TWI780470B - 用於微影製程效能判定之方法及設備 - Google Patents

用於微影製程效能判定之方法及設備 Download PDF

Info

Publication number
TWI780470B
TWI780470B TW109128345A TW109128345A TWI780470B TW I780470 B TWI780470 B TW I780470B TW 109128345 A TW109128345 A TW 109128345A TW 109128345 A TW109128345 A TW 109128345A TW I780470 B TWI780470 B TW I780470B
Authority
TW
Taiwan
Prior art keywords
substrate
image
region
feature
features
Prior art date
Application number
TW109128345A
Other languages
English (en)
Other versions
TW202113503A (zh
Inventor
羅伊 渥克曼
裴 泠 雷姆
布蘭蒂 瑪莉 安卓 里奇 明吉蒂
瓦希德 巴斯塔尼
莫哈瑪德瑞薩 哈吉阿瑪迪
輝澤 莉迪亞 瑪麗安娜 維蓋茲
法蘭斯 雷尼爾 斯菲林
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP19198917.7A external-priority patent/EP3796088A1/en
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202113503A publication Critical patent/TW202113503A/zh
Application granted granted Critical
Publication of TWI780470B publication Critical patent/TWI780470B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/42Alignment or registration features, e.g. alignment marks on the mask substrates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本發明係關於用於判定一微影圖案化製程之一效能的方法及設備,該設備或方法經組態以用於或包含:接收一基板之一部分之一影像,該基板之該部分包含一第一區及一第二區,該第一區包含與該基板在一第一時間處之一第一微影曝光相關聯的一第一特徵,且該第二區包含與該基板在一第二時間處之一第二微影曝光相關聯的一第二特徵,其中該第一區及該第二區並不重疊且其中該第一特徵及該第二特徵形成沿著該第一區之至少一部分及該第二區之至少一部分延伸的一單個特徵;以及基於與該第一區與該第二區之間的一邊界相關聯的第一經曝光特徵及/或第二經曝光特徵之一特徵特性判定該微影圖案化製程之該效能。

Description

用於微影製程效能判定之方法及設備
本發明係關於用於判定微影圖案化製程之效能的設備及方法。特定而言,本發明係關於基於第一區與第二區之間的邊界之特性判定微影圖案化製程之效能。
微影設備為經建構以將所要圖案施加至基板上之機器。微影設備可用於例如積體電路(IC)製造中。微影設備可例如將圖案化裝置(例如遮罩)處之圖案(通常亦稱為「設計佈局」或「設計」)投影至設置於基板(例如晶圓)上的輻射敏感材料(抗蝕劑)層上。
為了將圖案投影至基板上,微影設備可使用電磁輻射。此輻射之波長判定可形成於基板上之特徵的最小大小。當前使用之典型波長為365 nm (i線)、248 nm、193 nm及13.5 nm。相較於使用例如具有193 nm之波長之輻射的微影設備,使用具有介於4至20 nm (例如6.7 nm或13.5 nm)之範圍內之波長之極紫外線(EUV)輻射的微影設備可用以在基板上形成較小特徵。
低k1 微影可用以處理尺寸小於微影設備之典型解析度極限的特徵。在此製程中,可將解析度公式表達為CD = k1 ×λ/NA,其中λ為所使用輻射之波長,NA為微影設備中之投影光學器件之數值孔徑,CD為「臨界尺寸」(通常為經印刷之最小特徵大小,但在此情況下為半間距)且k1 為經驗解析度因數。一般而言,k1 愈小,則愈難以在基板上再生類似於由電路設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案。為了克服此等困難,可將複雜微調步驟應用於微影投影設備及/或設計佈局。此等步驟包括例如但不限於NA之最佳化、自訂照明方案、使用相移圖案化裝置、設計佈局之各種最佳化,諸如設計佈局中之光學近接校正(OPC,有時亦稱為「光學及製程校正」),或通常定義為「解析度增強技術(RET)」之其他方法。替代地,用於控制微影設備之穩定性的嚴格控制迴路可用以改良在低k1 下之圖案之再生。
圖案化基板上之層可包含多個步驟。舉例而言,諸如遮罩之圖案化裝置可能並未大至足以在一個位置中圖案化基板。在一些情況下,待曝光之圖案可適合於單個遮罩。單個遮罩可接著在基板上移動,以在同一基板上曝光同一圖案多次。在其他情況下,待曝光至基板上之圖案(例如形成裝置之圖案)可能太大而無法適合於單個遮罩。各自包含待曝光之圖案之不同部分的若干遮罩可在多個獨立步驟中在基板上移動。多個遮罩在基板之區上移動以依序圖案化圖案之不同部分。跨基板上之不同區之圖案的此破裂可導致基板上之圖案之經曝光部分相對於彼此的定位誤差。經曝光圖案可包含例如對準及/或放大誤差。歸因於圖案化特徵之小尺寸,在不同經圖案化區相對於彼此定位時可能需要高精確度及準確度。相對位置中之誤差可稱為併接誤差。併接誤差可能影響基板上之經曝光圖案之品質及圖案化製程之所得良率。因此,理想的為提供用以減少併接誤差及其對微影圖案化製程之消極影響之方法及設備。
根據本發明之第一態樣,提供一種用於判定一微影圖案化製程之一效能的設備,該設備包含一或多個處理器,該一或多個處理器經組態以接收一基板之一部分之一影像,該基板之該部分包含一第一區及一第二區,該第一區包含與該基板在一第一時間處之一第一微影曝光相關聯的第一特徵,且該第二區包含與該基板在一第二時間處之一第二微影曝光相關聯的第二特徵,其中該第一區及該第二區並不重疊。該一或多個處理器進一步經組態以基於與該第一區與該第二區之間的一邊界相關聯的第一經曝光特徵及/或第二經曝光特徵之一或多個特徵特性判定該微影圖案化製程之該效能。
視情況地,該邊界可包含該第一區之一外部邊緣之一部分及該第二區之一外部邊緣之一部分。
視情況地,該等第一特徵及該等第二特徵可包含產品特徵及虛擬特徵中之至少一者,該等虛擬特徵具有與該等產品特徵相同的一或多個尺寸。
視情況地,第一特徵及第二特徵可形成沿著第一區之至少一部分及第二區之至少一部分延伸的單個特徵。
視情況地,該一或多個特徵特性可包含一距離度量,其包含該等第一特徵之一或多個對稱軸與該等第二特徵之一或多個對稱軸之間的一距離及/或該等第一特徵與該等第二特徵之間的一物理距離。
視情況地,一或多個特徵特性可包含單個特徵在邊界處或邊界附近之變窄或變厚。
視情況地,第一特徵及第二特徵可在由蝕刻製程圖案化之後形成光阻之圖案化層或材料層的一部分。
視情況地,判定該效能可包含分析該影像以判定與該第一區與該第二區之間的該邊界相關聯的該等第一特徵及/或該等第二特徵之一或多個特徵特性。
視情況地,判定該效能可包含執行該影像之該等第一特徵及/或該等第二特徵與該等第一特徵及/或該等第二特徵之一標準的一比較。
視情況地,判定該效能可進一步包含基於經判定的一或多個特徵特性判定一或多個微影圖案化製程特性之一效能。
視情況地,該一或多個特徵特性可包含該等第一特徵及/或該等第二特徵之一空間尺寸。
視情況地,該一或多個製程特性可包含與該第一區及/或該第二區之該圖案化相關聯的放大、轉換及/或一高階變形誤差中之一或多者。
視情況地,可至少部分地使用將該一或多個特徵特性中之至少一者作為輸入的一模型來判定該一或多個製程特性之該效能。
視情況地,模型可包含機器學習模型。
視情況地,該模型可包含一神經網路。
視情況地,模型可包含視覺技術。
視情況地,該模型可經組態以在包含第一特徵及第二特徵之該基板之一部分之影像的一訓練集上經訓練,其中該等訓練集影像之該等第一特徵及/或該等第二特徵具有與該微影圖案化製程之一已知效能相關之一或多個已知特徵特性。
視情況地,每一訓練集影像可包含一訓練基板之一部分,該訓練基板之一部分包含與該訓練基板在一第一時間處之一第一微影曝光相關聯的第一特徵及與該訓練基板在一第二時間處之一第二微影曝光相關聯的第二特徵。
視情況地,微影圖案化製程之已知特徵特性及效能可至少部分地基於第一特徵及/或第二特徵之一或多個特徵特性之一或多個量測。
視情況地,該微影圖案化製程之該已知效能可包含一已知併接誤差。
視情況地,判定該微影圖案化製程之該效能可包含判定藉由自該影像移除雜訊而獲得之一經預處理影像,以及自該經預處理影像識別該一或多個特徵特性。
視情況地,判定經預處理影像可包含判定影像之梯度幅值。
視情況地,判定經預處理影像可包含基於影像判定二進制影像。
視情況地,判定該經預處理影像可包含偵測該影像及/或該二進制影像中之一或多個線特徵,以及旋轉該影像及/或該二進制影像以使得該一或多個線特徵中之至少一者基本上平行於或基本上垂直於該第一區與該第二區之間的該邊界。
視情況地,自經預處理影像識別一或多個特徵特性可包含將傅立葉(Fourier)變換應用於經預處理影像之複數個部分以用於量化第一區與第二區之間的邊界處之併接品質。
視情況地,識別一或多個特徵特性可進一步包含判定複數個經傅立葉變換部分之工作循環,以及基於複數個部分之工作循環判定一或多個特徵特性。
視情況地,識別一或多個特徵特性可進一步包含判定複數個經傅立葉變換部分之相位,以及基於複數個部分之相位判定一或多個特徵特性。
視情況地,複數個部分可包含複數個像素列,其中該等列可與第一區與第二區之間的邊界對準。
視情況地,判定微影圖案化製程之效能可包含基於影像判定第一二進制影像,基於影像之二進制梯度判定第二二進制影像,以及基於第一二進制影像及第二二進制影像之組合識別一或多個特徵特性。
視情況地,一或多個特徵特性可包含疊對。
視情況地,識別一或多個特徵特性可使用回歸模型及/或查找表。
視情況地,判定微影圖案化製程之效能可進一步包含判定第一區與第二區之間的邊界處的併接品質之度量。
視情況地,度量可表示第一區與第二區之間的邊界周圍之併接之平坦度及第一區與第二區之間的邊界周圍之併接之偏度中之至少一者。
視情況地,第一區及第二區可在基板上形成相同裝置之部分。
視情況地,該第一區可為在該基板上曝光之一第一場,且該第二區可為在該基板上曝光之一第二場。該邊界可包含該第一場之一邊緣及該第二場之一邊緣的一部分。
視情況地,判定該效能可包含判定該第一場與該第二場之間的一併接誤差。
視情況地,接收到之影像可包含在基板上之後續層之曝光之間的基板。
視情況地,接收到之影像可包含在至少一個方向上延伸的第一區與第二區之間的邊界。
視情況地,處理器可經組態以接收複數個影像,以及基於該複數個影像判定圖案化製程之品質。
視情況地,該複數個影像包含第一影像及第二影像,該第一影像包含在第一方向上之第一區與第二區之間的邊界,且該第二影像包含在第二方向上之第一區與另一區之間的邊界。第一方向及第二方向可能並不彼此平行。
視情況地,第一方向及第二方向可基本上彼此垂直。
視情況地,一或多個處理器可進一步經組態以判定第一影像之一或多個製程特性之效能,且進一步經組態以判定第二影像之一或多個製程特性。一或多個處理器可進一步經組態以組合第一影像及第二影像之一或多個製程特性以判定圖案化製程之效能。
視情況地,複數個影像可描繪基板上之複數個單獨位置。
視情況地,可針對基板上之單獨位置判定一或多個製程特性。
視情況地,一或多個處理器可進一步經組態以基於微影圖案化製程之效能判定圖案化製程的一或多個校正。
視情況地,一或多個處理器可進一步經組態以藉由一或多個校正更新微影圖案化製程。
視情況地,更新微影圖案化製程可包含更新微影設備之一或多個曝光設定及倍縮光罩設計中之至少一者。
視情況地,微影圖案化製程可經組態以使用倍縮光罩及電磁輻射來圖案化基板。
視情況地,一或多個處理器可進一步經組態以控制度量衡設備,以獲得影像。
視情況地,控制度量衡設備以獲得影像可包含基於先前經判定的一或多個特徵特性導引度量衡設備。
視情況地,度量衡設備可包含電子束影像器。
根據本發明之另一態樣,提供一種用於判定一微影圖案化製程之一效能的方法。該方法包含:接收一基板之一部分之一影像,該基板之該部分包含一第一區及一第二區,該第一區包含與該基板在一第一時間處之一第一微影曝光相關聯的第一特徵,且該第二區包含與該基板在一第二時間處之一第二微影曝光相關聯的第二特徵,其中該第一區及該第二區並不重疊。該方法進一步包含基於與該第一區與該第二區之間的一邊界相關聯的第一經曝光特徵及/或第二經曝光特徵之一或多個特徵特性判定該微影圖案化製程之該效能。
視情況地,該邊界包含該第一區之一外部邊緣之一部分及該第二區之一外部邊緣之一部分。
視情況地,該等第一特徵及該等第二特徵可包含產品特徵及虛擬特徵中之至少一者,該等虛擬特徵具有與該等產品特徵相同的一或多個尺寸。
視情況地,第一特徵及第二特徵可形成沿著第一區之至少一部分及第二區之至少一部分延伸的單個特徵。
視情況地,該一或多個特徵特性可包含一距離度量,其包含該等第一特徵之一或多個對稱軸與該等第二特徵之一或多個對稱軸之間的一距離及/或該等第一特徵與該等第二特徵之間的一物理距離。
視情況地,一或多個特徵特性可包含單個特徵在邊界處或邊界附近之變窄或變厚。
視情況地,第一特徵及第二特徵可在由蝕刻製程圖案化之後形成光阻之圖案化層或材料層的一部分。
視情況地,判定該效能可包含分析該影像以判定與該第一區與該第二區之間的該邊界相關聯的該等第一特徵及/或該等第二特徵之一或多個特徵特性。
視情況地,判定該效能可包含執行該影像之該等第一特徵及/或該等第二特徵與該等第一特徵及/或該等第二特徵之一標準的一比較。
視情況地,判定該效能可進一步包含基於經判定的一或多個特徵特性判定一或多個微影圖案化製程特性之一效能。
視情況地,該一或多個特徵特性可包含該等第一特徵及/或該等第二特徵之一空間尺寸。
視情況地,該一或多個製程特性可包含與該第一區及/或該第二區之該圖案化相關聯的放大、轉換及/或一高階變形誤差中之一或多者。
視情況地,可至少部分地使用將該一或多個特徵特性中之至少一者作為輸入的一模型來判定該一或多個製程特性之該效能。
視情況地,模型可包含機器學習模型。
視情況地,該模型可包含一神經網路。
視情況地,模型可包含視覺技術。
視情況地,第一區及第二區可在基板上形成相同裝置之部分。
視情況地,該第一區可為在該基板上曝光之一第一場,該第二區可為在該基板上曝光之一第二場。該邊界可包含該第一場之一邊緣及該第二場之一邊緣的一部分。
視情況地,判定該效能可包含判定該第一場與該第二場之間的一併接誤差。
視情況地,接收到之影像可包含在基板上之後續層之曝光之間的基板。
視情況地,接收到之影像可包含在至少一個方向上延伸的第一區與第二區之間的邊界。
視情況地,方法可進一步包含接收複數個影像,以及基於該複數個影像判定圖案化製程之品質。
視情況地,該複數個影像包含第一影像及第二影像,該第一影像可包含在第一方向上之第一區與第二區之間的邊界,且該第二影像包含在第二方向上之第一區與另一區之間的邊界。第一方向及第二方向可能並不彼此平行。
視情況地,第一方向及第二方向可基本上彼此垂直。
視情況地,方法可進一步包含判定第一影像之一或多個製程特性之效能,以及判定第二影像之一或多個製程特性。方法可進一步包含組合第一影像及第二影像之一或多個製程特性以判定圖案化製程之效能。
視情況地,複數個影像可描繪基板上之複數個單獨位置。
視情況地,可針對基板上之單獨位置判定一或多個製程特性。
視情況地,方法可進一步包含基於微影圖案化製程之效能判定圖案化製程的一或多個校正。
視情況地,方法可進一步包含藉由一或多個校正更新微影圖案化製程。
視情況地,更新微影圖案化製程可包含更新微影設備之一或多個曝光設定及倍縮光罩設計中之至少一者。
視情況地,微影圖案化製程可經組態以使用倍縮光罩及電磁輻射來圖案化基板。
視情況地,方法可進一步包含控制度量衡設備以獲得影像。
視情況地,控制度量衡設備以獲得影像包含可基於先前經判定的一或多個特徵特性導引度量衡設備。
視情況地,度量衡設備可包含電子束影像器。
在本文獻中,術語「輻射」及「光束」用於涵蓋所有類型之電磁輻射,包括紫外輻射(例如具有為365、248、193、157或126 nm之波長)及極紫外輻射(EUV,例如具有介於約5至100 nm範圍內之波長)。
如本文中所採用之術語「倍縮光罩」、「遮罩」或「圖案化裝置」可廣泛地解譯為係指可用於向入射輻射光束賦予經圖案化橫截面之通用圖案化裝置,經圖案化橫截面對應於待在基板的目標部分中產生之圖案。在此上下文中亦可使用術語「光閥」。除經典遮罩(透射或反射、二進制、相移、混合式等)以外,其他此類圖案化裝置之實例包括可程式化鏡面陣列及可程式化LCD陣列。
圖1示意性地描繪微影設備LA。微影設備LA包括:照明系統(亦稱為照明器) IL,其經組態以調節輻射光束B (例如UV輻射、DUV輻射或EUV輻射);遮罩支撐件(例如遮罩台) T,其經建構以支撐圖案化裝置(例如遮罩) MA且連接至經組態以根據某些參數準確地定位圖案化裝置MA之第一定位器PM;基板支撐件(例如晶圓台) WT,其經建構以固持基板(例如抗蝕劑塗佈晶圓) W且連接至經組態以根據某些參數準確地定位基板支撐件之第二定位器PW;以及投影系統(例如折射投影透鏡系統) PS,其經組態以將由圖案化裝置MA賦予至輻射光束B之圖案投影至基板W之目標部分C (例如包含一或多個晶粒)上。
在操作中,照明系統IL例如經由光束遞送系統BD自輻射源SO接收輻射光束。照明系統IL可包括用於導向、塑形及/或控制輻射的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電及/或其他類型之光學組件,或其任何組合。照明器IL可用以調節輻射光束B,以在圖案化裝置MA之平面處在其橫截面中具有所要之空間及角強度分佈。
本文中所使用之術語「投影系統」PS應被廣泛地解譯為涵蓋適於所使用之曝光輻射及/或適於諸如浸潤液體之使用或真空之使用之其他因素的各種類型之投影系統,包括折射、反射、反射折射、合成、磁性、電磁及/或靜電光學系統,或其任何組合。可認為本文中對術語「投影透鏡」之任何使用皆與更一般之術語「投影系統」PS同義。
微影設備LA可屬於一種類型,其中基板的至少一部分可由具有相對高折射率之例如水之液體覆蓋,以便填充投影系統PS與基板W之間的空間--此亦稱為浸潤微影。在以引用之方式併入本文中之US6952253中給出關於浸潤技術之更多資訊。
微影設備LA亦可屬於具有兩個或更多個基板支撐件WT (又名「雙載物台」)之類型。在此「多載物台」機器中,可並行地使用基板支撐件WT,且/或可對位於基板支撐件WT中之一者上的基板W進行準備基板W之後續曝光的步驟,同時將另一基板支撐件WT上之另一基板W用於在另一基板W上曝光圖案。
除了基板支撐件WT以外,微影設備LA可包含量測載物台。該量測載物台經配置以固持感測器及/或清潔裝置。感測器可經配置以量測投影系統PS之屬性或輻射光束B之屬性。量測載物台可固持多個感測器。清潔裝置可經配置以清潔微影設備之部分,例如投影系統PS之一部分或提供浸潤液體之系統之一部分。量測載物台可在基板支撐件WT遠離投影系統PS時在投影系統PS之下移動。
在操作中,輻射光束B入射於固持於遮罩支撐件T之上圖案化裝置(例如遮罩MA)上,且由圖案化裝置MA上存在之圖案(設計佈局)圖案化。在已橫穿遮罩MA的情況下,輻射光束B穿過投影系統PS,該投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置量測系統IF,可準確地移動基板支撐件WT,例如以便在聚焦及對準之位置處在輻射光束B之路徑中定位不同目標部分C。類似地,第一定位器PM及可能的另一位置感測器(其未在圖1中明確地描繪)可用於相對於輻射光束B之路徑準確地定位圖案化裝置MA。可使用遮罩對準標記M1、M2及基板對準標記P1、P2來對準圖案化裝置MA及基板W。儘管如所說明之基板對準標記P1、P2佔據專用目標部分,但其可位於目標部分之間的空間中。在基板對準標記P1、P2位於目標部分C之間時,此等基板對準標記稱為切割道對準標記。
如圖2中所展示,微影設備LA可形成微影單元(lithographic cell) LC (有時亦稱為微影製造單元(lithocell)或(微影)聚集)之一部分,該微影單元LC通常亦包括對基板W執行曝光前製程及曝光後製程之設備。習知地,此等包括沈積抗蝕劑層之旋塗器SC、顯影經曝光之抗蝕劑的顯影器DE、例如用於調節基板W之溫度(例如用於調節抗蝕劑層中之溶劑)的冷卻板CH及烘烤板BK。基板處置器或機器人RO自輸入/輸出埠I/O1、I/O2拾取基板W,在不同製程設備之間移動該等基板W且將基板W遞送至微影設備LA之裝載匣LB。微影製造單元中通常亦統稱為塗佈顯影系統之裝置通常處於塗佈顯影系統控制單元TCU之控制下,該塗佈顯影系統控制單元TCU自身可藉由監督控制系統SCS控制,該監督控制系統SCS亦可例如經由微影控制單元LACU控制微影設備LA。
為了正確且一致地曝光由微影設備LA曝光之基板W,需要檢測基板以量測經圖案化結構之屬性,諸如後續層之間的疊對誤差、線厚度、臨界尺寸(CD)等。出於此目的,可在微影製造單元LC中包括檢測工具(圖中未示)。若偵測到誤差,則可例如對後續基板之曝光或對待對基板W執行之其他處理步驟進行調整,尤其在同一批量或批次的其他基板W仍待曝光或處理之前進行檢測的情況下。
亦可稱為度量衡設備之檢測設備用於判定基板W之屬性,且尤其判定不同基板W之屬性如何變化或與同一基板W之不同層相關聯之屬性在不同層間如何變化。檢測設備可替代地經建構以識別基板W上之缺陷,且可例如為微影製造單元LC之部分,或可整合至微影設備LA中,或可甚至為獨立裝置。檢測設備可量測潛影(在曝光之後在抗蝕劑層中之影像)上之屬性,或半潛影(在曝光後烘烤步驟PEB之後在抗蝕劑層中之影像)上之屬性,或經顯影抗蝕劑影像(其中抗蝕劑之經曝光或未經曝光部分已移除)上之屬性,或甚至經蝕刻影像(在諸如蝕刻之圖案轉印步驟之後)上之屬性。
通常,微影設備LA中之圖案化製程為處理中之最重要步驟中之一者,其需要基板W上之結構之尺寸標定及置放之高準確度。為確保此高準確度,可將三個系統組合於圖3中示意性地描繪之所謂「整體」控制環境中。此等系統中之一者係微影設備LA,其(虛擬上)連接至度量衡工具MT (第二系統)且連接至電腦系統CL (第三系統)。此「整體」環境之關鍵在於最佳化此等三個系統之間的協作以增強總體製程窗且提供嚴格控制迴路,以確保由微影設備LA執行之圖案化保持在製程窗內。製程窗限定一系列製程參數(例如劑量、焦點、疊對),在該等製程參數內,特定製造製程產生經限定結果(例如功能性半導體裝置)--通常在該經限定結果內,允許微影製程或圖案化製程中之製程參數變化。
電腦系統CL可使用待圖案化之設計佈局(之部分)以預測使用哪種解析度增強技術,且執行計算微影模擬及計算以判定哪種遮罩佈局及微影設備設定達成圖案化製程之最大總體製程窗(在圖3中藉由第一標度SC1中之雙箭頭描繪)。通常,解析度增強技術經配置以匹配微影設備LA之圖案化可能性。電腦系統CL亦可用以偵測微影設備LA當前正在製程窗內之何處操作(例如使用來自度量衡工具MT之輸入)以預測是否可能存在歸因於例如次佳處理的缺陷(在圖3中藉由第二標度SC2中之指向「0」之箭頭描繪)。
度量衡工具MT可將輸入提供至電腦系統CL以實現準確模擬及預測,且可將回饋提供至微影設備LA以識別例如在微影設備LA之校準狀態下的可能漂移(在圖3中藉由第三標度SC3中之多個箭頭描繪)。
在微影製程中,需要頻繁地對所產生結構進行量測,例如用於製程控制及驗證。用以進行此類量測之工具通常稱為度量衡工具MT。用於進行此類量測之不同類型的度量衡工具MT為吾人所知,包括掃描電子顯微鏡或各種形式之散射計度量衡工具MT。散射計為多功能器具,其允許藉由在光瞳或與散射計之接物鏡之光瞳共軛的平面中具有感測器來量測微影製程之參數(量測通常稱為以光瞳為基礎之量測),或藉由在影像平面或與影像平面共軛之平面中具有感測器來量測微影製程之參數(在此情況下,量測通常稱為以影像或場為基礎之量測)。以全文引用之方式併入本文中之專利申請案US20100328655、US2011102753A1、US20120044470A、US20110249244、US20110026032或EP1,628,164A中進一步描述此類散射計及相關聯量測技術。前述散射計可使用來自軟x射線及對近IR波長範圍可見之光來量測光柵。
在第一實施例中,散射計MT為角度解析散射計。在此散射計中,重建構方法可應用於經量測信號以重建構或計算光柵之屬性。此類重建構可例如由模擬散射輻射與目標結構之數學模型之相互作用且比較模擬結果與量測之彼等結果引起。調整數學模型之參數直至經模擬相互作用產生與自真實目標觀測到之繞射圖案類似的繞射圖案為止。
在第二實施例中,散射計MT為光譜散射計MT。在此類光譜散射計MT中,由輻射源發射之輻射經導向至目標上且來自目標之反射或散射輻射經導向至分光計偵測器上,該分光計偵測器量測鏡面反射輻射之光譜(亦即隨波長而變之強度之量測)。根據此資料,可例如藉由嚴密耦合波分析及非線性回歸或藉由與經模擬光譜庫比較來重建構產生偵測到之光譜的目標之結構或剖面。
在第三實施例中,散射計MT為橢圓量測散射計。橢圓量測散射計允許藉由量測針對每一偏振狀態之散射輻射來判定微影製程之參數。此度量衡設備藉由在度量衡設備之照明區段中使用例如適當偏振濾光器來發射偏振光(諸如線性、圓形或橢圓)。適合於度量衡設備之源亦可提供偏振輻射。現有橢圓量測散射計之各種實施例描述於以全文引用之方式併入本文中之美國專利申請案11/451,599、11/708,678、12/256,780、12/486,449、12/920,968、12/922,587、13/000,229、13/033,135、13/533,110及13/891,410中。
已知散射計之實例通常依賴於專用度量衡目標之供應,諸如填充不足之目標(呈簡單光柵或不同層中之重疊光柵之形式的目標,其足夠大以使得量測光束產生小於光柵之光點)或填充過度之目標(藉以照明光點部分或完全含有該目標)。另外,使用度量衡工具(例如照明諸如光柵的填充不足之目標之角度解析散射計)允許使用所謂的重建構方法,其中可藉由模擬散射輻射與目標結構之數學模型的相互作用且比較模擬結果與量測之結果來計算光柵之屬性。調整模型之參數直至經模擬相互作用產生與自真實目標觀測到之繞射圖案類似的繞射圖案為止。
在散射計MT之一個實施例中,散射計MT適用於藉由量測反射光譜及/或偵測組態中之不對稱性(該不對稱性與疊對之範圍有關)來量測兩個未對準光柵或週期性結構之疊對。可將兩個(通常重疊)光柵結構施加於兩個不同層(未必為連續層)中,且該兩個光柵結構可形成為處於晶圓上基本上相同的位置。散射計可具有如例如在共同擁有之專利申請案EP1,628,164A中所描述之對稱偵測組態,以使得任何不對稱性可清楚地辨識。此提供用以量測光柵中之未對準之直接了當的方式。可在以全文引用之方式併入本文中之PCT專利申請公開案第WO 2011/012624號或美國專利申請案第US 20160161863號中找到當目標經由週期性結構的不對稱性來進行量測時量測含有週期性結構之兩個層之間的疊對誤差之其他實例。
其他所關注參數可為焦點及劑量。可藉由如全文以引用之方式併入本文中之美國專利申請案US2011-0249244中所描述之散射量測(或替代地藉由掃描電子顯微法)同時判定焦點及劑量。可使用具有針對焦點能量矩陣(FEM,亦稱為焦點曝光矩陣)中之每一點的臨界尺寸及側壁角量測之獨特組合的單一結構。若臨界尺寸及側壁角之此等唯一組合為可獲得的,則可根據此等量測唯一地判定聚焦及劑量值。
度量衡目標可為藉由微影製程主要在抗蝕劑中形成且亦在例如蝕刻製程之後形成之複合光柵的集合。通常,光柵中之結構之間距及線寬很大程度上取決於量測光學器件(尤其光學器件之NA)以能夠捕捉來自度量衡目標之繞射階。如較早所指示,繞射信號可用於判定兩個層之間的移位(亦稱為『疊對』)或可用於重建構如由微影製程產生的原始光柵之至少一部分。此重建構可用於提供微影製程之品質之導引,且可用於控制微影製程之至少部分。目標可具有較小子分段,該等子分段經組態以模仿目標中之設計佈局的功能性部分之尺寸。歸因於此子分段,目標將表現得與設計佈局之功能性部分更類似,以使得總體製程參數量測更佳地類似於設計佈局之功能性部分。可在填充不足模式中或在填充過度模式中量測目標。在填充不足模式下,量測光束產生小於總體目標之光點。在填充過度模式中,量測光束產生大於總體目標之光點。在此填充過度模式中,亦有可能同時量測不同目標,藉此同時判定不同處理參數。
使用特定目標之微影參數之總體量測品質至少部分地由用於量測此微影參數之量測配方來判定。術語「基板量測配方」可包括量測自身之一或多個參數、經量測之一或多個圖案之一或多個參數,或此兩者。舉例而言,若用於基板量測配方中之量測為基於繞射的光學量測,則量測之參數中的一或多者可包括輻射之波長、輻射之偏振、輻射相對於基板之入射角、輻射相對於基板上之圖案的定向等。用以選擇量測配方之準則中之一者可例如為量測參數中之一者對於處理變化之靈敏度。以全文引用之方式併入本文中之美國專利申請案US2016-0161863及美國專利公開申請案US 2016/0370717A1中描述更多實例。
可依序曝光基板上之不同區。舉例而言,倍縮光罩或遮罩可包含待在基板上曝光複數次之圖案。在曝光基板上之層時,倍縮光罩可相對於基板移動,以便依序曝光基板上之不同區。如上文所論述,倍縮光罩可與用於在微影設備LA內部準確地定位倍縮光罩之第一定位器PM相關聯。基板W可與用於在微影設備LA內部準確地定位基板W之第二定位器PW相關聯。定位器PM及PW可用以將基板W及倍縮光罩相對於彼此準確地定位,以便設定經曝光圖案在基板上之位置。可能影響圖案在基板上之位置的其他設定及元件可包括例如:用於將倍縮光罩之圖案投影至基板W上之投影系統PS,基板、晶圓台、WT之屬性(例如構形),以及用於曝光圖案之輻射的屬性。
在一實例實施方案中,待微影曝光之完整裝置可太大而無法安裝於單個倍縮光罩上。因此,完整裝置可劃分成兩個或更多個單獨區。該等區可彼此分別(例如依序)曝光。為了使完整裝置起作用,需要在區之間的邊界處或邊界附近準確地且精確地連接分別經曝光區。
為了將複數個依序經圖案化區相對於彼此準確地定位,可能需要精確參數控制。可最佳化微影設備LA之不同元件之設定以便獲得經曝光區在基板上之準確定位。可獲得用於判定複數個區之定位的經曝光基板之量測資料。量測資料可用以檢查經曝光基板是否具有經曝光區之可接受定位以例如用於品質控制。量測亦可用以判定如何改良藉由微影設備LA執行之將來曝光的設定。舉例而言,可針對複數個區判定定位誤差。經判定定位誤差可指示存在兩個相鄰區之在x方向上之誤差對準。可對誤差進行分析以判定誤差之一或多個起因。可更新一或多個設備或配方設定以解決誤差,以避免將來曝光中的錯誤。
可相對於併接誤差論述依序經曝光區相對於彼此之定位。微影圖案化製程之效能可包含一或多個併接誤差。併接誤差可為經曝光區之所要位置中的誤差。併接可指兩個區之連接或相對置放。區可為相鄰區。區可包含彼此相關聯的特徵。舉例而言,區可屬於在基板W上曝光之同一裝置。微影曝光可將圖案曝光至二維區上。區可為矩形的。舉例而言,區可為正方形的。然而,區可在基板之平面中具有任何二維形狀。沿著區之邊緣,可存在具有相鄰區之邊界。在矩形區的情況下,可將區之邊緣所處之方向稱為x方向及y方向。亦可將邊緣之方向稱為水平及豎直方向。
如上文所描述,可使用量測資料來控制經曝光區在基板上之平面內置放。量測資料可例如用於判定及/或分析基板W上之區之間的併接誤差。可基於度量衡目標而獲得量測資料。度量衡目標可例如為疊對度量衡目標。一或多個度量衡目標可作為在基板上曝光之圖案設計之一部分定位在基板上。度量衡目標可作為微影曝光之部分經曝光。可對包括於目標(例如繞射光柵)中之結構進行分析以判定經曝光圖案之屬性。對度量衡目標之分析可包含用以判定一或多個度量衡目標相對於基板上之一或多個其他度量衡目標之位置的量測。量測可包含例如疊對及/或對準量測。度量衡目標及其他度量衡目標可定位在基板上之不同區中。包括度量衡目標藉由增大基板W上之空間而增加了成本,此係因為包括度量衡目標導致可供用於曝光產品特徵之空間變小。另一方面,包括基板上之較小度量衡目標可能導致可供使用的度量衡資料變少。此繼而可能導致經曝光圖案之分析及/或控制之品質降低。使用度量衡目標來判定區之平面內置放的另一潛在缺點為量測資料可能並不表示經曝光特徵之實際併接誤差。度量衡目標量測可例如經設計且/或圖案以不同方式建立,意謂其表現為不同的。舉例而言,圖案對於曝光製程之像差及/或製程效應之回應可能不同。度量衡資料之受限的可用性及併接誤差資料與實際併接誤差之間的潛在偏差可能呈現使用度量衡目標以用於平面內定位控制的缺點。本文中所描述的為用以克服此等難題中之至少一些的方法及設備。
圖4描繪具有判定微影圖案化製程之效能之方法中的步驟的流程圖。效能可與基板上之相鄰經曝光區之併接有關。在步驟400中,可接收到基板之一部分之至少一個影像。基板之一部分可包含第一區,該第一區包含與基板在第一時間處之第一微影曝光相關聯的第一特徵。基板之一部分可進一步包含第二區,該第二區包含與基板在第二時間處之第二微影曝光相關聯的第二特徵。第一及第二區可各自包含並不與第一及第二區中之另一者重疊的一部分。在下一步驟402中,可獲得第一及/或第二經曝光特徵之一或多個特徵特性。第一及/或第二經曝光特徵可與第一區與第二區之間的邊界相關聯。第一及/或第二經曝光特徵可例如位於第一區與第二區之間的邊界處。在步驟404中,可基於特徵特性判定微影圖案化製程之效能。可藉由包含經組態以執行本文所描述之方法的步驟之一或多個處理器的設備執行上文所描述之方法及本文所描述之其他方法。
圖5描繪基板之包含第一區502及第二區512的部分500之影像的示意性圖示。第一區502及第二區512可沿著邊界520分隔開。邊界520可包含第一區502之外部邊緣及第二區512之外部邊緣。
第一區502可包含與第一微影曝光相關聯的第一特徵504。第二區512可包含與第二微影曝光相關聯的第二特徵514。第一區502及第二區512可為微影曝光製程之第一及第二曝光場。邊界520可包含第一場之邊緣中之全部或一部分及第二場之邊緣中之全部或一部分。可已在第一及第二時間處依序執行第一及第二微影曝光。可已在第一曝光與第二曝光之間執行其他曝光。舉例而言,在第一及第二區之第一及第二微影曝光之間,可已微影曝光一或多個其他區。
第一區502及第二區512可為相鄰區。第一區502及第二區512之預期設計可能標稱地並不重疊。舉例而言,第一區502之外部邊緣之一部分可鄰接第二區512之外部邊緣之一部分。然而,實際上,例如由於圖案化曝光中之誤差,諸如併接誤差,第一區502及第二區512可部分地重疊。在其他實施方案中,第一區502及第二區512可在基板上具有局部重疊。第一區502及第二區512可具有實質上相同的大小及/或形狀。區之形狀可為矩形的。區之形狀可例如為正方形。區可對應於基板上之曝光場。區之一或多個尺寸可介於10 mm至35 mm範圍內。舉例而言,區可對應於具有26 mm乘以33 mm或23 mm乘以23 mm之尺寸的曝光場。
判定微影圖案化製程之效能可包含判定圖案化製程之品質。品質可與將彼此分別經曝光之不同區相對於彼此定位之方式有關。判定效能可包含判定第一曝光場502與第二曝光場512之間的併接誤差。判定效能可包含判定經曝光圖案之一或多個屬性,其中屬性可稱為製程特徵。判定效能可包含判定圖案化製程之一或多個校正。校正可基於微影圖案化製程之經判定的製程特徵及/或效能。經判定校正可用以更新微影圖案化製程以用於將來反覆。判定微影圖案化製程之效能亦可包含圖案化製程之驗證。
影像可為掃描電子顯微鏡影像(SEM)。影像可為電壓對比度影像。電壓對比度影像可提供特徵與下伏層之電接觸之量測。可在已處理經曝光基板之後(例如在對經圖案化基板執行一或多個曝光後顯影步驟之後)獲得影像。對下伏層之接觸之量測可提供經曝光層之特徵與下伏層之特徵的匹配程度的指示。此繼而可用於判定是否存在併接誤差。可在基板處於微影單元LC中的同時獲得影像。影像可具有基板上之光阻之圖案化層。影像可具有已由蝕刻製程圖案化之材料層。
第一特徵504及/或第二特徵514可為產品特徵。換言之,方法可使用在基板上曝光之特徵的並不與度量衡目標有關之特性。特徵504、514可與待曝光及圖案化至基板上之產品結構有關。舉例而言,可藉由一或多個裝置圖案化基板。第一特徵504及第二特徵514可形成在基板上圖案化之相同裝置之部分。第一特徵504及第二特徵514可位於具有共同邊界的區域中。共同邊界可包含第一區502與第二區512之間的邊界520中之一些或全部。此方法之一優點可為基於對產品特徵自身之分析(與例如度量衡目標特徵相反)判定製程之效能。另一優點可為可能不需要度量衡目標或需要更少的度量衡目標,此可釋放基板上之用於產品特徵之空間。由於相較於度量衡目標,更多產品特徵可存在於基板上,故使用產品特徵之影像以用於分析可允許採用密集量測。此可導致對效能之更詳細分析,此可能導致準確度增大。由於分析不限於基板中之存在有度量衡目標之區域,故可跨基板定製量測之分佈及/或密度。舉例而言,可相較於其他區域更密集地量測經曝光圖案中之併接對於效能而言為重要的區域或其中歷史曝光已經歷併接誤差之區域。
第一特徵504及/或第二特徵514可為虛擬特徵。虛擬特徵可曝光於基板上,以具有與產品特徵類似的屬性及/或尺寸。在此態樣中,虛擬特徵之一或多個屬性及/或尺寸可與一或多個產品特徵之對應屬性及/或特徵相同或基本上相同。可能如此,對虛擬特徵之分析才提供與對產品特徵之分析類似的結果。舉例而言,虛擬特徵可具有與產品特徵類似的尺寸及/或形狀。在一些情形下,虛擬特徵之形狀可經設定以使得可獲得可適用於分析以判定效能的特徵特性。舉例而言,虛擬特徵可包含可類似於跨基板之產品特徵的各種不同特徵,使得可在單個影像內找到多種特徵。虛擬特徵之屬性可經設計以增大特徵對於併接誤差之靈敏度。舉例而言,虛擬特徵之形狀、尺寸、位置或劑量可經設定以使得其對併接之變化敏感。
第一特徵504及第二特徵514可分別為第一產品特徵及第二產品特徵。在一些情形下,第一特徵504及第二特徵514可形成不同產品特徵之部分。在其他情形下,第一特徵504及第二特徵514可標稱地包含沿著第一區及第二區延伸的單個特徵。除所陳述的以外,第一特徵504及第二特徵514可包含跨第一區502與第二區512之間的邊界延伸的相同產品特徵之部分。影像可包含含有單獨產品特徵之第一及第二特徵及含有單個產品特徵之第一及第二特徵的組合。
判定微影圖案化製程之效能可包含執行對影像之分析以判定一或多個特徵特性。對影像之分析可用以判定第一特徵504及/或第二特徵514之特徵特性。第一及/或第二特徵可與包含於影像中之邊界相關聯。在此上下文中,與...相關聯可意謂特徵定位在第一與第二區之間的邊界處或接近於該邊界(在邊界附近)。特徵特性可包含第一及/或第二特徵在影像中之視覺屬性。特徵特性可包含第一及/或第二特徵之空間尺寸。特徵特性可包含距離度量,其可在第一特徵504與第二特徵514之間。距離度量可例如包含第一特徵504之一或多個對稱軸與第二特徵514之一或多個對稱軸之間的距離。在第一特徵及第二特徵並不構成沿著第一區502及第二區512延伸的單個特徵的情況下,距離度量可包含第一特徵與第二特徵之間的物理距離。
圖6描繪若干實例特徵特性之示意性圖示。第一區502及第二區512中之特徵特性包含單個實例特徵,其由跨越第一區502與第二區512之間的邊界520的兩個平行線組成。待曝光至基板上之預期特徵設計可稱為設計標準。判定特徵特性可涉及將在基板上曝光之特徵之一或多個空間尺寸及/或其他視覺屬性與設計標準進行比較。特徵600可表示根據兩個平行線之設計標準之特徵。特徵600不包含併接誤差。跨越邊界520之單個特徵可包含在第一區502與第二區512之間的邊界處或附近之局部變厚或變窄。在特徵602中,平行線在邊界520處中斷,使得該等平行線無法形成實線。儘管特徵602展示平行線之完整中斷,但在一些情形下,線可實際上在邊界區520周圍部分地變窄。在特徵604中,邊界區520周圍的平行線更寬(或更厚)。在特徵606中,相較於第一區502之線,第二區512中的線在平行於邊界520之方向上位移或偏移。若區之併接包含誤差,則所得裝置之效能可減小。舉例而言,第一特徵504及第二特徵514可經設計以跨邊界520彼此接觸,以允許電流在其間流動。然而,歸因於併接誤差,第一特徵504與第二特徵514之間可能存在減小的接觸或無接觸。此至少可減少連接或不建立連接,從而抑制電流流動。在一些情形下,併接誤差可使區具有局部重疊,此可增大經曝光特徵之大小。此可使並不接觸之特徵重疊,其可例如造成短路。
判定微影圖案化製程之效能可包含判定一或多個微影特性(亦稱為製程特性)之效能。經判定特徵特性可用以判定一或多個製程特性。實例製程特性包括第一區502及/或第二區512中之x及/或y方向上之轉換、放大、焦點、劑量等。實例製程特性亦可包含與第一區502及/或第二區512之圖案化相關聯的一或多個高階變形誤差。在圖6中,平行線在邊界520處之變窄及/或中斷可指示第一區502及/或第二區512中之經曝光特徵之放大過小。在特徵604中,線在邊界520處之局部變厚可指示第一區502及/或第二區512中之經曝光圖案之放大過大。特徵604指示第一區502相對於第二區512之沿著平行於邊界520之尺寸的轉換誤差。
對多個特徵特性之分析的組合可用以判定製程特徵。此可例如包含對於第一區502及/或第二區512中之不同形狀之特徵的特徵特性之分析。實例特徵包括直線、點、更大面積的特徵等。線可垂直於邊界520,或線可定位在與邊界520成非垂直角度處。可例如藉由將虛擬特徵曝光及成像於基板上來獲得不同形狀之特徵的組合。
判定製程特性亦可基於自複數個影像獲得之特徵特性執行。舉例而言,為判定區周圍之併接的品質,可使用沿著邊界之不同部分之影像。不同影像可提供沿著基板上之不同平面內尺寸之邊界。舉例而言,第一影像可設置為包含第一區與第二區之間的第一邊界。第二影像可設置為包含具有與第一邊界不同的方向的第二邊界。第二邊界可處於第一區與另一區之間。另一區可為第二區(針對第一邊界相同),或與基板在第三時間處之第三微影曝光(與第一及第二曝光分隔開)相關聯的第三區。
可接收到用於判定圖案化製程之效能的複數個影像。第一影像及第二影像可包含第一方向及第二方向上之邊界,其中第一方向與第二方向並不平行。第一方向與第二方向可垂直。第一影像及第二影像可皆包含含有第一區502之外部邊緣之一部分的邊界。舉例而言,在矩形區的情況下,可接收到包含x方向上之邊界之一部分的第一影像,且可接收到包含y方向上之邊界之一部分的第二影像。x及y方向可形成基板之平面。
圖7描繪包含區502、512、522、532之基板之一部分的示意性圖示。區502、512、522、532中之每一者可已在不同時間處經微影曝光。區502、512、522、532中之每一者可為單獨曝光場。可設置包含區502與區512之間的邊界的第一影像702。影像702之邊界可在y方向上延伸。可設置包含區502與區522之間的邊界的第二影像704。第二影像之邊界可在x方向上延伸。可分別判定第一影像702及第二影像704之一或多個製程特性。第一影像702及第二影像704之製程特性可接著經組合以判定圖案化製程之效能。如同使用兩個影像一樣,自三個或更多個影像判定之製程特徵可經組合以判定圖案化製程之效能。替代地或另外,可設置區502之拐角部分處之影像706。此影像可包含在x及y方向兩者上之邊界之一部分。
可針對相同基板上之多個層執行分析及判定微影圖案化製程之效能之方法。可在後續曝光步驟之間獲取基板之影像。可在包含併接基板上之區之每一次曝光之後對效能進行分析。本文所描述之方法之優點可為該等方法使得能夠例如藉由獲得SEM影像來量測基板。此可相較於基於繞射之量測(相較於SEM度量衡,該等基於繞射之量測之獲得較緩慢)增大判定微影圖案化製程之效能之製程的速度。
經判定製程特徵可用以判定微影圖案化製程之效能。效能可包含例如製程之品質之評估、由製程曝光之特徵之驗證及/或曝光之經判定併接誤差。方法亦可判定對微影圖案化製程之一或多個校正。可利用一或多個校正來更新微影圖案化製程,以用於將來反覆。更新圖案化製程可包含更新微影設備LA之至少一或多個曝光設定及倍縮光罩設計。
方法可接收跨基板上之不同位置分散之複數個影像,以用於判定微影圖案化製程之效能。判定微影圖案化製程之效能可包含判定曝光之整體品質,且/或可包含品質之局部評估。可判定影像中之每一者之製程特性,且製程特性可經組合以用於判定微影圖案化製程之整體品質。在其他實施方案中,緊密地一起位於基板上之一或多個影像可經組合以判定在基板上之彼位置處之製程效能之單獨局部判定。由於併接誤差可跨基板而不同,故可判定基板上之不同位置處的特徵特性及製程特性。此可用以判定跨基板上之不同位置的併接誤差。此可允許跨基板判定微影圖案化製程之效能。若量測產品特徵上之效能,則方法可提供對於經分析以判定製程效能之影像之量之靈活性。可取決於效能分析之需求(例如在基板上曝光之產品特徵所需之精確度及準確度)設定量測之密度。方法可判定跨基板之效能之密集映圖或稀疏映圖。基板可包含約100個區。方法可判定基板上之五個區與所有區之間的數個區的效能。量測可跨基板之區均勻地分散。舉例而言,若每區存在四個量測部位(例如4個度量衡目標),則可針對區之25%使用量測部位中之每一者。每區可獲得複數個影像以用於判定併接誤差。影像可與具有相同的第一區502及第二區512之相同邊界有關,或與第一區502與第二區512、第三區522、第四區523等之間的不同邊界有關。方法可每區使用4至20個影像。在一些情形下,方法可使用大於20個影像。
可在一段時間內對複數個基板執行相同的微影圖案化曝光。待針對判定圖案化製程之效能而分析之影像之量及位置可隨時間改變。在新曝光圖案開始時,可準備更密集效能映圖,此係由於新製程最初可能需要更多校正。一旦製程設定已校正一次或多次,效能便可改良及/或穩定。回應於此,用以判定製程效能而分析之影像的量可減小。對於跨基板進行之效能分析之密集程度,方法亦可為靈活的。方法可判定用於效能分析之一或多個所關注區域。舉例而言,在對另一基板執行相同曝光時,可更詳細地分析經判定效能較差之區域。作為另一實例,基板可包含關鍵區域,其中產品特徵可具有更嚴格的製造需求(亦即,與設計標準之偏差的容差更低)。此等關鍵區域可接收更密集效能監視。此可能導致關鍵區域處之圖案化製程之改良的效能。
判定微影圖案化製程之效能之方法可整體地或部分地使用模型來判定。模型可包含視覺技術,例如機器視覺技術。模型可為機器學習模型。模型可用以判定一或多個製程特性。在一實例實施方案中,模型可接收一或多個特徵特性作為輸入。在另一實例實施方案中,模型可將第一及第二區及邊界520之一或多個接收到之影像作為輸入。方法可使用複數個模型。方法可例如使用兩個單獨模型。第一模型可為視覺技術模型。視覺技術模型可用於解譯作為輸入提供至模型之一或多個影像。接收一或多個影像作為輸入之模型可為卷積神經網路。第一模型可提供一或多個製程特性作為輸出。第二模型可接收藉由第一模型判定之一或多個製程特性。第二模型可接收基板上之複數個區的製程特性。第二模型可解譯接收到之製程特性以將其轉換為圖案化校正。第二模型可將用於調整微影圖案化製程之校正資料提供為輸出,例如以用於校正併接誤差。舉例而言,校正資料可包含微影圖案化製程設定之一或多個經更新值。模型可模型可包含分類模型。分類模型可例如用於圖案化製程之驗證。舉例而言,模型可將對具有屬於一或多個設定曝光容差之內(通過)或之外(失效)之區併接屬性的影像進行分類。
如本文中所描述之方法可使用一或多個影像來判定此等影像中描繪的圖案之特徵特性。可直接根據對影像之分析判定特徵特性(例如疊對、對準或指示併接品質之其他屬性)。為了偵測特徵特性中之小改變或變化,在對用於判定特徵特性之影像進行分析之前增強影像之品質可為有利的。增強影像可例如包含移除雜訊、濾除非所需信號及/或提取用以進行分析之相關特徵。提取相關特徵之優點可包括減少分析之尺寸。如本文中所描述,根據影像判定一或多個特徵特性可包含預處理影像、自經預處理影像提取特徵及/或基於經預處理影像判定用於併接品質之度量中之一些或所有步驟。
特徵特性可包含疊對。可能需要將對疊對之分析分隔為基板上之單獨尺寸,例如經圖案化基板之平面中之兩個尺寸。尺寸可彼此垂直,且可稱為x方向及y方向,或水平方向及豎直方向。此等方向可平行於及/或垂直於待分析該邊界之方向。
影像之預處理可包含用以自影像移除雜訊之步驟。預處理可保留與存在於影像中之圖案有關的結構資訊。特定而言,預處理可經組態以保留與存在於影像中之邊沿及/或條帶有關的資訊。影像上之邊沿、條帶或其他邊緣亦可稱為線特徵。影像之預處理可包括判定影像之強度資訊及/或梯度資訊。強度及/或梯度資訊可用以判定影像之分段。分段可使得能夠定位邊沿及/或條帶中之至少一些,從而移除影像中之背景及/或雜訊。
圖9描繪預處理用於判定微影圖案化製程之效能之影像之方法中的步驟的實例。在步驟900中,可對影像進行上取樣。上取樣可包含內插,例如雙三次內插。熟習此項技術者將瞭解,可使用任何適合之上取樣方法。在步驟902中,可處理經上取樣影像以抑制及減少存在於影像中之雜訊。在步驟904中,可獲得影像之梯度幅值(亦簡稱為梯度)(至多處理至彼點)。梯度可提供突出顯示存在於影像中之邊沿之優點。在步驟906中,如在步驟902及/或904中經處理之影像可經處理以形成二進制影像。在此上下文中,二進制影像可為其中資料已經壓縮以按二進制方式表示(亦即,如兩個可能值中之一者)的影像。二進制影像可為其中每一像素具有一或兩個可能值的影像,該等可能值例如0或1、黑色或白、是或否等。此可表示為黑色-及-白色影像,或具有兩個不同顏色之任何其他組合的影像。在步驟908中,二進制影像可經處理以待清潔。清潔二進制影像可包含填充二進制影像中之孔且/或移除像素之島狀物(例如藉由刪除島狀物或將其連接至其他區)。清潔二進制影像可例如使用區增長技術及/或連接組件技術。在步驟910中,預處理可執行處理影像之旋轉。旋轉可經判定以使得處理影像中之邊沿及/或條帶平行於及/或垂直於影像中之第一與第二區之間的邊界。在一些情形下,可形成多個二進制影像。舉例而言,可由經上取樣影像形成第一二進制影像,且可由影像之梯度幅值形成第二二進制影像。可對兩個二進制影像執行處理步驟908至910。可並行地分析處理的第一及第二二進制影像。此並行分析之優點可為其實現相較於對影像自身之分析更加恆定且穩固的疊對判定。如圖9中所展示,流程圖拆分成表示形成經上取樣影像之二進制影像的第一組及表示形成影像之梯度幅值之二進制影像的第二組。在本文所揭示之方法中,該等組中之至少一者可執行為影像之預處理之部分。
步驟902之雜訊減少技術可為邊沿保留的。雜訊減少技術可例如包含雙邊濾波、異向性擴散濾波及/或無監督小波變換中之一或多者。若影像中之雜訊的量並未充分減小,則執行以偵測及識別線特徵之步驟可例如包含歸因於雜訊經錯誤地識別為線之錯誤。為改良雜訊減少,可使用自動編碼器模型。自動編碼器模型可為去雜自動編碼器。自動編碼器模型可包含機器學習模型。特定而言,自動編碼器模型可包含卷積神經網路CNN及/或生成對抗網路GAN。GAN可包含產生無雜訊影像之生成網路及對生成網路之輸出進行分類之鑑別器網路。自動編碼器可經訓練以產生無雜訊或減小的雜訊的影像,而不產生影像假影。自動編碼器可在有雜訊/無雜訊影像對上經訓練。可使用模擬(例如藉由添加不同類型的雜訊)來獲得訓練對。
可藉由對處理影像及/或在步驟904中針對處理影像判定之梯度幅值進行分段來形成二進制影像。可用以判定二進制影像之方法可包括定限方法,諸如全局定限方法。全局定限方法可例如包含大津(Otsu)影像處理方法。用於判定二進制影像之方法可替代地或另外包括機器學習方法。用於形成二進制影像的實例機器學習方法可例如包含聚集。聚集演算法可使用高斯(Gaussian)分量之混合。機器學習演算法可例如採用處理影像及處理影像之梯度作為輸入。
在步驟910中,可對經預處理影像進行分析以判定影像中之邊沿/線特徵是否具有相對於影像之邊緣之旋轉。若影像包含多個不同角度處之邊沿及/或條帶,則可判定主要方向,且可執行旋轉以對準主要方向。主要方向可例如為影像中線特徵最頻繁出現之方向。若影像之線特徵之方向並未垂直/平行於影像中之第一與第二區之間的邊界,或若影像具有另外非所要旋轉,則方法可判定待施加之旋轉。方法可接著將旋轉施加至影像。為偵測邊沿之方向,線偵測技術可用於偵測線且判定其角度。線偵測技術可例如包含霍夫(Hough)變換以偵測線特徵及其在影像中之角度。方法可接著使用影像旋轉演算法來將影像旋轉藉由線偵測技術判定之量。
影像之預處理可包括圖9之步驟中之一些或全部。若複數個影像用於判定微影圖案化製程之效能,則可對複數個影像中之至少一者執行預處理。可在用於判定微影圖案化製程之效能之複數個影像中之每一者中執行預處理。
可基於一或多個特徵特性判定微影圖案化製程之效能。可自影像識別此等特徵特性。可自影像及/或自預處理影像提取一或多個特徵。特徵可用以判定影像中所展示的第一區與第二區之間的邊界處之併接品質。可例如鑒於邊界處之第一區與第二區之間的疊對OVL評估併接品質。可判定基板之平面中之兩個方向(例如上文所提及的x及y方向)上之併接品質。在基板上經圖案化之特徵可包含平行於兩個方向中之一者及垂直於兩個方向中之另一者的線特徵。替代地或另外,特徵可包含處於並不平行/垂直於該等方向之角度的線特徵。角度可為自0度至90度之任何角度。
可使用特徵提取演算法自經預處理影像提取一或多個特徵。特徵演算法可對經預處理二進制影像使用傅立葉變換。若二進制影像包含平行於X方向之線特徵,則傅立葉變換可應用於影像之平行於Y方向之部分。類似地,若二進制影像包含平行於Y方向之線特徵,則傅立葉變換可應用於影像之平行於X方向之部分。該等部分可為影像之像素列。傅立葉變換可為快速傅立葉變換(FFT)。像素列(可沿著其應用傅立葉變換)可與影像中之邊界之方向對準。像素列可平行於邊界,或可基本上平行於邊界。在一些情形下,例如若第一與第二區之間的邊界歸因於併接誤差而錯位,則邊界可並不完全平行於該等像素列。作為像素列之間的差之分析的部分,此不對準可變得顯而易見。
圖10展示像素列上之信號圖案之圖表,其中Pr軸表示列中之像素。標記為B之軸指示針對彼列輸入之經預處理二進制影像中的二進位值。像素列可基本上垂直於影像中之線特徵。圖10(a)表示遠離第一與第二區之間的邊界之像素列的信號。列充分遠離第一與第二區之間的邊界,使得列中不存在併接效應。圖10(b)表示第一與第二區之間的邊界上或附近之像素列的信號。如自圖可見,邊沿/線特徵之部位在圖10(a)與圖10(b)之間不同。此可指示在邊界處/接近於邊界之像素列中存在併接效應。儘管本文所描述之方法提及像素列,但相同方法可應用於像素行,其中第一區與第二區之間的邊界並不平行(例如垂直)於影像行。
可對每一像素列執行傅立葉變換。根據傅立葉變換,可判定每一列之工作循環、頻率幅值及相位分量中之一或多者。工作循環可指示線特徵在二進制影像中所處之位置。由於線特徵可表示跨越邊界之條帶之邊沿,故線之位置可指示彼像素列處之條帶之寬度。此寬度可表示為工作循環。不同列之間的工作循環中之改變可指示沿著平行於線特徵之方向的線之寬度中的差。第一與第二區之間的邊界之該部位周圍的工作循環中之經判定改變可用以偵測併接部位。工作循環改變亦可用以判定第一與第二區之間的併接之品質。邊界處及周圍之列中之信號的週期亦可用以偵測及評估併接部位之品質。
不同列之間的相位之改變可用作垂直於線特徵之方向上的併接誤差之指示符。工作循環中之改變可用作平行於線特徵之方向上的併接誤差之指示符。
替代地或另外,為執行二進制影像之傅立葉變換,可對表示在影像中偵測到之梯度的經預處理影像執行傅立葉變換。二進制影像分析及梯度影像分析的組合可提高特徵特性之判定之準確性。使用二進制影像分析及梯度影像分析兩者可進一步實現特徵特性判定之誤差偵測及/或一致性檢查。
在第一實例中,影像包含跨水平邊界自第一區延伸至第二區之複數個豎直條帶。使用傅立葉變換,可判定經預處理影像之像素的複數個水平列的工作循環及相位。列之間的經判定相位差可接著用於判定水平方向上的疊對或其他併接品質指示符。跨列之工作循環中之改變可用以判定豎直方向上的疊對或其他併接品質指示符。在一實例實施方案中,第一區之像素列(高於水平邊界)與第二區中之像素列(低於水平邊界)之間的最大相變可用作水平方向上之併接品質的指示。接近於邊界之區域處的列與遠離邊界之區域(在並不受併接效應影響之影像之區域中)中的列之工作循環之間的最大工作循環改變可用作豎直方向上之併接品質的指示。
工作循環及/或相位中之差可經由若干值平均化,此可改良經判定差之信雜比。工作循環及/或相位量測可用於對影像進行進一步分析,例如用於執行雜訊之品質評估。舉例而言,不同列之間的相位變化之位置及相位之穩定性可用作用於經判定併接品質之置信度位準的指示符。預期為豎直之線特徵(尤其在遠離邊界之區域中)的相位中之大改變可指示低置信度位準。
可例如使用多個影像沿著相同邊界收集若干離散區域及/或更大區域處之併接品質資料。併接品質資料可皆與在第一區與第二區之間執行的相同併接有關。沿著併接之不同點之經判定併接品質可用以判定用於併接之平均併接品質。併接品質資料亦可與複數個不同併接有關。可對跨不同併接之經判定併接品質進行分析以識別趨向。該分析可包括統計分析,例如判定移動平均值趨向。可對併接品質進行分析以對局部邊緣置放誤差進行品質評估。可對併接品質進行分析以對整體併接效能進行品質評估。整體併接效能可例如用於判定基板之更大區域上之微影圖案化製程之效能及/或校正微影圖案化製程。
經判定工作循環差及/或相位差可能並不提供對豎直及/或水平方向上之疊對之直接量測。可能需要其他資料處理步驟以基於工作循環及/或相位差判定疊對。若線特徵並不連接於邊界處,則可能存在接近於邊界之不包含線特徵值之二進制影像之像素列。可將此類列稱為零工作循環列。零工作循環列的數目可提供對垂直於邊界之方向上之疊對的指示。工作循環及/或相位圍繞邊界區改變之部位及/或形狀可用以判定併接品質之性質。
經判定工作循環差及相位差可對值進行標註。以跨邊界上之第一區及第二區延伸之平行條帶為例,若第一及第二區比其經設計更緊密地按壓在一起,則邊界周圍之工作循環可增大。若第一及第二區定位成比其經設計更遠離,則邊界區周圍之工作循環可減小。經判定工作循環差之標誌可指示該差表示哪種情況。
如上文所描述,包含複數個線特徵之一或多個影像(例如條帶之週期性集合之經預處理二進制影像)可用以判定平行於及垂直於邊界(從而形成第一區與第二區之間的併接區域)之方向上的疊對。可基於跨像素列之工作循環及/或相位中之差判定疊對。為判定平行於邊界之方向上之疊對,經判定相位差可為直接指示符。可基於經判定相位差判定疊對值。
對於判定垂直於邊界之方向上之疊對,可需要用以判定經判定工作循環差之頂部上之疊對的額外資料處理。緊接著工作循環差,工作循環改變/差之部位及形狀可用以判定疊對。材料屬性亦可影響疊對中之改變影響工作循環之方式,因此與經圖案化基板上使用之材料有關的資訊亦可用以判定疊對。為了判定垂直於邊界之方向上的疊對,可使用模型。替代地或另外,可提供查找表以基於工作循環差判定疊對。
可提供關於工作循環差與疊對值之查找表。可經提供以使用查找表之其他資訊包括例如以下中之一或多者:亦可提供之跨像素列之工作循環中之改變的部位、跨像素列之工作循環改變之形狀、最大相位差及/或具有零工作循環之列的數目。可在設定階段使用測試量測建構查找表。
在一些情形下,一或多個特徵特性與疊對之間的關係可為非線性的。為了對此非線性關係進行品質評估,可能需要疊對之精確解析度。為了提供疊對之精確解析度,可使用模型。該模型可為機器學習模型,例如神經網路。可在設定階段期間訓練神經網路以學習垂直於邊界之方向上的疊對與跨平行於邊界之像素列的工作循環中之差及改變之間的關係。替代地或另外,對於神經網路,可使用非線性回歸方法。由於已判定與判定疊對相關之特徵,故儘管預處理及/或傅立葉變換用以判定相位及工作循環差,但提供在影像本身上訓練之大規模神經網路可能並非必要的。替代地,基於相關資料訓練小規模神經網路或其他非線性回歸法可為可能的。相關資料可包含工作循環差、形狀及零工作循環列的部位、相位差及數目中之一或多者。
在一實例實施方案中,提供用於判定微影圖案化製程之效能的影像。影像經預處理,其中預處理可包含使用自動編碼器之雜訊減少步驟,以及用以判定影像之二進制及/或梯度版本之分段步驟。二進制經預處理影像及/或經預處理影像之二進制梯度可包含線特徵。可對線特徵進行分析以判定併接品質。併接品質可例如包含平行於及垂直於邊界之方向上的疊對。可對二進制影像之像素列執行傅立葉變換以判定線特徵之工作循環及相位。可直接自傅立葉變換資料判定平行於邊界之方向上的疊對。為判定垂直於邊界之方向上的疊對,可提供模型或查找表。模型及/或查找表可經組態以接收與傅立葉變換資料有關之輸入資料,且輸出垂直於邊界之方向上的疊對。如上文所描述之影像之分析及處理可用於包含複數個平行豎直結構之圖案,該複數個平行豎直結構可垂直於第一與第二區之間的邊界。然而,本文所描述之方法及系統亦可用於其他圖案。在分析及/或解譯(經預處理)影像之傅立葉變換時可考慮圖案之屬性。關於圖案之性質之資訊可例如用於訓練模型及/或構建查找表,以使工作循環與疊對相關。
在一實例實施方案中,連接跨第一與第二區之間的邊界的條帶可具有不同的臨界尺寸。可將關於設計中之此差異的資訊提供至系統以用於判定併接品質。舉例而言,可提供包含用於每一像素列之預期工作循環值的向量。在判定併接品質時,可考慮預期工作循環與觀測到之工作循環之間的差異。可將向量例如提供到模型或回歸法。
如上文所描述,可判定第一與第二區之間的邊界處的併接品質。此可呈x方向及y方向上之疊對的形式。另外或替代地,可定義除疊對以外的度量以評估併接品質。此類度量可例如考慮併接之平滑度、平坦度及/或對稱性。可基於影像、經預處理影像或與影像相關聯之其他資料中之一或多者判定度量。可基於複數個上述中之任一者判定度量。
在一實例實施方案中,可基於二進制影像判定度量。二進制影像可為分段的二進制影像,其中二進制對比度用以指示影像內之邊沿及邊界。二進制影像可已經濾波以減少來自影像之雜訊。可提供方法以分析二進制影像,從而判定用於評估影像中之併接品質的度量。圖11描繪具有用於判定指示併接之品質的度量之方法中的步驟的流程圖。在步驟1100中,對包含第一區與第二區之間的併接的二進制影像進行分析以發現併接之前及之後的拐點。可認為拐點出現於併接周圍之工作循環中之大改變開始時。可在併接區域之兩個側面上判定拐點,換言之,可在第一區及第二區兩者中判定拐點。在步驟1102中,拐點之間的區域可經複製以分別儲存。指示邊沿之二進制像素可儲存為曲線。曲線之水平軸可為沿著跨邊界延伸之條帶的像素列。曲線之豎直軸可表示對應像素列之工作循環。可判定表示曲線之數學表達式之函數。
在步驟1102中判定之曲線可被視為表示第一與第二區之間的併接。在步驟1104中,曲線可用以計算表明併接之平坦度的度量。為了計算該度量,曲線可被視作機率分佈函數。平坦度度量Mflat 可經計算為表示曲線之函數的四階統計矩。用於平坦度度量Mflat 之公式可如下計算:
Figure 02_image001
在上述公式中,
Figure 02_image003
可表示像素部位
Figure 02_image005
處之曲線(工作循環)之值。曲線之像素列在水平軸上可介於-n至n範圍內。M及
Figure 02_image007
可如下判定:
Figure 02_image009
對於上述平坦度度量,為0的值表示平坦併接。平坦度度量Mflat 可用以評估第一與第二區之間的併接之品質。度量可如上文所論述例如作為輸入提供至模型,以判定併接區域之疊對。
在步驟1106中,在步驟1102中判定之曲線可用以計算表明併接之中心部位周圍之曲線的偏度/對稱的度量。併接之中心部位可為其中併接經設計以定位的位置,換言之,第一區與第二區之間的經設計邊界。如上文所提及,曲線可被視作機率分佈函數。偏度度量Mskew 可經計算為表示曲線之函數的三階統計矩。用於偏度度量Mskew 之公式可如下計算:
Figure 02_image011
其中M及
Figure 02_image007
如上文陳述定義。上述Mskew 值經標註,其中標誌可指示曲線是否朝著第一或第二區偏移。對於上文定義的偏度度量公式,不具有偏移之對稱併接將具有Mskew =0之偏度度量值。
在一些情形下,可藉由與本文中所描述之方法分別控制的實體獲得一或多個影像。在其他情形下,方法可包括控制度量衡工具MT以獲得基板之一或多個影像。基板上之經曝光區之一或多個影像可為例如掃描電子顯微鏡(SEM)影像或電壓對比度影像。度量衡工具MT可為電子束影像器。先前效能判定之結果可用以導引度量衡設備獲得基板上之影像。如上文更詳細地描述,先前效能判定之結果可用以例如基於所關注的經判定區域判定獲得哪些影像。此類先前效能資訊可導引獲得基板上之何處之影像,及/或跨基板之影像之密度。
圖8描繪用於判定微影圖案化製程之效能之實例方法中之步驟的流程圖。在步驟800中,接收到之基板之部分的一或多個影像包含第一區502及第二區512,如上文所描述。在步驟802中,可對一或多個影像進行分析以判定在影像上展示之基板之部分上曝光的產品及/或虛擬特徵之一或多個特徵特性。在步驟804中,可對特徵特性進行分析以判定微影圖案化製程之一或多個製程特性。在步驟806中,可基於經判定製程特性判定微影圖案化製程之效能。判定效能可包含圖案化製程之驗證808。經判定效能亦可包含判定一或多個製程校正(810),以及更新微影圖案化製程以用於將來反覆(812)。方法亦可包含控制及/或導引度量衡工具MT (814)以用於獲得用於判定微影圖案化製程之將來反覆之效能的影像。
如本文中所描述之方法,尤其分析及判定微影圖案化製程之效能的方法,可替代地或另外藉由機器學習模型實施。可在基板之一部分之影像的訓練集上訓練機器學習模型。基板之部分可包含第一區及第二區,該第一區包含與基板在第一時間處之第一微影曝光相關聯的第一特徵,且該第二區包含與基板在第二時間處之第二微影曝光相關聯的第二特徵。第一及/或第二特徵可具有與第一區與第二區之間的邊界相關聯的一或多個已知特徵特性。已知特徵特性可與微影圖案化製程之已知效能相關。以此方式,機器學習模型可經訓練以學習基於含有與微影圖案化製程之已知效能相關的已知特徵特性之影像分析及判定微影圖案化製程之效能的方式。
圖12描繪具有訓練機器學習模型以用於分析及判定微影圖案化製程之效能之方法中的步驟的流程圖。微影圖案化製程之效能可包含一或多個併接誤差,如本文中所描述。可在包含第一特徵及第二特徵之基板之一部分之影像的訓練集上訓練機器學習模型,該等影像之訓練集具有與已知併接誤差相關的已知特徵特性。併接誤差可與特定特徵特性相關聯,該特定特徵特性例如疊對。在步驟1200中,可對基板上之層執行第一微影曝光及第二微影曝光。在此步驟中,可謹慎地引入與已知效能相關之複數個已知特徵特性。舉例而言,可謹慎地引入複數個已知誤差。已知誤差可為已知併接誤差。藉此準備影像之訓練集。在步驟1202中,可進行併接誤差之量測。量測可為對疊對目標之疊對量測,或可為用於判定基板上之併接誤差的任何已知量測。此步驟允許識別額外併接誤差(亦即,並非已知併接誤差)。可在如本文中所描述之微影曝光製程期間引入此類額外併接誤差。在步驟1204中,額外併接誤差之量測可用以更新已知併接誤差之訓練集。在步驟1206中,基板可經待判定效能之微影圖案化製程。在步驟1208中,可接收到基板之一部分之至少一個影像。該至少一個影像可為如圖5中示意性地表示之影像。在步驟1210中,機器學習模型可經歷訓練製程。已知併接誤差之訓練集以及在步驟1208中接收到之影像可用以訓練機器學習模型,以學習自接收到之影像識別併接誤差。步驟1210可另外包含驗證製程,其中已知併接誤差及接收到之影像之驗證集用於驗證機器學習模型。在步驟1212中,判定用於自影像資料獲得疊對值之度量衡配方。
在步驟1200中,可藉由例如施加第二微影曝光相對於第一微影曝光之轉換(或反之亦然)來引入複數個已知併接誤差中之每一者。可引入多於一個尺寸中之複數個已知併接誤差。舉例而言,複數個已知併接誤差可包含x及/或y方向上引入的併接誤差。圖13展示提供x及y方向上引入的疊對OVL併接誤差之影響之示意性壓印的二維併接誤差矩陣。矩陣中之每一項展示x方向上之一致線特徵。具有x疊對0及y疊對0之矩陣項展示未引入併接誤差時之特徵(等效於圖6中之特徵600)。跨0,0項之左側或右側之行移動引入分別在負或正x方向上之疊對併接誤差。跨0,0項之上方或下方之列移動引入分別在負或正y方向上之疊對併接誤差。應注意,線特徵之定位及結構為x及y疊對兩者之經組合函數。換言之,x及y疊對耦合。此與其中x及y疊對通常解耦之疊對(或其他特徵特性)之基於繞射之光學量測相反。疊對之此耦合可導致在使用影像分析技術時難以分隔出(或解耦)與x及y疊對相關聯的誤差。藉由在具有x及y方向兩者上引入的併接誤差之影像上訓練機器學習模型,該模型將學習在不顧及耦合之情況下識別兩者。有利地,可針對併接誤差的每一值執行多個微影曝光。此增大訓練集之大小且藉此改良機器學習模型之效果。另外,藉由針對每一值執行多次曝光,可對在曝光期間無意地引入的併接誤差『求平均』。換言之,在微影曝光製程期間引入的併接誤差之影響減小。
如先前所描述,可使用本文中所揭示之任何適合方法基於併接誤差之量測(例如基於對諸如圖7中描繪的兩個相鄰區之間的邊界區之影像分析)判定製程特性。區502-512-522-532可與單獨(曝光)場(基板層級處之圖案化裝置之完整影像)或單獨子場(涉及場之一部分,例如晶粒區域、單元區域或與特定控制網格佈局相關聯之區域)有關。關於微影設備之子場及基於子場之控制之資訊的其他背景技術揭示於國際專利申請案WO2016146217A1中,該申請案以全文引用之方式併入本文中。
特定言之,關注位於相鄰場或子場(在x及y方向兩者上)中之特徵之間的轉換誤差以判定該製程特性。製程特性可接著包含與第一區502及/或第二區512之圖案化相關聯的一或多個低階及高階變形誤差。變形誤差之特徵可為將併接誤差(轉換部分)模型化為失真模型。失真模型可經組態以描述表示該變形誤差之場內指紋(fingerprint)。
變形誤差通常表示為特徵為一組失真模型參數之失真。失真模型可基於跨基板上之區(場或子場)限定的2D多項式基底函數。例如根據熟知的基於k參數之組態,失真可特定地表示為多項式X^m*Y^n之線性組合,其中每一k參數與某一物理上相關類型的失真相關聯。更多關於基於k參數之模型化的資訊揭示於國際專利申請案WO2017067752A1之段落[0084]至[0085]中,該申請案以全文引用之方式併入本文中。
多項式基底函數之所選集可在跨場或子場區域限定時為正交的,例如多項式基底函數可為一組勒讓德(Legendre)多項式或契比雪夫(Chebyshev)多項式,後者揭示於國際專利申請案WO2011101192A1中,該申請案以全文引用之方式併入本文中。
替代地,失真模型可基於如國際專利申請案WO 2019219285A1中所揭示之樣條(基底)函數,例如非均勻有理基底樣條函數(NURBS),該申請案以全文引用之方式併入本文中。
通常藉由使複數個經量測併接誤差擬合於失真模型基底函數來獲得失真模型參數值,每一併接誤差例如與該第一區502中之特徵之第一部分與該第二區512 (在影像702內沿著y方向之邊界區域)中之特徵之第二部分之間的特定(位置)移位相關聯。併接誤差可另外包含該第一區502中之另一特徵之第一部分與第三區522 (在影像704內沿著x方向之邊界區)中之另一特徵之第二部分之間的複數個經量測併接誤差。
可進一步基於相關聯特徵之臨界條件選擇經量測併接誤差。舉例而言,在執行對於失真模型之擬合時,與對於併接誤差相對容許之特徵(例如在其具有大尺寸或對於包含該等特徵之半導體裝置之電屬性較不關鍵之情況下)有關的併接誤差量測可省略或接收減小的重量因數。替代地,可跨一或多個(不同)類型之特徵對併接誤差求平均。在一實例中,對a)分離的及b)密集分佈的特徵之併接誤差求平均以獲得併接誤差,該等併接誤差對於提供至基板上之第一及/或第二區之產品特徵之範圍更具代表性。
替代地,可對每特徵類型或類別之併接誤差量測資料進行排序以獲得併接誤差量測資料之多個集合。每一併接誤差量測資料集合可分別擬合於失真模型以獲得失真模型參數之多個集合。
所獲得之失真模型參數(之集合)可隨後用於組態圖案化基板上之區時所使用的微影設備。在失真模型參數之多個集合可供使用的情況下,組態可基於失真模型參數(值)之單獨集合之加權組合。加權通常基於與失真模型參數之單獨集合相關聯的特徵之併接誤差臨界條件。
在諸多情況下,歸因於先前執行之對準、投影透鏡像差及/或疊對量測的可用性,場內失真相關之資訊(已知場內失真分量)已可供使用。此暗示對於預期併接誤差之至少一定程度之知識通常可供使用且可用於以下中之一或多者: a) 驗證經量測併接誤差之一致性; b)用於例如更準確地判定失真模型參數之集合之併接誤差量測之集合之擴增,從而改良微影設備之組態; c) 解校正併接誤差量測以分離與特定貢獻者相關聯的併接誤差(失真)分量。舉例而言,藉由減去投影透鏡像差誘導之併接誤差分量,可量化晶圓載物台控制對於併接誤差(且因此,導出之失真模型參數)之貢獻度。
可不考慮已知不對區502-512-522-532之間的邊界區域處之特徵置放具有影響或具有受限影響之場內失真分量。舉例而言,可在應用於與影像702相關聯的併接誤差量測時自用途a)、b)或c)中之任一者排除圍繞區502及512之中心對稱之像差誘導之失真分量。
除了已知場內失真分量以外,失真分量之場對場(field to field)變化亦可供使用(場間分量),且/或對於場特定之場內失真分量可供使用(例如在定義微影設備之對於場特定之控制中所使用)。可例如因處理影響(例如因誘導應力分量之CMP拋光步驟及層沈積步驟)而導致場對場變化。亦可因由載物台定位限制(熱漂移、有限複製(finite repro)、感測器雜訊等)引起之場定位(轉換Tx及Ty)及定向(旋轉Rz)之變化導致場對場變化。類似於已知場內失真分量的使用,場間失真分量之知識亦可用以驗證、擴增或解校正經量測併接誤差(或其導出之失真模型)。
自併接誤差量測導出之失真模型參數(原始量測或使用場內及/或場間失真分量之知識調整)可用以組態微影設備之控制參數。此等控制參數可與微影設備之操作期間的投影透鏡、晶圓載物台及/或倍縮光罩載物台之致動有關。
在邊界區域處出現之(經模型化)併接誤差可具有一或多個系統性場內分量,例如基於跨區502-512-522-532之投影透鏡像差分佈之通用屬性(場內失真分量)及/或基板之圖案化中所使用的一多個製程之通用屬性(例如場內應力分佈)。可在製造向區502-512-522-532提供特徵中所使用的圖案化裝置(倍縮光罩)期間預校正系統性場內分量之至少一部分。舉例而言,預期併接誤差可指向沿著區之上部邊界(影像704之下部部分)之抛物面形狀的位置移位剖面,而在下部邊界(影像704之上部部分)處未預期有特定的位置移位剖面。目前,圖案化裝置可經製造/設計以使得藉由調整(產品)特徵在圖案化裝置上之位置來預校正抛物面形狀的位置移位剖面,使得圖案化(產品)特徵之預期位置移位剖面為平坦的。
在諸多情況下,(藉由直接量測或基於可供使用的知識)使用局部調適倍縮光罩基板材料之密度的方法來修改現有倍縮光罩(尤其接近於併接誤差資料可供使用之一或多個邊界區域內的特徵)可為較佳的。密度之調適可藉由使倍縮光罩基板局部曝光於飛秒雷射脈衝來達成,如國際專利申請案WO 2017067757A1中所揭示,該申請案以全文引用之方式併入本文中。基於併接誤差資料,局部倍縮光罩基板密度調適可用以將位置移位剖面校正至可藉由微影設備之控制系統(致動器)接受或校正之位準。
返回至高階失真模型,已揭示2D多項式常用以描述場內失真。特定言之,可使用與表示物理上相關之失真分量(機筒、緩衝墊等)之多項式相關聯的k參數。
在一些情況下,用於水平定向的邊界區域(例如在區502與522之間)及豎直定向的邊界區域(例如在區502與512之間)兩者之併接誤差資料為可供使用的。此在區在兩個方向(X及Y)上併接之情況下尤其有關。使併接誤差資料擬合於失真模型基底函數(2D多項式)需要以模型參數之間無串擾發生之方式來較佳地進行。此可藉由使與在單獨步驟中在邊界區域上保持不變之座標(因此,Y用於水平定向的邊界且X用於豎直定向的邊界)的高階項相關聯的模型參數擬合來達成。此外,基於使一個單個步驟中之兩個邊界定向(水平及豎直)之併接誤差資料擬合於線性(多項式)基底函數,建議首先模型化失真模型之線性術語。
綜上所述,建議以下程序:(1)使失真模型之線性部分(例如x及y)擬合於沿著水平及豎直方向兩者之經組合併接誤差資料;(2)自併接誤差資料移除線性內容以獲得高階併接誤差資料;(3)將與水平定向的邊界區域相關聯之高階併接誤差資料模型化為高階多項式基底函數X^m*Y^n,從而排除m=0以防止在失真模型參數之間引入串擾的風險;(4)將與豎直定向的邊界區域相關聯之高階併接誤差資料模型化為高階多項式基底函數X^m*Y^n,從而排除n=0以防止在失真模型參數之間引入串擾的風險;(5)組合來自步驟1、3及4之經計算失真模型參數,對於k參數定義,判定以下模型參數: K3、K4、K5、K6來自步驟1; K9及K10,藉由對步驟3及4之結果求平均; K15及K18來自步驟3; K16及K17來自步驟4。
步驟3及4之次序可倒轉,所建議的次序僅為實例。方法不限於判定至多K18之K參數,在併接誤差資料密集分佈之情況下,亦可判定例如至多5、7或9階之高階項(K18+)。
此外,程序不限於判定K參數,亦可根據上文所描述的方法判定與正交多項式基底函數(諸如勒讓德多項式)相關聯的係數。
在一實施例中,提供一種用於特性化圖案化製程之方法,該方法包含:獲得沿著基板上之至少兩個圖案化的相鄰場或子場之間的一或多個邊界獲得的複數個併接誤差值;以及使失真模型擬合於複數個值,以獲得表示該至少兩個圖案化的相鄰場或子場中之場或子場之變形的指紋。
在一實施例中,併接誤差為包含於該至少兩個圖案化的相鄰場或子場中之第一場或子場內的特徵之第一部分與包含於該至少兩個相鄰的圖案化場或子場中之第二場或子場內的特徵之第二部分之間的轉換誤差。
在一實施例中,失真模型包含與2D多項式基底函數相關聯的失真模型參數。
在一實施例中,失真模型包含與樣條函數相關聯的失真模型參數。
在一實施例中,複數個併接誤差值包括:第一併接誤差值,其係沿著第一與第二相鄰場或子場之間的第一邊界獲得的;以及第二併接誤差值,其係沿著第一場或子場與第三相鄰場或子場之間的第二邊界獲得的,其中第一及第二邊界之定向不同。
在一實施例中,複數個併接誤差值與至少兩個不同類型的特徵相關聯,且失真模型擬合於與特徵之一或多個併接誤差關鍵類型相關聯的複數個值之子集。
在一實施例中,方法進一步包含基於特徵之併接誤差關鍵類型之臨界條件的量測將加權因數指派至與失真模型相關聯之失真模型參數。
在一實施例中,獲得複數個值包含對與不同類型的特徵相關聯之併接誤差進行加權平均。
在一實施例中,加權係基於對特徵之類型之臨界條件的量測。
在一實施例中,對於每一類型之特徵,加權為相同的。
在一實施例中,方法進一步包含使用與擬合之失真模型相關聯的參數值來組態微影設備。
在一實施例中,方法進一步包含獲得場內及/或場間變形資料,以及執行以下中之一或多者:藉由場內及/或場間資料驗證複數個併接誤差值的一致性;將指紋與場內及/或場間資料組合以獲得擴增指紋;對指紋解校正以使一或多個貢獻者與指紋分離。
在一實施例中,方法進一步包含:基於指紋或與指紋分離之系統性分量製造、設計或修改圖案化製程中所使用的圖案化裝置。
在一實施例中,圖案化裝置之修改係基於使圖案化裝置之基板局部曝光於雷射脈衝,其中雷射脈衝之長度處於飛秒範圍且導致局部修改圖案化裝置之基板之材料的密度。
在一實施例中,失真模型之擬合至少部分地在單獨步驟中執行,該等單獨步驟包含至少第一步驟及第二步驟,該第一步驟為僅使失真模型擬合於第一併接誤差值,且該第二步驟為僅使失真模型擬合於第二併接誤差值。
在以下經編號條項之清單中揭示本發明之另外實施例: 1. 一種用於判定微影圖案化製程之效能的設備,該設備包含經組態以進行以下操作之一或多個處理器: 接收基板之一部分之影像,基板之部分包含第一區及第二區,該第一區包含與基板在第一時間處之第一微影曝光相關聯的第一特徵,且該第二區包含與基板在第二時間處之第二微影曝光相關聯的第二特徵,其中第一及第二區並不重疊且其中第一特徵及第二特徵形成沿著第一區之至少一部分及第二區之至少一部分延伸的單個特徵;以及 基於與第一區與第二區之間的邊界相關聯的第一及/或第二經曝光特徵之一或多個特徵特性判定微影圖案化製程之效能。 2. 如條項1之設備,其中邊界包含第一區之外部邊緣之一部分及第二區之外部邊緣之一部分。 3. 如前述條項中任一項之設備,其中第一特徵及第二特徵包含產品特徵及虛擬特徵中之至少一者,該等虛擬特徵具有與產品特徵相同的一或多個尺寸。 4. 如前述條項中任一項之設備,其中一或多個特徵特性包含距離度量,其包含: 第一特徵之一或多個對稱軸與第二特徵之一或多個對稱軸之間的距離;及/或 第一特徵與第二特徵之間的物理距離。 5. 如條項1之設備,其中基板為晶圓。 6. 如條項1之設備,其中一或多個特徵特性包含單個特徵在邊界處或邊界附近之變窄或變厚。 7. 如前述條項中任一項之設備,其中第一特徵及第二特徵在由蝕刻製程圖案化之後形成光阻之圖案化層或材料層的一部分。 8. 如前述條項中任一項之設備,其中判定效能包含分析影像以判定與第一區與第二區之間的邊界相關聯的第一及/或第二特徵之一或多個特徵特性。 9. 如條項8之設備,其中判定效能包含執行影像之第一及/或第二特徵與第一及/或第二特徵之標準的比較。 10.   如條項8或9之設備,其中判定效能進一步包含基於經判定的一或多個特徵特性判定一或多個微影圖案化製程特性之效能。 11.    如條項10之設備,其中一或多個特徵特性包含第一及/或第二特徵之空間尺寸。 12.   如條項10或11之設備,其中一或多個製程特性包含與第一區及/或第二區之圖案化相關聯的放大、轉換及/或高階變形誤差中之一或多者。 13.   如條項10至12中任一項之設備,其中至少部分地使用將一或多個特徵特性中之至少一者作為輸入的模型來判定一或多個製程特性之效能。 14.   如條項13之設備,其中模型包含機器學習模型。 15.   如條項14之設備,其中模型包含神經網路。 16.   如條項15之設備,其中模型包含視覺技術。 17.   如條項14至16中任一項之設備,其中模型經組態以在包含第一及第二特徵之基板之一部分之影像的訓練集上經訓練,其中訓練集影像之第一及/或第二特徵具有與微影圖案化製程之已知效能相關之一或多個已知特徵特性。 18.   如條項17之設備,其中每一訓練集影像包含訓練基板之一部分,該訓練基板之一部分包含與訓練基板在第一時間處之第一微影曝光相關聯的第一特徵及與訓練基板在第二時間處之第二微影曝光相關聯的第二特徵。 19.   如條項17至18中任一項之設備,其中微影圖案化製程之已知特徵特性及效能至少部分地基於第一及/或第二特徵之一或多個特徵特性之一或多個量測。 20.   如條項17至19中任一項之設備,其中微影圖案化製程之已知效能包含已知併接誤差。 21.   如前述條項中任一項之設備,其中判定微影圖案化製程之效能包含: 判定藉由自影像移除雜訊而獲得之經預處理影像;以及 自經預處理影像識別一或多個特徵特性。 22.   如條項21之設備,其中判定經預處理影像包含判定包含影像之梯度幅值的影像。 23.   如條項21至22中任一項之設備,其中判定經預處理影像包含基於影像判定二進制影像,該二進制影像以二進制方式表示影像中之資料。 24.   如條項21至23中任一項之設備,其中判定經預處理影像包含: 偵測影像及/或二進制影像中之一或多個線特徵;以及 旋轉影像及/或二進制影像以使得一或多個線特徵中之至少一者平行或垂直於第一區與第二區之間的邊界。 25.   如條項21至24中任一項之設備,其中自經預處理影像識別一或多個特徵特性包含將傅立葉變換應用於經預處理影像之複數個部分以用於量化第一區與第二區之間的邊界處之併接品質。 26.   如條項25之設備,其中自經預處理影像識別一或多個特徵特性進一步包含判定複數個傅立葉變換部分之工作循環,以及基於複數個部分之工作循環判定一或多個特徵特性。 27.   如條項25至26中任一項之設備,其中自經預處理影像識別一或多個特徵特性進一步包含判定複數個經傅立葉變換部分之相位,以及基於複數個部分之相位判定一或多個特徵特性。 28.   如條項25至27中任一項之設備,其中複數個部分包含複數個像素列,其中列與第一區與第二區之間的邊界對準。 29.   如條項23之設備,其中判定微影圖案化製程之效能包含: 基於影像判定第一二進制影像; 基於影像之二進制梯度判定第二二進制影像;以及 基於第一二進制影像及第二二進制影像的組合識別一或多個特徵特性。 30.   如條項25至29中任一項之設備,其中一或多個特徵特性包含疊對。 31.   如條項25至30中任一項之設備,其中識別一或多個特徵特性使用回歸模型及/或查找表。 32.   如前述條項中任一項之設備,其中判定微影圖案化製程之效能進一步包含判定第一區與第二區之間的邊界處的併接品質之度量。 33.   如條項32之設備,其中度量表示第一區與第二區之間的邊界周圍之併接之平坦度及第一區與第二區之間的邊界周圍之併接之偏度中之至少一者。 34.   如前述條項中任一項之設備,其中第一區及第二區在基板上形成相同裝置之部分。 35.   如前述條項中任一項之設備,其中第一區為在基板上曝光之第一場,第二區為在基板上曝光之第二場; 且其中邊界包含第一場之邊緣及第二場之邊緣的一部分。 36.   如條項23之設備,其中判定效能包含判定第一場與第二場之間的併接誤差。 37.   如前述條項中任一項之設備,其中接收到之影像包含在基板上之後續層之曝光之間的基板。 38.   如前述條項中任一項之設備,其中接收到之影像包含在至少一個方向上延伸的第一與第二區之間的邊界。 39.   如前述條項中任一項之設備,其中處理器經組態以接收複數個影像,以及基於該複數個影像判定圖案化製程之品質。 40.   如條項39之設備,其中複數個影像包含第一影像及第二影像,該第一影像包含在第一方向上之第一與第二區之間的邊界,且該第二影像包含在第二方向上之第一區與另一區之間的邊界,且其中第一方向與第二方向並不彼此平行。 41.   如條項40之設備,其中第一方向及第二方向基本上彼此垂直。 42.   如條項40至41中任一項之設備,其中一或多個處理器進一步經組態以判定第一影像之一或多個製程特性之效能,且進一步經組態以判定第二影像之一或多個製程特性;以及 組合第一及第二影像之一或多個製程特性以判定圖案化製程之效能。 43.   如條項39至42中任一項之設備,其中複數個影像描繪基板上之複數個單獨位置。 44.   如條項43之設備,其中針對基板上之單獨位置判定一或多個製程特性。 45.   如前述條項中任一項之設備,其中一或多個處理器進一步經組態以基於微影圖案化製程之效能判定圖案化製程的一或多個校正。 46.   如條項45之設備,其中一或多個處理器進一步經組態以藉由一或多個校正更新微影圖案化製程。 47.   如條項46之設備,其中更新微影圖案化製程包含更新微影設備之一或多個曝光設定及倍縮光罩設計中之至少一者。 48.   如前述條項中任一項之設備,其中微影圖案化製程經組態以使用倍縮光罩及電磁輻射來圖案化基板。 49.   如前述條項中任一項之設備,其中一或多個處理器進一步經組態以控制度量衡設備,以獲得影像。 50.   如條項49之設備,其中控制度量衡設備以獲得影像包含基於先前經判定的一或多個特徵特性導引度量衡設備。 51.   如條項48之設備,其中度量衡設備包含電子束影像器。 52.   一種用於判定微影圖案化製程之效能的方法,該方法包含: 接收基板之一部分之影像,基板之部分包含第一區及第二區,該第一區包含與基板在第一時間處之第一微影曝光相關聯的第一特徵,且該第二區包含與基板在第二時間處之第二微影曝光相關聯的第二特徵,其中第一特徵及第二特徵形成沿著第一區之至少一部分及第二區之至少一部分延伸的單個特徵,且其中第一及第二區並不重疊;以及 基於與第一區與第二區之間的邊界相關聯的第一及/或第二經曝光特徵之一或多個特徵特性判定微影圖案化製程之效能。 53.   如條項52之方法,其中邊界包含第一區之外部邊緣之一部分及第二區之外部邊緣之一部分。 54.   如條項52至53中任一項之方法,其中第一特徵及第二特徵包含產品特徵及虛擬特徵中之至少一者,該等虛擬特徵具有與產品特徵相同的一或多個尺寸。 55.   如條項52至54中任一項之方法,其中基板為晶圓。 56.   如條項52至55中任一項之方法,其中一或多個特徵特性包含距離度量,其包含: 第一特徵之一或多個對稱軸與第二特徵之一或多個對稱軸之間的距離;及/或 第一特徵與第二特徵之間的物理距離。 57.   如條項55之方法,其中一或多個特徵特性包含單個特徵在邊界處或邊界附近之變窄或變厚。 58.   如條項52至57中任一項之方法,其中第一特徵及第二特徵在由蝕刻製程圖案化之後形成光阻之圖案化層或材料層的一部分。 59.   如條項52至58中任一項之方法,其中判定效能包含分析影像以判定與第一區與第二區之間的邊界相關聯的第一及/或第二特徵之一或多個特徵特性。 60.   如條項59之方法,其中判定效能包含執行影像之第一及/或第二特徵與第一及/或第二特徵之標準的比較。 61.   如條項59或60之方法,其中判定效能進一步包含基於經判定的一或多個特徵特性判定一或多個微影圖案化製程特性之效能。 62.   如條項61之方法,其中一或多個特徵特性包含第一及/或第二特徵之空間尺寸。 63.   如條項61或62之方法,其中一或多個製程特性包含與第一區及/或第二區之圖案化相關聯的放大、轉換及/或高階變形誤差中之一或多者。 64.   如條項60至63中任一項之方法,其中至少部分地使用將一或多個特徵特性中之至少一者作為輸入的模型來判定一或多個製程特性之效能。 65.   如條項64之方法,其中模型包含機器學習模型。 66.   如條項65之方法,其中模型包含神經網路。 67.   如條項66之方法,其中模型包含視覺技術。 68.   如條項65至66中任一項之方法,其中模型經組態以在包含第一及第二特徵之基板之一部分之影像的訓練集上經訓練,其中訓練集影像之第一及/或第二特徵具有與微影圖案化製程之已知效能相關之一或多個已知特徵特性。 69.   如條項68之設備,其中每一訓練集影像包含訓練基板之一部分,該訓練基板之一部分包含與訓練基板在第一時間處之第一微影曝光相關聯的第一特徵及與訓練基板在第二時間處之第二微影曝光相關聯的第二特徵。 70.   如條項68至69中任一項之設備,其中微影圖案化製程之已知特徵特性及效能至少部分地基於第一及/或第二特徵之一或多個特徵特性之一或多個量測。 71.   如條項68至70中任一項之設備,其中微影圖案化製程之已知效能包含已知併接誤差。 72.   如條項52至71中任一項之方法,其中第一區及第二區在基板上形成相同裝置之部分。 73.   如條項52至72中任一項之方法,其中第一區為在基板上曝光之第一場,第二區為在基板上曝光之第二場; 且其中邊界包含第一場之邊緣及第二場之邊緣的一部分。 74.   如條項73之方法,其中判定效能包含判定第一場與第二場之間的併接誤差。 75.   如條項52至74中任一項之方法,其中接收到之影像包含在基板上之後續層之曝光之間的基板。 76.   如條項52至75中任一項之方法,其中接收到之影像包含在至少一個方向上延伸的第一與第二區之間的邊界。 77.   如條項52至76中任一項之方法,其中方法進一步包含接收複數個影像,以及基於該複數個影像判定圖案化製程之品質。 78.   如條項77之方法,其中複數個影像包含第一影像及第二影像,該第一影像包含在第一方向上之第一與第二區之間的邊界,且該第二影像包含在第二方向上之第一區與另一區之間的邊界,且其中第一方向與第二方向並不彼此平行。 79.   如條項78之方法,其中第一方向及第二方向基本上彼此垂直。 80.   如條項78至79中任一項之方法,其中方法進一步包含: 判定第一影像之一或多個製程特性之效能,以及判定第二影像之一或多個製程特性;以及 組合第一及第二影像之一或多個製程特性以判定圖案化製程之效能。 81.   如條項77至80中任一項之方法,其中複數個影像描繪基板上之複數個單獨位置。 82.   如條項81之方法,其中針對基板上之單獨位置判定一或多個製程特性。 83.   如條項52至82中任一項之方法,其中方法進一步包含基於微影圖案化製程之效能判定圖案化製程的一或多個校正。 84.   如條項83之方法,其中方法進一步包含藉由一或多個校正更新微影圖案化製程。 85.   如條項84之方法,其中更新微影圖案化製程包含更新微影設備之一或多個曝光設定及倍縮光罩設計中之至少一者。 86.   如條項52至85中任一項之方法,其中微影圖案化製程經組態以使用倍縮光罩及電磁輻射來圖案化基板。 87.   如條項52至86中任一項之方法,其中方法進一步包含控制度量衡設備以獲得影像。 88.   如條項87之方法,其中控制度量衡設備以獲得影像包含基於先前經判定的一或多個特徵特性導引度量衡設備。 89.   如條項87之方法,其中度量衡設備包含電子束影像器。 90.      一種用於特性化圖案化製程的方法,該方法包含: 獲得沿著基板上之至少兩個圖案化的相鄰場或子場之間的一或多個邊界獲得的複數個併接誤差值;以及 使失真模型擬合於複數個值,以獲得表示該至少兩個圖案化的相鄰場或子場中之場或子場之變形的指紋。 91.      如條項90之方法,其中併接誤差為包含於該至少兩個圖案化的相鄰場或子場中之第一場或子場內的特徵之第一部分與包含於該至少兩個相鄰的圖案化場或子場中之第二場或子場內的特徵之第二部分之間的轉換誤差。 92.      如條項90或91之方法,其中失真模型包含與2D多項式基底函數相關聯的失真模型參數。 93.      如條項90或91之方法,其中失真模型包含與樣條函數相關聯的失真模型參數。 94.      如條項90至93中任一項之方法,其中複數個併接誤差值包括:第一併接誤差值,其係沿著第一與第二相鄰場或子場之間的第一邊界獲得的;以及第二併接誤差值,其係沿著第一場或子場與第三相鄰場或子場之間的第二邊界獲得的,其中第一及第二邊界之定向不同。 95.      如條項90至94中任一項之方法,其中複數個併接誤差值與至少兩個不同類型的特徵相關聯,且失真模型擬合於與特徵之一或多個併接誤差關鍵類型相關聯的複數個值之子集。 96.      如條項95之方法,其進一步包含基於特徵之併接誤差關鍵類型之臨界條件的量測將加權因數指派至與失真模型相關聯之失真模型參數。 97.      如條項90至96中任一項之方法,其中獲得複數個值包含對與不同類型的特徵相關聯之併接誤差進行加權平均。 98.      如條項97之方法,其中加權係基於對特徵之類型之臨界條件的量測。 99.      如條項98之方法,其中對於每一類型之特徵,加權為相同的。 100.   如條項90至99中任一項之方法,其進一步包含使用與擬合之失真模型相關聯的參數值來組態微影設備。 101.   如條項90至100中任一項之方法,其進一步包含: 獲得場內及/或場間變形資料;以及 執行以下中之一或多者:藉由場內及/或場間資料驗證複數個併接誤差值的一致性;將指紋與場內及/或場間資料組合以獲得擴增指紋;對指紋解校正以使一或多個貢獻者與指紋分離。 102.   如條項90至101中任一項之方法,其進一步包含:基於指紋或與指紋分離之系統性分量製造、設計或修改圖案化製程中所使用的圖案化裝置。 103.   如條項102之方法,其中圖案化裝置之修改係基於使圖案化裝置之基板局部曝光於雷射脈衝,其中雷射脈衝之長度處於飛秒範圍且導致局部修改圖案化裝置之基板之材料的密度。 104.   如條項94之方法,其中失真模型之擬合至少部分地在單獨步驟中執行,該等單獨步驟包含至少第一步驟及第二步驟,該第一步驟為僅使失真模型擬合於第一併接誤差值,且該第二步驟為僅使失真模型擬合於第二併接誤差值。 105.   如條項74之方法,其中併接誤差包含沿著基板上之至少兩個圖案化的相鄰場或子場之間的一或多個邊界獲得的複數個併接誤差值;且方法進一步包含使失真模型擬合於複數個值,以獲得表示該至少兩個圖案化的相鄰場或子場中之場或子場之變形的指紋。 106.   如條項105之方法,其中併接誤差為包含於該至少兩個圖案化的相鄰場或子場中之第一場或子場內的特徵之第一部分與包含於該至少兩個相鄰的圖案化場或子場中之第二場或子場內的特徵之第二部分之間的轉換誤差。 107.   如條項105或106之方法,其中失真模型包含與2D多項式基底函數相關聯的失真模型參數。 108.   如條項105或106之方法,其中失真模型包含與樣條函數相關聯的失真模型參數。 109.   如條項105至108中任一項之方法,其中複數個併接誤差值包括:第一併接誤差值,其係沿著第一與第二相鄰場或子場之間的第一邊界獲得的;以及第二併接誤差值,其係沿著第一場或子場與第三相鄰場或子場之間的第二邊界獲得的,其中第一及第二邊界之定向不同。 110.   如條項105至109中任一項之方法,其中複數個併接誤差值與至少兩個不同類型的特徵相關聯,且失真模型擬合於與特徵之一或多個併接誤差關鍵類型相關聯的複數個值之子集。 111.   如條項110之方法,其進一步包含基於特徵之併接誤差關鍵類型之臨界條件的量測將加權因數指派至與失真模型相關聯之失真模型參數。 112.   如條項105至111中任一項之方法,其中獲得複數個值包含對與不同類型的特徵相關聯之併接誤差進行加權平均。 113.   如條項112之方法,其中加權係基於對特徵之類型之臨界條件的量測。 114.   如條項113之方法,其中對於每一類型之特徵,加權為相同的。 115.   如條項105至114中任一項之方法,其進一步包含使用與擬合之失真模型相關聯的參數值來組態微影設備。 116.   如條項105至115中任一項之方法,其進一步包含: 獲得場內及/或場間變形資料;以及 執行以下中之一或多者:藉由場內及/或場間資料驗證複數個併接誤差值的一致性;將指紋與場內及/或場間資料組合以獲得擴增指紋;對指紋解校正以使一或多個貢獻者與指紋分離。 117.   如條項105至116中任一項之方法,其進一步包含:基於指紋或與指紋分離之系統性分量製造、設計或修改圖案化製程中所使用的圖案化裝置。 118.   如條項117之方法,其中圖案化裝置之修改係基於使圖案化裝置之基板局部曝光於雷射脈衝,其中雷射脈衝之長度處於飛秒範圍且導致局部修改圖案化裝置之基板之材料的密度。 119.   如條項109之方法,其中失真模型之擬合至少部分地在單獨步驟中執行,該等單獨步驟包含至少第一步驟及第二步驟,該第一步驟為僅使失真模型擬合於第一併接誤差值,且該第二步驟為僅使失真模型擬合於第二併接誤差值。 120.   一種包含電腦可讀指令之電腦程式產品,該等電腦可讀指令在於適合設備上執行時執行如條項52至119中任一項之方法。
儘管可在本文中特定地參考在IC製造中之微影設備之使用,但應理解,本文中所描述之微影設備可具有其他應用。可能之其他應用包括製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭等。
儘管可在本文中特定地參考在微影設備之內容背景中之本發明之實施例,但本發明之實施例可用於其他設備中。本發明之實施例可形成遮罩檢測設備、度量衡設備或量測或處理諸如晶圓(或其他基板)或遮罩(或其他圖案化裝置)之物件之任何設備之部分。此等設備可通常稱為微影工具。此微影工具可使用真空條件或環境(非真空)條件。
儘管上文可特定地參考在光學微影之內容背景中對本發明之實施例的使用,但應瞭解,本發明在內容背景允許之情況下不限於光學微影且可用於其他應用(例如壓印微影)中。
雖然上文已描述本發明之特定實施例,但應瞭解,可以與所描述方式不同之其他方式來實踐本發明。以上描述意欲為說明性,而非限制性的。藉此,對於熟習此項技術者將顯而易見,可在不脫離下文所陳述之申請專利範圍之範疇的情況下對如所描述之本發明進行修改。
雖然特別提及「度量衡設備/工具/系統」或「檢驗設備/工具/系統」,但此等術語可指相同或類似類型之工具、設備或系統。例如,包含本發明之實施例的檢測或度量衡設備可用以判定基板上或晶圓上之結構的特性。例如,包含本發明之一實施例的檢測設備或度量衡設備可用於偵測基板之缺陷或基板上或晶圓上之結構的缺陷。在此類實施例中,基板上之結構的所關注之特性可能關於結構中之缺陷、結構之特定部分之不存在或基板上或晶圓上之非所需的結構之存在。
400:步驟 402:步驟 404:步驟 500:部分 502:第一區 504:第一特徵 512:第二區 514:第二特徵 520:邊界 522:第三區 532:第四區 600:特徵 602:特徵 604:特徵 606:特徵 702:第一影像 704:第二影像 706:影像 800:步驟 802:步驟 804:步驟 806:步驟 808:圖案化製程之驗證 810:判定一或多個製程校正 812:更新微影圖案化製程 814:控制及/或導引度量衡工具 900:步驟 902:步驟 904:步驟 906:步驟 908:步驟 910:步驟 1100:步驟 1102:步驟 1104:步驟 1106:步驟 1200:步驟 1202:步驟 1204:步驟 1206:步驟 1208:步驟 1210:步驟 1212:步驟 B:輻射光束 BD:光束遞送系統 BK:烘烤板 C:目標部分 CH:冷卻板 CL:電腦系統 DE:顯影器 IF:位置量測系統 IL:照明系統 I/O1:輸入/輸出埠 I/O2:輸入/輸出埠 LA:微影設備 LACU:微影控制單元 LB:裝載匣 LC:微影單元 M1:遮罩對準標記 M2:遮罩對準標記 MA:圖案化裝置 MT:度量衡工具 P1:基板對準標記 P2:基板對準標記 PM:第一定位器 PS:投影系統 PW:第二定位器 RO:機器人 SC:旋塗器 SC1:第一標度 SC2:第二標度 SC3:第三標度 SCS:監督控制系統 SO:輻射源 T:遮罩支撐件 TCU:塗佈顯影系統控制單元 W:基板 WT:基板支撐件
現將參考隨附示意性圖式僅藉助於實例來描述本發明之實施例,在隨附示意性圖式中: -  圖1描繪微影設備之示意圖綜述; -  圖2描繪微影單元之示意性綜述; -  圖3描繪整體微影之示意性圖示,其表示最佳化半導體製造之三種關鍵技術之間的協作; -  圖4描繪判定微影圖案化製程之效能之方法中的步驟的流程圖; -  圖5描繪包含具有第一及第二特徵之第一區及第二區的基板之一部分的示意性圖示; -  圖6描繪包含複數個特徵的基板之一部分之示意性圖示; -  圖7描繪跨基板之一部分獲得的影像之示意性圖示; -  圖8描繪判定微影圖案化製程之效能之方法中的步驟的流程圖; -  圖9描繪具有預處理用於判定微影圖案化製程之效能之影像之方法中的步驟的流程圖; -  圖10(a)描繪遠離第一與第二區之間的邊界之像素列的信號; -  圖10(b)描繪接近於及/或在第一與截面區之間的邊界上之像素列的信號; -  圖11描繪具有判定度量以用於判定併接品質之方法中的步驟的流程圖。 -  圖12描繪具有訓練機器學習模型以用於分析及判定微影圖案化製程之效能之方法中的步驟的流程圖。 -  圖13描繪提供在x及y方向上引入的疊對併接誤差之影響之示意性圖示的二維矩陣。
502:第一區
504:第一特徵
512:第二區
514:第二特徵
520:邊界
600:特徵
602:特徵
604:特徵
606:特徵

Claims (20)

  1. 一種用於特性化(characterizing)一圖案化製程的方法,該方法包含:沿著一基板上之至少兩個圖案化的相鄰場(adjacent fields)或子場(sub-fields)之間的一或多個邊界獲得複數個併接誤差值(values of stitching errors);以及使一失真模型(distortion model)擬合於該複數個值,以獲得表示該至少兩個圖案化的相鄰場或子場中之一場或子場之變形(deformation)的一指紋(fingerprint)。
  2. 如請求項1之方法,其中該等併接誤差為包含於該至少兩個圖案化的相鄰場或子場中之一第一場或子場內的特徵之第一部分與包含於該至少兩個相鄰的圖案化場或子場中之一第二場或子場內的特徵之第二部分之間的轉換誤差(translation errors)。
  3. 如請求項1之方法,其中該失真模型包含與2D多項式基底函數(2D polynomial base functions)或樣條函數(spline function)相關聯的失真模型參數。
  4. 如請求項1之方法,其中該複數個併接誤差值包括:第一併接誤差值,其係沿著一第一相鄰場或子場與一第二相鄰場或子場之間的一第一邊界獲得(made);以及第二併接誤差值,其係沿著該第一場或子場與一第三 相鄰場或子場之間的一第二邊界獲得,其中該第一邊界及該第二邊界之定向不同。
  5. 如請求項1之方法,其中該複數個併接誤差值與至少兩個不同類型的特徵相關聯,且該失真模型擬合於與特徵之一或多個併接誤差關鍵類型(stitching error critical types)相關聯的複數個值之一子集。
  6. 如請求項5之方法,其進一步包含基於特徵之該等併接誤差關鍵類型之臨界條件(criticality)的一量測將一加權因數指派至與該失真模型相關聯之失真模型參數。
  7. 如請求項1之方法,其中獲得該複數個值包含對與不同類型的特徵相關聯之併接誤差進行加權平均。
  8. 如請求項7之方法,其中該加權係基於對特徵之類型之臨界條件的一量測。
  9. 如請求項1之方法,其進一步包含使用與該擬合之失真模型相關聯的參數值來組態一微影設備。
  10. 如請求項1之方法,其進一步包含:獲得場內(intra-field)及/或場間(inter-field)變形資料;以及執行以下中之一或多者:藉由該場內及/或場間資料驗證該複數個併 接誤差值的一致性,將該指紋與該場內及/或場間資料組合以獲得一擴增(augmented)指紋,對該指紋解校正(de-correct)以使一或多個貢獻者與該指紋分離(isolate)。
  11. 如請求項1之方法,其進一步包含:基於該指紋或與該指紋分離之一系統性分量製造、設計或修改該圖案化製程中所使用的一圖案化裝置。
  12. 如請求項11之方法,其中該圖案化裝置之修改係基於使該圖案化裝置之一基板局部曝光於雷射脈衝,其中該等雷射脈衝之長度處於飛秒(femtosecond)範圍且導致局部修改該圖案化裝置之該基板之材料的密度。
  13. 如請求項4之方法,其中該失真模型之該擬合至少部分地在單獨步驟中執行,該等單獨步驟包含至少一第一步驟及一第二步驟,該第一步驟為僅使該失真模型擬合於該等第一併接誤差值,且該第二步驟為僅使該失真模型擬合於該等第二併接誤差值。
  14. 一種包含電腦可讀指令之電腦程式產品,該等電腦可讀指令經組態以執行:獲得沿著一基板上之至少兩個圖案化的相鄰場或子場之間的一或多個邊界獲得的複數個併接誤差值;以及一失真模型擬合於該複數個值,以獲得表示該至少兩個圖案化的相鄰場或子場中之一場或子場之變形的一指紋。
  15. 如請求項14之電腦程式產品,其中該等併接誤差為包含於該至少兩個圖案化的相鄰場或子場中之一第一場或子場內的特徵之第一部分與包含於該至少兩個相鄰的圖案化場或子場中之一第二場或子場內的特徵之第二部分之間的轉換誤差。
  16. 如請求項14之電腦程式產品,其中該失真模型包含與2D多項式基底函數或樣條函數相關聯的失真模型參數。
  17. 如請求項14之電腦程式產品,其中該複數個併接誤差值包括:第一併接誤差值,其係沿著一第一相鄰場或子場與一第二相鄰場或子場之間的一第一邊界獲得;以及第二併接誤差值,其係沿著該第一場或子場與一第三相鄰場或子場之間的一第二邊界獲得,其中該第一邊界及該第二邊界之定向不同。
  18. 如請求項14之電腦程式產品,其中該複數個併接誤差值與至少兩個不同類型的特徵相關聯,且該失真模型擬合於與特徵之一或多個併接誤差關鍵類型相關聯的複數個值之一子集。
  19. 如請求項18之電腦程式產品,其進一步包含經組態以用於基於特徵之該等併接誤差關鍵類型之臨界條件的一量測將一加權因數指派至與該失真模型相關聯之失真模型參數的指令。
  20. 如請求項14之電腦程式產品,其進一步包含經組態以執行下列步驟之指令:獲得場內及/或場間變形資料;以及執行以下中之一或多者:藉由該場內及/或場間資料驗證該複數個併接誤差值的一致性,將該指紋與該場內及/或場間資料組合以獲得一擴增指紋,對該指紋解校正以使一或多個貢獻者與該指紋分離。
TW109128345A 2019-09-04 2020-08-20 用於微影製程效能判定之方法及設備 TWI780470B (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
EP19195265 2019-09-04
EP19195265.4 2019-09-04
EP19198917.7 2019-09-23
EP19198917.7A EP3796088A1 (en) 2019-09-23 2019-09-23 Method and apparatus for lithographic process performance determination
EP19217902.6 2019-12-19
EP19217902 2019-12-19
EP20157333.4 2020-02-14
EP20157333 2020-02-14
EP20169297 2020-04-14
EP20169297.7 2020-04-14

Publications (2)

Publication Number Publication Date
TW202113503A TW202113503A (zh) 2021-04-01
TWI780470B true TWI780470B (zh) 2022-10-11

Family

ID=71894840

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109128345A TWI780470B (zh) 2019-09-04 2020-08-20 用於微影製程效能判定之方法及設備

Country Status (4)

Country Link
US (1) US20220291593A1 (zh)
CN (1) CN114341741A (zh)
TW (1) TWI780470B (zh)
WO (1) WO2021043519A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL308126A (en) * 2021-05-06 2023-12-01 Asml Netherlands Bv A method for determining a stochastic index related to a lithographic process
WO2023072603A1 (en) 2021-10-27 2023-05-04 Asml Netherlands B.V. Methods and systems to calibrate reticle thermal effects

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010053243A1 (en) * 2000-05-18 2001-12-20 Jeol Ltd. Method of inspecting accuracy in stitching pattern elements

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392970A3 (en) * 2010-02-19 2017-08-23 ASML Netherlands BV Method and apparatus for controlling a lithographic apparatus
US9087740B2 (en) * 2013-12-09 2015-07-21 International Business Machines Corporation Fabrication of lithographic image fields using a proximity stitch metrology
CN107885041B (zh) * 2016-09-30 2019-08-23 上海微电子装备(集团)股份有限公司 一种大视场曝光系统
CN109426094B (zh) * 2017-08-31 2020-05-01 上海微电子装备(集团)股份有限公司 曝光方法、测量方法以及曝光装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010053243A1 (en) * 2000-05-18 2001-12-20 Jeol Ltd. Method of inspecting accuracy in stitching pattern elements

Also Published As

Publication number Publication date
TW202113503A (zh) 2021-04-01
WO2021043519A1 (en) 2021-03-11
CN114341741A (zh) 2022-04-12
US20220291593A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
JP6872593B2 (ja) 計測方法、コンピュータ製品およびシステム
US10754256B2 (en) Method and apparatus for pattern correction and verification
TWI691803B (zh) 量測方法及裝置
TWI559099B (zh) 用於設計度量衡目標之方法及裝置
US10663870B2 (en) Gauge pattern selection
JP7191108B2 (ja) 基板グリッドを決定するための測定装置及び方法
TWI729475B (zh) 量測方法與裝置
TWI780470B (zh) 用於微影製程效能判定之方法及設備
US10656533B2 (en) Metrology in lithographic processes
TWI833479B (zh) 用於在微影設備中使用微影程序將圖案成像於基板上之標記設計的電腦實施方法
EP4361726A1 (en) Inference model training
US10429746B2 (en) Estimation of data in metrology
US20240184215A1 (en) Metrology tool calibration method and associated metrology tool
EP4080284A1 (en) Metrology tool calibration method and associated metrology tool
US20240184219A1 (en) System and method to ensure parameter measurement matching across metrology tools
EP3796088A1 (en) Method and apparatus for lithographic process performance determination
WO2024033005A1 (en) Inference model training
TW202236032A (zh) 預測半導體製程之度量衡偏移之方法
EP3462239A1 (en) Metrology in lithographic processes
JP2024514054A (ja) メトロロジツール較正方法及び関連するメトロロジツール

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent