TWI781408B - Artificial intelligence based cell detection method by using hyperspectral data analysis technology - Google Patents

Artificial intelligence based cell detection method by using hyperspectral data analysis technology Download PDF

Info

Publication number
TWI781408B
TWI781408B TW109117840A TW109117840A TWI781408B TW I781408 B TWI781408 B TW I781408B TW 109117840 A TW109117840 A TW 109117840A TW 109117840 A TW109117840 A TW 109117840A TW I781408 B TWI781408 B TW I781408B
Authority
TW
Taiwan
Prior art keywords
cell
hyperspectral
time point
cells
normalized
Prior art date
Application number
TW109117840A
Other languages
Chinese (zh)
Other versions
TW202121241A (en
Inventor
王偉中
宋泊錡
唐傳義
Original Assignee
靜宜大學
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 靜宜大學, 國立清華大學 filed Critical 靜宜大學
Publication of TW202121241A publication Critical patent/TW202121241A/en
Application granted granted Critical
Publication of TWI781408B publication Critical patent/TWI781408B/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24133Distances to prototypes
    • G06F18/24137Distances to cluster centroïds
    • G06F18/2414Smoothing the distance, e.g. radial basis function networks [RBFN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Abstract

An artificial intelligence based cell detection method by using hyperspectral data analysis technology includes acquiring a plurality of cells, sampling N images of the cells from a first time point to a second time point, executing an image calibration process for generating N normalized cell hyperspectral images according to the N images of the cells, determining an observation area corresponding to a change of at least one chemical component of each cell during a development period, analyzing the N normalized cell hyperspectral images for generating a key normalized cell hyperspectral image characteristic difference value corresponding to the observation area, and inputting the key normalized cell hyperspectral image characteristic difference value and/or the N normalized cell hyperspectral images to a neural network for detecting qualities of the cells.

Description

利用高光譜資料分析技術之人工智慧的細胞檢測方法及其系 統 Artificial intelligence cell detection method and system using hyperspectral data analysis technology system

本發明描述一種利用高光譜資料分析技術之人工智慧的細胞檢測方法及其系統,尤指一種具有偵測細胞品質以及辨識細胞功能之人工智慧的細胞檢測方法及其系統。 The present invention describes an artificial intelligence cell detection method and system using hyperspectral data analysis technology, especially an artificial intelligence cell detection method and system with the ability to detect cell quality and identify cell functions.

隨著科技日新月異,適逢生育年齡的婦女常會因為工作壓力、飲食習慣、文明病、排卵功能異常、賀爾蒙失調或是一些慢性病而導致不孕。在現今,不孕症是高自費的療程,在台灣、中國以及國際市場需求巨大,且其需求每年是高度成長。許多婦女會選擇體外人工受孕(In Vitro Fertilization,IVF)來治療不孕症的問題。體外人工受孕是將卵子與精子取出,在人為操作下進行體外受精,並培養成胚胎,再將胚胎植回母體內。然而,現有的不孕症療程之成功率僅三成。不孕症的療程之重點在於胚胎的選擇。然而,現有選擇胚胎的方法主要還是由胚胎醫師利用胚胎照片或是縮時影片的資料,以主觀方式判斷胚胎的優劣。以目前的技術而論,由於缺乏一種系統化以及自動化的方式判斷胚胎的良劣,故在不孕症療程中,由醫師主觀地選擇植入胚胎,其植入成功率仍低,故也是目前不孕症療程的瓶頸。 With the rapid development of science and technology, women of reproductive age often suffer from infertility due to work pressure, eating habits, civilized diseases, abnormal ovulation function, hormonal imbalance or some chronic diseases. Nowadays, infertility is a high-paying treatment, and there is a huge demand in Taiwan, China and the international market, and its demand is growing rapidly every year. Many women will choose In Vitro Fertilization (IVF) to treat infertility problems. In vitro artificial fertilization is to take out eggs and sperm, carry out in vitro fertilization under artificial operation, and cultivate them into embryos, and then implant the embryos back into the mother. However, the success rate of existing infertility treatments is only 30%. The focus of infertility treatment is embryo selection. However, the existing method for selecting embryos is mainly for embryologists to use the data of embryo photos or time-lapse videos to judge the quality of embryos subjectively. As far as the current technology is concerned, due to the lack of a systematic and automated way to judge whether the embryo is good or bad, in the course of infertility treatment, the doctor subjectively selects the embryo to be implanted, and the implantation success rate is still low. Bottleneck in infertility treatment.

換句話說,在目前的不孕症療程下,醫生僅能以主觀的方式觀察胚胎在分裂時的情況。例如,醫生會以主觀的方式,依據胚胎在發育中的細胞數目、細胞分裂的均勻程度以及分裂時的碎片程度,將胚胎由優到劣區分為多個等級。例如,均勻地分裂為雙數細胞的胚胎較優,而產生不完整的單數細胞分裂以及碎片越多的胚胎,生長潛力較差。然而,如前述提及,由於目前判斷胚胎的優劣主要還是依據醫生的經驗,以主觀的判斷方式來選擇較佳胚胎。因此,目前技術治療不孕症的成功率很難提升,且容易受到不同醫生的主觀見解而影響成功率(例如誤判)。 In other words, with current infertility treatments, doctors can only observe subjectively what happens to embryos as they divide. For example, doctors will subjectively classify embryos into several grades from good to bad according to the number of developing cells, the uniformity of cell division, and the degree of fragmentation during division. For example, embryos that divide evenly into even numbers of cells are superior, while embryos that produce incomplete odd cell divisions and more fragmentation have poorer growth potential. However, as mentioned above, since judging the quality of embryos is mainly based on the doctor's experience, the selection of better embryos is based on subjective judgment. Therefore, it is difficult to improve the success rate of the current technical treatment of infertility, and the success rate is easily affected by the subjective opinions of different doctors (such as misjudgment).

本發明一實施例提出一種利用高光譜資料分析技術之人工智慧的細胞檢測方法。利用高光譜資料分析技術之人工智慧的細胞檢測方法包含取得複數個細胞,在第一時間點以及第二時間點之間,取樣該些細胞的N張影像,依據該些細胞的N張影像,進行影像校正程序,以產生N張正規化細胞高光譜影像,決定每一個細胞在發育期間,內部至少一種化學成分發生改變時對應的觀測區域,在第一時間點以及第二時間點之間,分析N張正規化細胞高光譜影像,以產生觀測區域對應的關鍵正規化細胞高光譜影像差異特徵數值,將每一個細胞之觀測區域對應的關鍵正規化細胞高光譜影像差異特徵數值及/或N張正規化細胞高光譜影像輸入至類神經網路,以訓練類神經網路,以及利用類神經網路,以人工智慧的程序建立細胞品質檢測模型,以檢測細胞品質及/或辨識細胞。第一時間點在第二時間點之前,且N為大於2的正整數。 An embodiment of the present invention proposes a cell detection method using artificial intelligence of hyperspectral data analysis technology. The artificial intelligence cell detection method using hyperspectral data analysis technology includes obtaining a plurality of cells, sampling N images of these cells between the first time point and the second time point, and based on the N images of these cells, Perform image correction procedures to generate N normalized cell hyperspectral images, and determine the corresponding observation area when at least one internal chemical composition of each cell changes during development, between the first time point and the second time point, Analyze N normalized cell hyperspectral images to generate the key normalized cell hyperspectral image difference characteristic value corresponding to the observation area, and calculate the key normalized cell hyperspectral image difference characteristic value and/or N corresponding to the observation area of each cell A normalized cell hyperspectral image is input to the neural network to train the neural network, and the neural network is used to establish a cell quality detection model with an artificial intelligence program to detect cell quality and/or identify cells. The first time point is before the second time point, and N is a positive integer greater than 2.

本發明另一實施例提出一種利用高光譜資料分析技術之人工智慧的細胞檢測系統。利用高光譜資料分析技術之人工智慧的細胞檢測系統包含載具、透鏡模組、高光譜儀、處理器以及記憶體。載具具有容置槽,用以放置複 數個細胞。透鏡模組面對載具,用以放大該些細胞的細節。高光譜儀面對透鏡模組,用以透過透鏡模組取得該些細胞的影像。處理器耦接於透鏡模組及高光譜儀,用以調整透鏡模組的放大倍率以及處理該些細胞的影像。記憶體耦接於處理器,用以儲存訓練資料以及影像處理的分析資料。載具之容置槽放置該些細胞後,處理器控制高光譜儀,透過透鏡模組在第一時間點以及第二時間點之間,取樣該些細胞的N張影像。處理器依據該些細胞的N張影像,進行影像校正程序,以產生N張正規化細胞高光譜影像,決定每一個細胞在發育期間,內部至少一種化學成分發生改變時對應的觀測區域,並在第一時間點以及第二時間點之間,分析N張正規化細胞高光譜影像,以產生觀測區域對應的關鍵正規化細胞高光譜影像差異特徵數值。處理器包含類神經網路,每一個細胞之觀測區域對應的關鍵正規化細胞高光譜影像差異特徵數值及/或N張正規化細胞高光譜影像用以訓練類神經網路。處理器利用類神經網路,以人工智慧的程序建立細胞品質檢測模型,以檢測細胞品質及/或辨識細胞。第一時間點在第二時間點之前,且N為大於2的正整數。 Another embodiment of the present invention proposes a cell detection system using artificial intelligence of hyperspectral data analysis technology. The artificial intelligence cell detection system using hyperspectral data analysis technology includes a carrier, a lens module, a hyperspectral instrument, a processor, and a memory. The carrier has a receiving slot for placing complex several cells. The lens module faces the carrier and is used to enlarge the details of the cells. The hyperspectral instrument faces the lens module, and is used for obtaining images of the cells through the lens module. The processor is coupled to the lens module and the hyperspectral instrument for adjusting the magnification of the lens module and processing the images of the cells. The memory is coupled to the processor for storing training data and analysis data of image processing. After placing the cells in the holding tank of the carrier, the processor controls the hyperspectral instrument to sample N images of the cells between the first time point and the second time point through the lens module. The processor performs image correction procedures based on the N images of these cells to generate N normalized cell hyperspectral images, and determines the corresponding observation area when at least one chemical composition in each cell changes during development, and in the Between the first time point and the second time point, N normalized cell hyperspectral images are analyzed to generate key normalized cell hyperspectral image difference characteristic values corresponding to the observation area. The processor includes a neural network, and the key normalized cell hyperspectral image difference characteristic values corresponding to the observation area of each cell and/or N normalized cell hyperspectral images are used to train the neural network. The processor uses a neural network to establish a cell quality detection model with an artificial intelligence program to detect cell quality and/or identify cells. The first time point is before the second time point, and N is a positive integer greater than 2.

100:利用高光譜資料分析技術之人工智慧的細胞檢測系統 100: Cell detection system using artificial intelligence of hyperspectral data analysis technology

10:載具 10: Vehicle

11:透鏡模組 11: Lens module

12:高光譜儀 12:Hyperspectrometer

13:處理器 13: Processor

14:記憶體 14: Memory

S201至S207:步驟 S201 to S207: Steps

S301至S302:步驟 S301 to S302: Steps

D1:關鍵正規化細胞高光譜影像差異特徵數值 D1: Key normalized cell hyperspectral image difference feature value

D2:N張正規化細胞高光譜影像 D2: N normalized cell hyperspectral images

D3:波長正規化細胞應向邊緣特徵數據 D3: Wavelength normalized cell should be towards the edge feature data

D4:細胞品質輸出資料 D4: Cell quality output data

第1圖係為本發明之利用高光譜資料分析技術之人工智慧的細胞檢測系統之實施例的方塊圖。 Fig. 1 is a block diagram of an embodiment of an artificial intelligence cell detection system utilizing hyperspectral data analysis technology of the present invention.

第2圖係為第1圖之利用高光譜資料分析技術之人工智慧的細胞檢測系統執行細胞檢測方法的流程圖。 FIG. 2 is a flowchart of the cell detection method executed by the artificial intelligence cell detection system using hyperspectral data analysis technology in FIG. 1 .

第3圖係為第1圖之利用高光譜資料分析技術之人工智慧的細胞檢測系統中,加入額外步驟以增強細胞檢測的精確度的示意圖。 Figure 3 is a schematic diagram of adding additional steps to enhance the accuracy of cell detection in the artificial intelligence cell detection system using hyperspectral data analysis technology in Figure 1 .

第4圖係為第1圖之利用高光譜資料分析技術之人工智慧的細胞檢測系統中,具 有類神經網路的處理器之輸入資料以及輸出資料的示意圖。 Figure 4 is the artificial intelligence cell detection system using hyperspectral data analysis technology in Figure 1, with Schematic diagram of the input data and output data of a neural network-like processor.

第1圖係為本發明之利用高光譜資料分析技術之人工智慧的細胞檢測系統100之實施例的方塊圖。為了簡化描述,利用高光譜資料分析技術之人工智慧的細胞檢測系統100後文稱為「細胞檢測系統100」。細胞檢測系統100包含載具10、透鏡模組11、高光譜儀12、處理器13以及記憶體14。載具10具有容置槽,用以放置複數個細胞。舉例而言,載具10可為培養皿,其內部的容置槽可包含一些培養液。複數個細胞可在培養液中發育。複數個細胞可為複數個生殖細胞、複數個胚胎或是任何欲觀察且可分裂的複數個細胞。透鏡模組11面對載具10,用以放大該些細胞的細節。透鏡模組11可為任何具有光學或是數位變焦能力的透鏡模組,例如顯微鏡模組。高光譜儀12面對透鏡模組11,用以透過透鏡模組11取得該些細胞的影像。因此,在細胞檢測系統100中,高光譜儀12所擷取之該些細胞的影像可為(A)高光譜儀影像中之任意一個波長對應的細胞影像,(B)高光譜影像各波長之細胞影像所合成的灰階細胞影像。任何合理的影像格式都屬於本發明所揭露的範疇。處理器13耦接於透鏡模組11及高光譜儀12,用以調整透鏡模組11的放大倍率以及處理該些細胞的影像。處理器13可為中央處理器、微處理器、或是任何的可程式化處理單元。處理器13具有類神經網路,例如深度神經網路(Deep Neural Networks,DNN),可以執行機器學習以及深度學習的功能。因此,處理器13的類神經網路可以被訓練,可視為人工智慧的處理核心。記憶體14耦接於處理器13,用以儲存訓練資料以及影像處理的分析資料。 FIG. 1 is a block diagram of an embodiment of an artificial intelligence cell detection system 100 utilizing hyperspectral data analysis technology of the present invention. In order to simplify the description, the cell detection system 100 using the artificial intelligence of the hyperspectral data analysis technology is referred to as "the cell detection system 100" hereinafter. The cell detection system 100 includes a carrier 10 , a lens module 11 , a hyperspectral instrument 12 , a processor 13 and a memory 14 . The carrier 10 has an accommodating groove for placing a plurality of cells. For example, the carrier 10 can be a petri dish, and the accommodating tank inside it can contain some culture liquid. A plurality of cells can develop in the culture medium. The plurality of cells can be a plurality of germ cells, a plurality of embryos, or any number of cells that can be divided and observed. The lens module 11 faces the carrier 10 for magnifying the details of the cells. The lens module 11 can be any lens module with optical or digital zoom capability, such as a microscope module. The hyperspectral instrument 12 faces the lens module 11 for obtaining images of the cells through the lens module 11 . Therefore, in the cell detection system 100, the images of these cells captured by the hyperspectral instrument 12 can be (A) cell images corresponding to any wavelength in the hyperspectral image, (B) cell images of each wavelength in the hyperspectral image Synthesized grayscale cell images. Any reasonable image format belongs to the category disclosed by the present invention. The processor 13 is coupled to the lens module 11 and the hyperspectral instrument 12 for adjusting the magnification of the lens module 11 and processing the images of the cells. The processor 13 can be a central processing unit, a microprocessor, or any programmable processing unit. The processor 13 has a neural network, such as a deep neural network (Deep Neural Networks, DNN), which can perform machine learning and deep learning functions. Therefore, the neural network-like of the processor 13 can be trained, which can be regarded as the processing core of artificial intelligence. The memory 14 is coupled to the processor 13 for storing training data and analysis data of image processing.

在細胞檢測系統100中,在載具10之容置槽放置該些細胞後,處理器13可控制高光譜儀12,透過透鏡模組11在第一時間點以及第二時間點之間,取 樣該些細胞的N張影像。接著,處理器13可以決定每一個細胞在發育期間,內部至少一種化學成分發生改變時對應的觀測區域,並在第一時間點以及第二時間點之間,分析N張正規化細胞高光譜影像,以產生觀測區域對應的關鍵正規化細胞高光譜影像差異特徵數值。如前述提及,處理器13包含可訓練的類神經網路。因此,每一個細胞之觀測區域對應的關鍵正規化細胞高光譜影像差異特徵數值及/或N張正規化細胞高光譜影像可用以訓練類神經網路。在類神經網路訓練完成後,處理器13可以利用類神經網路,以人工智慧的程序建立細胞品質檢測模型,以檢測細胞品質及/或辨識細胞。在細胞檢測系統100中,第一時間點在第二時間點之前,且N為大於2的正整數。換句話說,細胞檢測系統100可以用兩個不同時間點之間的時間序列的細胞影像資訊來訓練類神經網路。在類神經網路訓練完成後,細胞檢測系統100即具備人工智慧的細胞檢測功能,具有自動化地檢測細胞品質及/或辨識細胞的能力。細胞檢測系統100如何訓練類神經網路以執行人工智慧的細胞檢測功能的細節,將描述於後文。 In the cell detection system 100, after the cells are placed in the holding tank of the carrier 10, the processor 13 can control the hyperspectral instrument 12 to take the Sample N images of these cells. Next, the processor 13 can determine the corresponding observation area when at least one chemical composition in each cell changes during development, and analyze N normalized cell hyperspectral images between the first time point and the second time point , to generate the key normalized cell hyperspectral image difference characteristic value corresponding to the observation area. As mentioned above, the processor 13 includes a trainable neural network. Therefore, the key normalized cell hyperspectral image difference characteristic value corresponding to the observation area of each cell and/or N normalized cell hyperspectral images can be used to train the neural network. After the training of the neural network is completed, the processor 13 can use the neural network to establish a cell quality detection model with an artificial intelligence program to detect cell quality and/or identify cells. In the cell detection system 100, the first time point is before the second time point, and N is a positive integer greater than 2. In other words, the cell detection system 100 can use the time-series cell image information between two different time points to train the neural network. After the neural network-like training is completed, the cell detection system 100 has the cell detection function of artificial intelligence, and has the ability to automatically detect cell quality and/or identify cells. The details of how the cell detection system 100 trains the neural network to perform the cell detection function of artificial intelligence will be described later.

第2圖係為利用高光譜資料分析技術之人工智慧的細胞檢測系統100執行細胞檢測方法的流程圖。細胞檢測方法可包含步驟S201至步驟S207。任何合理的步驟變或是技術更動都屬於本發明所揭露的範疇。步驟S201至步驟S207的內容描述於下:步驟S201:取得複數個細胞;步驟S202:在第一時間點以及第二時間點之間,取樣該些細胞的N張影像;步驟S203:依據該些細胞的N張影像,進行影像校正程序,以產生N張正規化細胞高光譜影像;步驟S204:決定每一個細胞在發育期間,內部至少一種化學成分發生改變時對應的觀測區域; 步驟S205:在第一時間點以及第二時間點之間,分析N張正規化細胞高光譜影像,以產生觀測區域對應的關鍵正規化細胞高光譜影像差異特徵數值;步驟S206:將每一個細胞之觀測區域對應的關鍵正規化細胞高光譜影像差異特徵數值及/或N張正規化細胞高光譜影像輸入至類神經網路,以訓練類神經網路;步驟S207:利用類神經網路,以人工智慧的程序建立細胞品質檢測模型,以檢測細胞品質及/或辨識細胞。 FIG. 2 is a flow chart of the cell detection method executed by the cell detection system 100 using the artificial intelligence of the hyperspectral data analysis technology. The cell detection method may include steps S201 to S207. Any reasonable step changes or technical changes belong to the scope of the disclosure of the present invention. The contents of steps S201 to S207 are described as follows: Step S201: Obtain a plurality of cells; Step S202: Sampling N images of these cells between the first time point and the second time point; Step S203: Based on the Perform image correction procedures on N images of cells to generate N normalized cell hyperspectral images; step S204: determine the corresponding observation area when at least one internal chemical composition of each cell changes during development; Step S205: Between the first time point and the second time point, analyze N normalized cell hyperspectral images to generate key normalized cell hyperspectral image difference characteristic values corresponding to the observation area; Step S206: convert each cell The key normalized cell hyperspectral image difference characteristic values corresponding to the observation area and/or N normalized cell hyperspectral images are input to the neural network to train the neural network; step S207: using the neural network to The artificial intelligence program establishes a cell quality detection model to detect cell quality and/or identify cells.

為了描述簡化,後文的「細胞」僅以「胚胎」為實施例進行說明,然而本發明並不限於此,細胞的定義可為生殖細胞、神經細胞、組織細胞、動植物細胞或是任何需要研究及觀察的細胞。在步驟S201中,研究人員或是醫療人員可先取得多個胚胎。在步驟S202中,處理器13可以控制高光譜儀12,在第一時間點以及第二時間點之間,取樣該些細胞的N張影像。舉例而言,高光譜儀12可在一段時間內(第一時間點以及第二時間點之間),以錄影的方式(如30fps或是60fps)取得多張幀(Frames)構成的影像集合。或是,高光譜儀12可在一段時間內(第一時間點以及第二時間點之間),週期性地對多個胚胎拍照,以取得該些胚胎的N張影像。並且,第一時間點以及第二時間點可為該些胚胎於培養液中發育且分裂之觀察週期中的任兩時間點。舉例而言,第一時間點以及第二時間點可以分別選為第一天以及第五天,以觀察該些胚胎發育以及分裂的狀況。換句話說,高光譜儀12可以在第0個小時到第120小時之內對該些胚胎連續地拍照,以取得N張影像。在步驟S203中,處理器13可以依據該些細胞的N張影像,進行影像校正程序,以產生N張正規化細胞高光譜影像。N張影像可為N張的高光譜影像。處理器13可以依據N張高光譜影像及/或環境光參數,取得亮場(Bright Field)資訊及暗場(Dark Field)資訊。接著,處理器13可以依據亮場資訊及暗場資訊, 產生光穿透率百分比數值,並依據光亮場資訊及/或暗場資訊與穿透率百分比數值,校正N張高光譜影像,以產生N張正規化細胞高光譜影像。舉例而言,由於高光譜儀12每次取樣(拍攝)該些胚胎時的環境光不同,因此高光譜影像需要正規化(Normalized)以進行一致性之影像處理。例如,在時間點T1時,高光譜儀12附近的光能量為100單位(如nits)。高光譜儀12所產生的正規化細胞高光譜影像中,亮場的光能量為200單位。因此,針對亮場而言,亮場的光能量(200單位)可能有100單位是環境光所貢獻的,故光線穿透率百分比數值可視為50%。例如,在時間點T2時,高光譜儀12附近的光能量為200單位(如nits)。高光譜儀12所產生的正規化細胞高光譜影像中,亮場的光能量為400單位。因此,針對亮場而言,亮場的光能量(400單位)可能有200單位是環境光貢獻的,故光線穿透率百分比數值可視為50%。因此,高光譜儀12在時間點T1以及在時間點T2所產生的兩張高光譜影像具有相同的光線穿透率百分比數值(亮場)。類似地,若是高光譜儀12在時間點T1以及在時間點T2所產生的兩張高光譜影像具有不同的光線穿透率百分比數值(暗場),則處理器13需要將暗場的影像進行校正,如增加暗場亮度以使兩張影像不會發生高反差的情況。換句話說,高光譜儀在取樣過程中、環境光、光強值、亮場以及暗場資訊均有差異,故細胞檢測系統100要執行正規化的程序,以使正規化後的影像資料具有一致性。並且,經過正規化的高光譜資料,可帶有穿透率的資訊(可用百分比表示)。若是穿透率經過正規化的處理,則影像亮度即具有一致性。在細胞檢測系統100中,任何讓N張高光譜影像之正規化的方法或是技術都屬於本發明所揭露的範疇。 In order to simplify the description, the following "cells" are only described with "embryo" as an example, but the present invention is not limited thereto. The definition of cells can be germ cells, nerve cells, tissue cells, animal and plant cells, or any research needs and observed cells. In step S201, researchers or medical personnel can obtain multiple embryos first. In step S202, the processor 13 may control the hyperspectral instrument 12 to sample N images of the cells between the first time point and the second time point. For example, the hyperspectral instrument 12 can acquire an image set composed of multiple frames (Frames) in a video recording mode (such as 30 fps or 60 fps) within a period of time (between the first time point and the second time point). Alternatively, the hyperspectral instrument 12 can periodically take pictures of multiple embryos within a period of time (between the first time point and the second time point), so as to obtain N images of the embryos. Moreover, the first time point and the second time point can be any two time points in the observation period during which the embryos develop and divide in the culture medium. For example, the first time point and the second time point can be respectively selected as the first day and the fifth day to observe the development and division of the embryos. In other words, the hyperspectral instrument 12 can continuously take pictures of the embryos from the 0th hour to the 120th hour to obtain N images. In step S203, the processor 13 may perform an image correction procedure according to the N images of the cells to generate N normalized cell hyperspectral images. The N images may be N hyperspectral images. The processor 13 can obtain Bright Field information and Dark Field information according to the N hyperspectral images and/or ambient light parameters. Next, the processor 13 may, according to the bright field information and the dark field information, Generate light transmittance percentage values, and correct N hyperspectral images according to bright field information and/or dark field information and transmittance percentage values, so as to generate N normalized cell hyperspectral images. For example, since the ambient light of the embryos is different each time the hyperspectral instrument 12 samples (photographs), the hyperspectral images need to be normalized for consistent image processing. For example, at the time point T1, the light energy near the hyperspectrometer 12 is 100 units (eg, nits). In the normalized cell hyperspectral image generated by the hyperspectrometer 12 , the light energy of the bright field is 200 units. Therefore, for the bright field, 100 units of the light energy (200 units) of the bright field may be contributed by ambient light, so the light transmittance percentage value can be regarded as 50%. For example, at the time point T2, the light energy near the hyperspectrometer 12 is 200 units (eg, nits). In the normalized cell hyperspectral image generated by the hyperspectrometer 12 , the light energy of the bright field is 400 units. Therefore, for the bright field, 200 units of the light energy (400 units) of the bright field may be contributed by ambient light, so the light transmittance percentage value can be regarded as 50%. Therefore, the two hyperspectral images generated by the hyperspectral instrument 12 at the time point T1 and the time point T2 have the same light transmittance percentage value (bright field). Similarly, if the two hyperspectral images produced by the hyperspectral instrument 12 at the time point T1 and the time point T2 have different light transmittance percentage values (dark field), the processor 13 needs to correct the dark field image , such as increasing the brightness of the dark field so that the high contrast between the two images does not occur. In other words, during the sampling process of the hyperspectrometer, there are differences in ambient light, light intensity value, bright field and dark field information, so the cell detection system 100 needs to perform a normalization procedure to make the normalized image data have a consistent sex. Moreover, the normalized hyperspectral data may carry information of transmittance (expressed as a percentage). If the transmittance is normalized, the image brightness will be consistent. In the cell detection system 100 , any method or technique for normalizing the N hyperspectral images belongs to the scope disclosed in the present invention.

