化。在某些實施例中,光導301包含(M)光傳輸通道,其中每一光傳輸通道係自光編排模組107之光輸出接口109-1至109-M中的一對應者延伸至光放大模組303之光輸入接口304-1至304-M的一對應者。在某些實施例中,光導301之(M)光傳輸通道中的每一通道在垂直多波長雷射輸出之傳播方向(即如圖3A所示垂直於x方向)的平面上有實 質上矩形的橫剖面,其作用在於在多波長雷射輸出自光編排模組107傳播至光放大模組303時維持多波長雷射輸出的極化。 In various embodiments, the light guide 301 may be formed of virtually any material as long as light energy is transmitted through the material from the entry location on the light guide 301 to the exit location of the light guide 301 . For example, in various embodiments, the light guide 301 may be formed of glass, SiN, SiO 2 , germanium oxide, and/or silicon dioxide, among others. In some embodiments, the light guide 301 is used to maintain the polarization of the plurality of multi-wavelength laser outputs MWL- 1 to MWL-M between the optical editing module 107 and the optical amplification module 303 . In some embodiments, the light guide 301 includes (M) optical transmission channels, wherein each optical transmission channel extends from a corresponding one of the optical output interfaces 109-1 to 109-M of the optical programming module 107 to the optical amplifier A corresponding one of the optical input interfaces 304-1 to 304-M of the module 303. In some embodiments, each of the (M) optical transmission channels of light guide 301 has a substantially rectangular shape on a plane perpendicular to the direction of propagation of the multi-wavelength laser output (ie, perpendicular to the x-direction as shown in FIG. 3A ). The function is to maintain the polarization of the multi-wavelength laser output when the multi-wavelength laser output propagates from the optical programming module 107 to the optical amplification module 303 .

在圖3A之例示性實施例中,光導301被定義為附接至基板110的分離元件。因此應瞭解,在雷射模組100C的例示性實施例中,雷射源102、光導105、光編排模組107、光導301及光放大模組303為實體分離的元件。應瞭解,在各種實施例中,光導301可實質上利用任何已知的電子封裝處理附接/安裝至基板110。又,在某些實施例中,光導301被配置為非電子元件如被動元件且可利用不涉及在光導301與基板110間建立電接觸的技術如利用環氧樹脂或其他類型的黏著材料附接/安裝至基板110。在某些實施例中,光導301可整合至包含除了光導301外之其他元件之晶片上的PLC內,而非被定義為一分離元件。在某些實施例中,雷射源102、光導105、光編排模組107、光導301及光放大模組303中的兩或更多者可在一相同的PLC內實施。 In the exemplary embodiment of FIG. 3A , light guide 301 is defined as a separate component attached to substrate 110 . It should therefore be understood that in the exemplary embodiment of the laser module 100C, the laser source 102 , the light guide 105 , the light editing module 107 , the light guide 301 and the optical amplification module 303 are physically separate components. It should be appreciated that in various embodiments, light guide 301 may be attached/mounted to substrate 110 using substantially any known electronic packaging process. Also, in some embodiments, the light guide 301 is configured as a non-electronic component such as a passive component and may be attached using techniques that do not involve establishing electrical contact between the light guide 301 and the substrate 110, such as using epoxy or other types of adhesive materials. / mounted to the substrate 110 . In some embodiments, the light guide 301 may be integrated into a PLC on a chip including other components in addition to the light guide 301, rather than being defined as a separate component. In some embodiments, two or more of the laser source 102, the light guide 105, the light editing module 107, the light guide 301, and the light amplification module 303 may be implemented in the same PLC.

圖3B顯示根據本發明之某些實施例之雷射模組100C的側面圖,其中光導105存在且光導301存在。在圖3B之實施例中,雷射源102與光編排模組107與光放大模組303係以實質上共平面之方式設置於基板110上,俾使雷射源102之光輸出接口104-1至104-N係分別與光編排模組107之光輸入接口108-1至108-N水平對準且俾使光編排模組107之光輸出接口109-1至109-M分別與光放大模組303之光輸入接口304-1至304-M水平對準。以此方式,在圖3B之例示性實施例中,在雷射源102之光輸出接口104-1至104-N處或在光編排模組107之光輸入接口108-1至108-N處或在光編排模組107之光輸出接口109-1至109-M處或在光放大模組303之光輸入接口304-1至304-M處不需要轉動雷射光束。 3B shows a side view of laser module 100C in which light guide 105 is present and light guide 301 is present, according to some embodiments of the present invention. In the embodiment of FIG. 3B, the laser source 102, the optical editing module 107 and the optical amplification module 303 are arranged on the substrate 110 in a substantially coplanar manner, so that the optical output interface 104- 1 to 104-N are respectively horizontally aligned with the optical input interfaces 108-1 to 108-N of the optical programming module 107, so that the optical output interfaces 109-1 to 109-M of the optical programming module 107 are respectively connected to the optical amplifier The optical input interfaces 304-1 to 304-M of the module 303 are aligned horizontally. In this way, in the exemplary embodiment of FIG. 3B, at the optical output interfaces 104-1 to 104-N of the laser source 102 or at the optical input interfaces 108-1 to 108-N of the optical editing module 107 Either at the optical output interfaces 109 - 1 to 109 -M of the optical editing module 107 or at the optical input interfaces 304 - 1 to 304 -M of the optical amplification module 303 , there is no need to rotate the laser beam.

圖3C顯示根據本發明之某些實施例之雷射模組100C的側面圖,其中光導105存在且光導301不存在。在圖3C之實施例中,雷射源102與光編 排模組107與光放大模組303係以實質上共平面之方式設置於基板110上,俾使雷射源102之光輸出接口104-1至104-N係分別與光編排模組107之光輸入接口108-1至108-N水平對準且俾使光編排模組107之光輸出接口109-1至109-M分別與光放大模組303之光輸入接口304-1至304-M水平對準。以此方式,在圖3C之例示性實施例中,在雷射源102之光輸出接口104-1至104-N處或在光編排模組107之光輸入接口108-1至108-N處或在光編排模組107之光輸出接口109-1至109-M處或在光放大模組303之光輸入接口304-1至304-M處不需要轉動雷射光束。在圖3C之實施例中,在光編排模組107之光輸出接口109-1至109-M與光放大模組303之光輸入接口304-1至304-M之間存在一空的空間。因此在圖3C之實施例中,多波長雷射輸出MWL-1至MWL-M行經通過光編排模組107與光放大模組303間之空的空間的各別直線路徑。圖3D顯示根據本發明之某些實施例之圖3C之雷射模組100C之結構的側面圖,其中光編排模組107與光放大模組103之間的空的空間係被一構件307覆蓋及/或密封。在各種實施例中,構件307可為在封裝期間設置之另一晶片、或在封裝期間設置之另一材料、或可為雷射源光導105的一整合部件、或光放大模組303的一整合部件。 FIG. 3C shows a side view of laser module 100C according to some embodiments of the present invention, wherein light guide 105 is present and light guide 301 is absent. In the embodiment of FIG. 3C, the laser source 102 and the optical encoder The array module 107 and the optical amplification module 303 are arranged on the substrate 110 in a substantially coplanar manner, so that the optical output interfaces 104-1 to 104-N of the laser source 102 are respectively connected to the optical layout module 107. The optical input interfaces 108-1 to 108-N are horizontally aligned so that the optical output interfaces 109-1 to 109-M of the optical arrangement module 107 are respectively connected to the optical input interfaces 304-1 to 304-M of the optical amplification module 303 Align horizontally. In this way, in the exemplary embodiment of FIG. 3C, at the optical output interfaces 104-1 to 104-N of the laser source 102 or at the optical input interfaces 108-1 to 108-N of the optical editing module 107 Either at the optical output interfaces 109 - 1 to 109 -M of the optical editing module 107 or at the optical input interfaces 304 - 1 to 304 -M of the optical amplification module 303 , there is no need to rotate the laser beam. In the embodiment of FIG. 3C , there is an empty space between the optical output interfaces 109 - 1 to 109 -M of the optical editing module 107 and the optical input interfaces 304 - 1 to 304 -M of the optical amplification module 303 . Therefore, in the embodiment of FIG. 3C , the multi-wavelength laser outputs MWL- 1 to MWL-M travel through respective linear paths passing through the empty space between the optical programming module 107 and the optical amplification module 303 . 3D shows a side view of the structure of the laser module 100C of FIG. 3C according to some embodiments of the present invention, wherein the empty space between the optical editing module 107 and the optical amplification module 103 is covered by a member 307 and/or sealed. In various embodiments, the component 307 can be another chip provided during packaging, or another material provided during packaging, or can be an integral part of the laser source light guide 105, or an integral part of the optical amplification module 303 Integrate components.

圖3E顯示根據本發明之某些實施例之雷射模組100C的側面圖,其中光導105存在且光導301不存在且光編排模組107與光放大模組303係以並排接觸方式配置。在圖3E之例示性雷射模組100C的結構中,光編排模組107與光放大模組303係以實質上共平面之方式設置於基板110上,俾使光編排模組107之光輸出接口109-1至109-M分別與光放大模組303之光輸入接口304-1至304-M水平對準,俾以在光編排模組107之光輸出接口109-1至109-M處或在光放大模組303之光輸入接口304-1至304-M處不需要轉動雷射光束。 3E shows a side view of laser module 100C according to some embodiments of the present invention, wherein light guide 105 is present and light guide 301 is absent, and light editing module 107 and optical amplification module 303 are arranged in side-by-side contact. In the structure of the exemplary laser module 100C of FIG. 3E , the optical editing module 107 and the optical amplification module 303 are arranged on the substrate 110 in a substantially coplanar manner, so that the light output of the optical editing module 107 The interfaces 109-1 to 109-M are horizontally aligned with the optical input interfaces 304-1 to 304-M of the optical amplification module 303 respectively, so as to be at the optical output interfaces 109-1 to 109-M of the optical arrangement module 107 Or there is no need to rotate the laser beam at the optical input interfaces 304 - 1 to 304 -M of the optical amplification module 303 .

圖3F顯示根據本發明之某些實施例之雷射模組100C的側面圖,其中光導301不存在且光編排模組107與光放大模組303係以垂直重疊接觸方式 配置。在圖3F之例示性雷射模組100C的結構中,基板110係用以支撐雷射源102、光導105、光編排模組107及光放大模組303中的每一者。在圖3F之例示性雷射模組100C的結構中,光編排模組107之光輸出接口109-1至109-M係分別與光放大模組303之光輸入接口304-1至304-M垂直對準,俾以在光編排模組107之光輸出接口109-1至109-M處及在光放大模組303之光輸入接口304-1至304-M處完成雷射光束之轉動。 FIG. 3F shows a side view of a laser module 100C according to some embodiments of the present invention, wherein the light guide 301 is not present and the light editing module 107 and the optical amplification module 303 are in vertical overlapping contact. configuration. In the structure of the exemplary laser module 100C of FIG. 3F , the substrate 110 is used to support each of the laser source 102 , the light guide 105 , the light editing module 107 and the optical amplification module 303 . In the structure of the exemplary laser module 100C of FIG. 3F, the optical output interfaces 109-1 to 109-M of the optical arrangement module 107 are respectively connected to the optical input interfaces 304-1 to 304-M of the optical amplification module 303. Vertically aligned to complete the rotation of the laser beam at the optical output interfaces 109 - 1 to 109 -M of the optical arrangement module 107 and at the optical input interfaces 304 - 1 to 304 -M of the optical amplification module 303 .

圖3G顯示根據本發明之某些實施例之圖3F之雷射模組100C之結構的側面圖,其中光放大模組303係延伸橫跨光編排模組107、光導105及電射源102俾使光放大模組303為光編排模組107、光導105及雷射源102中的每一者在雷射模組100C內的設置提供物理支撐。在圖3G之例示性雷射模組100C的結構中,若光放大模組303之形成具有足以物理支撐其本身及光編排模組107、光導105及雷射源102每一者的充分機械強度,則可省略基板110。 FIG. 3G shows a side view of the structure of the laser module 100C of FIG. 3F according to some embodiments of the present invention, wherein the optical amplification module 303 extends across the optical editing module 107, the light guide 105, and the electroluminescence source 102 so as to The optical amplification module 303 is made to provide physical support for the placement of each of the light editing module 107, the light guide 105, and the laser source 102 within the laser module 100C. In the structure of the exemplary laser module 100C of FIG. 3G, if the optical amplifying module 303 is formed with sufficient mechanical strength to physically support itself and each of the optical editing module 107, the light guide 105 and the laser source 102 , the substrate 110 can be omitted.

圖3H顯示根據本發明之某些實施例之圖3B之雷射模組100C之結構之修改的側面圖,其中光導105不存在。以此方式,圖3H之雷射模組100C的結構表現出圖3B之雷射模組100C之修改以具有相關於上述之圖1C之雷射模組100A之缺乏光導105的特徵。 Figure 3H shows a side view of a modification of the structure of the laser module 100C of Figure 3B in which the light guide 105 is absent, according to some embodiments of the present invention. In this way, the structure of the laser module 100C of FIG. 3H represents a modification of the laser module 100C of FIG. 3B to feature the lack of light guide 105 relative to the laser module 100A of FIG. 1C described above.

圖3I顯示根據本發明之某些實施例之圖3C之雷射模組100C之結構之修改的側面圖,其中光導105不存在。以此方式,圖3I之雷射模組100C的結構表現出圖3C之雷射模組100C之修改以具有相關於上述之圖1C之雷射模組100A之缺乏光導105的特徵。 FIG. 3I shows a side view of a modification of the structure of the laser module 100C of FIG. 3C in which the light guide 105 is absent, according to some embodiments of the present invention. In this way, the structure of the laser module 100C of FIG. 3I represents a modification of the laser module 100C of FIG. 3C to feature the lack of light guide 105 relative to the laser module 100A of FIG. 1C described above.

圖3J顯示根據本發明之某些實施例之圖3E之雷射模組100C之結構之修改的側面圖,其中光導105不存在。以此方式,圖3J之雷射模組100C的結構表現出圖3E之雷射模組100C之修改以具有相關於上述之圖1C之雷射模組100A之缺乏光導105的特徵。 Figure 3J shows a side view of a modification of the structure of the laser module 100C of Figure 3E in which the light guide 105 is absent, according to some embodiments of the present invention. In this way, the structure of the laser module 100C of FIG. 3J represents a modification of the laser module 100C of FIG. 3E to feature the lack of light guide 105 relative to the laser module 100A of FIG. 1C described above.

圖3K顯示根據本發明之某些實施例之圖3F之雷射模組100C之結構之修改的側面圖,其中光導105不存在。以此方式,圖3K之雷射模組100C的結構表現出圖3F之雷射模組100C之修改以具有相關於上述之圖1C之雷射模組100A之缺乏光導105的特徵。 Figure 3K shows a side view of a modification of the structure of the laser module 100C of Figure 3F in which the light guide 105 is absent, according to some embodiments of the present invention. In this way, the structure of the laser module 100C of FIG. 3K represents a modification of the laser module 100C of FIG. 3F to feature the lack of light guide 105 relative to the laser module 100A of FIG. 1C described above.

圖3L顯示根據本發明之某些實施例之圖3G之雷射模組100C之結構之修改的側面圖,其中光導105不存在。以此方式,圖3L之雷射模組100C的結構表現出圖3G之雷射模組100C之修改以具有相關於上述之圖1C之雷射模組100A之缺乏光導105的特徵。 FIG. 3L shows a side view of a modification of the structure of the laser module 100C of FIG. 3G in which the light guide 105 is absent, according to some embodiments of the present invention. In this way, the structure of the laser module 100C of FIG. 3L represents a modification of the laser module 100C of FIG. 3G to feature the lack of light guide 105 relative to the laser module 100A of FIG. 1C described above.

圖3M顯示根據本發明之某些實施例之圖3B之雷射模組100C之結構之修改的側面圖,其中雷射源102與光編排模組107係以並排接觸方式配置。以此方式,圖3M之雷射模組100C的結構表現出圖3B之雷射模組100C之修改以具有相關於上述之圖1E之雷射模組100A之雷射源102與光編排模組107以並排接觸方式設置的特徵。 3M shows a side view of a modification of the structure of the laser module 100C of FIG. 3B in which the laser source 102 and the optical programming module 107 are arranged in side-by-side contact, according to some embodiments of the present invention. In this way, the structure of the laser module 100C of FIG. 3M represents a modification of the laser module 100C of FIG. 3B to have the laser source 102 and light editing module relative to the laser module 100A of FIG. 1E described above. 107 Features arranged in side-by-side contact.

圖3N顯示根據本發明之某些實施例之圖3C之雷射模組之結構之修改的側面圖,其中雷射源102與光編排模組107係以並排接觸方式配置。以此方式,圖3N之雷射模組100C的結構表現出圖3C之雷射模組100C之修改以具有相關於上述之圖1E之雷射模組100A之雷射源102與光編排模組107以並排接觸方式設置的特徵。 FIG. 3N shows a side view of a modification of the structure of the laser module of FIG. 3C according to some embodiments of the present invention, wherein the laser source 102 and the optical programming module 107 are arranged in side-by-side contact. In this way, the structure of the laser module 100C of FIG. 3N represents a modification of the laser module 100C of FIG. 3C to have the laser source 102 and light editing module relative to the laser module 100A of FIG. 1E described above. 107 Features arranged in side-by-side contact.

圖3O顯示根據本發明之某些實施例之圖3E之雷射模組100C之結構之修改的側面圖,其中雷射源102與光編排模組107係以並排接觸方式配置。以此方式,圖3O之雷射模組100C的結構表現出圖3E之雷射模組100C之修改以具有相關於上述之圖1E之雷射模組100A之雷射源102與光編排模組107以並排接觸方式設置的特徵。 FIG. 3O shows a side view of a modification of the structure of the laser module 100C of FIG. 3E according to some embodiments of the present invention, wherein the laser source 102 and the optical programming module 107 are arranged in side-by-side contact. In this way, the structure of laser module 100C of FIG. 3O represents a modification of laser module 100C of FIG. 107 Features arranged in side-by-side contact.

圖3P顯示根據本發明之某些實施例之圖3F之雷射模組100C之結構之修改的側面圖,其中雷射源102與光編排模組107係以並排接觸方式配置。以此方式,圖3P之雷射模組100C的結構表現出圖3F之雷射模組100C之修改以具有相關於上述之圖1E之雷射模組100A之雷射源102與光編排模組107以並排接觸方式設置的特徵。 FIG. 3P shows a side view of a modification of the structure of the laser module 100C of FIG. 3F according to some embodiments of the present invention, wherein the laser source 102 and the optical programming module 107 are arranged in side-by-side contact. In this way, the structure of the laser module 100C of FIG. 3P represents a modification of the laser module 100C of FIG. 3F to have the laser source 102 and light editing module relative to the laser module 100A of FIG. 107 Features arranged in side-by-side contact.

圖3Q顯示根據本發明之某些實施例之圖3G之雷射模組100C之結構之修改的側面圖,其中雷射源102與光編排模組107係以並排接觸方式配置。以此方式,圖3Q之雷射模組100C的結構表現出圖3G之雷射模組100C之修改以具有相關於上述之圖1E之雷射模組100A之雷射源102與光編排模組107以並排接觸方式設置的特徵。 3Q shows a side view of a modification of the structure of the laser module 100C of FIG. 3G according to some embodiments of the present invention, wherein the laser source 102 and the optical programming module 107 are arranged in side-by-side contact. In this way, the structure of the laser module 100C of FIG. 3Q represents a modification of the laser module 100C of FIG. 3G to have the laser source 102 and optical editing module relative to the laser module 100A of FIG. 107 Features arranged in side-by-side contact.

圖3R顯示根據本發明之某些實施例之圖3B之雷射模組100C之結構之修改的側面圖,其中雷射源102與光編排模組107係以垂直重疊接觸方式配置。以此方式,圖3R之雷射模組100C的結構表現出圖3B之雷射模組100C之修改以具有相關於上述之圖1F之雷射模組100A之雷射源102與光編排模組107以垂直重疊接觸方式設置的特徵。 3R shows a side view of a modification of the structure of the laser module 100C of FIG. 3B according to some embodiments of the present invention, wherein the laser source 102 and the optical programming module 107 are arranged in vertical overlapping contact. In this way, the structure of the laser module 100C of FIG. 3R represents a modification of the laser module 100C of FIG. 3B to have the laser source 102 and light editing module relative to the laser module 100A of FIG. 1F described above. 107 Features set in vertical overlapping contact.

圖3S顯示根據本發明之某些實施例之圖3R之雷射模組100C之結構之修改的側面圖,其中光編排模組107延伸橫跨雷射源102、光導301及光放大模組303。在圖3S之雷射模組100C之結構中,光編排模組107提供設置雷射源102、光導301及光放大模組303的物理支撐。在圖1S之例示性雷射模組100C的結構中,若光編排模組107之形成具有足以物理支撐其本身及雷射源102、光導301及光放大模組303每一者的充分機械強度,則可省略基板110。 Figure 3S shows a side view of a modification of the structure of the laser module 100C of Figure 3R according to some embodiments of the present invention, wherein the optical programming module 107 extends across the laser source 102, the light guide 301 and the optical amplification module 303 . In the structure of the laser module 100C in FIG. 3S , the optical arrangement module 107 provides physical support for setting the laser source 102 , the light guide 301 and the optical amplification module 303 . In the structure of the exemplary laser module 100C of FIG. 1S, if the formation of the optical programming module 107 has sufficient mechanical strength to physically support itself and each of the laser source 102, the light guide 301 and the optical amplification module 303 , the substrate 110 can be omitted.

圖3T顯示根據本發明之某些實施例之圖3R之雷射模組300C之結構之修改的側面圖,其中光導301不存在。以此方式,圖3T之雷射模組100C 的結構表現出圖3R之雷射模組100C之修改以具有相關於上述之圖3C之雷射模組100A之缺乏光導301的特徵。 Figure 3T shows a side view of a modification of the structure of the laser module 300C of Figure 3R, in which the light guide 301 is absent, according to some embodiments of the present invention. In this way, the laser module 100C of FIG. 3T The structure of FIG. 3R represents a modification of the laser module 100C of FIG. 3R to have features related to the lack of light guide 301 of the laser module 100A of FIG. 3C described above.

圖3U顯示根據本發明之某些實施例之圖3S之雷射模組100C之結構之修改的側面圖,其中光導301不存在。以此方式,圖3U之雷射模組100C的結構表現出圖3S之雷射模組100C之修改以具有相關於上述之圖3C之雷射模組100A之缺乏光導301的特徵。 FIG. 3U shows a side view of a modification of the structure of the laser module 100C of FIG. 3S in which the light guide 301 is absent, according to some embodiments of the present invention. In this way, the structure of the laser module 100C of FIG. 3U represents a modification of the laser module 100C of FIG. 3S to feature the absence of a light guide 301 relative to the laser module 100A of FIG. 3C described above.

圖3V顯示根據本發明之某些實施例之圖3T之雷射模組100C之結構之修改的側面圖,其中光導301不存在且光編排模組107與光放大模組303係以並排接觸方式配置。以此方式,圖3V之雷射模組100C的結構表現出圖3T之雷射模組100C之修改以具有相關於上述之圖3E之雷射模組100A之缺乏光導301的特徵及光編排模組107與光放大模組303以並排接觸方式設置的特徵。 FIG. 3V shows a side view of a modification of the structure of the laser module 100C of FIG. 3T according to some embodiments of the present invention, wherein the light guide 301 is absent and the optical programming module 107 and the optical amplification module 303 are in side-by-side contact. configuration. In this way, the structure of the laser module 100C of FIG. 3V represents a modification of the laser module 100C of FIG. 3T to have the features and light-organizing modes relative to the lack of light guide 301 of the laser module 100A of FIG. 3E described above. The characteristic that the group 107 and the optical amplification module 303 are arranged in a side-by-side contact manner.

圖3W顯示根據本發明之某些實施例之圖3S之雷射模組100C之結構之修改的側面圖,其中光導301不存在且光編排模組107與光放大模組303係以並排接觸方式配置。以此方式,圖3W之雷射模組100C之結構表現出圖3S之雷射模組100C之修改以具有相關於上述之圖3E之雷射模組100A之缺乏光導301的特徵及光編排模組107與光放大模組303以並排接觸方式設置的特徵。 Figure 3W shows a side view of a modification of the structure of the laser module 100C of Figure 3S according to some embodiments of the present invention, wherein the light guide 301 is absent and the optical programming module 107 and the optical amplification module 303 are in side-by-side contact configuration. In this way, the structure of the laser module 100C of FIG. 3W represents a modification of the laser module 100C of FIG. 3S to have the features and light-organizing modes relative to the lack of light guide 301 of the laser module 100A of FIG. 3E described above. The characteristic that the group 107 and the optical amplification module 303 are arranged in a side-by-side contact manner.

圖3X顯示根據本發明之某些實施例之圖3R之雷射模組100C之結構之修改的側面圖,其中光導301不存在且光編排模組107與光放大模組303係以垂直重疊接觸方式配置。以此方式,圖3X之雷射模組100C的結構表現出圖3R之雷射模組100C之修改以具有相關於上述之圖3F之雷射模組100A之缺乏光導301的特徵及光編排模組107與光放大模組303以垂直重疊接觸方式設置的特徵。 Figure 3X shows a side view of a modification of the structure of the laser module 100C of Figure 3R according to some embodiments of the present invention, wherein the light guide 301 is absent and the optical programming module 107 and the optical amplification module 303 are in vertical overlapping contact mode configuration. In this way, the structure of the laser module 100C of FIG. 3X represents a modification of the laser module 100C of FIG. 3R to have the features and light-organizing modes relative to the lack of light guide 301 of the laser module 100A of FIG. 3F described above. The feature that the group 107 and the optical amplification module 303 are vertically overlapped and contacted.

圖3Y顯示根據本發明之某些實施例之圖3X之雷射模組100C之結構之修改的側面圖,其中光編排模組107係延伸橫跨雷射源102與光放大模組 303俾使光編排模組107為雷射源102與光放大模組303中的每一者在雷射模組100C內的設置提供物理支撐。在圖3Y之例示性雷射模組100C的結構中,若光編排模組107之形成具有足以物理支撐其本身及雷射源102及光放大模組303每一者的充分機械強度,則可省略基板110。 Figure 3Y shows a side view of a modification of the structure of the laser module 100C of Figure 3X according to some embodiments of the present invention, wherein the optical programming module 107 extends across the laser source 102 and the optical amplification module 303 so that the optical programming module 107 provides physical support for the arrangement of each of the laser source 102 and the optical amplification module 303 in the laser module 100C. In the structure of the exemplary laser module 100C of FIG. 3Y, if the formation of the optical programming module 107 has sufficient mechanical strength to physically support itself and each of the laser source 102 and the optical amplification module 303, it can The substrate 110 is omitted.

圖4A顯示根據本發明之某些實施例之雷射模組100D的結構圖。雷射模組100D包含如針對圖2A所述在一相同之PLC 200內實施之雷射源102A及光編排模組107A。雷射模組100D亦包含如針對圖3A所述之光導301及光放大模組303。在某些實施例中,PLC 200、光導301及光放大模組303係設置於基板110上。應瞭解,雷射模組100D之配置俾使其將來自PLC 200內之光編排模組107A之光輸出接口109-1至109-M之複數多波長雷射輸出MWL-1至MWL-M分別引導至光放大模組303之複數光輸入接口304-1至304-M的對應者中。 FIG. 4A shows a structural diagram of a laser module 100D according to some embodiments of the present invention. Laser module 100D includes laser source 102A and light programming module 107A implemented within the same PLC 200 as described for FIG. 2A. The laser module 100D also includes a light guide 301 and an optical amplification module 303 as described with respect to FIG. 3A . In some embodiments, the PLC 200 , the light guide 301 and the optical amplification module 303 are disposed on the substrate 110 . It should be understood that the configuration of the laser module 100D is such that it outputs MWL-1 to MWL-M from the complex multi-wavelength laser output interfaces 109-1 to 109-M of the optical arrangement module 107A in the PLC 200, respectively. Lead to the corresponding ones of the plurality of optical input interfaces 304 - 1 to 304 -M of the optical amplification module 303 .

圖4B顯示根據本發明之某些實施例之圖4A之雷射模組100D之結構的側面圖。在圖4B之雷射模組100D的結構中,PLC 200與光放大模組303係以實質上共平面之方式設置於基板110上俾使光編排模組107A之光輸出接口109-1至109-M分別與光放大模組303之光輸入接口304-1至304-M水平對準,俾以在光編排模組107A之光輸出接口109-1至109-M處或在光放大模組303之光輸入接口304-1至304-M處不需要轉動雷射光束。 FIG. 4B shows a side view of the structure of the laser module 100D of FIG. 4A according to some embodiments of the present invention. In the structure of the laser module 100D in FIG. 4B, the PLC 200 and the optical amplification module 303 are arranged on the substrate 110 in a substantially coplanar manner so that the optical output interfaces 109-1 to 109 of the optical arrangement module 107A -M are respectively horizontally aligned with the optical input interfaces 304-1 to 304-M of the optical amplification module 303, so as to be at the optical output interfaces 109-1 to 109-M of the optical arrangement module 107A or at the optical amplification module There is no need to rotate the laser beam at the light input interfaces 304-1 to 304-M of 303.

圖4C顯示根據本發明之某些實施例之圖4B之雷射模組100D之的側面圖,其中光導301不存在。在圖4C之實施例中,PLC 200與光放大模組303係以實質上共平面之方式設置於基板110上俾使光編排模組107A之光輸出接口109-1至109-M分別與光放大模組303之光輸入接口304-1至304-M水平對準,俾以在光編排模組107A之光輸出接口109-1至109-M處或在光放大模組303之光輸入接口304-1至304-M處不需要轉動雷射光束。在圖4C之實施例中, 光編排模組107A之光輸出接口109-1至109-M與光放大模組303之光輸入接口304-1至304-M之間存在一空的空間。因此在圖4C之實施例中,自PLC 200輸出之雷射光束行經通過PLC 200與光放大模組303間之空的空間的各別直線路徑。圖4D顯示根據本發明之某些實施例之圖4C之雷射模組100D之結構的側面圖,其中PLC 200與光放大模組303之間的空的空間係被構件401覆蓋及/或密封。在各種實施例中,構件401可為在封裝期間設置之另一晶片、或在封裝期間設置之另一材料、或可為PLC 200的一整合部件、或光放大模組303的一整合部件。 FIG. 4C shows a side view of the laser module 100D of FIG. 4B without the light guide 301 in accordance with some embodiments of the present invention. In the embodiment of FIG. 4C, the PLC 200 and the optical amplification module 303 are arranged on the substrate 110 in a substantially coplanar manner so that the optical output interfaces 109-1 to 109-M of the optical arrangement module 107A are respectively connected to the optical The optical input interfaces 304-1 to 304-M of the amplification module 303 are aligned horizontally so as to be at the optical output interfaces 109-1 to 109-M of the optical arrangement module 107A or at the optical input interfaces of the optical amplification module 303 There is no need to rotate the laser beam at 304-1 to 304-M. In the embodiment of Fig. 4C, There is an empty space between the optical output interfaces 109 - 1 to 109 -M of the optical editing module 107A and the optical input interfaces 304 - 1 to 304 -M of the optical amplification module 303 . Therefore, in the embodiment of FIG. 4C , the laser beams output from the PLC 200 travel through respective linear paths through the empty space between the PLC 200 and the optical amplification module 303 . 4D shows a side view of the structure of the laser module 100D of FIG. 4C according to some embodiments of the present invention, wherein the empty space between the PLC 200 and the optical amplification module 303 is covered and/or sealed by a member 401 . In various embodiments, the component 401 may be another chip provided during packaging, or another material provided during packaging, or may be an integral part of the PLC 200 or an integral part of the optical amplification module 303 .

圖4E顯示根據本發明之某些實施例之圖4A之雷射模組100D的側面圖,其中光導301不存在且PLC 200與光放大模組303係以並排接觸方式配置。在圖4E之實施例中,PLC 200與光放大模組303係以實質上共平面之方式設置於基板110上俾使光編排模組107A之光輸出接口109-1至109-M分別與光放大模組303之光輸入接口304-1至304-M水平對準,俾以在光編排模組107A之光輸出接口109-1至109-M處或在光放大模組303之光輸入接口304-1至304-M處不需要轉動雷射光束。 4E shows a side view of the laser module 100D of FIG. 4A in which the light guide 301 is absent and the PLC 200 and the optical amplification module 303 are arranged in side-by-side contact, according to some embodiments of the present invention. In the embodiment of FIG. 4E, the PLC 200 and the optical amplification module 303 are arranged on the substrate 110 in a substantially coplanar manner so that the optical output interfaces 109-1 to 109-M of the optical arrangement module 107A are respectively connected to the optical The optical input interfaces 304-1 to 304-M of the amplification module 303 are aligned horizontally so as to be at the optical output interfaces 109-1 to 109-M of the optical arrangement module 107A or at the optical input interfaces of the optical amplification module 303 There is no need to rotate the laser beam at 304-1 to 304-M.

圖5A顯示根據本發明之某些實施例之雷射模組100E之結構圖,其中光編排模組107B與光放大模組303A係共同在一相同的PLC 503中實施。光編排模組107B之功能係實質上與上面針對雷射模組100A所述之光編排模組107的功能相同。光放大模組303A之功能係實質上與上面針對雷射模組100C所述之光放大模組303的功能相同。在PLC 503中,光編排模組107B與光放大模組303A係以彼此整合的方式實施,俾以在光編排模組107B所提供之複數多波長雷射輸出MWL-1至MWL-M不需行經光輸出接口與光輸入接口(分別由線501-1至501-M所示)的情況下被引導進入光放大模組303A中。又,在PLC 503中,由於光編排模組107B與光放大模組303A之間的光學整合,因此不需要分 離的光導301。在雷射模組100E的某些實施例中,雷射源102、光導105及PLC 503係設置於基板110上。應瞭解,雷射模組100E之配置俾使來自雷射源102之光輸出接口104-1至104-N的複數雷射光束被引導至PLC 503內之光編排模組107之複數光輸入接口108-1至108-NB中的對應者。 FIG. 5A shows a block diagram of a laser module 100E according to some embodiments of the present invention, wherein the optical editing module 107B and the optical amplification module 303A are implemented together in the same PLC 503 . The function of the optical programming module 107B is substantially the same as that of the optical programming module 107 described above for the laser module 100A. The function of the optical amplification module 303A is substantially the same as that of the optical amplification module 303 described above for the laser module 100C. In the PLC 503, the optical editing module 107B and the optical amplification module 303A are implemented in an integrated manner, so that the complex multi-wavelength laser outputs MWL-1 to MWL-M provided by the optical editing module 107B do not need When passing through the optical output interface and the optical input interface (respectively shown by lines 501-1 to 501-M), it is guided into the optical amplification module 303A. Also, in the PLC 503, due to the optical integration between the optical arrangement module 107B and the optical amplification module 303A, no separate The light guide 301 is separated. In some embodiments of the laser module 100E, the laser source 102 , the light guide 105 and the PLC 503 are disposed on the substrate 110 . It should be understood that the configuration of the laser module 100E is such that the plurality of laser beams from the optical output interfaces 104-1 to 104-N of the laser source 102 are directed to the plurality of optical input interfaces of the optical arrangement module 107 in the PLC 503 Correspondence in 108-1 to 108-NB.

圖5B顯示根據本發明之某些實施例之圖5A之雷射模組100E之結構的側面圖。在圖5B之雷射模組100E的結構中,PLC 503與雷射源102係以實質上共平面之方式設置於基板110上俾使雷射源102之光輸出接口104-1至104-N係分別與光編排模組107B之光輸入接口108-1至108-N水平對準,俾以在雷射源102之光輸出接口104-1至104-N處或在光編排模組107之光輸入接口108-1至108-N處不需要轉動雷射光束。 FIG. 5B shows a side view of the structure of the laser module 100E of FIG. 5A according to some embodiments of the present invention. In the structure of the laser module 100E in FIG. 5B , the PLC 503 and the laser source 102 are arranged on the substrate 110 in a substantially coplanar manner so that the light output interfaces 104-1 to 104-N of the laser source 102 They are respectively horizontally aligned with the optical input interfaces 108-1 to 108-N of the optical arrangement module 107B, so as to be at the optical output interfaces 104-1 to 104-N of the laser source 102 or between the optical arrangement module 107 There is no need to rotate the laser beams at the optical input interfaces 108-1 to 108-N.

圖5C顯示根據本發明之某些實施例之圖5B之雷射模組100E之結構的側面圖,其中光導105不存在。在圖5C之實施例中,PLC 503與雷射源102係以實質上共平面之方式設置於基板110上俾使雷射源102之光輸出接口104-1至104-N係分別與光編排模組107B之光輸入接口108-1至108-N水平對準,俾以在雷射源102之光輸出接口104-1至104-N處或在光編排模組107之光輸入接口108-1至108-N處不需要轉動雷射光束。在圖5C之實施例中,雷射源102之光輸出接口104-1至104-N與光編排模組107之光輸入接口108-1至108-N之間存在空的空間。因此在圖5C之實施例中,自雷射源102輸出之雷射光束行經通過雷射源102與PLC 503間之空的空間的各別直線路徑。圖5D顯示根據本發明之某些實施例之圖5C之雷射模組100E之結構的側面圖,其中雷射源102與PLC 503之間的空的空間係被構件505覆蓋及/或密封。在各種實施例中,構件505可為在封裝期間設置之另一晶片、或在封裝期間設置之另一材料、或可為PLC 503的一整合部件、或可為雷射源102的一整合部件。 FIG. 5C shows a side view of the structure of the laser module 100E of FIG. 5B without the light guide 105 in accordance with some embodiments of the present invention. In the embodiment of FIG. 5C, the PLC 503 and the laser source 102 are arranged on the substrate 110 in a substantially coplanar manner, so that the light output interfaces 104-1 to 104-N of the laser source 102 are arranged with the light respectively. The optical input interfaces 108-1 to 108-N of the module 107B are horizontally aligned so that the optical output interfaces 104-1 to 104-N of the laser source 102 or at the optical input interface 108-N of the optical arrangement module 107 1 to 108-N does not need to rotate the laser beam. In the embodiment of FIG. 5C , empty spaces exist between the light output interfaces 104 - 1 to 104 -N of the laser source 102 and the light input interfaces 108 - 1 to 108 -N of the light editing module 107 . Thus, in the embodiment of FIG. 5C , the laser beams output from the laser source 102 follow respective linear paths through the empty space between the laser source 102 and the PLC 503 . 5D shows a side view of the structure of the laser module 100E of FIG. 5C according to some embodiments of the present invention, wherein the empty space between the laser source 102 and the PLC 503 is covered and/or sealed by a member 505 . In various embodiments, component 505 may be another chip provided during packaging, or another material provided during packaging, or may be an integral part of PLC 503, or may be an integral part of laser source 102 .

圖5E顯示根據本發明之某些實施例之雷射模組100E的側面圖,其中光導105不存在且雷射源102與PLC 503係以並排接觸方式配置。在圖5E之實施例中,雷射源102與PLC 503係以實質上共平面之方式設置於基板110上,俾使雷射源102之光輸出接口104-1至104-N係分別與光編排模組107B之光輸入接口108-1至108-N水平對準,俾以在雷射源102之光輸出接口104-1至104-N處或在光編排模組107之光輸入接口108-1至108-N處不需要轉動雷射光束。 Figure 5E shows a side view of laser module 100E in which light guide 105 is absent and laser source 102 and PLC 503 are arranged in side-by-side contact, according to some embodiments of the present invention. In the embodiment of FIG. 5E, the laser source 102 and the PLC 503 are arranged on the substrate 110 in a substantially coplanar manner, so that the light output interfaces 104-1 to 104-N of the laser source 102 are respectively connected to the light output interfaces. The light input interfaces 108-1 to 108-N of the arrangement module 107B are horizontally aligned so that the light output interfaces 104-1 to 104-N of the laser source 102 or at the light input interface 108 of the light arrangement module 107 -1 to 108-N does not need to turn the laser beam.

圖6A顯示根據本發明之某些實施例之雷射模組100F之結構圖,其中雷射源102A、光編排模組107C及放大模組303A係共同在一相同的PLC 601中實施。雷射源102A之功能係實質上與上面針對雷射模組100A所述之雷射源102的功能相同。光編排模組107C之功能係實質上與上面針對雷射模組100A所述之光編排模組107的功能相同。光放大模組303A之功能係實質上與上面針對雷射模組100C所述之光放大模組303的功能相同。在PLC 601中,雷射源102A與光編排模組107C係以彼此整合的方式實施,俾以在複數雷射103-1至103-N所產生之雷射光束201-1至201-N不需分別行經光輸出接口與光輸入接口的情況下被引導進入光編排模組107C中。又,在PLC 601中,由於雷射源102A與光編排模組107C之間的光學整合,因此不需要分離的光導105。又,在PLC 601中,光編排模組107C與光放大模組303A係以彼此整合的方式實施,俾以在光編排模組107C所提供之複數多波長雷射輸出MWL-1至MWL-M不需行經光輸出接口與光輸入接口(分別由線501-1至501-M所示)的情況下被引導進入光放大模組303A中。又,在PLC 601中,由於光編排模組107C與光放大模組303A之間的光學整合,因此不需要分離的光導301。圖6B顯示根據本發明之某些實施例之圖6A之雷射模組100F之結構的側面圖。 FIG. 6A shows a block diagram of a laser module 100F according to some embodiments of the present invention, wherein the laser source 102A, the light editing module 107C and the amplification module 303A are implemented together in the same PLC 601 . The function of the laser source 102A is substantially the same as that of the laser source 102 described above for the laser module 100A. The function of the optical programming module 107C is substantially the same as that of the optical programming module 107 described above for the laser module 100A. The function of the optical amplification module 303A is substantially the same as that of the optical amplification module 303 described above for the laser module 100C. In the PLC 601, the laser source 102A and the light editing module 107C are implemented in an integrated manner so that the laser beams 201-1 to 201-N generated by the plurality of lasers 103-1 to 103-N If they need to pass through the optical output interface and the optical input interface respectively, they are guided into the optical arrangement module 107C. Also, in the PLC 601, due to the optical integration between the laser source 102A and the light editing module 107C, no separate light guide 105 is required. Also, in the PLC 601, the optical editing module 107C and the optical amplification module 303A are implemented in an integrated manner so that the complex multi-wavelength laser outputs MWL-1 to MWL-M provided by the optical editing module 107C It is guided into the optical amplification module 303A without going through the optical output interface and the optical input interface (shown by lines 501 - 1 to 501 -M respectively). Also, in the PLC 601, due to the optical integration between the light orchestration module 107C and the light amplification module 303A, no separate light guide 301 is required. FIG. 6B shows a side view of the structure of the laser module 100F of FIG. 6A according to some embodiments of the present invention.

應瞭解,提供文中所揭露之雷射源102/102A、光導105/301、光編排模組107/107A/107B/107C及光放大模組303/303A中之每一者的幾何圖示用以例示性地簡單說明本發明。在各種實施例中,雷射源102/102A、光導105/301、光編排模組107/107A/107B/107C及光放大模組303/303A中的每一者可具有形成期望形狀與尺寸之光電裝置所需之實質上任何幾何形狀。在某些實施例中,雷射源102/102A、光導105/301、光編排模組107/107A/107B/107C及光放大模組303/303A中的一或多者可配置具有實質上平面的幾何形狀。在某些實施例中,雷射源102/102A、光導105/301、光編排模組107/107A/107B/107C及光放大模組303/303A中的一或多者可配置具有三維變化的幾何形狀即非簡單矩形棱鏡的形狀。又,應瞭解,在各種實施例中,雷射源102/102A、光導105/301、光編排模組107/107A/107B/107C及光放大模組303/303A中的每一者在相關之座標系統的任何參考方向即在笛卡兒坐標系的x方向、y方向及z方向中可具有不同的量測到尺寸。 It should be appreciated that geometric representations of each of the laser sources 102/102A, light guides 105/301, light editing modules 107/107A/107B/107C, and optical amplification modules 303/303A disclosed herein are provided for The present invention is briefly described as an example. In various embodiments, each of the laser source 102/102A, the light guide 105/301, the light editing module 107/107A/107B/107C, and the optical amplification module 303/303A can have a shape and size that can be formed into a desired shape and size. Virtually any geometry desired for optoelectronic devices. In some embodiments, one or more of laser source 102/102A, light guide 105/301, light editing module 107/107A/107B/107C, and optical amplification module 303/303A may be configured to have a substantially planar Geometry. In some embodiments, one or more of the laser source 102/102A, the light guide 105/301, the light editing module 107/107A/107B/107C, and the optical amplification module 303/303A can be configured with three-dimensional changes. Geometric shapes are shapes that are not simple rectangular prisms. Also, it should be appreciated that in various embodiments, each of the laser source 102/102A, the light guide 105/301, the light editing module 107/107A/107B/107C, and the optical amplification module 303/303A are in relation to each other. Any reference direction of the coordinate system may have different measured dimensions in the x-direction, y-direction and z-direction of the Cartesian coordinate system.

圖7顯示根據本發明之某些實施例之光編排模組107/107A/107B/107C的一例示性實施例,其包含Nx1(極化維持)波長結合器701與1xM(極化維持)寬頻功率分割器705。波長結合器701係用以將在光輸入接口108-1至108-N處接收到的複數雷射光束結合成為一多波長雷射光束,多波長雷射光束係自波長結合器701經由光導703傳輸至寬頻功率分割器705。寬頻功率分割器705係用以將多波長雷射光束之總功率的複數部分分配至光編排模組107/107A/107B/107C之複數光輸出接口109-1至109-M中的每一者。 Figure 7 shows an exemplary embodiment of an optical programming module 107/107A/107B/107C according to some embodiments of the present invention, which includes an Nx1 (polarization maintaining) wavelength combiner 701 and a 1xM (polarization maintaining) broadband Power splitter 705 . The wavelength combiner 701 is used to combine the plurality of laser beams received at the optical input interfaces 108-1 to 108-N into a multi-wavelength laser beam, and the multi-wavelength laser beam is from the wavelength combiner 701 through the light guide 703 to the broadband power splitter 705. The broadband power divider 705 is used to distribute a plurality of parts of the total power of the multi-wavelength laser beam to each of the plurality of optical output interfaces 109-1 to 109-M of the optical programming module 107/107A/107B/107C .

圖8顯示根據本發明之某些實施例之光編排模組107/107A/107B/107C的一例示性實施例,其包含陣列式的波導801及寬頻功率分割器805。在圖8的實例中,陣列式的波導801為16對1之陣列式波導。然而應瞭解,在各種實施例中,陣列式的波導801可用以接收任何數目(N)之光輸 入。又,在圖8的實例中,寬頻功率分割器805為1對16之16寬頻功率分割器。然而應瞭解,在各種實施例中,寬頻功率分割器805可用以輸出任何數目(M)之光輸出。陣列式的波導801係用以將光輸入接口108-1至108-16處接收到的複數雷射光束結合成為一多波長雷射光束,多波長雷射光束係自陣列式的波導801經由光導803傳輸至寬頻功率分割器805。寬頻功率分割器805係用以將多波長雷射光束之總功率的複數部分分配至光編排模組107/107A/107B/107C之複數光輸出接口109-1至109-16中的每一者。 FIG. 8 shows an exemplary embodiment of an optical programming module 107/107A/107B/107C according to some embodiments of the present invention, which includes an arrayed waveguide 801 and a broadband power divider 805 . In the example of FIG. 8, the arrayed waveguide 801 is a 16-to-1 arrayed waveguide. It should be understood, however, that in various embodiments, the arrayed waveguides 801 can be used to receive any number (N) of optical inputs. enter. Also, in the example shown in FIG. 8 , the broadband power divider 805 is a 1-to-16-16 broadband power divider. It should be appreciated, however, that in various embodiments, the broadband power divider 805 may be used to output any number (M) of light outputs. The arrayed waveguide 801 is used to combine the plurality of laser beams received at the optical input interfaces 108-1 to 108-16 into a multi-wavelength laser beam, and the multi-wavelength laser beam is from the arrayed waveguide 801 through the light guide 803 is transmitted to a broadband power splitter 805. The broadband power splitter 805 is used to distribute a plurality of parts of the total power of the multi-wavelength laser beam to each of the plurality of optical output interfaces 109-1 to 109-16 of the optical programming module 107/107A/107B/107C .

圖9顯示根據本發明之某些實施例之光編排模組107/107A/107B/107C的一例示性實施例,其包含階梯光柵901及寬頻功率分割器905。在圖8之實例中,階梯光柵901為16對1的光柵。然而應瞭解,在各種實施例中,階梯光柵901可用以接收任何數目(N)之光輸入。又,在圖9之實例中,寬頻功率分割器905為1對16之寬頻功率分割器。然而應瞭解,在各種實施例中,寬頻功率分割器905可用以輸出任何數目(M)之光輸出。階梯光柵901係用以將光輸入接口108-1至108-16處接收到的複數雷射光束結合成為一多波長雷射光束,多波長雷射光束係自階梯光柵901經由光導903傳輸至寬頻功率分割器905。寬頻功率分割器905係用以將多波長雷射光束之總功率的複數部分分配至光編排模組107/107A/107B/107C之複數光輸出接口109-1至109-16中的每一者。 FIG. 9 shows an exemplary embodiment of an optical programming module 107/107A/107B/107C including an echelle grating 901 and a broadband power divider 905 according to some embodiments of the present invention. In the example of FIG. 8, the echelle grating 901 is a 16-to-1 grating. It should be appreciated, however, that in various embodiments, echelle grating 901 may be used to receive any number (N) of light inputs. Also, in the example shown in FIG. 9 , the broadband power divider 905 is a 1-to-16 broadband power divider. It should be appreciated, however, that in various embodiments, the broadband power splitter 905 may be used to output any number (M) of light outputs. The stepped grating 901 is used to combine the multiple laser beams received at the optical input interfaces 108-1 to 108-16 into a multi-wavelength laser beam. The multi-wavelength laser beam is transmitted from the stepped grating 901 to the broadband through the light guide 903. power divider 905 . The broadband power splitter 905 is used to distribute a plurality of parts of the total power of the multi-wavelength laser beam to each of the plurality of optical output interfaces 109-1 to 109-16 of the optical programming module 107/107A/107B/107C .

圖10顯示根據本發明之某些實施例之光編排模組107/107A/107B/107C的一例示性實施例,其包含蝶形波導網路1001。在圖10之實例中,蝶形波導網路1001為16輸入對16輸出之網路。然而應瞭解,在各種實施例中,蝶形波導網路1001可用以接收任何數目(N)之光輸入且提供任何數目(M)之光輸出。蝶形波導網路1001係用以自光輸入接口108-1至108-N接收(N) 雷射光束並將(N)雷射光束中之每一者的複數部分分配至光編排模組107/107A/107B/107C之(M)光輸出接口的每一者。 FIG. 10 shows an exemplary embodiment of an optical programming module 107/107A/107B/107C including a butterfly waveguide network 1001 according to some embodiments of the present invention. In the example shown in FIG. 10 , the butterfly waveguide network 1001 is a network with 16 inputs and 16 outputs. It should be appreciated, however, that in various embodiments, the butterfly waveguide network 1001 may be configured to receive any number (N) of optical inputs and provide any number (M) of optical outputs. Butterfly waveguide network 1001 is used to receive (N) from optical input interfaces 108-1 to 108-N The laser beams and distributes a plurality of parts of each of the (N) laser beams to each of the (M) optical output interfaces of the optical programming modules 107/107A/107B/107C.

圖11顯示根據本發明之某些實施例之光編排模組107/107A/107B/107C的一例示性實施例,其包含星形耦合器1101。在圖11的實例中,星形耦合器1101為16輸入對16輸出之星形耦合器。然而應瞭解,在各種實施例中,星形耦合器1101可用以接收任何數目(N)之光輸入且提供任何數目(M)之光輸出。星形耦合器1101係用以自光輸入接口108-1至108-N接收(N)雷射光束並將(N)雷射光束中之每一者的複數部分分配至光編排模組107/107A/107B/107C之(M)光輸出接口的每一者。 Figure 11 shows an exemplary embodiment of a light orchestration module 107/107A/107B/107C including a star coupler 1101 according to some embodiments of the present invention. In the example shown in FIG. 11 , the star coupler 1101 is a 16-input to 16-output star coupler. It should be appreciated, however, that in various embodiments, star coupler 1101 may be used to receive any number (N) of optical inputs and provide any number (M) of optical outputs. The star coupler 1101 is used to receive the (N) laser beams from the optical input interfaces 108-1 to 108-N and distribute a plurality of each of the (N) laser beams to the optical programming module 107/ Each of the (M) optical output interfaces of 107A/107B/107C.

圖12A顯示根據本發明之某些實施例之光編排模組107/107A/107B/107C的一例示性實施例,其包含諧振環陣列1201。在圖12A之實例中,諧振環陣列1201為16輸入對16輸出之諧振環陣列。然而應瞭解,在各種實施例中,諧振環陣列1201可用以接收任何數目(N)之光輸入且提供任何數目(M)之光輸出。諧振環陣列1201係用以自光輸入接口108-1至108-N接收(N)雷射光束並將(N)雷射光束中之每一者的複數部分分配至光編排模組107/107A/107B/107C之(M)光輸出接口的每一者。 Figure 12A shows an exemplary embodiment of a light orchestration module 107/107A/107B/107C comprising a resonant ring array 1201 according to some embodiments of the present invention. In the example of FIG. 12A , the resonant ring array 1201 is a resonant ring array with 16 inputs and 16 outputs. It should be appreciated, however, that in various embodiments, resonant ring array 1201 may be used to receive any number (N) of light inputs and provide any number (M) of light outputs. Resonant ring array 1201 is used to receive (N) laser beams from optical input interfaces 108-1 to 108-N and distribute a plurality of each of the (N) laser beams to optical programming module 107/107A Each of the (M) optical output interfaces of /107B/107C.

圖12B顯示根據本發明之諧振環陣列1201的詳細圖示。諧振環陣列1201包含複數諧振環列R1至RN,其數目等於分別在(N)光輸入接口108-1至108-N處所接收之複數雷射光束的數目(N)。每一諧振環列R1至RN包含複數諧振環1203,其數目等於光編排模組107/107A/107B/107C之複數光輸出接口109-1至109-M的數目(M)。每一諧振環列R1至RN係用以接收複數雷射光束中的一不同光束作為對應的輸入雷射光束。因此,每一諧振環列R1至RN接收雷射源102/102A所接收之(N)雷射光束之波長(λ1-λN)中的一不同波長。又,為何此原因,諧振環列R1至RN中之一特定諧振環列的每一諧振環1203可針對特定諧 振環列欲接收之特定雷射光束波長的操作而加以最佳化。又,因此不同諧振環列R1至RN之諧振環1203可針對不同雷射光束波長之操作而加以最佳化。一特定諧振環列R1至RN中的每一諧振環1203係用以將該特定諧振環列之對應輸入雷射光束的一部分重新引導至光編排模組107/107A/107B/107C之複數光輸出接口109-1至109-M中的一不同者(如箭頭1205所示)。在某些實施例中,一特定諧振環列R1至RN的諧振環1203係用以連續方式接收該特定諧振環列的對應輸入雷射光束,其中相對於雷射源102/102A之該特定諧振環列之連續設置的諧振環1203係用以逐步重新引導該特定諧振環列之對應輸入雷射光束的較大部分。以此方式,一特定諧振環列R1至RN的諧振環1203將實質相同量的雷射光提供至光編排模組107/107A/107B/107C之光輸出接口109-1至109-M中的每一者。 Figure 12B shows a detailed illustration of a resonant ring array 1201 according to the present invention. The resonant ring array 1201 includes complex resonant ring columns R 1 to RN , the number of which is equal to the number (N) of complex laser beams received at (N) optical input interfaces 108 - 1 to 108 -N respectively. Each resonant ring row R 1 to RN includes a plurality of resonant rings 1203, the number of which is equal to the number (M) of the plurality of optical output interfaces 109-1 to 109-M of the optical programming module 107/107A/107B/107C. Each of the resonant ring columns R 1 to RN is used to receive a different beam of the plurality of laser beams as a corresponding input laser beam. Therefore, each resonant ring column R 1 to RN receives a different one of the wavelengths (λ1−λN) of the ( N ) laser beams received by the laser source 102/102A. Also, for this reason, each resonant ring 1203 of a particular one of the resonant ring rows R 1 to RN can be optimized for operation at a particular laser beam wavelength that the particular resonant ring row is intended to receive. Also, thus the resonant rings 1203 of the different resonant ring rows R1 to RN can be optimized for operation at different laser beam wavelengths. Each resonant ring 1203 in a particular resonant ring column R1 to RN is used to redirect a portion of the corresponding input laser beam of that particular resonant ring column to a plurality of optical programming modules 107/107A/107B/107C A different one of the optical output interfaces 109-1 to 109-M (shown by arrow 1205). In some embodiments, the resonant rings 1203 of a particular resonant ring row R1 to RN are configured to receive the corresponding input laser beams of the particular resonant ring row in a continuous manner, wherein the Successively arranged resonant rings 1203 of a particular resonant ring column are used to gradually redirect a larger portion of the corresponding input laser beam of that particular resonant ring column. In this way, the resonant rings 1203 of a particular resonant ring row R1 to RN provide substantially the same amount of laser light to the optical output interfaces 109-1 to 109-M of the optical programming modules 107/107A/107B/107C each of.

圖13顯示根據本發明之某些實施例之PLC 601上之雷射模組100F的一例示性實施例,其中施用編排模組107C以包含陣列式的波導801及寬頻功率分割器805。圖14顯示根據本發明之某些實施例之PLC 601上之雷射模組100F的一例示性實施例,其中施用編排模組107C以包含階梯光柵901與寬頻功率分割器905。圖15顯示根據本發明之某些實施例之PLC 601上之雷射模組100F的一例示性實施例,其中施用編排模組107C以包含蝶形波導網路1001。圖16顯示根據本發明之某些實施例之PLC 601上雷射模組100F的一例示性實施例,其中施用編排模組107C以包含星形耦合器1101。 FIG. 13 shows an exemplary embodiment of a laser module 100F on a PLC 601 in which an orchestration module 107C is implemented to include an arrayed waveguide 801 and a broadband power divider 805 according to some embodiments of the present invention. FIG. 14 shows an exemplary embodiment of a laser module 100F on a PLC 601 in which an orchestration module 107C is implemented to include an echelle grating 901 and a broadband power divider 905 in accordance with some embodiments of the present invention. FIG. 15 shows an exemplary embodiment of a laser module 100F on a PLC 601 implementing an orchestration module 107C to include a butterfly waveguide network 1001 in accordance with certain embodiments of the present invention. Figure 16 shows an exemplary embodiment of a laser module 100F on a PLC 601 in which an orchestration module 107C is implemented to include a star coupler 1101 in accordance with certain embodiments of the present invention.

圖17顯示根據本發明之某些實施例之雷射模組100A-100F之操作方法的流程圖。方法包含操作1701,操作雷射源以產生及輸出複數雷射光束,其中複數雷射光束相對於彼此具有不同波長。複數雷射光束的不同波長對光數據通訊系統而言是可加以辨識的。方法亦包含操作1703,將複數雷射光束之每一光束的一部分分配至雷射模組100A-100F之複數光輸出接口的每一者。操作1703之實施俾使複數雷射光束之所有不同波長係提供至雷射模組100A-100F之 複數光輸出接口的每一者。在某些實施例中,方法選擇性地包含操作1705,放大被分配至雷射模組100A-100F之複數光輸出接口的雷射光。在某些實施例中,操作1701係由雷射源102/102A實施,操作1703係由光編排模組107/107A/107B/107C實施,操作1705係由光放大模組303/303A實施。在某些實施例中,雷射源102/102A、光編排模組107/107A/107B/107C及光放大模組303/303A中的任兩或更多者以實體分離元件的方式操作。又,在某些實施例中,雷射源102/102A、光編排模組107/107A/107B/107C及光放大模組303/303A中的任兩或更多者係設置於共同基板110上及/或相同的PLC中。 FIG. 17 shows a flowchart of a method of operation of laser modules 100A- 100F according to some embodiments of the present invention. The method includes operation 1701 of operating a laser source to generate and output a plurality of laser beams, wherein the plurality of laser beams have different wavelengths relative to each other. The different wavelengths of the plurality of laser beams are distinguishable for optical data communication systems. The method also includes operation 1703 of distributing a portion of each of the plurality of laser beams to each of the plurality of optical output interfaces of the laser modules 100A-100F. Operation 1703 is performed such that all of the different wavelengths of the plurality of laser beams are provided to laser modules 100A-100F Each of the plurality of optical output interfaces. In some embodiments, the method optionally includes operation 1705, amplifying the laser light distributed to the plurality of light output interfaces of the laser modules 100A-100F. In some embodiments, operation 1701 is performed by laser source 102/102A, operation 1703 is performed by optical editing module 107/107A/107B/107C, and operation 1705 is performed by optical amplification module 303/303A. In some embodiments, any two or more of the laser source 102/102A, the optical editing module 107/107A/107B/107C, and the optical amplification module 303/303A operate as physically separate components. Also, in some embodiments, any two or more of the laser source 102/102A, the optical editing module 107/107A/107B/107C, and the optical amplification module 303/303A are disposed on the common substrate 110 and/or in the same PLC.

在某些實施例中,方法包含將來自雷射源102/102A的複數雷射光束引導至光編排模組107/107A/107B/107C中。在某些實施例中,複數雷射光束係自雷射源102/102A受到引導通過一空的空間並自空的空間受到引導而至光編排模組107/107A/107B/107C中。在某些實施例中,方法包含經由光導105傳輸複數雷射光束以將複數雷射光束自雷射源102/102A引導至光編排模組107/107A/107B/107C中。在某些實施例中,方法包含經由一或多個光學垂直耦合裝置傳輸複數雷射光束以將複數雷射光束自雷射源102/102A引導至光編排模組107/107A/107B/107C中。在某些實施例中,方法包含當複數雷射光束之複數部分被分配至雷射模組100A-100F之複數光輸出接口中之每一者時維持複數雷射光束的極化。 In some embodiments, the method includes directing a plurality of laser beams from a laser source 102/102A into an optical programming module 107/107A/107B/107C. In some embodiments, a plurality of laser beams are directed from the laser source 102/102A through an empty space and directed from the empty space into the optical programming module 107/107A/107B/107C. In some embodiments, the method includes transmitting the plurality of laser beams through the light guide 105 to direct the plurality of laser beams from the laser source 102/102A into the optical programming module 107/107A/107B/107C. In some embodiments, the method includes transmitting the plurality of laser beams through one or more optical vertical coupling devices to direct the plurality of laser beams from the laser source 102/102A into the optical programming module 107/107A/107B/107C . In some embodiments, the method includes maintaining the polarization of the plurality of laser beams when portions of the plurality of laser beams are distributed to each of the plurality of light output interfaces of the laser modules 100A- 100F.

在某些實施例中,複數雷射光束的每一者係利用一各別的分佈回饋雷射所產生。在某些實施例中,方法包含控制不同分佈回饋雷射的溫度俾以在不同分佈回饋雷射之間提供溫度相依之波長漂移的實質均勻度。又,在某些實施例中,方法包含控制複數雷射光束之每一光束之部分分配至雷射模組100A-100F之複數光輸出接口之每一者的分配,俾使複數光輸出接口之每一者接收在特定倍數內之複數雷射光束之任何特定光束之光學功率的類似量。在某些 實施例中,特定倍數為五倍。在某些實施例中,特定倍數為一倍、兩倍、三倍、四倍、六倍或任何此些倍數之間的任何倍數。 In some embodiments, each of the plurality of laser beams is generated using a respective distributed feedback laser. In some embodiments, the method includes controlling the temperature of the different profiles of the feedback lasers to provide substantial uniformity of temperature-dependent wavelength shift among the different profiles of the feedback lasers. Also, in some embodiments, the method includes controlling the allocation of a portion of each of the plurality of laser beams to each of the plurality of optical output interfaces of the laser modules 100A-100F such that the plurality of optical output interfaces Each receives a similar amount of optical power for any particular beam of the plurality of laser beams within a particular multiple. in some In an embodiment, the specific multiple is five times. In certain embodiments, the particular multiple is one, two, three, four, six, or any multiple between any such multiples.

更應瞭解,本發明亦包含文中所揭露之雷射模組100A-100F中之每一者的製造方法。又,雷射模組100A-100F的此些製造方法可實質上包含用以製造半導體裝置及用以製造與一或多個半導體裝置交界之元件/基板的任何已知已建立的處理及/或技術。 It should be further understood that the present invention also includes the manufacturing method of each of the laser modules 100A- 100F disclosed herein. Also, such methods of manufacturing laser modules 100A-100F may include substantially any known and established process and/or technique for fabricating semiconductor devices and for fabricating components/substrates that interface with one or more semiconductor devices .

在某些實施例中,雷射模組100A-100F被設計用以供給具有一或多個波長的雷射光。可將雷射模組100A-100F安排為數個主要元件,其包含:一雷射源102/102A,包含複數雷射如雷射二極體,每一雷射產生雷射源102/102A所輸出之複數波長的一子組合;一光編排模組107/107A/107B/107C,其提供組合器、耦合器及/或分割器網路(CCSN),其輸入為來自雷射源102/102A之輸出波長;一光放大器模組303/303A,包含複數光放大器,光放大器操作以增加雷射模組100A-100F所輸出之光學功率的量但可能是以噪訊比為代價;一光纖耦合陣列,係連接以將光帶出雷射模組100A-100F;光導105、301(可包含耦合器、反射表面及/或透鏡)以引導、準直及/或耦合光來/往光編排模組107/107A/107B/107C、來自雷射源102/102A、來/往光纖耦合陣列、及來/往光放大器模組303/303A;一熱分散元件如導熱基板,將雷射源102/102A內的所有雷射熱鏈結在一起(如銅將所有雷射二極體附接在一起)以最少化雷射二極體之間的溫度差異,其中在某些實施例中,熱分散元件可為上面建構有及/或附接有雷射源102/102A、光編排模組107/107A/107B/107C及光放大器模組303/303A的相同基板110。 In some embodiments, laser modules 100A- 100F are designed to deliver laser light having one or more wavelengths. The laser modules 100A-100F can be arranged into several main components, which include: a laser source 102/102A, including a plurality of lasers such as laser diodes, and each laser generates the output of the laser source 102/102A A sub-combination of a plurality of wavelengths; an optical programming module 107/107A/107B/107C, which provides a combiner, coupler and/or splitter network (CCSN), whose input is from the laser source 102/102A output wavelength; an optical amplifier module 303/303A comprising a plurality of optical amplifiers operating to increase the amount of optical power output by the laser modules 100A-100F but possibly at the expense of noise-to-signal ratio; a fiber-coupled array , are connected to bring light out of the laser modules 100A-100F; light guides 105, 301 (which may include couplers, reflective surfaces, and/or lenses) to guide, collimate and/or couple light to/from the light orchestration modules 107/107A/107B/107C, from the laser source 102/102A, from/to the optical fiber coupling array, and from/to the optical amplifier module 303/303A; a heat dispersion element such as a heat-conducting substrate, the laser source 102/102A All the lasers in the laser are thermally linked together (such as copper attaches all the laser diodes together) to minimize the temperature difference between the laser diodes, where in some embodiments, the heat spreading element It may be the same substrate 110 on which the laser sources 102/102A, optical programming modules 107/107A/107B/107C, and optical amplifier modules 303/303A are built and/or attached.

在各種實施例中,光編排模組107/107A/107B/107C可以數種方式建構,包含利用分散元件或建構為一整合裝置如平面光波電路(PLC)。光編排模組107/107A/107B/107C的各種實施例可包含下列特徵: In various embodiments, the optical programming module 107/107A/107B/107C can be implemented in several ways, including using discrete components or as an integrated device such as a planar lightwave circuit (PLC). Various embodiments of the optical programming module 107/107A/107B/107C may include the following features:

一PLC結構,其提供針對傳播通過光編排模組107/107A/107B/107C之光維持其極化的優點。 A PLC structure that offers the advantage of maintaining its polarization for light propagating through the light programming module 107/107A/107B/107C.

一PLC結構,其中雷射源102/102A及/或光放大器模組303/303A可利用光編排模組107/107A/107B/107C的相同基板構建-其中光編排模組107/107A/107B/107C的基板支撐雷射源102/102A的建構(如特定的III-V或IV族基板)。 A PLC structure, wherein the laser source 102/102A and/or the optical amplifier module 303/303A can be constructed using the same substrate of the optical programming module 107/107A/107B/107C - wherein the optical programming module 107/107A/107B/ The substrate of 107C supports the construction of the laser source 102/102A (eg, a specific III-V or IV substrate).

一PLC結構,其中雷射源102/102A及/或光放大器模組303/303A可藉由例如覆晶接合而附接至光編排模組107/107A/107B/107C。 A PLC structure in which the laser source 102/102A and/or the optical amplifier module 303/303A can be attached to the optical programming module 107/107A/107B/107C by, for example, flip-chip bonding.

一PLC結構,其中雷射源102/102A可將光耦合至PLC中的結構及耦合來自PLC中之結構的光-其中光編排模組107/107A/107B/107C可包含雷射源102/102A之雷射腔及/或一或多個光導,輸出雷射光係自雷射腔及/或光導耦合至耦合裝置中/耦合通過耦合裝置。 A PLC structure where laser source 102/102A can couple light to and from structures in the PLC - where light programming module 107/107A/107B/107C can include laser source 102/102A The laser cavity and/or one or more light guides, the output laser light is coupled into/through the coupling device from the laser cavity and/or the light guide.

一PLC結構,其中光放大模組303/303A可將光耦合至PLC中的結構且可耦合來自PLC中的結構-其中光編排模組107/107A/107B/107C可提供一或多個光導,光放大器的輸入與輸出光係經由例如適合的耦合裝置自光導而耦合至放大器及自放大器耦合,耦合裝置尤其包含光柵耦合器、邊緣耦合器及漸耦合式波導。 a PLC structure, wherein the optical amplification module 303/303A can couple light to and from the structure in the PLC - wherein the light orchestration module 107/107A/107B/107C can provide one or more light guides, The input and output light of the optical amplifier is coupled from the light guide to and from the amplifier via suitable coupling means, for example including grating couplers, edge couplers and progressively coupled waveguides, among others.

在某些實施例中,玻璃基板可能不具有充分的熱導性以對雷射源102/102A提供熱耦合。在此類實施例中,在低折射率包層材料(埋入氧化物或深溝槽層)亦為導熱性或並未太厚的條件下,玻璃基板(如使用矽光子元件)可用以提供熱導 性。或者,III-V基板如GaAs或InP亦具有高導熱性且可類似地作為雷射源102/102A之熱耦合適當材料。 In some embodiments, the glass substrate may not have sufficient thermal conductivity to provide thermal coupling to the laser source 102/102A. In such embodiments, a glass substrate (eg, using silicon photonics) can be used to provide thermal conductivity, provided that the low-index cladding material (buried oxide or deep trench layer) is also thermally conductive or not too thick. guide sex. Alternatively, III-V substrates such as GaAs or InP also have high thermal conductivity and may similarly be suitable materials for the thermal coupling of laser source 102/102A.

在各種實施例中,光編排模組107/107A/107B/107C有多種可能的配置,其尤其包含者:光編排模組107/107A/107B/107C可被建構為扇入、扇出的N對N對稱星形耦合器,其不但組合N波長亦將功率分割為N份。 In various embodiments, the optical programming module 107/107A/107B/107C has many possible configurations, which include among others: the optical programming module 107/107A/107B/107C can be constructed as a fan-in, For an N-symmetrical star coupler, it not only combines N wavelengths but also divides the power into N parts.

光編排模組107/107A/107B/107C可被建構為扇入、扇出的N對M不對稱星形耦合器,其不但組合N波長亦將功率分割為M份。 The optical programming module 107/107A/107B/107C can be constructed as a fan-in and fan-out N-to-M asymmetric star coupler, which not only combines N wavelengths but also divides the power into M parts.

光編排模組107/107A/107B/107C可利用N/2*log2N的2x2分割器/耦合器被建構為N對N星形耦合器。此類結構以最直觀的實施方式加總在(2n-1)的波導交叉中之自n=1至log2N-1者。 The optical programming module 107/107A/107B/107C can be constructed as an N-to-N star coupler by using N/2*log 2 N 2x2 splitters/couplers. Such a structure sums from n=1 to log 2 N-1 in (2n-1) waveguide crossings in the most intuitive implementation.

光編排模組107/107A/107B/107C可被建構為1對N分割器以反向方式使用。此結構輸出總輸出雷射功率的1/2N並放棄剩餘者。 The optical programming module 107/107A/107B/107C can be configured as a 1-to-N splitter for reverse use. This structure outputs 1/2N of the total output laser power and discards the rest.

光編排模組107/107A/107B/107C可被建構為陣列式的波導(AWG)加上分割器。 The optical programming module 107/107A/107B/107C can be constructed as an arrayed waveguide (AWG) plus a splitter.

在某些實施例中,光放大器模組303/303A係用以增加雷射模組100C-100F之輸出功率。在某些實施例中,光放大器模組303/303A可包含下列特徵:光放大器可具有多種形式例如尤其是半導體光放大器、摻雜鉺/鐿之光纖放大器、拉曼放大器。 In some embodiments, the optical amplifier modules 303/303A are used to increase the output power of the laser modules 100C-100F. In some embodiments, the optical amplifier module 303/303A may include the following features: The optical amplifier may have various forms such as semiconductor optical amplifier, erbium/ytterbium doped fiber amplifier, Raman amplifier, among others.

光放大器可用以放大單一波長或複數波長之輸入光。 Optical amplifiers can be used to amplify input light of a single wavelength or multiple wavelengths.

當放大複數波長時,每一光放大器可具有充分的光頻寬以放大所有的輸入波長。 When amplifying multiple wavelengths, each optical amplifier may have sufficient optical bandwidth to amplify all input wavelengths.

若波長之頻寬足以超過獨立光放大器的頻寬,則使用複數光放大器以放大所有波長,且每一光放大器僅放大落在其放大頻寬內的波長子組合。在此情況中,可將光放大器添加至光編排模組107/107A/107B/107C內的中間點且將每一光放大器之輸入定義為具有該光放大器所放大之波長的子組合。 If the bandwidth of the wavelengths is sufficient to exceed the bandwidth of individual optical amplifiers, then a plurality of optical amplifiers are used to amplify all wavelengths, and each optical amplifier amplifies only a subset of wavelengths that fall within its amplified bandwidth. In this case, optical amplifiers can be added to intermediate points within the optical programming module 107/107A/107B/107C and the input to each optical amplifier is defined to have a sub-combination of the wavelengths that the optical amplifier amplifies.

在某些實施例中,插入件裝置可用以提供基板110及一或多個光學元件(尤其例如是波導105與301及編排模組107、107A、107B、107C)的組合功能。在某些實施例中,插入件裝置係於整合性矽光子元件內及/或III-V光子致能之多晶片模組(MCM)內、系統級封裝(SiP)內、異質整合產品內。圖18A顯示根據本發明之某些實施例之例示性插入件裝置1801,其中基板110及波導105與301的功能係加以結合。在圖18A的實例中,插入件裝置1801具有基板110的功用且包含波導105與301。雷射源102係與插入件裝置1801交界。又,光放大模組303係與插入件裝置1801交界。 In some embodiments, an interposer device may be used to provide the combined functionality of substrate 110 and one or more optical elements, such as waveguides 105 and 301 and programming modules 107, 107A, 107B, 107C, among others. In certain embodiments, the interposer device is within an integrated silicon photonics device and/or within a III-V photonics enabled multi-chip module (MCM), within a system-in-package (SiP), within a heterogeneous integrated product. Figure 18A shows an exemplary interposer device 1801 in which the functions of substrate 110 and waveguides 105 and 301 are combined, according to some embodiments of the invention. In the example of FIG. 18A , interposer device 1801 has the function of substrate 110 and includes waveguides 105 and 301 . The laser source 102 interfaces with the insert device 1801 . Also, the optical amplification module 303 is connected to the interposer device 1801 .

矽光子晶粒/晶片1803亦與插入件裝置1801交界。在某些實施例中,能施行與矽光子晶粒/晶片1803相同功能的另一裝置可取代矽光子晶粒/晶片1803。在某些實施例中,矽光子晶粒/晶片1803係用以在多於一側上具有光學界面。又,矽光子晶粒/晶片1803可用以在複數側的任何組合上具有光學界面。然而在某些實施例中,矽光子晶粒/晶片1803係用以僅在一側上具有光學界面。在某些實施例中,矽光子晶粒/晶片1803為CMOS驅動晶粒而所需的矽光子裝置係形成於插入件裝置1801內。在此些實施例中,矽光子晶粒/晶片1803係用來作為CMOS驅動器晶片,驅動/交界形成在插入件裝置1801內的矽光子裝置。 Silicon photonics die/chip 1803 also interfaces with interposer device 1801 . In some embodiments, another device capable of performing the same function as silicon photonic die/chip 1803 may replace silicon photonic die/chip 1803 . In some embodiments, silicon photonics die/wafer 1803 is configured to have optical interfaces on more than one side. Also, silicon photonics die/wafer 1803 can be used to have optical interfaces on any combination of multiple sides. In some embodiments, however, the silicon photonics die/wafer 1803 is configured to have an optical interface on only one side. In some embodiments, the silicon photonics die/wafer 1803 is a CMOS drive die and the required silicon photonics devices are formed within the interposer device 1801 . In these embodiments, the silicon photonics die/chip 1803 is used as a CMOS driver chip to drive/interface the silicon photonics devices formed in the interposer device 1801 .

在某些實施例中,插入件裝置1801組合局部金屬繞線和貫穿矽通孔(TSV)與光子元件。又應瞭解,插入件裝置1801包含能在插入件裝置1801內致使產生各種光學裝置的光導,光學裝置尤其例如是光耦合器(複數光耦合器)、光分割器(複數光分割器)、光導(複數光導)、光學陣列式的波導(複數光學陣列式 的波導)(AWG)、光學星形耦合器(複數光學星形耦合器)。例如,參考圖3A,在某些實施例中,波導105與301及基板110可一起整合在相同的插入件裝置內且可利用相同的組件、材料、製造處理等形成。又應瞭解,基本上可將一或多個光學裝置或其部件(複數部件)中的任何一或多者與基板110整合以形成插入件裝置。例如參考圖3A,在某些實施例中,光導105可與基板110整合在插入件裝置內,其中光導301被配置為與插入件裝置交界的分離結構。 In some embodiments, the interposer device 1801 combines local metal routing and through-silicon vias (TSVs) with photonic components. It should also be appreciated that the interposer device 1801 includes light guides capable of causing various optical devices within the interposer device 1801, such as optical couplers (optical couplers), optical splitters (optical splitters), light guides, among others. (complex light guides), optical array waveguides (complex optical array waveguide) (AWG), optical star coupler (complex optical star coupler). For example, referring to FIG. 3A , in some embodiments, waveguides 105 and 301 and substrate 110 may be integrated together within the same interposer device and may be formed using the same components, materials, manufacturing processes, and the like. It should also be appreciated that substantially any one or more of one or more optical devices or their component(s) may be integrated with the substrate 110 to form an interposer device. For example, referring to FIG. 3A , in some embodiments, lightguide 105 may be integrated with substrate 110 within an interposer device, wherein lightguide 301 is configured as a separate structure interfacing with the interposer device.

在某些實施例中,插入件裝置1801除了基板110及波導105與301中的一或多者外亦可包含矽光子晶粒/晶片1803。例如,在某些實施例中,插入件裝置可配置為包含一或多個光導或其他類型之光學裝置的大矽光子晶粒/晶片1803。在某些實施例中,波導105與301、基板110及矽光子晶粒/晶片1803可形成在相同的插入件裝置內且可利用相同的組件、材料、製造處理等形成。在各種實施例中,可自矽、玻璃及/或其他適合的光電裝置材料製造插入件裝置。在某些實施例中,可利用矽、氧化物(複數氧化物)、聚合物(複數聚合物)、氮化矽(複數氮化矽)及/或適合形成光導之任何其他材料將光導結構形成於插入件裝置內。 In some embodiments, interposer device 1801 may also include a silicon photonic die/chip 1803 in addition to substrate 110 and one or more of waveguides 105 and 301 . For example, in some embodiments, the interposer device may be configured as a large silicon photonic die/chip 1803 that includes one or more light guides or other types of optical devices. In certain embodiments, waveguides 105 and 301 , substrate 110 and silicon photonics die/wafer 1803 may be formed within the same interposer device and may be formed using the same components, materials, fabrication processes, and the like. In various embodiments, the interposer device can be fabricated from silicon, glass, and/or other suitable optoelectronic device materials. In some embodiments, the lightguide structure may be formed using silicon, oxides (oxides), polymers (polymers), silicon nitride (silicon nitride), and/or any other material suitable for forming a lightguide in the insert device.

圖18B顯示根據本發明之某些實施例之插入件裝置1801的上結構圖以例示將晶粒/晶片1805A-1805D相對於插入件裝置1801設置的彈性。晶粒/晶片1805A-1805D可為任何電子及/或光電裝置。應瞭解,顯示四顆晶粒/晶片1805A-1805D作為說明用的實例。在各種實施例中,可將一或多顆晶粒/晶片(複數晶片)(如1805A-1805D)以實質上任何必要的配置方式設置於插入件裝置1801內的實質上任何位置處。又應瞭解,若有需要可將多晶粒/晶片(如1805A-1805D)設置在插入件裝置上。在某些實施例中,多晶粒/晶片(如1805A-1805D)係以實質上對稱方式的配置設置在插入件裝置上之插入件裝置的 總面積內。然而應瞭解,在某些實施例中,多晶粒/晶片(如1805A-1805D)係以非對稱的配置方式設置在插入件裝置上之插入件裝置的總面積內。 18B shows a top view of interposer device 1801 to illustrate the flexibility of disposing die/wafer 1805A- 1805D relative to interposer device 1801 in accordance with certain embodiments of the present invention. Dies/wafers 1805A-1805D may be any electronic and/or optoelectronic device. It should be appreciated that four dies/wafer 1805A-1805D are shown as an illustrative example. In various embodiments, one or more die/wafer(s) (eg, 1805A- 1805D ) may be disposed at substantially any location within interposer device 1801 in substantially any configuration necessary. It should also be understood that multiple die/wafers (eg, 1805A-1805D) can be provided on the interposer device if desired. In certain embodiments, multiple dies/wafers (eg, 1805A-1805D) are configured in a substantially symmetrical fashion for the interposer device disposed on the interposer device. within the total area. It should be appreciated, however, that in some embodiments, multiple die/wafers (eg, 1805A-1805D) are disposed in an asymmetric configuration within the total area of the interposer device on the interposer device.

插入件裝置如1801可包含所需之局部繞線之金屬結構及/或貫穿玻璃通孔(TGV)以提供晶粒/晶片(複數晶粒/晶片)及/或其他與插入件裝置交界之其他電子裝置之間的電連接。在某些實施例中,可藉著利用覆晶連接技術及/或接合連接技術及/或實質上任何其他類型之晶粒/晶片連接技術將晶粒/晶片(複數晶粒/晶片)附接至插入件裝置以使晶粒/晶片(複數晶粒/晶片)電連接至插入件裝置內的導電結構。又,在各種實施例中,與晶粒/晶片(複數晶粒/晶片)內之光導結構交界的插入件裝置可邊緣耦合(尾耦合)及/或垂直耦合至插入件裝置內的光學結構。 An interposer device such as 1801 may include the required locally wound metal structures and/or through-glass vias (TGVs) to provide die/die(s) and/or other interfacing with the interposer device. An electrical connection between electronic devices. In some embodiments, the die/die(s) can be attached by utilizing flip-chip and/or bonding and/or virtually any other type of die/die attach to the interposer device to electrically connect the die/die(s) to conductive structures within the interposer device. Also, in various embodiments, interposer devices interfacing with light guiding structures within a die/die(s) may be edge coupled (tail coupled) and/or vertically coupled to optical structures within the interposer device.

圖19顯示根據本發明之某些實施例之插入件裝置1801A的平面方塊示圖,插入件裝置1801A係作為MCM整合產品的一部分。插入件裝置1801A包含電子特徵/結構以及光學特徵/結構。在各種實施例中,插入件裝置1801A尤其可由矽、玻璃、陶瓷、環氧化物複合材料(複數環氧化物複合材料)、聚合物(複數聚合物)及其組合所形成。插入件裝置1801A具有光學座與電插入件的功能且包含/支撐整合光子元件如星形耦合器1101。應瞭解,星形耦合器1101係以例示方式顯示於圖19中。在各種實施例中,圖19的星形耦合器1101可實質上被任何其他適合類型的光子裝置如光分割器之蝴蝶網路、階梯光柵中的一或多者及/或任何其他適合的光子電路如文中針對編排模組107、107A、107B、107C所述的光子電路所取代。 Figure 19 shows a plan block diagram of an interposer device 1801A as part of an MCM integrated product according to some embodiments of the present invention. Interposer device 1801A includes electrical features/structures as well as optical features/structures. In various embodiments, interposer device 1801A may be formed of silicon, glass, ceramics, epoxy composite(s), polymer(s), and combinations thereof, among others. The interposer device 1801A functions as an optical mount and an electrical interposer and contains/supports an integrated photonic component such as a star coupler 1101 . It should be appreciated that star coupler 1101 is shown in FIG. 19 by way of illustration. In various embodiments, the star coupler 1101 of FIG. 19 may be substantially any other suitable type of photonic device, such as one or more of a butterfly network of optical splitters, an echelle grating, and/or any other suitable photonic device. Circuits are replaced by photonic circuits as described herein for the programming modules 107, 107A, 107B, 107C.

又,插入件裝置1801A致使電子、光學及光電晶粒/晶片(複數晶粒/晶片)的覆晶連接及/或打線接合連接。在圖19的實例中,複數(N)光放大器模組303-1至303-N係與插入件裝置1801A交界,其中N可為一或多。在某些實施例中,光放大器模組303-1至303-N為藉由覆晶連接、打線接合連接、或其他 類型之連接而連接至插入件裝置1801A的離散晶粒/晶片。每一光放大器模組303-1至303-N包含複數(M)光放大器305-1至305-M。在各種實施例中,每一光放大器模組303-1至303-N針對連接至光放大器模組的每一光導包含一分離的光放大器305-1至305-M中的一者,俾使數據接收用的每一光訊號係受到對應之光學放大器的放大且俾使數據傳輸用的每一光訊號受到對應之光學放大器的放大。光放大器模組303-1至303-N中的每一者係經由光導1915-1至1915-N中的一對應者而光連接至一光纖對插入件連接件1903。代表光導結構1915-1至1915-N之箭頭的方向指出光傳播通過光導結構1915-1至1915-N的方向。 Also, the interposer device 1801A enables flip chip and/or wire bonding connections of electronic, optical and optoelectronic die/die(s). In the example of FIG. 19, a plurality (N) of optical amplifier modules 303-1 through 303-N interface with interposer device 1801A, where N can be one or more. In some embodiments, the optical amplifier modules 303-1 to 303-N are connected by flip chip, wire bonding, or other type connections to discrete die/chips of interposer device 1801A. Each optical amplifier module 303-1 to 303-N includes a plurality (M) of optical amplifiers 305-1 to 305-M. In various embodiments, each optical amplifier module 303-1 through 303-N includes a separate one of optical amplifiers 305-1 through 305-M for each lightguide connected to the optical amplifier module such that Each optical signal for data reception is amplified by the corresponding optical amplifier so that each optical signal for data transmission is amplified by the corresponding optical amplifier. Each of optical amplifier modules 303-1 through 303-N is optically connected to a fiber pair interposer connection 1903 via a corresponding one of light guides 1915-1 through 1915-N. The direction of the arrows representing the light guiding structures 1915-1 through 1915-N indicates the direction in which light propagates through the light guiding structures 1915-1 through 1915-N.

又,在圖19之實例中,雷射源102係與插入件裝置1801A交界。在某些實施例中,雷射源102為藉由覆晶連接、打線接合連接、或其他類型之連接而連接至插入件裝置1801A的離散晶粒/晶片。雷射源102包含(N)雷射103-1至103-N。插入件裝置1801A包含光導結構1905以將來自雷射源102的雷射光引導至星形耦合器1101(或其他光子裝置)。星形耦合器1101(或其他光子裝置)係形成在插入件裝置1801A內。換言之,星形耦合器1101(或其他光子裝置)為形成為插入件裝置1801A之一部分的一光子裝置。插入件裝置1801A亦包含光導結構1907以將雷射光自星形耦合器1101(或其他光子裝置)引導至矽光子晶粒/晶片1803。光導結構1905與1907係形成於插入件裝置1801A內。代表光導結構1905與1907之箭頭的方向指出光傳播通過光導結構1905與1907的方向。在某些實施例中,矽光子晶粒/晶片1803為藉由覆晶連接、打線接合連接、或其他類型之連接而連接至插入件裝置1801A的離散晶粒/晶片。又,矽光子晶粒/晶片1803係經由光導1909-1至1909-N中的一對應組而光連接至光放大模組303-1至303-N中的每一者。代表光導結構1909-1至1909-N之箭頭的方向指出光傳播通過光導結構1909-1至1909-N的方向。在某些實施例中,插入件裝置1801A可包含用以支持MCM整合產品之光導結構(如1905、1907、1909-1至1909-N 等)及對應結構佈局之最佳化的一或多個整合隔離件(複數隔離件)。在某些實施例中,整合隔離件(複數隔離件)可為整合於插入件裝置1801A內的離散隔離件。 Also, in the example of FIG. 19, the laser source 102 interfaces with the interposer device 1801A. In some embodiments, laser source 102 is a discrete die/chip connected to interposer device 1801A by flip-chip connections, wire bond connections, or other types of connections. The laser source 102 includes (N) lasers 103-1 to 103-N. Interposer device 1801A includes light guide structure 1905 to guide laser light from laser source 102 to star coupler 1101 (or other photonic device). Star coupler 1101 (or other photonic device) is formed within interposer device 1801A. In other words, star coupler 1101 (or other photonic device) is a photonic device formed as part of interposer device 1801A. Interposer device 1801A also includes light guide structure 1907 to guide laser light from star coupler 1101 (or other photonic device) to silicon photonic die/wafer 1803 . Light guiding structures 1905 and 1907 are formed within interposer device 1801A. The direction of the arrows representing light guiding structures 1905 and 1907 indicates the direction in which light propagates through light guiding structures 1905 and 1907 . In some embodiments, silicon photonics die/die 1803 is a discrete die/die connected to interposer device 1801A by flip chip connections, wire bond connections, or other types of connections. Also, silicon photonics die/chip 1803 is optically connected to each of optical amplification modules 303-1 through 303-N via a corresponding set of light guides 1909-1 through 1909-N. The direction of the arrows representing the light guiding structures 1909-1 to 1909-N indicates the direction of light propagation through the light guiding structures 1909-1 to 1909-N. In some embodiments, the interposer device 1801A may include light guide structures (eg, 1905, 1907, 1909-1 through 1909-N) to support MCM integrated products. etc.) and one or more integrated spacers (multiple spacers) optimized for the corresponding structural layout. In certain embodiments, the integrated spacer(s) may be discrete spacers integrated within the interposer device 1801A.

圖19之實例顯示一光纖對插入件連接件1903。然而應瞭解,在某些實施例中,可提供複數光纖對插入件連接件1903以接收進入插入件裝置1801A中的光訊號。在某些實施例中,光纖對插入件之連接件1903之配置可包含v-溝槽陣列,v-溝槽陣列將光纖對準至插入件裝置1801A上之點大小的轉換器。然而應瞭解,在各種實施例中,只要光纖對插入件之連接件1903能將光自一或多條光纖導引至插入件裝置1801A內的一或多條對應光纖及反之亦然,可使用光纖對插入件連接件1903的實質上任何配置。 The example of FIG. 19 shows a fiber-to-interposer connection 1903 . It should be appreciated, however, that in some embodiments, a plurality of fiber-to-interposer connections 1903 may be provided to receive optical signals into the interposer device 1801A. In certain embodiments, the configuration of the fiber-to-interposer connector 1903 may include a v-groove array that aligns the fiber to a spot-sized transducer on the interposer device 1801A. It should be understood, however, that in various embodiments, as long as the fiber-to-interposer connector 1903 is capable of directing light from one or more optical fibers to one or more corresponding optical fibers within the interposer device 1801A and vice versa, the use of Virtually any configuration of fiber-to-interposer connector 1903 .

進入至光纖對插入件之連接件1903中的光可能不具有受到控制的極化。又,施用僅在一極化中放大的光放大器模組303-1至303-N可能是更有效率的。因此,提供複數極化旋轉器1901以自光纖對插入件之連接件區域1903接收輸入光、將輸入光的TE與TM極化兩者分割成TE極化。在各種實施例中,每一極化旋轉器1901可為接合至插入件裝置1801A的離散元件或可整合至插入件裝置1801A內。在某些實施例中,所有極化旋轉器1901為接合至插入件裝置1801A的離散元件。在某些實施例中,所有極化旋轉器1901係整合至插入件裝置1801A內。在某些實施例中,極化旋轉器1901的一部分為接合至插入件裝置1801A的離散元件而極化旋轉器1901的一部分係整合至插入件裝置1801A內。每一極化旋轉器1901係光連接至一對應的光導1911,光導1911具有輸入波導的功能將來自光纖對插入件之連接件1903的光引導至極化旋轉器1901。又,每一極化旋轉器1901係光連接至兩個對應的光導1913,光導1913具有輸出波導的功能將來自極化旋轉器1901的光引導至光放大器模組303-1至303-N中的一者,光放大器模組303-1至303-N具有放大光訊號的功能。 Light entering the fiber-to-interposer connection 1903 may not have a controlled polarization. Also, it may be more efficient to employ optical amplifier modules 303-1 through 303-N that amplify only in one polarization. Accordingly, a plurality of polarization rotators 1901 are provided to receive input light from the connector region 1903 of the fiber-to-interposer, split both TE and TM polarizations of the input light into TE polarizations. In various embodiments, each polarization rotator 1901 can be a discrete element joined to the interposer device 1801A or can be integrated within the interposer device 1801A. In certain embodiments, all of the polarization rotators 1901 are discrete elements joined to the interposer device 1801A. In certain embodiments, all of the polarization rotators 1901 are integrated into the interposer device 1801A. In certain embodiments, a portion of the polarization rotator 1901 is a discrete component joined to the interposer device 1801A and a portion of the polarization rotator 1901 is integrated into the interposer device 1801A. Each polarization rotator 1901 is optically connected to a corresponding light guide 1911 which functions as an input waveguide to guide light from the fiber-to-interposer connection 1903 to the polarization rotator 1901 . Also, each polarization rotator 1901 is optically connected to two corresponding light guides 1913, and the light guide 1913 has the function of an output waveguide to guide the light from the polarization rotator 1901 to the optical amplifier modules 303-1 to 303-N One of the optical amplifier modules 303-1 to 303-N has the function of amplifying optical signals.

應瞭解,極化旋轉器1901與其對應的輸入光導1911與其對應的兩個輸出光導1913共同形成在插入件裝置1801A上/內針對每一光放大器模組303-1至303-N的一組重覆(y)次的結構。例如,考慮光纖對插入件之連接件1903支持12條光纖的連接。又,針對此實例,考慮在插入件裝置1801A上/內有兩個光放大器模組303-1與303-2。因此針對此實例,兩個光放大器模組303-1與303-2中的每一者將服務連接至光纖對插入件之連接件1903之12條光纖中的6條光纖即一半的光纖。又,在此實例中,在受到兩個光放大器模組303-1與303-2中之一特定者服務的6條光纖中,3條光纖將會用於數據傳輸(TX)而3條光纖會用於數據接收(RX)。因此在此實例中,連接以服務光放大器模組303-1的會有3(y=3)個極化旋轉器1901與其對應的輸入光導1911與其對應的輸出光導1913。又,在此實例中,連接以服務光放大器模組303-2的會有3(y=3)個極化旋轉器1901與其對應的輸入光導1911與輸出光導1913。應瞭解,光連接至光放大器模組303-1至303-N中之一特定者之極化旋轉器1901的數目(y)可隨著連接至插入件裝置1801A之光纖連接件之數目的增加而線性增加。在各種實施例中,連接至插入件裝置1801A之光纖連接件的數目可藉著重覆光纖對插入件之連接件1903及/或藉著增加每一光纖對插入件連接件1903的光纖數目而增加。 It should be appreciated that the polarization rotator 1901 with its corresponding input light guide 1911 and its corresponding two output light guides 1913 are collectively formed on/in the interposer device 1801A for each optical amplifier module 303-1 to 303-N. A structure that repeats (y) times. For example, consider that the fiber-to-interposer connector 1903 supports the connection of 12 fibers. Also, for this example, consider two optical amplifier modules 303-1 and 303-2 on/in interposer device 1801A. Thus for this example, each of the two optical amplifier modules 303-1 and 303-2 will serve 6 of the 12 fibers or half of the fibers connected to the connector 1903 of the fiber pair insert. Also, in this example, of the 6 fibers served by a particular one of the two optical amplifier modules 303-1 and 303-2, 3 fibers will be used for data transmission (TX) and 3 fibers Will be used for data reception (RX). Thus in this example, there are 3 (y=3) polarization rotators 1901 with their corresponding input light guides 1911 and their corresponding output light guides 1913 connected to serve the optical amplifier module 303 - 1 . Also, in this example, there are 3 (y=3) polarization rotators 1901 and their corresponding input light guides 1911 and output light guides 1913 connected to serve the optical amplifier module 303 - 2 . It should be appreciated that the number (y) of polarization rotators 1901 optically connected to a particular one of optical amplifier modules 303-1 through 303-N can be increased with the number of fiber optic connections connected to interposer device 1801A while increasing linearly. In various embodiments, the number of fiber optic connections to interposer device 1801A can be increased by duplicating fiber-to-interposer connections 1903 and/or by increasing the number of fibers per fiber-to-interposer connection 1903 .

對於極化旋轉器1901的製造而言,當在插入件裝置1801A上形成光導結構時採用低溫處理是有利的。在此背景下,低溫處理係指低於約450℃。與前段製程(FEOL)之SOI(絕緣層上覆矽)晶圓相匹配之例示性的極化旋轉器係載於下列文獻中:"Polarization rotator-splitters and controllers in a Si 3 N 4-on-SOI integrated photonics platform," by Sacher,Wesley D.,et al.,Optics express 22.9(2014):11167-11174(後續稱為「Sacher」),將其所有內容包含於此作為所有目的之參考。然而Sacher的極化旋轉器將極化旋轉器-分割器限制至FEOL與SOI插入件裝置的應用。為了使Sacher的極化旋轉器有更多的功能,在後段製程 (BEOL)中利用低溫處理實施極化旋轉器。此作法的一挑戰為使用BEOL相匹配的薄膜。已知低溫非晶矽(a-Si及/或a-Si-H)為低衰低薄膜,如在下列文獻中所述:"Use of amorphous silicon for active photonic devices," by Della Corte,Francesco Giuseppe,and Sandro Ra,IEEE Transactions on Electron Devices 60.5(2013):1495-1505(後續稱為「Corte」),將其所有內容包含於此作為所有目的之參考。此外,文獻如下列文獻中已展示低溫及低耗損的PECVD SiNx:"Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications," by Bucio,Thalía Domínguez,et al.,Journal of Physics D:Applied Physics 50.2(2016):025106(此後稱為「Bucio」),將其所有內容包含於此作為所有目的之參考。 For the fabrication of the polarization rotator 1901, it is advantageous to employ low temperature processing when forming the light guiding structure on the interposer device 1801A. In this context, low temperature processing means below about 450°C. Exemplary polarization rotators compatible with front-end-of-line (FEOL) SOI (silicon-on-insulator) wafers are described in: "Polarization rotator-splitters and controllers in a Si 3 N 4-on- SOI integrated photonics platform," by Sacher, Wesley D., et al., Optics express 22.9 (2014): 11167-11174 (hereinafter "Sacher"), the entire contents of which are incorporated herein by reference for all purposes. However, Sacher's polarization rotator limits the application of the polarization rotator-splitter to FEOL and SOI interposer devices. In order to make Sacher's polarization rotator have more functions, in the back-end process (BEOL) implements a polarization rotator using cryogenic processing. One challenge of this approach is the use of BEOL-matched films. Low-temperature amorphous silicon (a-Si and/or a-Si-H) is known to be a low-attenuation thin film, as described in: "Use of amorphous silicon for active photonic devices," by Della Corte, Francesco Giuseppe , and Sandro Ra, IEEE Transactions on Electron Devices 60.5 (2013): 1495-1505 (hereinafter "Corte"), the entire contents of which are incorporated herein by reference for all purposes. In addition, low-temperature and low-loss PECVD SiNx have been demonstrated in literature such as the following: "Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications," by Bucio, Thalía Domínguez, et al., Journal of Physics D: Applied Physics 50.2 (2016): 025106 (hereinafter "Bucio"), the entire contents of which are incorporated herein by reference for all purposes.

考慮下列之例示性結構:厚度介於約200奈米(nm)至400nm之間的SiNx層,其可被圖案化及蝕刻形成O至C頻段的光導。在此SiNx光導層的下方設有一層厚度介於約50nm至約200nm的二氧化矽層。在此二氧化矽層之下方設有一層厚度介於約150nm至約300nm的a-Si-H(或a-Si)層。此a-Si-H(或a-Si)層為另一光導層且可以Sacher中所述之方式圖案化及蝕刻。在某些實施例中,a-Si-H(或a-Si)層可在SiNx層上方製造而非如上所述在其下方製造。應瞭解,上述之例示性結構的膜層能使極化旋轉器-分割器在BEOL插入件裝置流程中製造,藉此使其與高產量及低成本之插入件裝置製造目標相匹配。 Consider the following exemplary structure: a SiNx layer with a thickness between about 200 nanometers (nm) and 400 nm that can be patterned and etched to form an O to C band lightguide. A silicon dioxide layer with a thickness of about 50nm to about 200nm is disposed under the SiNx optical guiding layer. An a-Si-H (or a-Si) layer with a thickness of about 150 nm to about 300 nm is disposed under the silicon dioxide layer. This a-Si-H (or a-Si) layer is another photoconductive layer and can be patterned and etched as described in Sacher. In certain embodiments, the a-Si-H (or a-Si) layer may be fabricated over the SiNx layer rather than under it as described above. It will be appreciated that the layers of the exemplary structures described above enable the polarization rotator-splitter to be fabricated in a BEOL interposer device flow, thereby making it compatible with high throughput and low cost interposer device fabrication goals.

圖20A顯示根據本發明之某些實施例之插入件裝置1801A的垂直橫剖面方塊圖,插入件裝置1801A係作為MCM整合產品的一部分。在圖20A的實例中,雷射源102、光放大器模組303-1至303-N及矽光子晶粒/晶片1803陷入插入件裝置1801A中。與插入件裝置1801A陷入交界的此種類型能使插入件裝置1081A內的光導與雷射源102、光放大器模組303-1至303-N及矽光子晶粒/晶片1803每一者內的光導邊緣耦合,例如前面針對圖5B所討論的狀況。又, 應瞭解,雷射源102、光放大器模組303-1至303-N及矽光子晶粒/晶片1803中的任何者及插入件裝置1801A可適當地包含點大小的轉換器。鑑於晶粒/晶片(如雷射源102、光放大器模組303-1至303-N及矽光子晶粒/晶片1803)在插入件裝置1801A上的設置精準度可落在目標位置的約1微米內,包含點大小的轉換器可以是有用的。 Figure 20A shows a vertical cross-sectional block diagram of an interposer device 1801A as part of an MCM integrated product, according to some embodiments of the present invention. In the example of FIG. 20A, laser source 102, optical amplifier modules 303-1 to 303-N, and silicon photonics die/wafer 1803 are embedded in interposer device 1801A. This type of interfacing with interposer device 1801A enables light guides within interposer device 1081A to be integrated into each of laser source 102, optical amplifier modules 303-1 through 303-N, and silicon photonic die/chip 1803. Lightguide edge coupling, such as the situation discussed above with respect to Figure 5B. again, It should be appreciated that laser source 102, any of optical amplifier modules 303-1 through 303-N, and silicon photonics die/chip 1803 and interposer device 1801A may suitably include spot size converters. Whereas the placement accuracy of the die/die (e.g., laser source 102, optical amplifier modules 303-1 to 303-N, and silicon photonics die/die 1803) on interposer device 1801A can fall within about 1% of the target position. Within microns, converters containing point sizes can be useful.

圖20B顯示根據本發明之某些實施例之插入件裝置1801A的另一垂直橫剖面方塊圖,插入件裝置1801A係作為MCM整合產品的一部分。在圖20B之實例中,雷射源102、光放大器模組303-1至303-N及矽光子晶粒/晶片1803係設置及安裝在插入件裝置1801A的上部上。與插入件裝置1801A的此種上安裝交界使插入件裝置1801A內的光導能與雷射源102、光放大器模組303-1至303-N及矽光子晶粒/晶片1803每一者內的光導垂直耦合,例如前面針對圖3Y所討論的狀況。 Figure 20B shows another vertical cross-sectional block diagram of an interposer device 1801A as part of an MCM integrated product in accordance with certain embodiments of the present invention. In the example of FIG. 2OB, laser source 102, optical amplifier modules 303-1 to 303-N, and silicon photonics die/chip 1803 are disposed and mounted on the upper portion of interposer device 1801A. This top-mount interface with interposer device 1801A enables the light guide within interposer device 1801A to communicate with the laser source 102, optical amplifier modules 303-1 through 303-N, and silicon photonics die/chip 1803 each. The lightguides are coupled vertically, such as the situation discussed above with respect to Figure 3Y.

圖20C顯示根據本發明之某些實施例之插入件裝置1801A的另一垂直橫剖面方塊圖,插入件裝置1801A係作為MCM整合產品的一部分。在圖20C的實例中,光放大器模組303-1至303-N係陷入插入件裝置1801A中以使插入件裝置1801A內的光導能與光放大器模組303-1至303-N內的光導邊緣耦合。又,在圖20C的實例中,矽光子晶粒/晶片1803係設置於插入件裝置1801A的上方上使插入件裝置1801A內的光導能與矽光子晶粒/晶片1803內的光導垂直耦合。應瞭解,在各種實施例中,插入件裝置1801A可用以在插入件裝置1801A之光導與和插入件裝置1801A交界之任何晶粒/晶片的光導之間實質上提供邊緣耦合與垂直耦合的任何組合。因此在某些實施例中,如在圖20C的實例中,某些晶粒/晶片(複數晶粒/晶片)可以陷入配置的方式與插入件裝置1801A交界而某些晶粒/晶片(複數晶粒/晶片)可以上安裝如表面安裝配置的方式與插入件裝置 1801A交界。又,在某些實施例中,插入件裝置1801A的上表面及下表面可具有陷入安裝及/或表面安裝設置的一或多個交界晶粒/晶片(複數晶粒/晶片)。 Figure 20C shows another vertical cross-sectional block diagram of an interposer device 1801A as part of an MCM integrated product in accordance with some embodiments of the present invention. In the example of FIG. 20C , optical amplifier modules 303-1 through 303-N are recessed into interposer device 1801A so that the light guides within interposer device 1801A can communicate with the light guides within optical amplifier modules 303-1 through 303-N. edge coupling. Also, in the example of FIG. 20C , silicon photonics die/chip 1803 is disposed above interposer device 1801A such that light guides within interposer device 1801A can be vertically coupled to light guides within silicon photonics die/chip 1803 . It should be appreciated that in various embodiments, the interposer device 1801A can be used to provide virtually any combination of edge coupling and vertical coupling between the light guide of the interposer device 1801A and the light guide of any die/wafer interfacing with the interposer device 1801A . Thus in some embodiments, as in the example of FIG. 20C , certain die/die(s) may be trapped in a configuration that interfaces with interposer device 1801A while certain die/die(s) die/wafer) can be mounted on a surface mount configuration with an interposer device 1801A Junction. Also, in some embodiments, the upper and lower surfaces of the interposer device 1801A may have one or more interface die/die(s) in a recess mount and/or surface mount arrangement.

圖21顯示根據本發明之某些實施例之一例示性插入件裝置1801B之上表面的等角視圖。插入件裝置1801B包含形成在其上表面內的空腔/凹陷2100。空腔/凹陷2100係形成而接收晶粒/晶片以使晶粒/晶片光學邊緣耦合至插入件裝置1801B內的光導。每一晶粒/晶片可實質上為任何類型的晶粒/晶片,尤其包含光子晶粒/晶片、電子晶粒/晶片、矽光子晶粒/晶片。當晶粒/晶片內的光導係邊緣耦合至插入件裝置1801B內之對應光導時,將晶粒/晶片內的光導設置在插入件裝置1801B內之光導的鄰近之處是有利的,其中鄰近被認為是沿著連接光導之間之光傳播之軸小於約10微米。因此應瞭解,形成空腔/凹陷2100俾以在將晶粒/晶片放置到空腔/凹陷2100內時空腔/凹陷2100欲進行邊緣耦合之側壁(複數側壁)係極鄰近晶粒/晶片。顯示例示性的插入件裝置1801B包含光導2101以例示光導2101在插入件裝置1801B內可具有任意繞線路徑且例示光導2101可在晶粒/晶片(複數晶粒/晶片)之多於一個邊緣處與晶粒/晶片(複數晶粒/晶片)光連接。應瞭解,每一空腔/凹陷2100可依需求具有任何尺寸、外圍形狀及深度以容納接收晶粒/晶片。又,每一空腔/凹陷2100可依需求具有均勻深度或非均勻深度即多重深度以容納接收晶粒/晶片。又,圖21之實例顯示在某些實施例中,空腔/凹陷2100中的一或多者可用以具有側突出物(或口袋)2103作為毛細底填的環氧化物儲槽。 Figure 21 shows an isometric view of the upper surface of an exemplary interposer device 1801B in accordance with certain embodiments of the present invention. The insert device 1801B includes a cavity/recess 2100 formed in its upper surface. A cavity/recess 2100 is formed to receive a die/wafer to enable the optical edge coupling of the die/wafer to the light guide within the interposer device 1801B. Each die/wafer can be substantially any type of die/wafer, including photonic die/wafer, electronic die/wafer, silicon photonic die/wafer, among others. When the lightguide within the die/wafer is edge-coupled to the corresponding lightguide within the interposer device 1801B, it is advantageous to place the lightguide within the die/wafer adjacent to the lightguide within the interposer device 1801B, where the proximity is It is believed to be less than about 10 microns along the axis of light propagation between the connecting lightguides. It will thus be appreciated that the cavity/recess 2100 is formed such that the sidewall(s) of the cavity/recess 2100 for edge coupling are in close proximity to the die/wafer when the die/wafer is placed within the cavity/recess 2100. An exemplary interposer device 1801B is shown including a light guide 2101 to illustrate that the light guide 2101 can have arbitrary routing paths within the interposer device 1801B and to illustrate that the light guide 2101 can be at more than one edge of a die/wafer(s) Optical connection to die/wafer (plurality of die/wafer). It should be understood that each cavity/recess 2100 can have any size, peripheral shape and depth as desired to accommodate receiving die/wafer. Also, each cavity/recess 2100 can have a uniform depth or a non-uniform depth, that is, multiple depths to accommodate receiving dies/wafers as required. Also, the example of FIG. 21 shows that in some embodiments, one or more of the cavities/recesses 2100 can be used as an epoxy reservoir with side protrusions (or pockets) 2103 as capillary underfill.

圖22顯示根據本發明之某些例示性實施例之圖21之例示性插入件裝置1801B,其在空腔/凹陷2100內設有晶粒/晶片2201。圖22的顯示晶粒/晶片2201之一側上的側突出物2103A,其中空腔/凹陷2100係大於晶粒/晶片2201。環氧化物可設置於側突出物2103A內以產生環氧化物儲槽。環氧化物係設置於側突出物2103A內以不完全覆蓋晶粒/晶片2201的上部。在某些情況中, 存在於晶粒/晶片2201之上部上的環氧化物可造成不利的影響如產生較高熱阻抗的路徑及/或造成應力破裂。例如,若環氧化物存在於晶粒/晶片2201的上部上且一蓋係設置於晶粒/晶片2201上方,則環氧化物可造成應力破裂。存在於側突出物2103A內的環氧化物具有填充晶粒/晶片2201與插入件裝置1801B之間之空洞的功能,空洞包含空腔/凹陷2100與晶粒/晶片2201之側壁之間的空洞。此處理被稱為毛細底填。圖22亦顯示可以如何將特定的晶粒/晶片2201設置於具有兩或更多側突出物2103B的空腔/凹陷2100內。又,圖22亦顯示可以如何將特定的晶粒/晶片2201設置於具有不同形狀之側突出物2103B的空腔/凹陷2100內。 FIG. 22 shows the exemplary interposer device 1801B of FIG. 21 with a die/wafer 2201 within a cavity/recess 2100 in accordance with certain exemplary embodiments of the invention. FIG. 22 shows side protrusions 2103A on one side of die/wafer 2201 where cavity/recess 2100 is larger than die/wafer 2201 . Epoxy may be disposed within the side protrusions 2103A to create an epoxy reservoir. Epoxy is placed within the side protrusions 2103A to not completely cover the upper portion of the die/wafer 2201 . In some cases, Epoxy present on the upper portion of the die/wafer 2201 can cause adverse effects such as creating paths for higher thermal resistance and/or causing stress cracking. For example, if the epoxy is present on the upper portion of the die/wafer 2201 and a lid is placed over the die/wafer 2201, the epoxy can cause stress cracking. The epoxy present in the side protrusion 2103A has the function of filling the void between the die/die 2201 and the interposer device 1801B, including the void between the cavity/recess 2100 and the sidewall of the die/die 2201. This process is called capillary underfill. Figure 22 also shows how a particular die/wafer 2201 can be placed within a cavity/recess 2100 with two or more side protrusions 2103B. Also, FIG. 22 shows how a specific die/wafer 2201 can be placed within a cavity/recess 2100 with side protrusions 2103B of different shapes.

圖23A至23F顯示根據本發明之某些實施例之用以連接至插入件裝置1801C的一整合性機械傳輸(MT)套圈。在某些實施例中,MT套圈可用來作為光纖對插入件之連接件1903。MT套圈包含上半部2301與下半部2303。MT套圈之上半部2301與下半部2303可由矽、玻璃、塑膠或其他與週遭/界面材料化學相匹配且能夠提供所需之熱與機械效能的材料所形成。MT套圈之上半部2301與下半部2303可包含一或多個對準鑰2305以提供上半部2301與下半部2303的對準與適配。例如,在圖23A至23F之例示性MT套圈中,上半部2301上的對準鑰2305自上半部2301向外突出且具有與下半部2303之對準鑰2305互補即共形適配的形狀,對準鑰2305係以空腔/凹陷的形式形成於下半部2303內。在各種實施例中,對準鑰2305可具有各種橫剖面如三角形、矩形、圓形或其他形狀。MT套圈的上半部2301亦包含一或多個部分孔2307且MT套圈的下半部2303亦包含一或多個部分孔2309。部分孔2307與2309一起形成對準孔以提供整合式MT套圈與另一吻合MT套圈或與另一相匹配形成的連接件結構/裝置之間的對準。在某些實施例中,在形成插入件裝置1801C以容納整合式MT套 圈的安裝後,插入件裝置1801C之一或多個拉耳(tab)2311結構維持不變。在某些實施例中,一或多個拉耳2311會消失。 23A-23F illustrate an integrated mechanical transmission (MT) ferrule for connection to an inserter device 1801C, according to some embodiments of the invention. In certain embodiments, an MT ferrule may be used as the fiber-to-interposer connector 1903. The MT ferrule includes an upper half 2301 and a lower half 2303 . The upper half 2301 and lower half 2303 of the MT ferrule can be formed from silicon, glass, plastic or other materials that are chemically compatible with the surrounding/interface material and can provide the desired thermal and mechanical performance. The upper half 2301 and lower half 2303 of the MT ferrule may include one or more alignment keys 2305 to provide alignment and fit of the upper half 2301 and lower half 2303 . For example, in the exemplary MT ferrule of FIGS. 23A to 23F , the alignment keys 2305 on the upper half 2301 protrude outwardly from the upper half 2301 and have complementary, i.e. conformal, alignment keys 2305 to the lower half 2303. According to the matching shape, the alignment key 2305 is formed in the lower half 2303 in the form of a cavity/recess. In various embodiments, the alignment key 2305 may have various cross-sections such as triangular, rectangular, circular, or other shapes. The upper half 2301 of the MT ferrule also includes one or more partial holes 2307 and the lower half 2303 of the MT ferrule also includes one or more partial holes 2309 . Partial holes 2307 and 2309 together form alignment holes to provide alignment between the integral MT ferrule and another anastomotic MT ferrule or another matingly formed connector structure/means. In some embodiments, after forming the insert device 1801C to accommodate the integrated MT sleeve After installation of the collar, the configuration of one or more tabs 2311 of the insert device 1801C remains unchanged. In some embodiments, one or more tabs 2311 disappear.

如圖23B中所示,上半部2301與下半部2303係安裝至插入件裝置1801C以形成整合式MT套圈。在各種實施例中,上半部2301與下半部2303可利用環氧樹脂、黏膠、焊料或任何其他適合的黏著劑而安裝至插入件裝置1801C。在MT套圈之上半部2301與下半部2303係安裝至插入件裝置1801C而形成整合式MT套圈後,整合式MT套圈具有與其他適配連接件結構/裝置例如與標準MT套圈相匹配的結構。然而應瞭解,整合式MT套圈之配置可與實質上任何其他形式的適配連接件結構/裝置相匹配,不限於與標準MT套圈一起使用。插入件裝置1801C包含複數光導2313,複數光導2313延伸至整合式MT套圈之上半部2301與下半部2303之間之位置處之插入件裝置1801C的邊緣。在某些實施例中,光導2313之設置係根據與整合式MT套圈吻合之連接件結構/裝置內之光纖插孔的相同節距,如標準MT套圈內之光纖插口的節距。在某些實施例中,在光導位置處插入件裝置1801C的邊緣可加以拋光。又,在某些實施例中,插入件裝置1801C可包含一或多個點大小的轉換器以與整合式MT套圈共同作業以改善光耦合。例如,在某些實施例中,此類點大小之轉換器可被配置為光導的倒斜角。 As shown in Figure 23B, upper half 2301 and lower half 2303 are mounted to insert device 1801C to form an integrated MT ferrule. In various embodiments, the upper half 2301 and the lower half 2303 may be mounted to the interposer device 1801C using epoxy, glue, solder, or any other suitable adhesive. After the upper half 2301 and lower half 2303 of the MT ferrule are mounted to the insert device 1801C to form an integrated MT ferrule, the integrated MT ferrule has the ability to integrate with other adapter structures/devices such as standard MT ferrules. The circles match the structure. It should be understood, however, that the configuration of the integrated MT ferrule may be mated with virtually any other form of mating connector structure/device, not limited to use with standard MT ferrules. The interposer device 1801C includes a plurality of light guides 2313 extending to the edge of the interposer device 1801C at a location between the upper half 2301 and the lower half 2303 of the integrated MT ferrule. In certain embodiments, light guides 2313 are arranged according to the same pitch as the fiber optic sockets in the connector structure/device that fits into the integrated MT ferrule, such as the pitch of the fiber optic sockets in a standard MT ferrule. In certain embodiments, the edges of the interposer device 1801C at the light guide locations may be polished. Also, in some embodiments, the interposer device 1801C may include one or more spot-sized transducers to work with the integrated MT ferrule to improve optical coupling. For example, in some embodiments, such spot size converters may be configured as chamfers of light guides.

圖24顯示根據本發明之某些實施例之貫穿雷射源102之例示性垂直橫剖面。然而應瞭解,參考圖24所述之原理可應用至其他電子及/或光子裝置如光放大模組303。為了討論的目的,圖24的橫剖面顯示複數雷射103-1至103-N。然而應瞭解,在其他的電子及/或光子裝置的情況下,複數雷射103-1至103-N可為其他元件。例如,若圖24的橫剖面為光放大模組303的橫剖面而非雷射源102的橫剖面,則複數光放大器305-1至305-M可取代複數雷射103-1至103-N。 圖24的垂直橫剖面顯示電子及/或光子裝置如雷射源102的基板1021。在某些實施例中,基板1021係由InP所形成。 Figure 24 shows an exemplary vertical cross-section through laser source 102 according to some embodiments of the present invention. However, it should be understood that the principles described with reference to FIG. 24 can be applied to other electronic and/or photonic devices such as the optical amplification module 303 . For purposes of discussion, the cross-section of FIG. 24 shows a plurality of lasers 103-1 through 103-N. However, it should be understood that in the case of other electronic and/or photonic devices, the complex lasers 103-1 to 103-N may be other elements. For example, if the cross-section in FIG. 24 is the cross-section of the optical amplification module 303 rather than the cross-section of the laser source 102, then the complex optical amplifiers 305-1 to 305-M can replace the complex lasers 103-1 to 103-N . The vertical cross-section of FIG. 24 shows a substrate 1021 of an electronic and/or photonic device such as a laser source 102 . In some embodiments, the substrate 1021 is formed of InP.

對於III-V族的光子裝置而言,特徵部可利用各種磊晶層之(z方向)磊晶成長來定義。由於裝置的功能係取決於磊晶層的特性如組成與厚度,因此的形成磊晶層係受到極良好的控制。圖24的垂直橫剖面顯示三個例示性的磊晶層1022、1023及1024。在某些實施例中,磊晶層1022為磊晶成長所形成的第一光子層。在某些實施例中,磊晶層1022為PIN二極體的N型部分。應瞭解,PIN二極體為分佈回饋雷射(DFB)與半導體光放大器(SOA)的元件。在某些實施例中,磊晶層1023為磊晶成長所形成的第二光子層。在某些實施例中,磊晶層1023為PIN二極體的本質部分。在某些實施例中,磊晶層1024為磊晶成長所形成的第三光子層。在某些實施例中,磊晶層1024為PIN二極體的p型部分。 For III-V photonic devices, features can be defined using the (z-direction) epitaxial growth of various epitaxial layers. Since the functionality of the device depends on the properties of the epitaxial layer, such as composition and thickness, the formation of the epitaxial layer is extremely well controlled. The vertical cross-section of FIG. 24 shows three exemplary epitaxial layers 1022 , 1023 and 1024 . In some embodiments, the epitaxial layer 1022 is a first photonic layer formed by epitaxial growth. In some embodiments, epitaxial layer 1022 is an N-type portion of a PIN diode. It should be understood that PIN diodes are components of Distributed Feedback Lasers (DFB) and Semiconductor Optical Amplifiers (SOA). In some embodiments, the epitaxial layer 1023 is a second photonic layer formed by epitaxial growth. In some embodiments, the epitaxial layer 1023 is an essential part of the PIN diode. In some embodiments, the epitaxial layer 1024 is a third photonic layer formed by epitaxial growth. In some embodiments, epitaxial layer 1024 is the p-type portion of a PIN diode.

圖24之垂直橫剖面亦顯示平坦化層1025。在各種實施例中,平坦化層1025可由苯並環丁烯(BCB)、或旋塗介電材料(SOD)、或用以形成平坦化層之半導體製造中所用的一或多種其他材料所形成。在某些實施例中,平坦化層1025的材料係旋塗於晶圓/基板上。取決於正在沉積之平坦化層1025之材料下方的特徵部的地貌,將平坦化層1025的材料旋塗於晶圓/基板上的處理可造成形成尖峰及凹谷。此些尖峰及凹谷會造成橫跨晶圓/基板之平坦化層1025之厚度的變異。又,平坦化層1025之厚度的變異可為橫跨晶圓/基板之徑向位置的函數如平坦化層1025之厚度在晶圓/基板中央至邊緣的變異。 The vertical cross-section of FIG. 24 also shows the planarization layer 1025 . In various embodiments, planarization layer 1025 may be formed from benzocyclobutene (BCB), or spin-on-dielectric (SOD), or one or more other materials used in semiconductor manufacturing to form planarization layers . In some embodiments, the material of the planarization layer 1025 is spin-coated on the wafer/substrate. Depending on the topography of the features beneath the planarization layer 1025 material being deposited, the process of spin coating the planarization layer 1025 material onto the wafer/substrate can result in the formation of peaks and valleys. These peaks and valleys cause variations in the thickness of the planarization layer 1025 across the wafer/substrate. Also, the variation in the thickness of the planarizing layer 1025 may be a function of radial position across the wafer/substrate such as the variation in the thickness of the planarizing layer 1025 from the center to the edge of the wafer/substrate.

圖24之垂直橫剖面亦顯示裝置之導電內連線結構1026。在某些例示性實施例中,III-V裝置之導電內連線結構如1026可由Au、Ag、W、Ni及其他金屬/合金中的一或多者所形成。在圖24之實例中,導電內連線結構1026將雷射源102覆晶連接至插入件裝置。例如,導電內連線結構1026可被焊至插入件裝置上之對應導電結構。 The vertical cross-section of Figure 24 also shows the conductive interconnect structure 1026 of the device. In certain exemplary embodiments, conductive interconnect structures of III-V devices such as 1026 may be formed of one or more of Au, Ag, W, Ni, and other metals/alloys. In the example of FIG. 24, conductive interconnect structure 1026 flip chip connects laser source 102 to the interposer device. For example, conductive interconnect structures 1026 may be soldered to corresponding conductive structures on the interposer device.

圖25顯示根據本發明之某些實施例之在蝕刻平坦化層1025以顯露磊晶層1024(第三光子層)之部分1027後圖24的垂橫剖面圖。磊晶層1024之經顯現的部分1027具有「接合肩」的功能。在蝕刻平坦化層1025而顯現部分1027後,磊晶層1024之經顯現的部分1027之上表面的z方向位置係與磊晶層1024完成磊晶成長時相同。由於磊晶層1024的磊晶成長在z方向上受到良好控制(比平坦化層1025的z方向厚度有遠遠更多的控制),因此磊晶層1024之經顯現之部分1027提供了可用於覆晶操作之精準更佳z方向控制的參考結構。又,應注意,形成在雷射源102上的光導可自磊晶層1022、1023及1024所形成。因此,使用磊晶層1024之經顯現之部分1027作為覆晶連接操作中之z方向控制的參考結構能得到雷射源102之光導與插入件裝置之光導之間的更可靠光耦合。 25 shows a vertical cross-sectional view of FIG. 24 after etching planarization layer 1025 to reveal portion 1027 of epitaxial layer 1024 (third photonic layer), according to some embodiments of the present invention. The revealed portion 1027 of the epitaxial layer 1024 functions as a "bonding shoulder". After etching the planarization layer 1025 to reveal the portion 1027, the z-direction position of the upper surface of the revealed portion 1027 of the epitaxial layer 1024 is the same as when the epitaxial layer 1024 has completed epitaxial growth. Since the epitaxial growth of epitaxial layer 1024 is well controlled in the z-direction (much more control than the z-direction thickness of planarization layer 1025), the developed portion 1027 of epitaxial layer 1024 provides A reference structure for precise and better z-direction control of flip-chip operations. Also, it should be noted that the light guide formed on the laser source 102 can be formed from the epitaxial layers 1022 , 1023 and 1024 . Thus, using the revealed portion 1027 of the epitaxial layer 1024 as a reference structure for z-direction control in flip-chip attach operations results in a more reliable optical coupling between the light guide of the laser source 102 and the light guide of the interposer device.

圖26顯示根據本發明之某些實施例之覆晶連接至插入件裝置2601之圖25之雷射源102的垂直橫剖面圖。在圖26的實例中如在位置2603處所示,磊晶層1024之經顯現之部分1027係接合至插入件裝置2601之插槽/空穴內的氮化物蝕刻停止層。在圖26的實例中,插入件裝置2601為矽插入件。插入件裝置2601之氮化物停止層及剩餘的層間介電(ILD)層可由晶圓級沉積技術例如尤其是化學汽相沉積(CVD)及/或原子層沉積(ALD)所形成。因此,能良好定義及良好控制插入件裝置2601內之氮化物蝕刻停止層及其他ILD層的精準。這成就雷射源102與插入件裝置2601之間之z方向對準的良好控制。 FIG. 26 shows a vertical cross-sectional view of the laser source 102 of FIG. 25 flip-chip connected to an interposer device 2601 in accordance with certain embodiments of the present invention. In the example of FIG. 26 , as shown at location 2603 , the revealed portion 1027 of epitaxial layer 1024 is bonded to the nitride etch stop layer within the socket/cavity of interposer device 2601 . In the example of FIG. 26, the interposer device 2601 is a silicon interposer. The nitride stop layer and remaining interlayer dielectric (ILD) layer of interposer device 2601 may be formed by wafer level deposition techniques such as, inter alia, chemical vapor deposition (CVD) and/or atomic layer deposition (ALD). Thus, the precision of the nitride etch stop layer and other ILD layers within the interposer device 2601 can be well defined and well controlled. This enables good control of the z-direction alignment between the laser source 102 and the interposer device 2601 .

在某些實施例中,所揭露之插入件裝置1801/1801A/1801B/1801C包含基板。基板包含用以接收雷射源晶片102之雷射源晶片界面區域。基板亦包含用以接收矽光子晶片1803之矽光子晶片界面區域。基板亦包含用以接收光放大器模組303-1-303-N之光放大器模組界面區域。光纖對插入件連接區域係形成於基板內以包含光纖對插入件之連接件1903。第一組光傳輸結構係形成於基板內以在雷射源晶片102和矽光子晶片1803係與基板交界時將雷射源晶片102 光學連接至矽光子晶片1803。第二組光傳輸結構係形成於基板內以在矽光子晶片1803和光放大器模組303-1-303-N係與基板交界時將矽光子晶片1803光學連接至光放大器模組303-1-303-N。第三組光傳輸結構係形成於基板內以在光放大器模組303-1-303-N係與基板交界時將光放大器模組303-1-303-N光學連接至光纖對插入件連接區域。 In certain embodiments, the disclosed interposer devices 1801/1801A/1801B/1801C include a substrate. The substrate includes a laser source chip interface area for receiving the laser source chip 102 . The substrate also includes a silicon photonics chip interface region for receiving the silicon photonics chip 1803 . The substrate also includes the optical amplifier module interface area for receiving the optical amplifier modules 303-1-303-N. A fiber-to-interposer connection area is formed in the substrate to contain the connections 1903 of the fiber-to-interposer. The first group of light transmission structures is formed in the substrate to connect the laser source chip 102 when the laser source chip 102 and the silicon photonic chip 1803 are interfaced with the substrate. Optically connected to the silicon photonics chip 1803 . A second set of optical transmission structures is formed in the substrate to optically connect the silicon photonics die 1803 to the optical amplifier module 303-1-303-N when the silicon photonics die 1803 and the optical amplifier module 303-1-303-N interface with the substrate -N. A third set of optical transmission structures is formed in the substrate to optically connect the optical amplifier modules 303-1-303-N to the fiber pair interposer connection area when the optical amplifier modules 303-1-303-N interface with the substrate .

在某些實施例中,第一組光傳輸結構包含形成在基板內之光編排模組。光編排模組係用以自雷射源晶片102接收具有不同波長的複數雷射光束、將複數雷射光束結合為一多波長雷射光源、並將多波長雷射光源的一部分傳輸至矽光子晶片界面區域處之複數位置的每一位置,當矽光子晶片1803係與基板交界時矽光子晶片界面區域處之複數位置係與矽光子晶片1803之對應複數雷射光之光輸入口對準。在某些實施例中,光編排模組包含Nx1相維持波長結合器701具有光連接至1xM相維持寬頻功率分割器705之光輸入的光輸出,其中N為複數雷射光束的數目而M為矽光子晶片界面區域處之該複數位置的數目,矽光子晶片界面區域處之複數位置係與矽光子晶片1803之該對應複數雷射光之光輸入口對準。在某些實施例中,光編排模組包含具有複數光輸入及一光輸出的陣列式波導801,複數光輸入係用以接收複數雷射光束而光輸出係光連接至寬頻功率分割器805的光輸入。寬頻功率分割器805具有複數光輸出,複數光輸出係用以將光傳輸至矽光子晶片界面區域處之該複數位置,矽光子晶片界面區域處之複數位置係與矽光子晶片1803之該對應複數雷射光之光輸入口對準。 In some embodiments, the first set of light-transmitting structures includes light-organizing modules formed within the substrate. The optical programming module is used to receive a plurality of laser beams with different wavelengths from the laser source chip 102, combine the plurality of laser beams into a multi-wavelength laser source, and transmit a part of the multi-wavelength laser source to silicon photonics Each of the plurality of locations at the wafer interface region is aligned with the corresponding plurality of laser light input ports of the silicon photonics wafer 1803 when the silicon photonics wafer 1803 is interfaced with the substrate. In some embodiments, the optical programming module includes an Nx1 phase maintaining wavelength combiner 701 with an optical output optically connected to an optical input of a 1xM phase maintaining broadband power divider 705, where N is the number of complex laser beams and M is The number of the plurality of positions at the interface region of the silicon photonics chip, the plurality of positions at the interface region of the silicon photonics chip are aligned with the light input ports of the corresponding plurality of laser lights of the silicon photonics chip 1803 . In some embodiments, the optical programming module includes an arrayed waveguide 801 having a plurality of optical inputs for receiving a plurality of laser beams and an optical output optically connected to a broadband power splitter 805 light input. Broadband power divider 805 has a plurality of optical outputs for transmitting light to the plurality of locations at the interface region of the silicon photonics die that correspond to the plurality of locations at the interface region of the silicon photonics die 1803 Align the light input port of the laser light.

在某些實施例中,光編排模組包含階梯光柵901具有用以接收複數雷射光束的複數光輸入。階梯光柵901具有光連接至寬頻功率分割器905之光輸入的光輸出。寬頻功率分割器905具有複數光輸出,複數光輸出係用以將光傳輸至矽光子晶片界面區域處的複數位置,矽光子晶片界面區域處之複數位置係與矽光子晶片1803之該對應複數雷射光之光輸入口對準。在某些實施例中, 光編排模組包含具有複數光輸入及複數光輸出的蝶形波導網路1001,複數光輸入係用以接收複數雷射光束而複數光輸出係用以將光傳輸至矽光子晶片界面區域處的複數位置,矽光子晶片界面區域處之複數位置係與矽光子晶片1803之該對應複數雷射光之光輸入口對準。在某些實施例中,光編排模組包含具有複數光輸入與複數光輸出的星形耦合器1101,複數光輸入係用以接收複數雷射光束而複數光輸出係用以將光傳輸至矽光子晶片界面區域處的複數位置,矽光子晶片界面區域處之複數位置係與矽光子晶片1803之對應複數雷射光輸入接口對準。在某些實施例中,光編排模組包含具有複數光輸入與複數光輸出的諧振環陣列1201,複數光輸入係用以接收複數雷射光束而複數光輸出係用以將光傳輸至矽光子晶片界面區域處的複數位置,矽光子晶片界面區域處之複數位置係與矽光子晶片1803之該對應複數雷射光之光輸入口對準。 In some embodiments, the optical programming module includes an echelle grating 901 having a plurality of optical inputs for receiving a plurality of laser beams. Echelle grating 901 has an optical output optically connected to the optical input of broadband power divider 905 . The broadband power splitter 905 has a plurality of optical outputs for transmitting light to a plurality of locations at the interface region of the silicon photonics chip that correspond to the plurality of light sources at the interface region of the silicon photonics chip 1803. Align the light input port of the light emitting light. In some embodiments, The optical programming module includes a butterfly waveguide network 1001 with multiple optical inputs and multiple optical outputs. The multiple optical inputs are used to receive multiple laser beams and the multiple optical outputs are used to transmit light to the interface area of the silicon photonic chip. The plurality of positions, the plurality of positions at the interface region of the silicon photonics chip are aligned with the light input ports of the corresponding plurality of laser lights of the silicon photonics chip 1803 . In some embodiments, the optical programming module includes a star coupler 1101 with a plurality of optical inputs for receiving the plurality of laser beams and a plurality of optical outputs for transmitting the light to the silicon The plurality of positions at the interface area of the photonic chip, the plurality of positions at the interface area of the silicon photonic chip are aligned with the corresponding plurality of laser light input interfaces of the silicon photonic chip 1803 . In some embodiments, the optical programming module includes a resonant ring array 1201 with a plurality of optical inputs for receiving a plurality of laser beams and a plurality of optical outputs for transmitting light to silicon photonics The plurality of positions at the interface area of the wafer, the plurality of positions at the interface area of the silicon photonics wafer are aligned with the light input ports of the corresponding plurality of laser lights of the silicon photonics wafer 1803 .

在某些實施例中,插入件裝置1801/1801A/1801B/1801C包含形成於基板內之局部金屬路線結構及導電通孔結構以在矽光子晶片1803和與基板交界的另一電子裝置之間提供電連接。在某些實施例中,矽光子晶片界面區域係用以將矽光子晶片1803內之導電結構覆晶連接至基板內之對應導電結構。在某些實施例中,矽光子晶片界面區域係用以將矽光子晶片1803內之導電結構打線接合連接至基板內之對應導電結構。在某些實施例中,矽光子晶片界面區域係用以在矽光子晶片1803係與基板交界時將第一組光傳輸結構邊緣耦合至矽光子晶片1803的對應光輸入。又,矽光子晶片界面區域係用以在矽光子晶片係與基板交界時將第二組光傳輸結構邊緣耦合至矽光子晶片1803的對應光輸出。在某些實施例中,矽光子晶片界面區域係用以在矽光子晶片1803係與基板交界時將第一組光傳輸結構垂直耦合至矽光子晶片1803的對應光輸入。又,矽光子晶片界面區域係用以在矽光子晶片1803係與基板交界時將第二組光傳輸結構垂直耦合至矽光子晶片1803的對應光輸出。 In some embodiments, interposer devices 1801/1801A/1801B/1801C include local metal routing structures and conductive via structures formed in the substrate to provide a connection between the silicon photonics die 1803 and another electronic device interfacing with the substrate. electrical connection. In some embodiments, the silicon photonics chip interface region is used to flip-chip connect conductive structures in the silicon photonics chip 1803 to corresponding conductive structures in the substrate. In some embodiments, the silicon photonics chip interface region is used to wire-bond conductive structures in the silicon photonics chip 1803 to corresponding conductive structures in the substrate. In some embodiments, the silicon photonics die interface region is used to edge-couple the first set of light-transmitting structures to corresponding light inputs of the silicon photonics die 1803 when the silicon photonics die 1803 interfaces with the substrate. Also, the silicon photonics chip interface region is used to edge-couple the second set of light transmission structures to the corresponding light output of the silicon photonics chip 1803 when the silicon photonics chip is interfaced with the substrate. In some embodiments, the silicon photonics die interface region is used to vertically couple the first set of light transmissive structures to corresponding light inputs of the silicon photonics die 1803 when the silicon photonics die 1803 interfaces with the substrate. Also, the silicon photonics chip interface region is used to vertically couple the second set of light transmission structures to the corresponding light output of the silicon photonics chip 1803 when the silicon photonics chip 1803 is interfaced with the substrate.

在某些實施例中,光放大器模組界面區域係用以在光放大器模組303-1-303-N係與基板交界時將第二組光傳輸結構邊緣耦合至光放大器模組303-1-303-N之對應光輸入及/或輸出。又,光放大器模組界面區域係用以在光放大器模組303-1-303-N係與基板交界時將第三組光傳輸結構邊緣耦合至光放大器模組303-1-303-N之對應光輸出及/或輸入。在某些實施例中,光放大器模組界面區域係用以在光放大器模組303-1-303-N係與基板交界時將第二組光傳輸結構垂直耦合至光放大器模組303-1-303-N之對應光輸入及/或輸出。又,光放大器模組界面區域係用以在光放大器模組303-1-303-N係與基板交界時將第三組光傳輸結構垂直耦合至光放大器模組303-1-303-N之對應光輸出及/或輸入。 In some embodiments, the optical amplifier module interface region is used to edge-couple the second set of optical transmission structures to the optical amplifier module 303-1 when the optical amplifier modules 303-1-303-N interface with the substrate - Corresponding optical input and/or output of 303-N. In addition, the interface area of the optical amplifier module is used to couple the edge of the third group of optical transmission structures to the optical amplifier module 303-1-303-N when the optical amplifier module 303-1-303-N is at the interface with the substrate Corresponding light output and/or input. In some embodiments, the optical amplifier module interface region is used to vertically couple the second set of optical transmission structures to the optical amplifier module 303-1 when the optical amplifier modules 303-1-303-N interface with the substrate - Corresponding optical input and/or output of 303-N. In addition, the optical amplifier module interface area is used to vertically couple the third group of optical transmission structures to the optical amplifier module 303-1-303-N when the optical amplifier module 303-1-303-N is at the interface with the substrate Corresponding light output and/or input.

在某些實施例中,基板係由矽、玻璃、陶瓷、環氧化物之複合材料、及聚合物中的一或多者所形成。在某些實施例中,第一組光傳輸結構係由矽、氧化物、聚合物及氮化矽中的一或多者所形成、第二組光傳輸結構係由矽、氧化物、聚合物及氮化矽中的一或多者所形成、第三組光傳輸結構係由矽、氧化物、聚合物及氮化矽中的一或多者所形成。在某些實施例中,基板包含用以接收光放大器模組303-1-303-N的複數光放大器模組界面區域。又,第二組光傳輸結構係用以在矽光子晶片1803與複數光放大器模組303-1-303-N係與基板交界時將矽光子晶片1803光連接至複數光放大器模組303-1-303-N。又,第三組光傳輸結構係用以將複數光放大器模組303-1-303-N光連接至光纖對插入件之連接件1903區域。 In some embodiments, the substrate is formed from one or more of silicon, glass, ceramics, epoxy composites, and polymers. In some embodiments, the first group of light-transmitting structures is formed of one or more of silicon, oxide, polymer, and silicon nitride, and the second group of light-transmitting structures is formed of silicon, oxide, polymer and one or more of silicon nitride. The third group of light transmission structures is formed of one or more of silicon, oxide, polymer and silicon nitride. In some embodiments, the substrate includes a plurality of optical amplifier module interface regions for receiving optical amplifier modules 303-1-303-N. In addition, the second group of optical transmission structures is used to optically connect the silicon photonic chip 1803 to the complex optical amplifier module 303-1 when the silicon photonic chip 1803 and the complex optical amplifier modules 303-1-303-N are at the junction of the substrate -303-N. Also, the third group of optical transmission structures is used to optically connect the plurality of optical amplifier modules 303-1-303-N to the area of the connector 1903 of the optical fiber pair insert.

在某些實施例中,雷射源晶片界面區域、矽光子晶片界面區域及光放大器模組界面區域係以實質上對稱之配置設置在基板內。在某些實施例中,雷射源晶片界面區域、矽光子晶片界面區域及光放大器模組界面區域係以非對稱配置設置在基板內。在某些實施例中,插入件裝置係整合於多晶片模組整合產品內。 In some embodiments, the interface region of the laser source chip, the interface region of the silicon photonics chip and the interface region of the optical amplifier module are disposed in the substrate in a substantially symmetrical configuration. In some embodiments, the interface region of the laser source chip, the interface region of the silicon photonics chip and the interface region of the optical amplifier module are arranged in the substrate in an asymmetric configuration. In some embodiments, the interposer device is integrated into an MCM product.

在某些實施例中揭露多晶片模組(MCM)包含插入件裝置1801/1801A/1801B/1801C。MCM亦包含連接至插入件裝置1801/1801A/1801B/1801C的雷射源晶片102。MCM亦包含連接至插入件裝置1801/1801A/1801B/1801C的矽光子晶片1803。在某些實施例中,矽光子晶片1803為CMOS驅動晶片,用以與形成在插入件裝置1801/1801A/1801B/1801C內的矽光子裝置互動。MCM亦包含連接至插入件裝置1801/1801A/1801B/1801C的光放大器模組303-1-303-N。插入件裝置1801/1801A/1801B/1801C包含用以將雷射源晶片102光連接至矽光子晶片1803的第一組光傳輸結構(如光導1905、1907及/或光編排模組)。插入件裝置1801/1801A/1801B/1801C亦包含用以將矽光子晶片1803光連接至光放大器模組303-1-303-N的第二組光傳輸結構(如光導1909-1-1909-N)。插入件裝置1801/1801A/1801B/1801C亦包含用以將光放大器模組303-1-303-N光連接至形成在插入件裝置1801/1801A/1801B/1801C內之光纖對插入件之連接件1903區域的第三組光傳輸結構(如光導1915-1-1915-N、1911、1913及/或極化旋轉器1901)。光纖對插入件之連接件1903係用以使複數光纖之核心光耦合至第三組光傳輸結構之對應光纖。在某些實施例中,機械傳輸套圈2301/2303係連接至插入件裝置1801/1801A/1801B/1801C。機械傳輸套圈2301/2303係用以成為光纖對插入件之連接件1903區域之框並將光纖對插入件之連接件1903區域針對複數光纖加以分度。 In some embodiments a multi-chip module (MCM) comprising interposer devices 1801/1801A/1801B/1801C is disclosed. The MCM also includes a laser source chip 102 connected to interposer devices 1801/1801A/1801B/1801C. The MCM also includes a silicon photonics die 1803 connected to interposer devices 1801/1801A/1801B/1801C. In some embodiments, silicon photonics die 1803 is a CMOS driver die for interacting with silicon photonics devices formed in interposer devices 1801/1801A/1801B/1801C. The MCM also includes optical amplifier modules 303-1-303-N connected to interposer devices 1801/1801A/1801B/1801C. The interposer device 1801/1801A/1801B/1801C includes a first set of optical transmission structures (such as light guides 1905, 1907 and/or optical programming modules) for optically connecting the laser source chip 102 to the silicon photonics chip 1803. The interposer device 1801/1801A/1801B/1801C also includes a second set of optical transmission structures (such as light guides 1909-1-1909-N) for optically connecting the silicon photonics chip 1803 to the optical amplifier modules 303-1-303-N ). The interposer assembly 1801/1801A/1801B/1801C also includes connectors for optically connecting the optical amplifier modules 303-1-303-N to the fiber-to-interposer formed within the interposer assembly 1801/1801A/1801B/1801C A third set of light transmission structures in area 1903 (eg light guides 1915-1 - 1915-N, 1911, 1913 and/or polarization rotator 1901). The fiber-to-interposer connector 1903 is used to couple the core optical fibers of the plurality of optical fibers to the corresponding optical fibers of the third set of optical transmission structures. In certain embodiments, the mechanical transmission ferrule 2301/2303 is connected to the inserter device 1801/1801A/1801B/1801C. The mechanical transmission ferrules 2301/2303 are used to frame and index the fiber-to-interposer connector 1903 area for the plurality of fibers.

在某些實施例中,雷射源晶片102係藉由覆晶連接或打線接合連接而連接至插入件裝置1801/1801A/1801B/1801C。在某些實施例中,雷射源晶片102係用以產生及輸出複數具有不同波長之雷射光束。在某些實施例中,第一組光傳輸結構包含光編排模組,光編排模組係用以自雷射源晶片102接收複數雷射光束並將複數雷射光束結合為一多波長雷射光源並將多波長雷射光源之一部分傳輸至矽光子晶片1803之複數雷射光之光輸入口之每一者。在某些實施 例中,光編排模組包含具有光輸出之Nx1相維持波長結合器701,光輸出光連接至1xM相維持寬頻功率分割器705之光輸入,其中N為複數雷射光束之數目而M為矽光子晶片1803之該複數雷射光之光輸入口的數目。在某些實施例中,光編排模組包含陣列式波導801,陣列式波導801具有用以接收複數雷射光束的複數光輸入且具有光連接至寬頻功率分割器805之光輸入的光輸出。寬頻功率分割器805具有複數光輸出,複數光輸出係用以將光傳輸至矽光子晶片1803的該複數雷射光之光輸入口。 In some embodiments, the laser source chip 102 is connected to the interposer device 1801/1801A/1801B/1801C by a flip chip connection or a wire bonding connection. In some embodiments, the laser source chip 102 is used to generate and output a plurality of laser beams with different wavelengths. In some embodiments, the first set of optical transmission structures includes an optical programming module for receiving a plurality of laser beams from the laser source chip 102 and combining the plurality of laser beams into a multi-wavelength laser The light source transmits a part of the multi-wavelength laser light source to each of the light input ports of the plurality of laser light of the silicon photonics chip 1803 . in some implementations In this example, the optical programming module includes an Nx1 phase-maintaining wavelength combiner 701 with an optical output connected to the optical input of a 1xM phase-maintaining broadband power divider 705, where N is the number of complex laser beams and M is the silicon The number of light input ports of the plurality of laser lights of the photonic chip 1803. In some embodiments, the optical programming module includes an arrayed waveguide 801 having a plurality of optical inputs for receiving a plurality of laser beams and having an optical output optically connected to the optical input of a broadband power splitter 805 . The broadband power divider 805 has a plurality of light outputs for transmitting light to the light input port of the plurality of laser lights of the silicon photonics chip 1803 .

在某些實施例中,光編排模組包含階梯光柵901,階梯光柵901具有用以接收複數雷射光束的複數光輸入且具有光連接至寬頻功率分割器905之光輸入之光輸出。寬頻功率分割器905具有複數光輸出,複數光輸出係用以將光傳輸至矽光子晶片1803的該複數雷射光之光輸入口。在某些實施例中,光編排模組包含蝶形波導網路1001,蝶形波導網路1001具有用以接收複數雷射光束的複數光輸入且具有用以將光傳輸至矽光子晶片1803之該複數雷射光之光輸入口的複數光輸出。在某些實施例中,光編排模組包含星形耦合器1101,星形耦合器1101具有用以接收複數雷射光束的複數光輸入且具有用以將光傳輸至矽光子晶片1803之該複數雷射光之光輸入口的複數光輸出。在某些實施例中,光編排模組包含諧振環陣列,諧振環陣列具有用以接收複數雷射光束的複數光輸入且具有用以將光傳輸至矽光子晶片1803之該複數雷射光之光輸入口的複數光輸出。 In some embodiments, the optical programming module includes an echelle grating 901 having a plurality of optical inputs for receiving a plurality of laser beams and having an optical output optically connected to the optical input of the broadband power splitter 905 . The broadband power splitter 905 has a plurality of light outputs for transmitting light to the light input ports of the plurality of laser lights of the silicon photonics chip 1803 . In some embodiments, the optical programming module includes a butterfly waveguide network 1001 having a plurality of optical inputs for receiving a plurality of laser beams and having a light transmission to a silicon photonic chip 1803 The complex light output of the light input port of the complex laser light. In some embodiments, the optical programming module includes a star coupler 1101 having a plurality of optical inputs for receiving a plurality of laser beams and having a plurality of optical inputs for transmitting light to a silicon photonics chip 1803 Multiple light output from the light input port of the laser light. In some embodiments, the optical programming module includes a resonant ring array having a plurality of optical inputs for receiving a plurality of laser beams and having a light of the plurality of laser beams for transmitting light to the silicon photonics chip 1803 Multiple optical outputs from the input port.

在某些實施例中,光放大器模組303-1-303-N係藉由覆晶連接或接線接合連接而連接至插入件裝置1801/1801A/1801B/1801C。在某些實施例中,光放大器模組303-1-303-N包含複數光放大器305-1-305-M,俾使數據接收用之每一光訊號係受到光放大器305-1-305-M中之一對應者放大並俾使數據傳輸用之每一光訊號係受到光放大器305-1-305-M中之一對應者放大。在某些實施例中, 插入件裝置1801/1801A/1801B/1801C包含用以使光導彼此光隔絕的整合型光隔絕器。在某些實施例中,MCM包含極化旋轉器1901,極化旋轉器1901係用以自光纖對插入件之連接件1903區域接收輸入光並將輸入光之TE與TM極化兩者分割為TE極化。極化旋轉器1901係光連接至兩個對應的光導1913,光導1913係用以將來自於極化旋轉器1901的光引導至光放大器模組303-1-303-N。在某些實施例中,極化旋轉器1901為與插入件裝置1801/1801A/1801B/1801C交界的離散元件。在某些實施例中,極化旋轉器1901係形成於插入件裝置1801/1801A/1801B/1801C內。 In some embodiments, optical amplifier modules 303-1-303-N are connected to interposer devices 1801/1801A/1801B/1801C by flip chip connections or wire bond connections. In some embodiments, the optical amplifier module 303-1-303-N includes a plurality of optical amplifiers 305-1-305-M, so that each optical signal for data reception is received by the optical amplifier 305-1-305- A corresponding one of M is amplified so that each optical signal for data transmission is amplified by a corresponding one of optical amplifiers 305-1-305-M. In some embodiments, The interposer devices 1801/1801A/1801B/1801C include integrated optical isolators to optically isolate the light guides from each other. In certain embodiments, the MCM includes a polarization rotator 1901 for receiving input light from the region of the fiber-to-interposer connector 1903 and splitting both the TE and TM polarizations of the input light into TE polarization. The polarization rotator 1901 is optically connected to two corresponding light guides 1913 for guiding the light from the polarization rotator 1901 to the optical amplifier modules 303-1-303-N. In certain embodiments, the polarization rotator 1901 is a discrete element that interfaces with the interposer device 1801/1801A/1801B/1801C. In certain embodiments, the polarization rotator 1901 is formed within the interposer device 1801/1801A/1801B/1801C.

在某些實施例中,插入件裝置1801/1801A/1801B/1801C包含凹陷區域,雷射源晶片102係設置於凹陷區域中以使雷射源晶片102內的光導光學邊緣耦合至插入件裝置1801/1801A/1801B/1801C內之第一組光傳輸結構內的對應光導。在某些實施例中,雷射源晶片102內的光導係設置在插入件裝置1801/1801A/1801B/1801C內之第一組光傳輸結構內之對應光導的10微米內。在某些實施例中,凹陷區域包含側突出物,側突出物形成底填材料(如環氧化物)的儲槽以致使雷射源晶片102的毛細底填。在某些實施例中,雷射源晶片102係設置在插入件裝置1801/1801A/1801B/1801C的外表面上俾使雷射源晶片102內的光導係垂直耦合至插入件裝置1801/1801A/1801B/1801C內之第一組光傳輸結構的對應光導。 In certain embodiments, the interposer device 1801/1801A/1801B/1801C includes a recessed region in which the laser source wafer 102 is disposed such that the optical edges of the light guides within the laser source wafer 102 are coupled to the interposer device 1801 Corresponding light guides within the first set of light transmission structures within /1801A/1801B/1801C. In some embodiments, the light guides within laser source wafer 102 are disposed within 10 microns of corresponding light guides within the first set of light transmissive structures within interposer device 1801/1801A/1801B/1801C. In some embodiments, the recessed region includes side protrusions that form reservoirs for underfill material (eg, epoxy) to enable capillary underfill of the laser source wafer 102 . In some embodiments, the laser source wafer 102 is disposed on the outer surface of the interposer device 1801/1801A/1801B/1801C such that the light guides within the laser source wafer 102 are vertically coupled to the interposer device 1801/1801A/ Corresponding light guides of the first set of light transmission structures within 1801B/1801C.

在某些實施例中,插入件裝置包含凹陷區域,光子晶片1803係設置於凹陷區域中以使光子晶片1803內的光導光學邊緣耦合至形成在插入件裝置1801/1801A/1801B/1801C內之第一組光傳輸結構與第二組光傳輸結構內的對應光導。在某些實施例中,凹陷區域包含側突出物,側突出物形成底填材料(如環氧化物)的儲槽以致使矽光子晶片1803的毛細底填。在某些實施例中,矽光子晶片1803內的光導係設置在形成在插入件裝置1801/1801A/1801B/1801C內之第 一組光傳輸結構與第二組光傳輸結構內的對應光導的10微米內。在某些實施例中,矽光子晶片1803插入件裝置1801/1801A/1801B/1801C的外表面上俾使矽光子晶片1803內的光導係垂直耦合至形成在插入件裝置1801/1801A/1801B/1801C內之第一組光傳輸結構與第二組光傳輸結構內的對應光導。 In some embodiments, the interposer device includes a recessed region in which the photonic die 1803 is disposed such that the optical edge of the light guide within the photonic die 1803 is coupled to the first 1801/1801A/1801B/1801C formed within the interposer device 1801/1801A/1801B/1801C. One set of light transmissive structures and corresponding light guides within the second set of light transmissive structures. In some embodiments, the recessed region includes side protrusions that form reservoirs for underfill material (eg, epoxy) to enable capillary underfill of the silicon photonics wafer 1803 . In some embodiments, the light guide within the silicon photonics die 1803 is disposed on the first One set of light-transmitting structures is within 10 microns of a corresponding lightguide within a second set of light-transmitting structures. In some embodiments, the outer surface of the silicon photonics wafer 1803 interposer device 1801/1801A/1801B/1801C is such that the light guide system within the silicon photonics wafer 1803 is vertically coupled to the light guide system formed in the interposer device 1801/1801A/1801B/1801C. The first set of light transmission structures within and the corresponding light guides within the second set of light transmission structures.

在某些實施例中,插入件裝置1801/1801A/1801B/1801C包含凹陷區域,光放大器模組303-1-303-N係設置於凹陷區域中以使光放大器模組303-1-303-N內的光導光學邊緣耦合至形成在插入件裝置1801/1801A/1801B/1801C內之第二組光傳輸結構與第三組光傳輸結構內的對應光導。在某些實施例中,凹陷區域包含側突出物,側突出物形成底填材料(如環氧化物)的儲槽以致使光放大器模組303-1-303-N的毛細底填。在某些實施例中,光放大器模組303-1-303-N內之光導係位於形成在插入件裝置1801/1801A/1801B/1801C內之第二組光傳輸結構與第三組光傳輸結構內的對應光導的10微米內。在某些實施例中,光放大器模組303-1-303-N係設置在插入件裝置1801/1801A/1801B/1801C的外表面上俾使光放大器模組303-1-303-N內的光導係垂直耦合至形成在插入件裝置1801/1801A/1801B/1801C內之第二組光傳輸結構與第三組光傳輸結構內的對應光導。 In some embodiments, the interposer device 1801/1801A/1801B/1801C includes a recessed area in which the optical amplifier modules 303-1-303-N are disposed such that the optical amplifier modules 303-1-303- The lightguides within N are optically edge coupled to corresponding lightguides within the second and third sets of light transmitting structures formed within the interposer device 1801/1801A/1801B/1801C. In some embodiments, the recessed region includes side protrusions that form reservoirs for underfill material (eg, epoxy) to enable capillary underfill of the optical amplifier modules 303-1-303-N. In some embodiments, the light guides in the optical amplifier modules 303-1-303-N are located in the second set of light transmission structures and the third set of light transmission structures formed in the interposer devices 1801/1801A/1801B/1801C within 10 µm of the corresponding light guide. In some embodiments, the optical amplifier modules 303-1-303-N are disposed on the outer surface of the interposer device 1801/1801A/1801B/1801C such that the optical amplifier modules 303-1-303-N The light guides are vertically coupled to corresponding light guides in the second and third sets of light transmitting structures formed within the interposer device 1801/1801A/1801B/1801C.

在某些實施例中,揭露一種機械傳輸(MT)套圈。MT套圈包含具有上對準鑰(2305)的上半構件(2301)。MT套圈亦包含具有下對準鑰(2305)的下半構件(2303)。上與下對準鑰(2305)係用以彼此適配以提供上半構件(2301)與下半構件(2303)的對準與適配。上半構件(2301)及下半構件(2303)中的每一者係用以接收上半構件(2301)與下半構件(2303)之間之插入件裝置1801/1801A/1801B/1801C的外緣部,俾以在上半構件(2301)適配至下半構件(2303)時使在插入件裝置1801/1801A/1801B/1801C之外緣部之邊緣處裸露的光導在上半構件(2301)與下構件(2303)之間的一位置處受到裸露。在某些實施例中, 上半構件(2301)與下半構件(2303)係由矽、玻璃或塑膠所形成。在某些實施例中,上半構件(2301)包含至少一上部分孔(2307)而下半構件(2303)包含至少一下部分孔(2309)。至少一上部分孔(2307)與至少一下部分孔(2309)係用以在上半構件(2301)與下半構件(2303)適配且插入件裝置(1801/1801A/1801B/1801C)之外緣部係介於上半構件(2301)與下半構件(2303)之間時分別形成至少一完全對準孔洞(見圖23F)。至少一對準孔洞係用以提供MT套圈與另一連接器結構的對準。 In certain embodiments, a mechanical transmission (MT) ferrule is disclosed. The MT ferrule comprises an upper half (2301) with an upper alignment key (2305). The MT ferrule also includes a lower half (2303) with a lower alignment key (2305). The upper and lower alignment keys (2305) are adapted to fit each other to provide alignment and fit of the upper half (2301) and lower half (2303). Each of the upper half (2301) and lower half (2303) is adapted to receive the outer shell of the insert device 1801/1801A/1801B/1801C between the upper half (2301) and the lower half (2303). rim so that the light guide exposed at the edge of the outer rim of the interposer device 1801/1801A/1801B/1801C is in the upper half (2301) when the upper half (2301) is fitted to the lower half (2303). ) and a position between the lower member (2303) is exposed. In some embodiments, The upper half component (2301) and the lower half component (2303) are formed by silicon, glass or plastic. In some embodiments, the upper half (2301) includes at least one upper hole (2307) and the lower half (2303) includes at least a lower hole (2309). At least one upper portion hole (2307) and at least one lower portion hole (2309) for fitting the upper half member (2301) to the lower half member (2303) and outside the insert device (1801/1801A/1801B/1801C) The rims when interposed between the upper half (2301) and the lower half (2303) respectively form at least one fully aligned hole (see FIG. 23F). At least one alignment hole is used to provide alignment of the MT ferrule with another connector structure.

圖27顯示根據本發明之某些實施例之多晶片模組(MCM)的製造方法的流程圖。方法包含操作2701,提供插入件裝置(1801/1801A/1801B/1801C)。方法亦包含操作2703,將雷射源晶片(102)連接至插入件裝置(1801/1801A/1801B/1801C)。方法亦包含操作2705,將矽光子晶片(1803)連接至插入件裝置(1801/1801A/1801B/1801C)。方法亦包含2707,將光放大器模組(303-1-303-N)連接至插入件裝置(1801/1801A/1801B/1801C)。插入件裝置(1801/1801A/1801B/1801C)包含用以將雷射源晶片(102)光連接至矽光子晶片(1803)的第一組光傳輸結構。插入件裝置(1801/1801A/1801B/1801C)包含包含用以將矽光子晶片(1803)光連接至光放大器模組(303-1-303-N)的第二組光傳輸結構。插入件裝置(1801/1801A/1801B/1801C)包含第三組光傳輸結構,第三組光傳輸結構係用以將光放大器模組(303-1-303-N)光連接形成在插入件裝置(1801/1801A/1801B/1801C)內的光纖對插入件連接(1903)區域。在某些實施例中,方法包含用以將機械傳輸套圈(2301/2303)連接至插入件裝置(1801/1801A/1801B/1801C)俾使機械傳輸套圈(2301/2303)形成光纖對插入件之連接件(1903)區域之框且將光纖對插入件之連接件(1903)區域分度以連接至複數光纖的操作。 FIG. 27 shows a flowchart of a method of manufacturing a multi-chip module (MCM) according to some embodiments of the present invention. The method includes an operation 2701, providing an inserter device (1801/1801A/1801B/1801C). The method also includes operation 2703, connecting the laser source chip (102) to the interposer device (1801/1801A/1801B/1801C). The method also includes operation 2705, connecting the silicon photonics chip (1803) to the interposer device (1801/1801A/1801B/1801C). The method also includes 2707, connecting the optical amplifier module (303-1-303-N) to the interposer device (1801/1801A/1801B/1801C). The interposer device (1801/1801A/1801B/1801C) includes a first set of optical transmission structures for optically connecting the laser source chip (102) to the silicon photonics chip (1803). The interposer device (1801/1801A/1801B/1801C) includes a second set of optical transmission structures for optically connecting the silicon photonics chip (1803) to the optical amplifier modules (303-1-303-N). The interposer device (1801/1801A/1801B/1801C) includes a third group of optical transmission structures, and the third group of optical transmission structures is used to form the optical connection of the optical amplifier module (303-1-303-N) in the interposer device Fiber pair insert connection (1903) area within (1801/1801A/1801B/1801C). In some embodiments, the method includes connecting the mechanical transmission ferrule (2301/2303) to the inserter device (1801/1801A/1801B/1801C) such that the mechanical transmission ferrule (2301/2303) forms a fiber pair for insertion The operation of framing the connector (1903) area of the insert and indexing the fiber to the connector (1903) area of the insert to connect to a plurality of optical fibers.

在某些實施例中,方法包含形成插入件裝置(1801/1801A/1801B/1801C)內之局部金屬路線結構及導電通孔結構以在矽光子 晶片(1803)及與插入件裝置(1801/1801A/1801B/1801C)交界之另一電子裝置之間提供電連接。在某些實施例中,雷射源晶片(102)係藉由覆晶連接或打線接合連接而連接至插入件裝置(1801/1801A/1801B/1801C)。在某些實施例中,矽光子晶片(1803)係藉由覆晶連接或打線接合連接而連接至插入件裝置(1801/1801A/1801B/1801C)。在某些實施例中,光放大器模組(303-1-303-N)係藉由覆晶連接或打線接合連接而連接至插入件裝置(1801/1801A/1801B/1801C)。 In some embodiments, a method includes forming local metal routing structures and conductive via structures within an interposer device (1801/1801A/1801B/1801C) for silicon photonics An electrical connection is provided between the chip (1803) and another electronic device interfacing with the interposer device (1801/1801A/1801B/1801C). In some embodiments, the laser source chip (102) is connected to the interposer device (1801/1801A/1801B/1801C) by a flip chip connection or a wire bonding connection. In some embodiments, the silicon photonics die (1803) is connected to the interposer device (1801/1801A/1801B/1801C) by a flip chip connection or a wire bonding connection. In some embodiments, optical amplifier modules (303-1-303-N) are connected to interposer devices (1801/1801A/1801B/1801C) by flip chip connections or wire bonding connections.

在某些實施例中,方法包含形成第一組光傳輸結構以包含光編排模組,光編排模組係用以自雷射源晶片(102)接收複數雷射光束、將複數雷射光束結合成為一多波長雷射光源、並將多波長雷射光源的一部分傳輸至矽光子晶片(1803)之複數雷射光之光輸入口中的每一者。在某些實施例中,方法包含在插入件裝置(1801/1801A/1801B/1801C)內形成整合式光隔絕件以使插入件裝置(1801/1801A/1801B/1801C)內的光導彼此隔絕。在某些實施例中,方法包含光連接光纖對插入件之連接件(1903)區域與光放大器模組(303-1-303-N)之間的極化旋轉器(1901)。極化旋轉器(1901)係用以自光纖對插入件之連接件(1903)區域接收光輸入並將輸入光的TE與TM極化兩者分割為TE極化。極化旋轉器(1901)係光連接至兩個對應的光導(1913),光導(1913)係用以將來自極化旋轉器(1901)的光引導至光放大器模組(303-1-303-N)。在某些實施例中,極化旋轉器(1901)為與插入件裝置(1801/1801A/1801B/1801C)交界的離散元件。在某些實施例中,極化旋轉器(1901)係形成於插入件裝置(1801/1801A/1801B/1801C)內。 In some embodiments, the method includes forming a first set of optical transmission structures to include an optical programming module for receiving a plurality of laser beams from a laser source wafer (102), combining the plurality of laser beams Becoming a multi-wavelength laser light source and transmitting a part of the multi-wavelength laser light source to each of the light input ports of the plurality of laser lights of the silicon photonics chip (1803). In certain embodiments, the method includes forming an integrated light isolator within the interposer device (1801/1801A/1801B/1801C) to isolate lightguides within the interposer device (1801/1801A/1801B/1801C) from each other. In some embodiments, the method includes optically connecting a polarization rotator (1901) between a connector (1903) region of an optical fiber pair interposer and an optical amplifier module (303-1-303-N). A polarization rotator (1901) is used to receive light input from the fiber-to-interposer connection (1903) area and split both TE and TM polarizations of the input light into TE polarizations. The polarization rotator (1901) is optically connected to two corresponding light guides (1913), and the light guide (1913) is used to guide the light from the polarization rotator (1901) to the optical amplifier module (303-1-303 -N). In certain embodiments, the polarization rotator (1901 ) is a discrete element that interfaces with the interposer device (1801/1801A/1801B/1801C). In certain embodiments, the polarization rotator (1901 ) is formed within the interposer device (1801/1801A/1801B/1801C).

在某些實施例中,方法包含在插入件裝置(1801/1801A/1801B/1801C)內形成凹陷區域以接收雷射源晶片(102)。在某些實施例中,凹陷區域係用以使雷射源晶片(102)內的光導光學邊緣耦合至第一組光傳輸結構內的對應光導。在某些實施例中,將雷射源晶片(102)連接至插入件裝置(1801/1801A/1801B/1801C)包含將雷射源晶片(102)設置於形成在插入件裝置 (1801/1801A/1801B/1801C)內之第一組光傳輸結構內之對應光導的10微米內。在某些實施例中,凹陷區域係形成而包含側突出物,側突出物形成底填材料(如環氧化物)的儲槽以致使雷射源晶片(102)的毛細底填。在某些實施例中,將雷射源晶片(102)連接至插入件裝置(1801/1801A/1801B/1801C)包含將雷射源晶片(102)設置在插入件裝置(1801/1801A/1801B/1801C)的外表面上俾使雷射源晶片(102)內的光導係垂直耦合至第一組光傳輸結構的對應光導。 In some embodiments, a method includes forming a recessed region within an interposer device (1801/1801A/1801B/1801C) to receive a laser source wafer (102). In some embodiments, the recessed regions are used to couple the optical edges of the lightguides in the laser source wafer (102) to corresponding lightguides in the first set of light transmissive structures. In some embodiments, attaching the laser source die (102) to the interposer device (1801/1801A/1801B/1801C) includes disposing the laser source die (102) on an interposer device formed on Within 10 microns of the corresponding light guide within the first set of light transmission structures within (1801/1801A/1801B/1801C). In some embodiments, the recessed region is formed to include side protrusions that form reservoirs for underfill material (eg, epoxy) to enable capillary underfill of the laser source wafer (102). In some embodiments, attaching the laser source die (102) to the interposer device (1801/1801A/1801B/1801C) comprises disposing the laser source die (102) in the interposer device (1801/1801A/1801B/ 1801C) on the outer surface so that the light guides in the laser source wafer (102) are vertically coupled to the corresponding light guides of the first set of light transmission structures.

在某些實施例中,方法包含在插入件裝置(1801/1801A/1801B/1801C)內形成凹陷區域以接收矽光子晶片(1803)。在某些實施例中,凹陷區域係用以使矽光子晶片(1803)內的光導光學邊緣耦合至形成在插入件裝置(1801/1801A/1801B/1801C)內之第一組光傳輸結構與第二組光傳輸結構內的對應光導。在某些實施例中,將矽光子晶片(1803)連接至插入件裝置(1801/1801A/1801B/1801C)包含將矽光子晶片(102)設置在形成在插入件裝置(1801/1801A/1801B/1801C)內之第一組光傳輸結構與第二組光傳輸結構內的對應光導的10微米內。在某些實施例中,凹陷區域係形成而包含側突出物,側突出物形成底填材料(如環氧化物)的儲槽以致使矽光子晶片(1803)的毛細底填。在某些實施例中,將矽光子晶片(1803)連接至插入件裝置(1801/1801A/1801B/1801C)包含將矽光子晶片(1803)設置在插入件裝置(1801/1801A/1801B/1801C)的外表面上俾使矽光子晶片(1803)內的光導係垂直耦合至形成在插入件裝置(1801/1801A/1801B/1801C)內之第一組光傳輸結構與第二組光傳輸結構內的對應光導。 In some embodiments, the method includes forming a recessed region within an interposer device (1801/1801A/1801B/1801C) to receive a silicon photonics die (1803). In some embodiments, the recessed region is used to couple the optical edge of the light guide in the silicon photonics wafer (1803) to the first set of light-transmitting structures and the second Corresponding light guides within the two sets of light transmission structures. In some embodiments, connecting the silicon photonics die (1803) to the interposer device (1801/1801A/1801B/1801C) includes disposing the silicon photonics die (102) on the interposer device (1801/1801A/1801B/ 1801C) within 10 microns of the first set of light-transmitting structures and the corresponding lightguides within the second set of light-transmitting structures. In some embodiments, the recessed region is formed to include side protrusions that form reservoirs for underfill material (eg, epoxy) to enable capillary underfill of the silicon photonics wafer (1803). In some embodiments, connecting the silicon photonics die (1803) to the interposer device (1801/1801A/1801B/1801C) includes disposing the silicon photonics die (1803) on the interposer device (1801/1801A/1801B/1801C) so that the light guide system in the silicon photonics chip (1803) is vertically coupled to the first set of light-transmitting structures and the second set of light-transmitting structures formed in the interposer device (1801/1801A/1801B/1801C) corresponding to the light guide.

在某些實施例中,方法包含在插入件裝置(1801/1801A/1801B/1801C)內形成凹陷區域以接收光放大器模組(303-1-303-N)。在某些實施例中,凹陷區域係用以使光放大器模組(303-1-303-N)內的光導光學邊緣耦合至形成在插入件裝置(1801/1801A/1801B/1801C)內之第二組光傳輸結構 與第三組光傳輸結構內的對應光導。在某些實施例中,將光放大器模組(303-1-303-N)連接至插入件裝置(1801/1801A/1801B/1801C)包含將光放大器模組(303-1-303-N)設置在插入件裝置(1801/1801A/1801B/1801C)內之第二組光傳輸結構與第三組光傳輸結構內的對應光導的10微米內。在某些實施例中,凹陷區域係形成而包含側突出物,側突出物形成底填材料(如環氧化物)的儲槽以致使光放大器模組(303-1-303-N)的毛細底填。在某些實施例中,將光放大器模組(303-1-303-N)連接至插入件裝置(1801/1801A/1801B/1801C)包含將光放大器模組(303-1-303-N)設置在插入件裝置(1801/1801A/1801B/1801C)的外表面上俾使光放大器模組(303-1-303-N)內的光導係垂直耦合至形成在插入件裝置(1801/1801A/1801B/1801C)內之第二組光傳輸結構與第三組光傳輸結構內的對應光導。 In some embodiments, the method includes forming a recessed region within an interposer device (1801/1801A/1801B/1801C) to receive an optical amplifier module (303-1-303-N). In some embodiments, the recessed region is used to couple the optical edge of the light guide within the optical amplifier module (303-1-303-N) to the first optical edge formed within the interposer device (1801/1801A/1801B/1801C). Two sets of light transmission structure Corresponding light guides within the third set of light transmitting structures. In some embodiments, connecting the optical amplifier module (303-1-303-N) to the interposer device (1801/1801A/1801B/1801C) comprises connecting the optical amplifier module (303-1-303-N) The second set of light-transmitting structures and the third set of light-transmitting structures disposed within 10 microns of corresponding lightguides within the interposer device (1801/1801A/1801B/1801C). In some embodiments, the recessed region is formed to include side protrusions that form reservoirs for underfill material (eg, epoxy) to enable the capillary Underfill. In some embodiments, connecting the optical amplifier module (303-1-303-N) to the interposer device (1801/1801A/1801B/1801C) comprises connecting the optical amplifier module (303-1-303-N) Provided on the outer surface of the interposer device (1801/1801A/1801B/1801C) so that the light guide system in the optical amplifier module (303-1-303-N) is vertically coupled to the interposer device (1801/1801A/ 1801B/1801C) of the second set of light-transmitting structures and corresponding lightguides in the third set of light-transmitting structures.

前面的實施例內容係提供用於例示及說明。其並非意在窮盡或限制本發明。一特定實施例之獨立元件或特徵大致上並不限於此特定實施例,而是即便在文中未特別顯示或說明的狀況下仍可應用、互換、使用於其他選定的實施例中。其亦可以許多方式變化之。此類變化不會被視為是脫離本發明,所有此類修改意在被包含於本發明之範疇內。 The foregoing embodiments are provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but can be applied, interchanged, and used in other selected embodiments even if not specifically shown or described herein. It can also be varied in many ways. Such variations are not to be regarded as a departure from the invention and all such modifications are intended to be included within the scope of the invention.

雖然前面已詳細地說明本發明以提供全面瞭解,但應瞭解,仍可實施某些變化與修改。因此,本發明之實施例應被視為是說明性而非限制性且本發明不應被限制至文中所提供的特定細節而是在本發明實施例的範疇與等效物內可進行修改。 While the invention has been described in detail to provide a thorough understanding, it should be understood that certain changes and modifications can be practiced. Accordingly, the embodiments of the invention should be considered as illustrative rather than restrictive and the invention should not be limited to the specific details provided herein but modifications can be made within the scope and equivalents of the embodiments of the invention.

2701‧‧‧操作 2701‧‧‧operation

2703‧‧‧操作 2703‧‧‧operation

2705‧‧‧操作 2705‧‧‧operation

2707‧‧‧操作 2707‧‧‧Operation

Claims (28)

一種插入件裝置,包含:一基板,該基板包含用以收納一雷射源晶片的一雷射源晶片界面區域,該基板包含用以收納一矽光子晶片的一矽光子晶片界面區域,該基板包含用以收納一光放大器模組的一光放大器模組界面區域;一光纖對插入件連接區域,形成於該基板內;一第一組光傳輸結構,形成於該基板內以在該雷射源晶片與該矽光子晶片係與該基板交界時將該雷射源晶片光連接至該矽光子晶片;一第二組光傳輸結構,形成於該基板內以在該矽光子晶片與該光放大器模組係與該基板交界時將該矽光子晶片光連接至該光放大器模組;及一第三組光傳輸結構,形成於該基板內以在該光放大器模組係與該基板交界時將該光放大器模組光連接至該光纖對插入件連接區域。 An interposer device, comprising: a substrate, the substrate includes a laser source chip interface area for accommodating a laser source chip, the substrate includes a silicon photonic chip interface area for accommodating a silicon photonic chip, the substrate Including an optical amplifier module interface area for accommodating an optical amplifier module; a fiber-to-interposer connection area formed in the substrate; a first group of light transmission structures formed in the substrate for the laser The source chip and the silicon photonic chip are optically connected to the silicon photonic chip when the source chip and the silicon photonic chip are connected to the substrate; a second group of light transmission structures is formed in the substrate to connect the silicon photonic chip and the optical amplifier optically connecting the silicon photonics chip to the optical amplifier module when the module interfaces with the substrate; and a third set of optical transmission structures formed in the substrate to connect The optical amplifier module is optically connected to the fiber pair interposer connection area. 如申請專利範圍第1項之插入件裝置,其中該第一組光傳輸結構包含形成於該基板內的一光編排模組,該光編排模組係用以自該雷射源晶片接收具有不同波長的複數雷射光束、將該複數雷射光束結合為一多波長雷射光源、並將該多波長雷射光源的一部分傳輸至該矽光子晶片界面區域的複數位置的每一位置處,在該矽光子晶片係與該基板交界時該矽光子晶片界面區域的該複數位置係與該矽光子晶片之對應複數雷射光之光輸入口對準。 Such as the interposer device of claim 1, wherein the first group of optical transmission structures includes an optical programming module formed in the substrate, and the optical programming module is used to receive different laser beams from the laser source chip. multiple wavelengths of laser beams, combine the multiple laser beams into a multi-wavelength laser source, and transmit a portion of the multi-wavelength laser source to each of the plurality of locations in the silicon photonics wafer interface region, at The plurality of positions of the interface region of the silicon photonic chip are aligned with the light input ports of the corresponding plurality of laser lights of the silicon photonic chip when the silicon photonic chip is interfaced with the substrate. 如申請專利範圍第2項之插入件裝置,其中該光編排模組包含一Nx1相維持波長結合器,該Nx1相維持波長結合器具有一光輸出,該光輸出係光連接至一1xM相維持寬頻功率分割器的一光輸入,其中N為該複數雷射光束的一數目而M為與該矽光子晶片之該對應複數雷射光之光輸入口對準之該矽光子晶片界面區域的該複數位置的數目。 Such as the insert device of claim 2, wherein the optical programming module includes an Nx1 phase-maintaining wavelength combiner, and the Nx1 phase-maintaining wavelength combiner has an optical output, and the optical output is optically connected to a 1xM phase-maintaining broadband an optical input of a power splitter, where N is a number of the plurality of laser beams and M is the plurality of positions of the silicon photonics wafer interface region aligned with the optical input port of the corresponding plurality of laser beams of the silicon photonics wafer Number of. 如申請專利範圍第2項之插入件裝置,其中該光編排模組包含一星形耦合器,該星形耦合器具有用以接收該複數雷射光束的複數光輸入,該星形耦合器具有複數光輸出,該複數光輸出係用以將光傳輸至與該矽光子晶片之該對應複數雷射光之光輸入口對準之該矽光子晶片界面區域的該複數位置。 Such as the insert device of item 2 of the scope of the patent application, wherein the optical arrangement module includes a star coupler, the star coupler has a plurality of optical inputs for receiving the plurality of laser beams, and the star coupler has a plurality of Light outputs for transmitting light to the plurality of locations of the silicon photonics wafer interface region aligned with the corresponding plurality of laser beam light input ports of the silicon photonics wafer. 如申請專利範圍第1項之插入件裝置,更包含:複數局部金屬路線結構與複數導電通孔結構,形成於該基板內以在該矽光子晶片與和該基板交界的另一電子裝置之間提供電連接。 For example, the interposer device of item 1 of the scope of the patent application further includes: a plurality of local metal line structures and a plurality of conductive via structures formed in the substrate so as to be between the silicon photonic chip and another electronic device bordering the substrate Provides electrical connection. 如申請專利範圍第1項之插入件裝置,其中該矽光子晶片界面區域係用以將該矽光子晶片內的導電結構加以覆晶連接至該基板內的對應導電結構。 For example, the interposer device of item 1 of the scope of the patent application, wherein the interface region of the silicon photonic chip is used for flip-chip connection of the conductive structure in the silicon photonic chip to the corresponding conductive structure in the substrate. 如申請專利範圍第1項之插入件裝置,其中該矽光子晶片界面區域係用以在該矽光子晶片係與該基板交界時將該第一組光傳輸結構加以邊緣耦合至該矽光子晶片的對應光輸入,且其中該矽光子晶片界面區域係用以在該矽光子晶片係與該基板交界時將該第二組光傳輸結構加以邊緣耦合至該矽光子晶片的對應光輸出。 The interposer device of claim 1, wherein the silicon photonic chip interface region is used to edge-couple the first group of light transmission structures to the silicon photonic chip when the silicon photonic chip is at the interface with the substrate Corresponding to light input, and wherein the silicon photonic chip interface region is used to edge-couple the second set of light transmission structures to the corresponding light output of the silicon photonic chip when the silicon photonic chip is interfaced with the substrate. 如申請專利範圍第1項之插入件裝置,其中該基板係由矽、玻璃、陶瓷、環氧化物之複合物及聚合物中的一或多者所形成。 For example, the interposer device of claim 1, wherein the substrate is formed of one or more of silicon, glass, ceramics, epoxy composites, and polymers. 如申請專利範圍第1項之插入件裝置,其中該插入件裝置係整合至一多晶片模組整合產品內。 Such as the interposer device of claim 1 of the patent scope, wherein the interposer device is integrated into a multi-chip module integration product. 如申請專利範圍第1項之插入件裝置,更包含:一機械傳輸套圈,包含一上半構件及一下半構件,該上半構件,包含一上對準鑰,該下半構件,包含一下對準鑰, 其中該上對準鑰與該下對準鑰係用以適配在一起以對該上半構件與該下半構件提供對準與適配,其中該上半構件與該下半構件中的每一者係用以在該上半構件與該下半構件之間接收該基板的一外緣部,俾以當該上半構件係適配至該下半構件時,使在該基板之該外緣部之一邊緣處暴露的一光導在該上半構件與該下半構件之間的一位置處受到暴露。 For example, the insert device of item 1 of the patent scope of the application further includes: a mechanical transmission ferrule including an upper half member and a lower half member, the upper half member includes an upper alignment key, and the lower half member includes the following alignment key, wherein the upper alignment key and the lower alignment key are adapted to fit together to provide alignment and fit for the upper half and the lower half, wherein each of the upper half and the lower half one for receiving an outer edge of the base plate between the upper half and the lower half so that when the upper half is fitted to the lower half, the outer edge of the base A light guide exposed at one of the edges of the rim is exposed at a location between the upper half and the lower half. 如申請專利範圍第10項之插入件裝置,其中該上半構件與該下半構件係由矽、玻璃或塑膠所形成。 For example, the insert device of claim 10, wherein the upper half member and the lower half member are formed of silicon, glass or plastic. 如申請專利範圍第10項之插入件裝置,其中該上半構件包含至少一上部分孔洞而該下半構件包含至少一下部分孔洞,其中該至少一上部分孔洞與該至少一下部分孔洞係用以在該上半構件與該下半構件適配且該基板之該外緣部係介於該上半構件與該下半構件之間時分別形成至少一完全對準孔洞,其中該至少一對準孔洞係用以提供該機械傳輸套圈與另一連接器結構的對準。 The insert device of claim 10, wherein the upper half member includes at least one upper hole and the lower half member includes at least a lower hole, wherein the at least one upper hole and the at least lower hole are used for At least one fully aligned hole is respectively formed when the upper half and the lower half are fitted and the outer edge of the base plate is interposed between the upper half and the lower half, wherein the at least one alignment Holes are used to provide alignment of the mechanical transmission ferrule with another connector structure. 一種多晶片模組,包含:一插入件裝置;一雷射源晶片,連接至該插入件裝置;一矽光子晶片,連接至該插入件裝置;及一光放大器模組,連接至該插入件裝置,其中該插入件裝置包含一第一組光傳輸結構,該第一組光傳輸結構係用以將該雷射源晶片加以光連接至該矽光子晶片,其中該插入件裝置包含一第二組光傳輸結構,該第二組光傳輸結構係用以將該矽光子晶片加以光連接至該光放大器模組,及其中該插入件裝置包含一第三組光傳輸結構,該第三組光傳輸結構係用以將該光放大器模組加以光連接至形成在該插入件裝置內的一光纖對插入件連接區域。 A multi-chip module comprising: an interposer device; a laser source chip connected to the interposer device; a silicon photonics chip connected to the interposer device; and an optical amplifier module connected to the interposer device, wherein the interposer device includes a first set of optical transmission structures for optically connecting the laser source chip to the silicon photonics chip, wherein the interposer device includes a second A set of optical transmission structures, the second set of optical transmission structures is used to optically connect the silicon photonic chip to the optical amplifier module, and wherein the interposer device includes a third set of optical transmission structures, the third set of optical transmission structures The transmission structure is used to optically connect the optical amplifier module to a fiber-to-interposer connection area formed in the interposer device. 如申請專利範圍第13項之多晶片模組,更包含:一機械傳輸套圈,連接至該插入件裝置,該機械傳輸套圈係用以構成該光纖對插入件連接區域之框並將該光纖對插入件連接區域針對複數光纖加以分度。 For example, the multi-chip module of item 13 of the scope of the patent application further includes: a mechanical transmission ferrule connected to the interposer device, the mechanical transmission ferrule is used to form a frame for the connection area of the optical fiber to the interposer and connect the The fiber-to-interposer connection area is indexed for a plurality of fibers. 如申請專利範圍第13項之多晶片模組,其中該雷射源晶片係用以產生及輸出具有不同波長之複數雷射光束。 Such as the multi-chip module of item 13 of the scope of the patent application, wherein the laser source chip is used to generate and output a plurality of laser beams with different wavelengths. 如申請專利範圍第15項之多晶片模組,其中該第一組光傳輸結構包含一光編排模組,該光編排模組係用以自該雷射源晶片接收複數雷射光束、將該複數雷射光束結合為一多波長雷射光源、並將該多波長雷射光源的一部分傳輸至該矽光子晶片之複數雷射光之光輸入口的每一者。 Such as the multi-chip module of item 15 of the scope of the patent application, wherein the first group of optical transmission structures includes an optical arrangement module, and the optical arrangement module is used to receive a plurality of laser beams from the laser source chip, and the The plurality of laser beams are combined into a multi-wavelength laser light source, and part of the multi-wavelength laser light source is transmitted to each of the plurality of laser light input ports of the silicon photonics chip. 如申請專利範圍第16項之多晶片模組,其中該光編排模組包含一Nx1相維持波長結合器,該Nx1相維持波長結合器具有一光輸出,該光輸出係光連接至一1xM相維持寬頻功率分割器的一光輸入,其中N為該複數雷射光束的一數目而M為該矽光子晶片之該複數雷射光之光輸入口的數目。 Such as the multi-chip module of item 16 of the scope of the patent application, wherein the optical programming module includes an Nx1 phase maintaining wavelength combiner, and the Nx1 phase maintaining wavelength combiner has an optical output, and the optical output is optically connected to a 1xM phase maintaining An optical input of the broadband power divider, wherein N is a number of the plurality of laser beams and M is the number of optical input ports of the plurality of laser beams of the silicon photonics chip. 如申請專利範圍第13項之多晶片模組,更包含:一極化旋轉器,用以自該光纖對插入件連接區域接收輸入光、將該輸入光的TE與TM極化兩者分割成TE極化,其中該極化旋轉器係光連接至用以將來自該極化旋轉器之光引導至該光放大器模組的兩個對應光導。 For example, the multi-chip module of item 13 of the scope of the patent application further includes: a polarization rotator, which is used to receive input light from the connection area of the optical fiber to the interposer, and split the TE and TM polarizations of the input light into TE polarization, wherein the polarization rotator is optically connected to two corresponding light guides for directing light from the polarization rotator to the optical amplifier module. 如申請專利範圍第18項之多晶片模組,其中該極化旋轉器係形成於該插入件裝置內。 The multi-chip module as claimed in claim 18, wherein the polarization rotator is formed in the interposer device. 如申請專利範圍第13項之多晶片模組,其中該插入件裝置包含一凹陷區域,該雷射源晶片係設置於該凹陷區域中以允許將該雷射源晶片內的光導加以光邊緣耦合至該第一組光傳輸結構內的對應光導。 The multi-chip module of claim 13, wherein the interposer device includes a recessed area, and the laser source chip is disposed in the recessed area to allow optical edge coupling of the light guide in the laser source chip to corresponding lightguides within the first set of light-transmitting structures. 如申請專利範圍第13項之多晶片模組,其中該插入件裝置包含一凹陷區域,該矽光子晶片係設置於該凹陷區域中以允許將該矽光子晶片內的光導加以光邊緣耦合至該第一組光傳輸結構內與該第二組光傳輸結構內的對應光導。 A multi-chip module as claimed in claim 13, wherein the interposer device includes a recessed area in which the silicon photonics chip is disposed to allow optical edge coupling of light guides within the silicon photonics chip to the Corresponding light guides in the first set of light transmission structures and in the second set of light transmission structures. 如申請專利範圍第13項之多晶片模組,其中該插入件裝置包含一凹陷區域,該光放大器模組係設置於該凹陷區域中以允許將該光放大器模組內的光導加以光邊緣耦合至該第二組光傳輸結構內與該第三組光傳輸結構內的對應光導。 The multi-chip module of claim 13, wherein the interposer device includes a recessed area in which the optical amplifier module is disposed to allow optical edge coupling of light guides within the optical amplifier module to corresponding light guides in the second set of light transmission structures and in the third set of light transmission structures. 一種多晶片模組之製造方法,包含:提供一插入件裝置;將一雷射源晶片連接至該插入件裝置;將一矽光子晶片連接至該插入件裝置;及將一光放大器模組連接至該插入件裝置,其中該插入件裝置包含第一組光傳輸結構,該第一組光傳輸結構將該雷射源晶片加以光連接至該矽光子晶片,其中該插入件裝置包含一第二組光傳輸結構,該第二組光傳輸結構將該矽光子晶片加以光連接至該光放大器模組,及其中該插入件裝置包含一第三組光傳輸結構,該第三組光傳輸結構將該光放大器模組加以光連接至形成在該插入件裝置內的一光纖對插入件連接區域。 A method of manufacturing a multi-chip module, comprising: providing an interposer device; connecting a laser source chip to the interposer device; connecting a silicon photonics chip to the interposer device; and connecting an optical amplifier module to the interposer device, wherein the interposer device comprises a first set of optical transmission structures optically connecting the laser source chip to the silicon photonics chip, wherein the interposer device comprises a second A set of optical transmission structures, the second set of optical transmission structures optically connects the silicon photonic chip to the optical amplifier module, and wherein the interposer device includes a third set of optical transmission structures, the third set of optical transmission structures will The optical amplifier module is optically connected to a fiber-to-interposer connection area formed within the interposer device. 如申請專利範圍第23項之多晶片模組之製造方法,更包含:將一機械傳輸套圈連接至該插入件裝置,俾使該機械傳輸套圈構成該光纖對插入件連接區域的框並將該光纖對插入件連接區域加以分度以連接至複數光纖。 The manufacturing method of the multi-chip module as claimed in claim 23 of the patent scope further includes: connecting a mechanical transmission ferrule to the interposer device, so that the mechanical transmission ferrule forms a frame for the connection area of the optical fiber to the interposer and The optical fiber is indexed to the interposer connection area for connection to a plurality of optical fibers. 如申請專利範圍第23項之多晶片模組之製造方法,更包含: 介於該光纖對插入件連接區域與該光放大器模組之間光連接一極化旋轉器,該極化旋轉器係用以自該光纖對插入件連接區域接收輸入光、將該輸入光的TE與TM極化兩者分割成TE極化,其中該極化旋轉器係光連接至用以將來自該極化旋轉器之光引導至該光放大器模組的兩個對應光導。 For example, the manufacturing method of the multi-chip module in item 23 of the scope of the patent application further includes: A polarization rotator is optically connected between the fiber-to-interposer connection area and the optical amplifier module, the polarization rotator is used to receive input light from the fiber-to-interposer connection area, Both TE and TM polarizations are split into TE polarizations, wherein the polarization rotator is optically connected to two corresponding light guides for directing light from the polarization rotator to the optical amplifier module. 如申請專利範圍第25項之多晶片模組之製造方法,其中該極化旋轉器係形成於該插入件裝置內。 The method of manufacturing a multi-chip module as claimed in claim 25, wherein the polarization rotator is formed in the interposer device. 如申請專利範圍第23項之多晶片模組之製造方法,更包含:在該插入件裝置內形成一凹陷區域以接收該矽光子晶片,該凹陷區域係用以允許將該矽光子晶片內的光導加以光邊緣耦合至該第一組光傳輸結構與該第二組光傳輸結構內的對應光導。 The method for manufacturing a multi-chip module as claimed in claim 23 of the scope of the patent application further includes: forming a recessed area in the interposer device to receive the silicon photonic chip, the recessed area is used to allow the silicon photonic chip in the The lightguides are optically edge-coupled to corresponding lightguides within the first set of light-transmitting structures and the second set of light-transmitting structures. 如申請專利範圍第27項之多晶片模組之製造方法,其中該凹陷區域係形成而包含一側突出物,該側突出物形成一底填材料用的一儲槽而致使該矽光子晶片的毛細底填。 Such as the method of manufacturing a multi-chip module as claimed in claim 27 of the scope of the patent application, wherein the recessed area is formed to include a side protrusion, and the side protrusion forms a storage tank for an underfill material so that the silicon photonic chip Capillary underfill.
TW107141213A 2017-11-21 2018-11-20 Laser module for optical data communication system within silicon interposer TWI782140B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762589520P 2017-11-21 2017-11-21
US62/589,520 2017-11-21
US16/194,250 2018-11-16
US16/194,250 US10749603B2 (en) 2016-07-14 2018-11-16 Laser module for optical data communication system within silicon interposer

Publications (2)

Publication Number Publication Date
TW201931794A TW201931794A (en) 2019-08-01
TWI782140B true TWI782140B (en) 2022-11-01

Family

ID=68315930

Family Applications (3)

Application Number Title Priority Date Filing Date
TW107141213A TWI782140B (en) 2017-11-21 2018-11-20 Laser module for optical data communication system within silicon interposer
TW111137623A TWI819834B (en) 2017-11-21 2018-11-20 Mechanical transfer ferrule and method for forming connection using the same
TW112135440A TW202402001A (en) 2017-11-21 2018-11-20 Mechanical transfer ferrule and method for forming connection using the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW111137623A TWI819834B (en) 2017-11-21 2018-11-20 Mechanical transfer ferrule and method for forming connection using the same
TW112135440A TW202402001A (en) 2017-11-21 2018-11-20 Mechanical transfer ferrule and method for forming connection using the same

Country Status (1)

Country Link
TW (3) TWI782140B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557439A (en) * 1995-07-25 1996-09-17 Ciena Corporation Expandable wavelength division multiplexed optical communications systems
US20090052842A1 (en) * 2007-08-22 2009-02-26 Franz Draxler Method for producing an optical splitter, and optical splitter
WO2013100995A1 (en) * 2011-12-28 2013-07-04 Intel Corporation Photonic package architecture
JP5568044B2 (en) * 2011-03-29 2014-08-06 株式会社日立製作所 Optical interconnect module and opto-electric hybrid board
US20140328591A1 (en) * 2012-07-26 2014-11-06 Brian Koch Reconfigurable optical transmitter
US9438970B2 (en) * 2014-02-24 2016-09-06 Rockley Photonics Limited Detector remodulator and optoelectronic switch

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120099820A1 (en) * 2009-03-20 2012-04-26 Rolston David R Two dimensional optical connector
TW201205186A (en) * 2010-07-28 2012-02-01 Hon Hai Prec Ind Co Ltd Iris lens test device and test method
TWI456277B (en) * 2011-03-24 2014-10-11 Ct A Photonics Inc Optical connector
JP2013015787A (en) * 2011-07-06 2013-01-24 Fujikura Ltd Optical connector and assembling method of the same
US9354397B2 (en) * 2011-09-26 2016-05-31 3M Innovative Properties Company Optical connector having a plurality of optical fibres with staggered cleaved ends coupled to associated microlenses

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557439A (en) * 1995-07-25 1996-09-17 Ciena Corporation Expandable wavelength division multiplexed optical communications systems
US20090052842A1 (en) * 2007-08-22 2009-02-26 Franz Draxler Method for producing an optical splitter, and optical splitter
JP5568044B2 (en) * 2011-03-29 2014-08-06 株式会社日立製作所 Optical interconnect module and opto-electric hybrid board
WO2013100995A1 (en) * 2011-12-28 2013-07-04 Intel Corporation Photonic package architecture
US20140328591A1 (en) * 2012-07-26 2014-11-06 Brian Koch Reconfigurable optical transmitter
US9438970B2 (en) * 2014-02-24 2016-09-06 Rockley Photonics Limited Detector remodulator and optoelectronic switch

Also Published As

Publication number Publication date
TW202306337A (en) 2023-02-01
TW202402001A (en) 2024-01-01
TW201931794A (en) 2019-08-01
TWI819834B (en) 2023-10-21

Similar Documents

Publication Publication Date Title
US11799554B2 (en) Laser module for optical data communication system within silicon interposer
US11275225B2 (en) Method and system for an optical coupler for silicon photonics devices
US10365447B2 (en) Method and system for a chip-on-wafer-on-substrate assembly
US10466433B2 (en) Optical module including silicon photonics chip and coupler chip
Boeuf et al. Silicon photonics R&D and manufacturing on 300-mm wafer platform
US11424830B2 (en) Laser module for optical data communication system
US10168474B2 (en) Method of manufacturing optical input/output device
TWI604701B (en) Method and system for hybrid integration of optical communication systems
TW202301490A (en) Three-dimentional packaging method and package structure of photonic-electronic chip
US20140270621A1 (en) Photonic multi-chip module
Bernabé et al. On-board silicon photonics-based transceivers with 1-Tb/s capacity
TWI782140B (en) Laser module for optical data communication system within silicon interposer
Shimizu et al. Demonstration of over 1000-channel hybrid integrated light source for ultra-high bandwidth interchip optical interconnection
WO2023084610A1 (en) Optical module and creation method for same
US20240103218A1 (en) Optical Device and Method of Manufacture