並且,應當理解的是,高光譜儀12取得該些細胞的N張高光譜影像,包含高光譜儀12在第一時間點以及第二時間點之間,於至少一個特定波長下,取得該些細胞的N張高光譜影像。一般而言,在可見光的物體影像中,可以看到物體的輪廓、顏色、偏光特性。然而,當不同物質具有相同的可見光特性(顏色、 形狀、偏光特性等等)時,肉眼將難以察覺。然而,物質的特性會顯示在其光譜特性上,因此,高光譜儀12可以針對高光譜訊號做定量的分析,以進一步解析物質的差異性。高光譜儀12所支援的光譜波段數目可為數百個,且光譜解析度可為奈米等級。因此,高光譜儀12取得該些細胞的N張高光譜影像,可以包含不同波長下的高光譜影像。光譜波段數目越多,高光譜影像的數量將越大(N越大),影像分析能力也會越好。在步驟S204中,處理器13決定每一個細胞在發育期間,內部至少一種化學成分發生改變時對應的觀測區域。如前述提及,高光譜影像可以分析物質的差異性,例如胚胎的新陳代謝物質(特徵細胞)或是各種化學成分。例如,在特徵細胞中,有均勻代謝的判斷可根據葡萄糖(Glucose)、放射性同位素(Radioisotope)、自發螢光(Auto-fluorescence)、3H2O以及14CO2的特性而決定。例如,在健康胚胎中,有較高的核糖核酸(RNA)、蛋白含量(Protein Content)以及糖解依賴(Glycolytic Dependence)。換句話說,當高光譜儀12產生之高光譜影像中,某個胚胎之核糖核酸、蛋白含量以及糖解依賴的比例符合健康胚胎的比例,則某個胚胎在此時間點可被視為健康胚胎。如前述提及,胚胎在發育期間會產生數次分裂,每次分裂後,胚胎內某個部份的化學成分比例就會發生改變。因此,在步驟S204中,處理器13之定義的觀測區域可為該些胚胎中,每一個胚胎的囊胚(Blastocyst)區域或該些胚胎之至少一種化學成分發生改變時,差異性最大的區域。 Moreover, it should be understood that the hyperspectral instrument 12 acquires N hyperspectral images of the cells, including that the hyperspectral instrument 12 acquires the hyperspectral images of the cells at at least one specific wavelength between the first time point and the second time point. N hyperspectral images. Generally speaking, in the object image of visible light, the outline, color, and polarization characteristics of the object can be seen. However, when different substances have the same visible light properties (color, shape, polarization properties, etc.), it will be difficult for the naked eye to detect them. However, the characteristics of the substance will be displayed in its spectral characteristics. Therefore, the hyperspectral instrument 12 can perform quantitative analysis on the hyperspectral signal to further analyze the difference of the substance. The number of spectral bands supported by the hyperspectral instrument 12 may be hundreds, and the spectral resolution may be at the nanometer level. Therefore, the hyperspectral instrument 12 obtains N hyperspectral images of the cells, which may include hyperspectral images at different wavelengths. The larger the number of spectral bands, the larger the number of hyperspectral images (the larger N is), and the better the image analysis capability will be. In step S204, the processor 13 determines the corresponding observation area when at least one internal chemical composition of each cell changes during development. As mentioned above, hyperspectral images can analyze the differences of substances, such as the metabolic substances (characteristic cells) of embryos or various chemical components. For example, in characteristic cells, the judgment of uniform metabolism can be determined according to the characteristics of Glucose, Radioisotope, Auto-fluorescence, 3 H 2 O and 14 CO 2 . For example, in healthy embryos, there are higher ribonucleic acid (RNA), protein content (Protein Content) and glycolytic dependence (Glycolytic Dependence). In other words, when in the hyperspectral image generated by the hyperspectral instrument 12, the ratio of ribonucleic acid, protein content, and glycolysis dependence of a certain embryo matches the proportion of a healthy embryo, then a certain embryo can be regarded as a healthy embryo at this time point . As mentioned above, the embryo divides several times during development, and after each division, the chemical composition ratio of a certain part of the embryo will change. Therefore, in step S204, the observation area defined by the processor 13 may be among the embryos, the blastocyst (Blastocyst) area of each embryo or the area with the greatest difference when at least one chemical composition of the embryos changes. .

接著,在步驟S205中,處理器13可以在第一時間點以及第二時間點之間,分析N張正規化細胞高光譜影像,以產生觀測區域對應的關鍵正規化細胞高光譜影像差異特徵數值。在細胞檢測系統100中,關鍵正規化細胞高光譜影像差異特徵數值可包含各波長下正規化光譜之間的比例關係、正規化光譜之波峰及/或波谷數值、該波峰及/或波谷對應的波長數據、以及該些波長數據間之相關性。廣義地說,N張正規化細胞高光譜影像中的任何可量化的特徵,可以被處理 器13進行量化處理,而變為二位元的數位數值。並且,由於處理器13包含類神經網路,因此,在步驟S206中,每一個細胞之觀測區域對應的關鍵正規化細胞高光譜影像差異特徵數值及/或N張正規化細胞高光譜影像可以輸入至類神經網路,以訓練類神經網路。在類神經網路被訓練完成後,依據步驟S207,處理器13可以用人工智慧的程序,建立細胞品質檢測模型,以檢測細胞品質及/或辨識細胞。在細胞檢測系統100中,類神經網路具有建立深度學習模型之訓練數據蒐集的能力。例如,類神經網路可以蒐集胚胎由第一天至第五天內,各階段原始的影像資料、最後階段(或是發育期間的任何時間點)的高光譜技術擷取的高光譜資料、將高光譜資料分析後的影像特徵資料、以及時間序列資料(N張影像)以執行深度學習的訓練。並且,類神經網路還可以依據胚胎著床成功或是著床失敗的結果(著床率)修正細胞品質檢測模型。任何用以訓練類神經網路以進行人工智慧之細胞檢測功能的方式都屬於本發明所揭露的範疇。換句話說,細胞檢測系統100利用人工智慧檢測胚胎品質及/或辨識胚胎可包含兩個階段。第一階段為訓練階段。第二階段為人工智慧之偵測階段。在類神經網路訓練完成後,處理器13可以利用已經訓練完成的類神經網路之細胞品質檢測模型,判斷胚胎品質以及辨識胚胎。因此,本發明的細胞檢測系統100可以避免醫療人員或是研究人員以主觀的方式來判斷胚胎的優劣,因此針對不孕症的療程,其受孕成功率能夠大幅度地提升。 Next, in step S205, the processor 13 can analyze N normalized cell hyperspectral images between the first time point and the second time point to generate key normalized cell hyperspectral image difference characteristic values corresponding to the observation area . In the cell detection system 100, the key normalized cell hyperspectral image difference characteristic values may include the proportional relationship between the normalized spectra at each wavelength, the peak and/or trough values of the normalized spectra, and the peaks and/or troughs corresponding to Wavelength data and the correlation between the wavelength data. Broadly speaking, any quantifiable feature in N normalized cellular hyperspectral images can be processed The device 13 performs quantization processing to become a two-bit digital value. Moreover, since the processor 13 includes a neural network, in step S206, the key normalized cell hyperspectral image difference characteristic value and/or N normalized cell hyperspectral images corresponding to the observation area of each cell can be input to a neural network to train a neural network. After the neural network is trained, according to step S207, the processor 13 can use an artificial intelligence program to establish a cell quality detection model to detect cell quality and/or identify cells. In the cell detection system 100 , the neural network has the capability of collecting training data for establishing a deep learning model. For example, the neural network can collect the original image data of each stage from the first day to the fifth day of the embryo, the hyperspectral data extracted by hyperspectral technology at the last stage (or any time point during development), and the Image feature data after hyperspectral data analysis, and time series data (N images) to perform deep learning training. Moreover, the neural network can also modify the cell quality detection model according to the result of embryo implantation success or implantation failure (implantation rate). Any method for training a neural network to perform the cell detection function of artificial intelligence belongs to the scope disclosed by the present invention. In other words, the cell detection system 100 using artificial intelligence to detect embryo quality and/or identify embryos may include two stages. The first stage is the training stage. The second stage is the detection stage of artificial intelligence. After the training of the neural network is completed, the processor 13 can use the trained neural network-like cell quality detection model to judge the embryo quality and identify the embryo. Therefore, the cell detection system 100 of the present invention can prevent medical personnel or researchers from judging the quality of embryos in a subjective way, so the success rate of conception can be greatly improved for the treatment of infertility.

第3圖係為利用高光譜資料分析技術之人工智慧的細胞檢測系統100中,加入額外步驟以增強細胞檢測的精確度的示意圖。為了進一步加強判斷胚胎品質以及辨識胚胎的精確度,細胞檢測系統100還可以引入型態學的偵測技術來強化類神經網路的細胞檢測能力,如下所示。 FIG. 3 is a schematic diagram of adding additional steps to enhance the accuracy of cell detection in the cell detection system 100 using artificial intelligence of hyperspectral data analysis technology. In order to further enhance the accuracy of judging embryo quality and identifying embryos, the cell detection system 100 can also introduce morphological detection technology to enhance the neural network-like cell detection capability, as shown below.

步驟S201:取得複數個細胞;步驟S301:在第一時間點以及第二時間點之間,依據N張正規化細胞高光 譜影像,擷取至少一個波長的正規化細胞影像;步驟S302:利用型態學的邊緣偵測技術,依據至少一個波長的正規化細胞影像,取得每一個時間點及每一個波長下之波長正規化細胞影像邊緣特徵數據,並將波長正規化細胞影像之邊緣特徵數據輸入至類神經網路,以訓練類神經網路。 Step S201: Obtain a plurality of cells; Step S301: Between the first time point and the second time point, according to N pieces of normalized cell highlights Spectrum image, extracting normalized cell image of at least one wavelength; Step S302: Using morphological edge detection technology, according to the normalized cell image of at least one wavelength, obtain the normalized wavelength of each time point and each wavelength The edge feature data of the cell image is normalized, and the edge feature data of the wavelength normalized cell image is input to the neural network to train the neural network.

類似地,為了描述簡化,後文的「細胞」僅以「胚胎」為實施例進行說明,然而本發明並不限於此,細胞的定義可為生殖細胞、神經細胞、組織細胞、動植物細胞或是任何需要研究及觀察的細胞。為了進一步加強判斷胚胎品質以及辨識胚胎的精確度,細胞檢測系統100在前述步驟S201取得複數個細胞(胚胎)後,依據步驟S301,處理器13可以在第一時間點以及第二時間點之間,依據N張正規化細胞高光譜影像,擷取至少一個波長的正規化細胞影像。如前述提及,高光譜儀12所支援的光譜波段數目可為數百個,因此處理器13在校正高光譜儀12產生之影像的亮場/暗場參數後(正規化),可以取得每一個波長下的正規化細胞影像。接著,依據步驟S302,處理器13可以利用型態學的邊緣偵測技術,依據至少一個波長的正規化細胞影像,取得每一個時間點及每一個波長下之波長正規化細胞影像之邊緣特徵數據,並將波長正規化細胞影像之邊緣特徵數據輸入至類神經網路,以訓練類神經網路。在此,邊緣特徵數據可為胚胎整體或是某一個特定部分(例如囊胚)的輪廓,其數據格式可用多個座標的方式表示。例如在二維平面上,單一胚胎的輪廓可為封閉型的線段,可用(X1,Y1)至(XM,YM)表示,M為正整數且M越大解析度越高。對比於第2圖所述之步驟S201至步驟S207的細胞偵測方法,細胞檢測系統100可以引入額外的步驟S301至步驟S302,以獲取更多的資訊(如波長正規化細胞影像之邊緣特徵數據)來訓練類神經網路。因此,類神經網路的訓練會更加優化,從而增加了人工智慧偵測細胞品質的精確度。 Similarly, in order to simplify the description, the following "cell" is only described with "embryo" as an example, but the present invention is not limited thereto, and the definition of a cell can be a germ cell, a nerve cell, a tissue cell, an animal or plant cell, or Any cell that needs to be studied and observed. In order to further enhance the accuracy of judging the quality of embryos and identifying embryos, after the cell detection system 100 obtains a plurality of cells (embryos) in the aforementioned step S201, according to step S301, the processor 13 can , according to the N normalized cell hyperspectral images, extracting at least one normalized cell image with one wavelength. As mentioned above, the number of spectral bands supported by the hyperspectrometer 12 can be hundreds, so the processor 13 can obtain each wavelength after correcting (normalizing) the bright field/dark field parameters of the image generated by the hyperspectrometer 12 Normalized cell image below. Next, according to step S302, the processor 13 can use the morphological edge detection technology to obtain the edge feature data of the normalized cell image at each time point and wavelength at each wavelength according to the normalized cell image at least one wavelength , and input the edge feature data of the wavelength normalized cell image into the neural network to train the neural network. Here, the edge feature data can be the outline of the whole embryo or a specific part (such as a blastocyst), and its data format can be represented by multiple coordinates. For example, on a two-dimensional plane, the outline of a single embryo can be a closed line segment, which can be represented by (X 1 , Y 1 ) to (X M , Y M ), M is a positive integer and the larger M is, the higher the resolution will be. Compared with the cell detection method in steps S201 to S207 described in FIG. 2, the cell detection system 100 can introduce additional steps S301 to S302 to obtain more information (such as the edge feature data of the wavelength normalized cell image) ) to train a neural network. Therefore, the training of the neural network will be more optimized, thereby increasing the accuracy of the artificial intelligence to detect the quality of the cells.

第4圖係為利用高光譜資料分析技術之人工智慧的細胞檢測系統100中,具有類神經網路的處理器13之輸入資料以及輸出資料的示意圖。如前述提及,高光譜儀12可以在兩個不同的時間點對多個胚胎拍照,以產生N張影像。N張影像可以經過影像校正程序,而轉換為N張正規化細胞高光譜影像D2。並且,藉由分析時間序列下的N張正規化細胞高光譜影像,可以決定觀測區域,並進一步產生關鍵正規化細胞高光譜影像差異特徵數值D1。關鍵正規化細胞高光譜影像差異特徵數值D1以及正規化細胞高光譜影像D2可用於訓練處理器13內的類神經網路。當類神經網路訓練完成後,處理器13即可利用人工智慧的程序判斷胚胎品質及/或辨識胚胎。處理器13可輸出細胞品質輸出資料D4。應當理解的是,N張影像中之每一張影像可為二維影像或三維影像。若N張影像中之每一張影像為二維影像時,輸入至類神經網路的資料格式可為K個維度。舉例而言,在時間點T、高光譜儀之特定波長λ下,二維座標(x,y)的畫素S1的光訊號可以表示為S1(λ,T,x,y)。畫素S1的光訊號S1(λ,T,x,y)為四個維度的訊號格式(K=4)。同理,在時間點T、高光譜儀之特定波長λ下,三維座標(x,y,z)的畫素S2的光訊號可以表示為S2(λ,T,x,y,z)。畫素S2的光訊號S2(λ,T,x,y,z)為五個維度的訊號格式(K=5)。K為大於2的正整數。因此可預期地,當細胞檢測系統100的資料格式為較高的維度時,運算複雜度將變高。當細胞檢測系統100的資料格式為較低的維度時,運算複雜度將變低。 FIG. 4 is a schematic diagram of the input data and output data of the processor 13 having a neural network in the artificial intelligence cell detection system 100 using the hyperspectral data analysis technology. As mentioned above, the hyperspectral instrument 12 can take pictures of multiple embryos at two different time points to generate N images. The N images can be converted into N normalized cellular hyperspectral images D2 through an image correction procedure. Moreover, by analyzing the N normalized cell hyperspectral images under the time series, the observation area can be determined, and the key normalized cell hyperspectral image difference characteristic value D1 can be further generated. The key normalized cell hyperspectral image difference feature value D1 and the normalized cell hyperspectral image D2 can be used to train the neural network in the processor 13 . After the neural network training is completed, the processor 13 can use the artificial intelligence program to judge the embryo quality and/or identify the embryo. The processor 13 can output the cell quality output data D4. It should be understood that each of the N images can be a 2D image or a 3D image. If each of the N images is a two-dimensional image, the format of the data input to the neural network can be K dimensions. For example, at the time point T and the specific wavelength λ of the hyperspectral instrument, the optical signal of the pixel S1 with two-dimensional coordinates (x, y) can be expressed as S1(λ, T, x, y). The light signal S1 (λ, T, x, y) of the pixel S1 is a four-dimensional signal format (K=4). Similarly, at the time point T and the specific wavelength λ of the hyperspectral instrument, the optical signal of the pixel S2 with three-dimensional coordinates (x, y, z) can be expressed as S2(λ, T, x, y, z). The optical signal S2 (λ, T, x, y, z) of the pixel S2 is a five-dimensional signal format (K=5). K is a positive integer greater than 2. Therefore, it is expected that when the data format of the cell detection system 100 is a higher dimension, the computational complexity will become higher. When the data format of the cell detection system 100 is a lower dimension, the computational complexity will be lower.

並且,如前述提及,處理器13的類神經網路,可以利用波長正規化細胞影像之邊緣特徵數據D3進行訓練後,類神經網路可以利用人工智慧的程序優化細胞品質檢測模型。因此,如第4圖所示,處理器內的類神經網路可以接收關鍵正規化細胞高光譜影像差異特徵數值D1、正規化細胞高光譜影像D2、波長正規化細胞影像之邊緣特徵數據D3。並且,當處理器內的類神經網路訓練完成後,處理器即可利用人工智慧的程序對不孕症婦女的取卵/胚胎進行遴選,以輸 出細胞品質輸出資料D4。細胞品質輸出資料D4可為任何形式的資料格式,如輸出胚胎優劣的分級資料、輸出至少一個胚胎的優劣排序百分率、或是輸出至少一個胚胎的細胞品質。細胞品質可為細胞之詳細化學成分數值含量多寡、遺傳基因優劣,也可以為細胞於特定時間內之發育狀態的優劣,或是細胞是否發生病變而定。若為生殖細胞也可為懷孕與否、新生兒健康以及性別而定。 Moreover, as mentioned above, the neural network of the processor 13 can use the edge feature data D3 of the wavelength normalized cell image for training, and then the neural network can optimize the cell quality detection model by using artificial intelligence programs. Therefore, as shown in FIG. 4, the neural network in the processor can receive the key normalized cell hyperspectral image difference feature value D1, normalized cell hyperspectral image D2, and wavelength normalized cell image edge feature data D3. Moreover, after the neural network-like training in the processor is completed, the processor can use artificial intelligence programs to select eggs/embryos from infertile women for input Output cell quality output data D4. The cell quality output data D4 can be in any data format, such as outputting grading data of good or bad embryos, outputting the good or bad sorting percentage of at least one embryo, or outputting the cell quality of at least one embryo. Cell quality can be determined by the amount of the detailed chemical composition of the cell, the quality of the genetic gene, the quality of the developmental state of the cell within a certain period of time, or whether the cell is diseased or not. If it is a germ cell, it can also be dependent on pregnancy or not, the health of the newborn, and sex.

綜上所述,本發明描述一種利用高光譜資料分析技術之人工智慧的細胞檢測方法及其系統。細胞檢測系統的應用族群可為不孕症的婦女。醫療人員可先依據大量細胞數據,建立人工智慧之細胞品質檢測模型後,即可對不孕症的婦女進行療程。並且,人工智慧的類神經網路可以接收各波長下之高光譜資料及型態學相關的各種參數,例如關鍵正規化細胞高光譜影像差異特徵數值、正規化細胞高光譜影像、波長正規化細胞影像之邊緣特徵數據。因此,類神經網路的使用可以避免醫療人員或是研究人員以主觀的方式來判斷胚胎的優劣。不孕症的婦女可以先進行多個胚胎培養,細胞檢測系統利用人工智慧之細胞品質間檢測模型決定最佳胚胎後,再以人工的方式植入母體子宮,以增加受孕的成功率。 In summary, the present invention describes a cell detection method and system using artificial intelligence of hyperspectral data analysis technology. The application group of the cell detection system can be infertile women. Medical personnel can first establish an artificial intelligence cell quality detection model based on a large amount of cell data, and then treat infertile women with a course of treatment. Moreover, artificial intelligence-like neural networks can receive hyperspectral data at various wavelengths and various parameters related to morphology, such as key normalized cell hyperspectral image difference characteristic values, normalized cell hyperspectral images, wavelength normalized cell Image edge feature data. Therefore, the use of neural networks can prevent medical staff or researchers from judging the quality of embryos in a subjective way. Infertile women can carry out multiple embryo cultures first. The cell detection system uses the cell quality detection model of artificial intelligence to determine the best embryo, and then artificially implants into the mother's uterus to increase the success rate of conception.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:利用高光譜資料分析技術之人工智慧的細胞檢測系統 100: Cell detection system using artificial intelligence of hyperspectral data analysis technology

10:載具 10: Vehicle

11:透鏡模組 11: Lens module

12:高光譜儀 12:Hyperspectrometer

13:處理器 13: Processor

14:記憶體 14: Memory

Claims (8)

一種利用高光譜資料分析技術之人工智慧的細胞檢測方法,包含:取得複數個細胞;一高光譜儀在一第一時間點以及一第二時間點之間,取樣該些細胞的N張高光譜影像;依據該N張高光譜影像及/或一環境光參數,取得一亮場(Bright Field)資訊及一暗場(Dark Field)資訊;依據該亮場資訊及該暗場資訊,產生一光穿透率百分比數值;依據該光穿透率百分比數值,校正該N張高光譜影像,以產生N張正規化細胞高光譜影像;決定每一個細胞在一發育期間,內部至少一種化學成分發生改變時對應的一觀測區域;在該第一時間點以及該第二時間點之間,分析該N張正規化細胞高光譜影像,以產生該觀測區域對應的一關鍵正規化細胞高光譜影像差異特徵數值;將該每一個細胞之該觀測區域對應的該關鍵正規化細胞高光譜影像差異特徵數值及/或該N張正規化細胞高光譜影像輸入至一類神經網路,以訓練該類神經網路;及利用該類神經網路,以一人工智慧的程序建立一細胞品質檢測模型,以檢測細胞品質及/或辨識細胞;其中該第一時間點在該第二時間點之前,且N為大於2的正整數。 A cell detection method using artificial intelligence of hyperspectral data analysis technology, comprising: obtaining a plurality of cells; a hyperspectral instrument sampling N hyperspectral images of the cells between a first time point and a second time point ; According to the N hyperspectral images and/or an ambient light parameter, obtain a Bright Field (Bright Field) information and a Dark Field (Dark Field) information; according to the Bright Field information and the Dark Field information, generate a light penetration Transmittance percentage value; according to the light transmittance percentage value, correct the N hyperspectral images to generate N normalized cell hyperspectral images; determine when at least one internal chemical composition of each cell changes during a development period A corresponding observation area; between the first time point and the second time point, analyze the N normalized cell hyperspectral images to generate a key normalized cell hyperspectral image difference characteristic value corresponding to the observation area ; Input the key normalized cell hyperspectral image difference characteristic value corresponding to the observation area of each cell and/or the N normalized cell hyperspectral images to a type of neural network to train the type of neural network; and using the neural network to establish a cell quality detection model with an artificial intelligence program to detect cell quality and/or identify cells; wherein the first time point is before the second time point, and N is greater than 2 positive integer of . 如請求項1所述之方法,其中該些細胞係為複數個生殖細胞,且該第一時間點以及該第二時間點係為該些生殖細胞於培養液中發育且分裂之一觀察週期中的任兩時間點。 The method as claimed in claim 1, wherein the cell lines are a plurality of germ cells, and the first time point and the second time point are during an observation cycle of the germ cells developing and dividing in the culture medium any two time points. 如請求項1所述之方法,其中該些細胞係為複數個胚胎,且該觀測區域係為該些胚胎中每一個胚胎的一囊胚(Blastocyst)區域或該些胚胎之該至少一種化學成分發生改變時,差異性最大的一區域。 The method as claimed in claim 1, wherein the cell lines are a plurality of embryos, and the observation area is a blastocyst (Blastocyst) area of each embryo in the embryos or the at least one chemical composition of the embryos When changes occur, the area with the greatest difference. 如請求項1所述之方法,其中該高光譜儀取得該些細胞的該N張高光譜影像,包含該高光譜儀在該第一時間點以及該第二時間點之間,於至少一個特定波長下,取得該些細胞的該N張高光譜影像。 The method as described in claim 1, wherein the hyperspectral instrument obtains the N hyperspectral images of the cells, including the hyperspectral instrument at least one specific wavelength between the first time point and the second time point , to obtain the N hyperspectral images of the cells. 如請求項1所述之方法,其中該關鍵正規化細胞高光譜影像差異特徵數值包含各波長下正規化光譜之間的一比例關係、正規化光譜之一波峰及/或一波谷數值、該波峰及/或波谷對應的一波長數據,以及複數個波長數據之間的相關性。 The method as described in claim 1, wherein the key normalized cell hyperspectral image difference characteristic value includes a proportional relationship between the normalized spectra at each wavelength, a peak and/or a valley value of the normalized spectrum, the peak And/or a wavelength data corresponding to the trough, and the correlation among the plurality of wavelength data. 如請求項1所述之方法,另包含:在該第一時間點以及該第二時間點之間,依據該N張正規化細胞高光譜影像,擷取至少一個波長的一正規化細胞影像;及利用一型態學的一邊緣偵測技術,依據該至少一個波長的該正規化細胞影像,取得每一時間點及每一波長下之波長正規化細胞影像之邊緣特徵數據,並將該波長正規化細胞影像之邊緣特徵數據輸入至該類神經網路,以訓練該類神經網路。 The method as described in claim 1, further comprising: capturing a normalized cell image of at least one wavelength according to the N normalized cell hyperspectral images between the first time point and the second time point; and using a morphological edge detection technique, according to the normalized cell image of the at least one wavelength, to obtain the edge feature data of the wavelength normalized cell image at each time point and at each wavelength, and convert the wavelength The edge feature data of the normalized cell image is input to the neural network to train the neural network. 如請求項6所述之方法,其中該類神經網路利用該波長正規化細胞影像之邊緣特徵數據進行訓練後,該類神經網路利用該人工智慧的程序優化該 細胞品質檢測模型。 The method as described in Claim 6, wherein after the neural network uses the edge feature data of the wavelength normalized cell image for training, the neural network uses the artificial intelligence program to optimize the Cell quality detection model. 一種利用高光譜資料分析技術之人工智慧的細胞檢測系統,包含:一載具,具有一容置槽,用以放置複數個細胞;一透鏡模組,面對該載具,用以放大該些細胞的細節;一高光譜儀,面對該透鏡模組,用以透過該透鏡模組取得該些細胞的影像;一處理器,耦接於該透鏡模組及該高光譜儀,用以調整該透鏡模組的一放大倍率以及處理該些細胞的該影像;及一記憶體,耦接於該處理器,用以儲存訓練資料以及影像處理的分析資料;其中該載具之該容置槽放置該些細胞後,該處理器控制該高光譜儀,透過該透鏡模組在一第一時間點以及一第二時間點之間,取樣該些細胞的N張高光譜影像,依據該N張高光譜影像及/或一環境光參數,該處理器取得一亮場(Bright Field)資訊及一暗場(Dark Field)資訊,該處理器依據該亮場資訊及該暗場資訊,產生一光穿透率百分比數值,該處理器依據該光穿透率百分比數值,校正該N張高光譜影像,以產生N張正規化細胞高光譜影像,該處理器決定每一個細胞在一發育期間,內部至少一種化學成分發生改變時對應的一觀測區域,並在該第一時間點以及該第二時間點之間,分析該N張正規化細胞高光譜影像,以產生該觀測區域對應的一關鍵正規化細胞高光譜影像差異特徵數值,且該處理器包含一類神經網路,該每一個細胞之該觀測區域對應的該關鍵正規化細胞高光譜影像差異特徵數值及/或該N張正規化細胞高光譜影像用以訓練該類神經網路,該處理器利用該類神經網路,以一人工智慧的程序建立一細胞品質檢測模型,以檢測細胞品質及/或辨識細胞,該第一時間點在該第二時間點之前,且N為大於2的正整數。 A cell detection system based on artificial intelligence using hyperspectral data analysis technology, including: a carrier with a holding tank for placing a plurality of cells; a lens module facing the carrier for magnifying the cells Details of the cells; a hyperspectral instrument facing the lens module for obtaining images of the cells through the lens module; a processor coupled to the lens module and the hyperspectral instrument for adjusting the lens A magnification of the module and processing the image of the cells; and a memory, coupled to the processor, for storing training data and analysis data of image processing; wherein the holding tank of the carrier is placed the After some cells, the processor controls the hyperspectral instrument to sample N hyperspectral images of the cells between a first time point and a second time point through the lens module, and according to the N hyperspectral images And/or an ambient light parameter, the processor obtains a Bright Field (Bright Field) information and a Dark Field (Dark Field) information, and the processor generates a light transmittance according to the Bright Field information and the Dark Field information Percentage value, the processor corrects the N hyperspectral images according to the light transmittance percentage value to generate N normalized cell hyperspectral images, the processor determines that each cell has at least one chemical substance inside during a development period An observation area corresponding to when the composition changes, and between the first time point and the second time point, analyze the N normalized cell hyperspectral images to generate a key normalized cell hyperspectral image corresponding to the observation area Spectral image difference feature value, and the processor includes a type of neural network, the key normalized cell hyperspectral image difference feature value corresponding to the observation area of each cell and/or the N normalized cell hyperspectral image To train the neural network, the processor uses the neural network to establish a cell quality detection model with an artificial intelligence program to detect cell quality and/or identify cells, the first time point is at the second Before the time point, and N is a positive integer greater than 2.
TW109117840A 2019-11-27 2020-05-28 Artificial intelligence based cell detection method by using hyperspectral data analysis technology TWI781408B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962941612P 2019-11-27 2019-11-27
US62/941,612 2019-11-27

Publications (2)

Publication Number Publication Date
TW202121241A TW202121241A (en) 2021-06-01
TWI781408B true TWI781408B (en) 2022-10-21

Family

ID=75996128

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109117822A TWI754945B (en) 2019-11-27 2020-05-28 Artificial intelligence based cell detection method by using optical kinetics and system thereof
TW109117840A TWI781408B (en) 2019-11-27 2020-05-28 Artificial intelligence based cell detection method by using hyperspectral data analysis technology

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109117822A TWI754945B (en) 2019-11-27 2020-05-28 Artificial intelligence based cell detection method by using optical kinetics and system thereof

Country Status (2)

Country Link
CN (2) CN112862742A (en)
TW (2) TWI754945B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1563947A (en) * 2004-03-18 2005-01-12 中国科学院上海技术物理研究所 High microspectrum imaging system
CN106815566A (en) * 2016-12-29 2017-06-09 天津中科智能识别产业技术研究院有限公司 A kind of face retrieval method based on multitask convolutional neural networks
US10043054B2 (en) * 2014-10-17 2018-08-07 Cireca Theranostics, Llc Methods and systems for classifying biological samples, including optimization of analyses and use of correlation
CN109883966A (en) * 2019-02-26 2019-06-14 江苏大学 A method of Eriocheir sinensis amount of cure is detected based on multispectral image technology
TWI664582B (en) * 2018-11-28 2019-07-01 靜宜大學 Method, apparatus and system for cell detection
CN110268414A (en) * 2016-12-01 2019-09-20 伯克利之光生命科技公司 The automatic detection and repositioning of speck body in microfluidic device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088574A1 (en) * 2003-04-02 2004-10-14 Amersham Biosciences Uk Limited Method of, and computer software for, classification of cells into subpopulations
US7711174B2 (en) * 2004-05-13 2010-05-04 The Charles Stark Draper Laboratory, Inc. Methods and systems for imaging cells
CN101331500B (en) * 2005-10-14 2015-04-29 尤尼森斯繁殖技术公司 Determination of a change in a cell population
US8744775B2 (en) * 2007-12-28 2014-06-03 Weyerhaeuser Nr Company Methods for classification of somatic embryos comprising hyperspectral line imaging
JP2009229274A (en) * 2008-03-24 2009-10-08 Nikon Corp Method for analyzing image for cell observation, image processing program and image processor
CN101903532A (en) * 2008-03-24 2010-12-01 株式会社尼康 Method for analyzing image for cell observation, image processing program, and image processing device
CN102803952A (en) * 2009-06-25 2012-11-28 耶路撒冷希伯来大学伊萨姆研发有限公司 Hyperspectral identification of egg fertility and gender
AU2012280743A1 (en) * 2011-07-02 2014-01-16 Unisense Fertilitech A/S Adaptive embryo selection criteria optimized through iterative customization and collaboration
EP2757372B1 (en) * 2011-09-16 2023-08-23 AVE Science & Technology Co., Ltd. Device and method for erythrocyte morphology analysis
EP2890781B1 (en) * 2012-08-30 2020-09-23 Unisense Fertilitech A/S Automatic surveillance of in vitro incubating embryos
US9971966B2 (en) * 2016-02-26 2018-05-15 Google Llc Processing cell images using neural networks
CN106226247A (en) * 2016-07-15 2016-12-14 暨南大学 A kind of cell detection method based on EO-1 hyperion micro-imaging technique
CN107064019B (en) * 2017-05-18 2019-11-26 西安交通大学 The device and method for acquiring and dividing for dye-free pathological section high spectrum image
US20200202051A1 (en) * 2017-06-16 2020-06-25 Ge Healthcare Bio-Sciences Ab Method for Predicting Outcome of an Modelling of a Process in a Bioreactor
CN108550133B (en) * 2018-03-02 2021-05-18 浙江工业大学 Cancer cell detection method based on fast R-CNN
CN110136775A (en) * 2019-05-08 2019-08-16 赵壮志 A kind of cell division and anti-interference detection system and method
CN110390676A (en) * 2019-07-26 2019-10-29 腾讯科技(深圳)有限公司 The cell detection method of medicine dye image, intelligent microscope system under microscope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1563947A (en) * 2004-03-18 2005-01-12 中国科学院上海技术物理研究所 High microspectrum imaging system
US10043054B2 (en) * 2014-10-17 2018-08-07 Cireca Theranostics, Llc Methods and systems for classifying biological samples, including optimization of analyses and use of correlation
CN110268414A (en) * 2016-12-01 2019-09-20 伯克利之光生命科技公司 The automatic detection and repositioning of speck body in microfluidic device
CN106815566A (en) * 2016-12-29 2017-06-09 天津中科智能识别产业技术研究院有限公司 A kind of face retrieval method based on multitask convolutional neural networks
TWI664582B (en) * 2018-11-28 2019-07-01 靜宜大學 Method, apparatus and system for cell detection
CN109883966A (en) * 2019-02-26 2019-06-14 江苏大学 A method of Eriocheir sinensis amount of cure is detected based on multispectral image technology

Also Published As

Publication number Publication date
TWI754945B (en) 2022-02-11
CN112862743A (en) 2021-05-28
TW202120906A (en) 2021-06-01
CN112862742A (en) 2021-05-28
TW202121241A (en) 2021-06-01

Similar Documents

Publication Publication Date Title
JP7072067B2 (en) Systems and methods for estimating embryo viability
US9619881B2 (en) Method and system for characterizing cell populations
WO2021139258A1 (en) Image recognition based cell recognition and counting method and apparatus, and computer device
CN110763678A (en) Pathological section interpretation method and system
CN109564680A (en) Information processing equipment, information processing method and program
JPWO2018101004A1 (en) Cell image evaluation apparatus and cell image evaluation control program
US20220383986A1 (en) Complex System for Contextual Spectrum Mask Generation Based on Quantitative Imaging
US20040014165A1 (en) System and automated and remote histological analysis and new drug assessment
TWI781408B (en) Artificial intelligence based cell detection method by using hyperspectral data analysis technology
US10748288B2 (en) Methods and systems for determining quality of an oocyte
WO2018193612A1 (en) Correlation calculation device, correlation calculation method, and correlation calculation program
WO2023154851A1 (en) Integrated framework for human embryo ploidy prediction using artificial intelligence
Malmsten et al. Automated cell stage predictions in early mouse and human embryos using convolutional neural networks
Zeman et al. Deep learning for human embryo classification at the cleavage stage (Day 3)
US20210174147A1 (en) Operating method of image processing apparatus, image processing apparatus, and computer-readable recording medium
JP2022547900A (en) Automated evaluation of quality assurance metrics used in assisted reproductive procedures
Betegón-Putze et al. MyROOT: A novel method and software for the semi-automatic measurement of plant root length
AU2019101174A4 (en) Systems and methods for estimating embryo viability
RU2800079C2 (en) Systems and methods of assessing the viability of embryos
Sharma et al. Deep learning methods to forecasting human embryo development in time-lapse videos
RU2810125C1 (en) Automated assessment of quality assurance indicators for assisted reproduction procedures
JP7274936B2 (en) Cell image compression device, method and program
Eswaran et al. Assessment of Human Blastocyst using Deep Learning Algorithm
JP2018116376A (en) Image processor and image processing method
JP2024513659A (en) Systems and methods for assessing embryo viability using artificial intelligence

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent