TWI779607B - Method of forming semiconductor structure - Google Patents

Method of forming semiconductor structure Download PDF

Info

Publication number
TWI779607B
TWI779607B TW110117330A TW110117330A TWI779607B TW I779607 B TWI779607 B TW I779607B TW 110117330 A TW110117330 A TW 110117330A TW 110117330 A TW110117330 A TW 110117330A TW I779607 B TWI779607 B TW I779607B
Authority
TW
Taiwan
Prior art keywords
cleaning process
gas
semiconductor
semiconductor structure
phase cleaning
Prior art date
Application number
TW110117330A
Other languages
Chinese (zh)
Other versions
TW202245052A (en
Inventor
賴振益
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Priority to TW110117330A priority Critical patent/TWI779607B/en
Priority to CN202110709302.6A priority patent/CN115346867A/en
Application granted granted Critical
Publication of TWI779607B publication Critical patent/TWI779607B/en
Publication of TW202245052A publication Critical patent/TW202245052A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A method of forming semiconductor structure includes forming a patterned hard mask layer on a semiconductor material layer, removing a portion of the semiconductor material layer by an etching process to form semiconductor pillars and trenches. A residue is formed during the etching process. The method further includes removing the residue. Removing the residue includes using a first gas cleaning process to remove at least a portion of the residue, and after the first gas cleaning process, using a second gas cleaning process to remove a left part of the residue. A condition of the first gas cleaning process is different from that of the second gas cleaning process.

Description

形成半導體結構的方法Methods of Forming Semiconductor Structures

本揭示案是關於形成半導體結構的方法,尤其是形成具有較大高寬比的半導體結構之方法。 The present disclosure relates to methods of forming semiconductor structures, and more particularly, methods of forming semiconductor structures having larger aspect ratios.

在形成半導體結構的製程中,蝕刻後可藉由溼式清潔製程移除製程產生的副產物或殘留的蝕刻劑以清潔半導體結構。在清潔及乾燥半導體結構過程中,液體,例如清潔溶液、去離子水或易揮發溶液,會進入至半導體結構的間距(pitch)以進行清潔。 In the process of forming the semiconductor structure, by-products or residual etchant generated during the process can be removed by a wet cleaning process to clean the semiconductor structure after etching. During cleaning and drying of semiconductor structures, liquids, such as cleaning solutions, deionized water, or volatile solutions, enter the pitches of the semiconductor structures for cleaning.

隨著科技進步,動態隨機存取記憶體(dynamic random access memory,DRAM)變得更加高度整合。藉由縮小DRAM內的半導體結構形成了更細長的半導體結構(即,具有較大高寬比的結構)和間距以達到技術發展目標。在蝕刻後清潔製程中,液體對半導體結構的影響漸趨顯著,例如半導體結構無法承受液體產生的作用力而變形及/或塌陷。 As technology advances, dynamic random access memory (DRAM) becomes more highly integrated. The goal of technology development is achieved by shrinking the semiconductor structure in the DRAM to form a more slender semiconductor structure (ie, a structure with a larger aspect ratio) and pitch. During the post-etch cleaning process, the influence of the liquid on the semiconductor structure becomes more and more obvious, for example, the semiconductor structure cannot withstand the force generated by the liquid and thus deforms and/or collapses.

因此,如何在不影響半導體結構的情況下完成蝕刻後清潔成為一個重要的課題。 Therefore, how to complete post-etch cleaning without affecting the semiconductor structure has become an important issue.

根據本揭示案的一些實施例,一種形成半導體結構的方法包括形成圖案化硬遮罩在半導體材料層上、藉由蝕刻製程和圖案化硬遮罩移除半導體材料層的一部分以形成數個半導體柱和數個溝槽。蝕刻製程的過程中產生殘留物在溝槽內。方法更包括移除殘留物。移除殘留物包括使用第一氣相清潔製程以移除殘留物的至少一部分,以及在使用第一氣相清潔製程之後,使用第二氣相清潔製程以移除殘留物的剩餘部分。第一氣相清潔製程的條件不同於第二氣相清潔製程的條件。 According to some embodiments of the present disclosure, a method of forming a semiconductor structure includes forming a patterned hard mask on a semiconductor material layer, removing a portion of the semiconductor material layer by an etching process and the patterned hard mask to form a plurality of semiconductor Columns and several grooves. Residues are generated in the trenches during the etching process. The method further includes removing the residue. Removing the residue includes using a first vapor-phase cleaning process to remove at least a portion of the residue, and after using the first vapor-phase cleaning process, using a second vapor-phase cleaning process to remove a remaining portion of the residue. Conditions of the first vapor cleaning process are different from conditions of the second vapor cleaning process.

在一些實施例中,第一氣相清潔製程的第一氣體組成包括含氧氣體。 In some embodiments, the first gas composition of the first gas-phase cleaning process includes an oxygen-containing gas.

在一些實施例中,第二氣相清潔製程的第二氣體組成包括含氫氣體和載流氣體。 In some embodiments, the second gas composition of the second gas-phase cleaning process includes a hydrogen-containing gas and a carrier gas.

在一些實施例中,第一氣相清潔製程的操作溫度為第一溫度,第二氣相清潔製程的操作溫度為第二溫度,其中第二溫度高於第一溫度。 In some embodiments, the operating temperature of the first vapor cleaning process is a first temperature, and the operating temperature of the second vapor cleaning process is a second temperature, wherein the second temperature is higher than the first temperature.

本揭示案提供的形成半導體結構的方法是使用多步驟的氣相清潔製程以移除半導體結構上的殘留物作為蝕刻後清潔的操作。藉由氣體組成的選擇以及製程條件的安排,在進行蝕刻後清潔的操作中最小化對半導體結構的影響。 The method of forming a semiconductor structure provided by the present disclosure uses a multi-step vapor phase cleaning process to remove residues on the semiconductor structure as a post-etch cleaning operation. Through the choice of gas composition and the arrangement of process conditions, the impact on the semiconductor structure is minimized during the post-etch cleaning operation.

100:半導體結構 100: Semiconductor Structures

110:半導體材料層 110: semiconductor material layer

120:硬遮罩材料層 120: Hard mask material layer

130:圖案化遮罩 130: Patterned mask

132:平行結構 132: Parallel structure

134:溝槽 134: Groove

200:圖案化硬遮罩 200: Patterned Hard Mask

202:平行結構 202: Parallel structure

204:溝槽 204: Groove

400:蝕刻製程 400: Etching process

410:圖案化半導體材料 410: Patterned semiconductor materials

412:半導體柱 412: Semiconductor pillar

414:溝槽 414: Groove

416:半導體基底 416: Semiconductor substrate

420:殘留物 420: Residue

420A:剩餘部分 420A: remainder

430:第一氣相清潔製程 430: The first gas phase cleaning process

440:氧化物 440: oxide

450:第二氣相清潔製程 450: The second gas phase cleaning process

600:隔離區域 600: Isolation area

A-A:剖線 A-A: Sectional line

D:方向 D: Direction

W1,W2:寬度 W1, W2: width

H1,H2:高度 H1, H2: Height

X,Y,Z:軸 X, Y, Z: axes

θ:角度 θ: angle

閱讀以下實施例時搭配附圖以清楚理解本揭示案的觀點。應注意的是,根據業界的標準做法,各種特徵並未按照比例繪製。事實上,為了能清楚地討論,各種特徵的尺寸可能任意地放大或縮小。 The following embodiments are read together with the accompanying drawings to clearly understand the viewpoints of the present disclosure. It should be noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily expanded or reduced for clarity of discussion.

第1A圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之俯視圖。 FIG. 1A illustrates a top view of one of the process stages of forming a semiconductor structure according to some embodiments of the present disclosure.

第1B圖根據本揭示案的一些實施例繪示第1A圖半導體結構沿剖線A-A之截面圖。 FIG. 1B illustrates a cross-sectional view of the semiconductor structure of FIG. 1A along section line A-A, according to some embodiments of the present disclosure.

第2A圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之俯視圖。 FIG. 2A illustrates a top view of one of the process stages of forming a semiconductor structure according to some embodiments of the present disclosure.

第2B圖根據本揭示案的一些實施例繪示第2A圖半導體結構沿剖線A-A之截面圖。 FIG. 2B illustrates a cross-sectional view of the semiconductor structure of FIG. 2A along section line A-A, according to some embodiments of the present disclosure.

第3A圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之俯視圖。 FIG. 3A illustrates a top view of one of the process stages of forming a semiconductor structure according to some embodiments of the present disclosure.

第3B圖根據本揭示案的一些實施例繪示第3A圖半導體結構沿剖線A-A之截面圖。 Figure 3B illustrates a cross-sectional view of the semiconductor structure of Figure 3A along section line A-A, according to some embodiments of the present disclosure.

第4A圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之俯視圖。 FIG. 4A illustrates a top view of one of the process stages of forming a semiconductor structure according to some embodiments of the present disclosure.

第4B圖根據本揭示案的一些實施例繪示第4A圖半導體結構在其中一個與蝕刻相關的製程階段沿剖線A-A之截面圖。 4B shows a cross-sectional view of the semiconductor structure of FIG. 4A along line A-A during one of the etch-related process stages, according to some embodiments of the present disclosure.

第4C圖根據本揭示案的一些實施例繪示第4A圖半導體結 構在第一氣相清潔製程的階段沿剖線A-A之截面圖。 FIG. 4C illustrates the semiconductor junction of FIG. 4A according to some embodiments of the present disclosure. The structure is a cross-sectional view along the section line A-A at the stage of the first gas-phase cleaning process.

第4D圖根據本揭示案的一些實施例繪示第4A圖半導體結構在第二氣相清潔製程的階段沿剖線A-A之截面圖。 FIG. 4D shows a cross-sectional view of the semiconductor structure of FIG. 4A along section line A-A at a stage of a second vapor-phase cleaning process, according to some embodiments of the present disclosure.

第5A圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之俯視圖。 FIG. 5A illustrates a top view of one of the process stages of forming a semiconductor structure according to some embodiments of the present disclosure.

第5B圖根據本揭示案的一些實施例繪示第5A圖半導體結構沿剖線A-A之截面圖。 FIG. 5B illustrates a cross-sectional view of the semiconductor structure of FIG. 5A along section line A-A, according to some embodiments of the present disclosure.

第6A圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之俯視圖。 FIG. 6A illustrates a top view of one of the process stages of forming a semiconductor structure according to some embodiments of the present disclosure.

第6B圖根據本揭示案的一些實施例繪示第6A圖半導體結構沿剖線A-A之截面圖。 FIG. 6B illustrates a cross-sectional view of the semiconductor structure of FIG. 6A along section line A-A, according to some embodiments of the present disclosure.

當一個元件被稱為「在…上」時,它可泛指該元件直接在其他元件上,也可以是有其他元件存在於兩者之中。相反地,當一個元件被稱為「直接在」另一元件,它是不能有其他元件存在於兩者之中間。如本文所用,詞彙「及/或」包含了列出的關聯項目中的一個或多個的任何組合。 When an element is referred to as being "on", it can generally mean that the element is directly on other elements, or there may be other elements present in between. Conversely, when an element is said to be "directly on" another element, it cannot have other elements in between. As used herein, the word "and/or" includes any combination of one or more of the associated listed items.

在本揭示案中,使用第一、第二與第三等等之詞彙,是用於描述各種元件、組件、區域、層與/或區塊是可以被理解的。但是這些元件、組件、區域、層與/或區塊不應該被這些術語所限制。這些詞彙只限於用來辨別單一元件、組件、區域、層與/或區塊。因此,在下文中的一第一元件、組件、區域、層與/或區塊也可被稱為第二元件、組件、區 域、層與/或區塊,而不脫離本揭示案的本意。 In the present disclosure, terms such as first, second and third are used to describe various elements, components, regions, layers and/or blocks to be understood. But these elements, components, regions, layers and/or blocks should not be limited by these terms. These terms are limited to identifying a single element, component, region, layer and/or block. Therefore, a first element, component, region, layer and/or block hereinafter may also be referred to as a second element, component, region Domains, layers and/or blocks without departing from the intent of this disclosure.

關於本揭示案中所使用之「約」一般通常係指數值之誤差或範圍約百分之二十以內,較好地是約百分之十以內,而更佳地則是約百分五之以內。文中若無明確說明,其所提及的數值皆視作為近似值,即如「約」所表示的誤差或範圍。 As used in this disclosure, "about" generally means within about 20 percent, preferably within about 10 percent, and more preferably about 5 percent, of the error or range of the value of the index within. If there is no explicit statement in the text, the values mentioned are regarded as approximate values, that is, the error or range indicated by "approximately".

在蝕刻製程之後,可使用液體(例如清潔溶液、去離子水或易揮發溶劑)作為清潔介質對半導體結構進行清潔以移除殘留物,例如蝕刻製程過程產生的副產物或殘存的蝕刻劑。在清潔過程中,雖液體的表面張力對半導體結構產生作用力,半導體結構可能足以抵擋此作用力且不受影響。然而,當半導體結構逐漸變得細長而具有較大高寬比時,半導體結構可能無法抵擋上述作用力,導致半導體結構受到不均勻的外力而發生變形及/或塌陷。以下各種實施例描述一種使用氣體取代液體作為蝕刻後清潔介質以形成半導體結構的方法。 After the etching process, the semiconductor structure may be cleaned using a liquid (such as a cleaning solution, deionized water, or a volatile solvent) as a cleaning medium to remove residues, such as by-products of the etching process or residual etchant. During the cleaning process, although the surface tension of the liquid exerts a force on the semiconductor structure, the semiconductor structure may be strong enough to withstand this force and remain unaffected. However, when the semiconductor structure gradually becomes slender and has a larger aspect ratio, the semiconductor structure may not be able to withstand the above-mentioned force, resulting in deformation and/or collapse of the semiconductor structure under the uneven external force. The following various examples describe a method of using a gas instead of a liquid as a post-etch cleaning medium to form a semiconductor structure.

第1A圖至第6B圖根據本揭示案的一些實施例繪示形成半導體結構100(例如,記憶體裝置結構,其包括DRAM裝置結構)的俯視圖(第1A圖、第2A圖、第3A圖、第4A圖、第5A圖、和第6A圖)及截面圖(第1B圖、第2B圖、第3B圖、第4B圖、第4C圖、第4D圖、第5B圖、和第6B圖)。 FIGS. 1A-6B illustrate top views of formed semiconductor structures 100 (eg, memory device structures, including DRAM device structures) according to some embodiments of the present disclosure (FIGS. 1A, 2A, 3A, 4A, 5A, and 6A) and cross-sectional views (1B, 2B, 3B, 4B, 4C, 4D, 5B, and 6B) .

應注意的是,當第1A圖至第6B圖繪示或描述成一系列的操作或事件時,這些操作或事件的描述順序不應 受到限制。例如,部分操作或事件可採取與本揭示案不同的順序、部分操作或事件可同時發生、部分操作或事件可以不須採用、及/或部分操作或事件可重複進行。並且,實際的製程可能須在形成半導體結構100之前、過程中、或之後進行額外的操作步驟以完整形成半導體結構100。因此,本揭示案可能將簡短地說明其中一些額外的操作步驟。再者,除非額外說明,否則第1A圖至第6B圖談論到的相同的說明可直接應用至其他圖片上。 It should be noted that when Figures 1A to 6B are shown or described as a series of operations or events, the description order of these operations or events should not restricted. For example, some operations or events may be undertaken in a different order than in the present disclosure, some operations or events may occur concurrently, some operations or events may not be required, and/or some operations or events may be repeated. Moreover, the actual process may require additional steps before, during, or after forming the semiconductor structure 100 to completely form the semiconductor structure 100 . Therefore, this disclosure may briefly illustrate some of these additional operational steps. Furthermore, unless otherwise stated, the same explanations discussed in Figures 1A to 6B can be directly applied to the other figures.

請參照第1A圖和第1B圖,第1A圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之俯視圖,第1B圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之截面圖。 Please refer to FIG. 1A and FIG. 1B. FIG. 1A shows a top view of one of the process stages of forming a semiconductor structure 100 according to some embodiments of the present disclosure, and FIG. 1B shows forming a semiconductor structure 100 according to some embodiments of the present disclosure. A cross-sectional view of structure 100 at one of its fabrication stages.

半導體結構100可包含半導體材料層110(第1B圖)、位於半導體材料層110的硬遮罩材料層120、位於硬遮罩材料層120上的圖案化遮罩130。 The semiconductor structure 100 may include a semiconductor material layer 110 ( FIG. 1B ), a hard mask material layer 120 on the semiconductor material layer 110 , and a patterned mask 130 on the hard mask material layer 120 .

半導體材料層110為半導體材料,可包括矽,例如結晶矽、多晶矽、或無晶矽。半導體材料層110可包括元素半導體,例如鍺(Ge)。半導體材料層110可包括合金半導體,例如矽鍺(SiGe)、碳化矽磷(SiPC)、磷化砷化鎵(GaAsP)、砷化鋁銦(AlInAs)、砷化鋁鎵(AlGaAs)、砷化鎵銦鎵(GaInAs)、磷化鎵銦(GaInP)、鎵銦磷化物(GaInAsP)、或其他合適的材料。半導體材料層110可包括化合物半導體,例如碳化矽(SiC)、磷化矽(SiP)、砷化鎵(GaAs)、磷化鎵(GaP)、磷化銦(InP)、砷化銦 (InAs)、銻化銦(InSb)、氧化鋅(ZnO)、硒化鋅(ZnSe)、硫化鋅(ZnS)、碲化鋅(ZnTe),硒化鎘(CdSe)、硫化鎘(CdS)、碲化鎘(CdTe)、或其他合適的材料。 The semiconductor material layer 110 is a semiconductor material, which may include silicon, such as crystalline silicon, polycrystalline silicon, or amorphous silicon. The semiconductor material layer 110 may include an elemental semiconductor such as germanium (Ge). The semiconductor material layer 110 may include alloy semiconductors, such as silicon germanium (SiGe), silicon carbide (SiPC), gallium arsenide phosphide (GaAsP), aluminum indium arsenide (AlInAs), aluminum gallium arsenide (AlGaAs), arsenide Gallium indium gallium (GaInAs), gallium indium phosphide (GaInP), gallium indium phosphide (GaInAsP), or other suitable materials. The semiconductor material layer 110 may include compound semiconductors such as silicon carbide (SiC), silicon phosphide (SiP), gallium arsenide (GaAs), gallium phosphide (GaP), indium phosphide (InP), indium arsenide (InAs), indium antimonide (InSb), zinc oxide (ZnO), zinc selenide (ZnSe), zinc sulfide (ZnS), zinc telluride (ZnTe), cadmium selenide (CdSe), cadmium sulfide (CdS), Cadmium telluride (CdTe), or other suitable materials.

除此之外,半導體材料層110可以是絕緣體上半導體(semiconductor-on-insulator)基材,例如絕緣體上矽(silicon-on-insulator,SOI)基材或是絕緣體上鍺(germanium-on-insulator,GeOI)基材。絕緣體上半導體基材可由氧佈植分離(separation by implantation of oxygen)技術、晶圓鍵合(wafer bonding)技術、其他合適的技術,或上述之組合製成。 In addition, the semiconductor material layer 110 may be a semiconductor-on-insulator substrate, such as a silicon-on-insulator (SOI) substrate or a germanium-on-insulator (germanium-on-insulator) substrate. , GeOI) substrate. The semiconductor-on-insulator substrate can be fabricated by separation by implantation of oxygen technology, wafer bonding technology, other suitable technologies, or a combination of the above.

硬遮罩材料層120可由碳、矽、氧化矽、氮化矽、氮氧化矽、碳氧化矽、氧化鋁、氮氧化矽、和其他合適的材料中之至少一者組成。硬遮罩材料層120可為單層或多層結構。舉例來說,硬遮罩材料層120可為單層結構之氧化物,例如,二氧化矽或氧化鋁。或者,在一些實施例中,硬遮罩材料層120可為包括氧化矽和氮化矽之雙層結構。 The hard mask material layer 120 may be composed of at least one of carbon, silicon, silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, aluminum oxide, silicon oxynitride, and other suitable materials. The hard mask material layer 120 can be a single layer or a multi-layer structure. For example, the hard mask material layer 120 can be a single-layer oxide, such as silicon dioxide or aluminum oxide. Alternatively, in some embodiments, the hard mask material layer 120 may be a double-layer structure including silicon oxide and silicon nitride.

硬遮罩材料層120的形成方式可包括物理氣相沈積(physical vapor deposition,PVD)、化學氣相沈積(chemical vapor deposition,CVD)、原子層沈積(atomic layer deposition,ALD)、矽的熱氮化、電漿陽極氮化(plasma anodic nitridation)、旋轉塗佈(spin coating)、或其他合適的方式。CVD可包括電漿增強化學氣相沈積(plasma enhanced CVD,PECVD)或低壓化學氣相沉積(low pressure CVD,LPCVD)。 The formation method of the hard mask material layer 120 may include physical vapor deposition (physical vapor deposition, PVD), chemical vapor deposition (chemical vapor deposition, CVD), atomic layer deposition (atomic layer deposition, ALD), thermal nitrogen of silicon Nitriding, plasma anodic nitridation, spin coating, or other suitable methods. CVD may include plasma enhanced chemical vapor deposition (plasma enhanced CVD, PECVD) or low pressure chemical vapor deposition (low pressure CVD, LPCVD).

圖案化遮罩130包括數個平行結構132和溝槽134,其中溝槽134隔開每個平行結構132,使得相鄰的平行結構132以等距離分別沿X軸和Y軸排列相隔開。在第1A圖所示之俯視圖中,可透過溝槽134觀察到硬遮罩材料層120。 The patterned mask 130 includes a plurality of parallel structures 132 and grooves 134 , wherein the grooves 134 separate each parallel structure 132 such that adjacent parallel structures 132 are arranged at equal distances along the X-axis and the Y-axis. In the top view shown in FIG. 1A , hard mask material layer 120 can be seen through trenches 134 .

平行結構132具有一短軸和一長軸。在一些實施例中,平行結構132的長軸沿方向D延伸,其中方向D與X軸夾一角度θ。並且,每個平行結構具有大致上相同短軸長度和長軸長度。 The parallel structure 132 has a minor axis and a major axis. In some embodiments, the long axis of the parallel structure 132 extends along a direction D, wherein the direction D forms an angle θ with the X axis. Also, each parallel structure has substantially the same minor and major axis lengths.

平行結構132的材料可選自對硬遮罩材料層120具有蝕刻選擇性之材料,以利透過一或多個製程選擇性移除平行結構132之一部分,及/或透過一或多個其他製程選擇性地移除硬遮罩材料層120之一部分。在一些實施例中,平行結構132包括含氮之介電材料,例如,氮化矽。在一些實施例中,平行結構132包括光阻材料。 The material of parallel structures 132 may be selected from a material that is etch-selective to hard mask material layer 120 to facilitate selective removal of a portion of parallel structures 132 by one or more processes, and/or by one or more other processes. A portion of the hard mask material layer 120 is selectively removed. In some embodiments, the parallel structure 132 includes a nitrogen-containing dielectric material, such as silicon nitride. In some embodiments, parallel structures 132 include a photoresist material.

請參照第2A圖和第2B圖,第2A圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之俯視圖,第2B圖根據本揭示案的一些實施例繪示第2A圖半導體結構100沿剖線A-A之截面圖。 Please refer to FIG. 2A and FIG. 2B. FIG. 2A shows a top view of one of the process stages of forming semiconductor structure 100 according to some embodiments of the present disclosure, and FIG. FIG. 1 is a cross-sectional view of the semiconductor structure 100 along the section line A-A.

接著,藉由蝕刻製程選擇性移除硬遮罩材料層120之一部分以形成圖案化硬遮罩200在半導體材料層110上。詳細而言,蝕刻劑通過圖案化遮罩130移除顯露於溝槽134內的硬遮罩材料層120,將硬遮罩材料層120形成為圖案化硬遮罩200。在一些實施例中,蝕刻製程選擇性移 除硬遮罩材料層120,而不移除半導體材料層110。 Next, a portion of the hard mask material layer 120 is selectively removed by an etching process to form a patterned hard mask 200 on the semiconductor material layer 110 . In detail, the etchant removes the hard mask material layer 120 exposed in the trench 134 through the patterned mask 130 to form the hard mask material layer 120 into a patterned hard mask 200 . In some embodiments, the etch process selectively shifts The hard mask material layer 120 is removed without removing the semiconductor material layer 110 .

圖案化硬遮罩200的圖案可相應於圖案化遮罩130的圖案。舉例來說,圖案化硬遮罩200可包括數個平行結構202和溝槽204,其中平行結構202的形貌相似於平行結構132的形貌,而溝槽204相似於溝槽134的形貌,前文針對平行結構132和溝槽134的特徵描述大致上可應用於平行結構202和溝槽204,故不再詳述。 The pattern of the patterned hard mask 200 may correspond to the pattern of the patterned mask 130 . For example, the patterned hard mask 200 may include a plurality of parallel structures 202 and trenches 204, wherein the parallel structures 202 have a topography similar to the parallel structures 132, and the trenches 204 have a topography similar to the trench 134. , the foregoing feature descriptions for the parallel structures 132 and the trenches 134 are generally applicable to the parallel structures 202 and the trenches 204 , so details are not described again.

請參照第3A圖和第3B圖,第3A圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之俯視圖,第3B圖根據本揭示案的一些實施例繪示第3A圖半導體結構100沿剖線A-A之截面圖。 Please refer to FIG. 3A and FIG. 3B. FIG. 3A shows a top view of one of the process stages of forming semiconductor structure 100 according to some embodiments of the present disclosure, and FIG. FIG. 1 is a cross-sectional view of the semiconductor structure 100 along the section line A-A.

接下來,移除圖案化遮罩130。由於圖案化遮罩130的材料對圖案化硬遮罩200的材料具有蝕刻選擇比,並且圖案化遮罩130的材料對半導體材料層110的材料亦具有蝕刻選擇比,因此僅圖案化遮罩130移除。藉此,形成圖案化硬遮罩200在半導體材料層110上,圖案化硬遮罩200在後續蝕刻製程中作為半導體材料層110的蝕刻遮罩。 Next, the patterning mask 130 is removed. Since the material of the patterned mask 130 has an etch selectivity to the material of the patterned hard mask 200, and the material of the patterned mask 130 also has an etch selectivity to the material of the semiconductor material layer 110, only the patterned mask 130 remove. Thereby, a patterned hard mask 200 is formed on the semiconductor material layer 110 , and the patterned hard mask 200 serves as an etching mask for the semiconductor material layer 110 in a subsequent etching process.

請參照第4A圖和第4B圖,第4A圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之俯視圖,第4B圖根據本揭示案的一些實施例繪示第4A圖半導體結構100在其中一個與蝕刻相關的製程階段沿剖線A-A之截面圖。 Please refer to FIG. 4A and FIG. 4B. FIG. 4A shows a top view of one of the process stages of forming semiconductor structure 100 according to some embodiments of the present disclosure, and FIG. FIG. 1 is a cross-sectional view of the semiconductor structure 100 along the line A-A at one of the etching-related process stages.

接下來,藉由蝕刻製程400和圖案化硬遮罩200 移除半導體材料層110的一部分,以形成圖案化半導體材料410。在如第4B圖所示之實施例中,圖案化半導體材料410包括數個半導體柱412、數個溝槽414,以及半導體基底416。半導體柱412自半導體基底416向上(例如平行Z軸)突出,並且溝槽414隔開相鄰的半導體柱412。 Next, by etching process 400 and patterning hard mask 200 A portion of the semiconductor material layer 110 is removed to form a patterned semiconductor material 410 . In the embodiment shown in FIG. 4B , the patterned semiconductor material 410 includes a plurality of semiconductor pillars 412 , a plurality of trenches 414 , and a semiconductor substrate 416 . The semiconductor pillars 412 protrude upward (eg, parallel to the Z-axis) from the semiconductor substrate 416 , and the trenches 414 separate adjacent semiconductor pillars 412 .

在第4B圖的半導體柱412具有寬度W1和高度H1,寬度W1和高度H1依據產品設計或製程條件而定。在一些實施例中,半導體柱412的高度(例如,第4B圖的高度H1)比半導體柱412的寬度(例如,第4B圖的寬度W1乘上sin θ)之高寬比至少大於約12。在一些實施例中,高度H1為約120奈米至約240奈米。 The semiconductor column 412 in FIG. 4B has a width W1 and a height H1, and the width W1 and the height H1 are determined according to product design or process conditions. In some embodiments, the aspect ratio of the height of semiconductor pillar 412 (eg, height H1 of FIG. 4B ) to the width of semiconductor pillar 412 (eg, width W1 of FIG. 4B times sin θ ) is at least greater than about 12. In some embodiments, height H1 is about 120 nm to about 240 nm.

移除半導體材料層110的蝕刻製程400可以包括乾式蝕刻、濕式蝕刻、反應性離子蝕刻(reactive ion etching,RIE)及/或其他適當製程。舉例來說,乾式蝕刻製程可使用含氧氣體、含氟氣體(例如,CF4、SF6、CH2F2、CHF3、及/或C2F6)、含氯氣體(例如,Cl2、CHCl3、CCl4、及/或BCl3)、含溴氣體(例如,HBr)、含碘氣體,其他合適的氣體及/或電漿、或上述之組合。在另一例子中,濕式蝕刻製程可使用稀釋的氫氟酸(diluted hydrofluoric acid,DHF)、氫氧化鉀(KOH)溶液、氨、氫氟酸(HF)、硝酸(HNO3)及/或乙酸(CH3COOH)的溶液中、其他合適的濕式蝕刻劑、或上述之組合。在一些實施例中,蝕刻製程400使用反應性離子蝕刻製程。 The etching process 400 for removing the semiconductor material layer 110 may include dry etching, wet etching, reactive ion etching (RIE), and/or other suitable processes. For example, the dry etching process may use oxygen-containing gases, fluorine-containing gases (eg, CF 4 , SF 6 , CH 2 F 2 , CHF 3 , and/or C 2 F 6 ), chlorine-containing gases (eg, Cl 2 , CHCl 3 , CCl 4 , and/or BCl 3 ), bromine-containing gas (eg, HBr), iodine-containing gas, other suitable gases and/or plasmas, or combinations thereof. In another example, the wet etching process may use diluted hydrofluoric acid (DHF), potassium hydroxide (KOH) solution, ammonia, hydrofluoric acid (HF), nitric acid (HNO 3 ) and/or Acetic acid (CH 3 COOH) solution, other suitable wet etchant, or a combination of the above. In some embodiments, etching process 400 uses a reactive ion etching process.

在一些實施例中,進行蝕刻製程400的過程中, 形成殘留物420在溝槽204/414內。詳細而言,殘留物420附著在半導體柱412的側壁上、圖案化硬遮罩200的平行結構202的側壁上、或半導體基底416的上表面,如第4B圖所示。 In some embodiments, during etching process 400, A residue 420 is formed within the trenches 204/414. In detail, the residue 420 adheres to the sidewalls of the semiconductor pillars 412 , the sidewalls of the parallel structures 202 of the patterned hard mask 200 , or the top surface of the semiconductor substrate 416 , as shown in FIG. 4B .

殘留物420可能來自蝕刻製程400中的蝕刻劑與半導體材料層110的材料及/或圖案化硬遮罩200的材料產生反應後形成的副產物。在一些實施例中,殘留物420包含來自在蝕刻製程400中使用的蝕刻劑組成,例如碳或其他適用的材料。因此,蝕刻製程400之後可進行清潔製程以移除半導體結構100內的殘留物420,如下文第4C圖與第4D圖之說明。 The residue 420 may be a by-product formed after the etchant in the etching process 400 reacts with the material of the semiconductor material layer 110 and/or the material of the patterned hard mask 200 . In some embodiments, the residue 420 comprises components from the etchant used in the etching process 400, such as carbon or other suitable materials. Therefore, the etching process 400 may be followed by a cleaning process to remove the residue 420 in the semiconductor structure 100, as illustrated in FIGS. 4C and 4D below.

請參照第4C圖,第4C圖根據本揭示案的一些實施例繪示第4A圖半導體結構100在第一氣相清潔製程430的階段沿剖線A-A之截面圖。首先,使用第一氣相清潔製程430移除殘留物420的至少一部分。第一氣相清潔製程430的氣體組成包括含氧氣體。在包括含氧氣體之實施例中,第一氣相清潔製程430的氣體組成更包括含氟氣體,其包括CF4、SF6、NF3、或CHF3中的至少一者,並且含氧氣體所佔成分較含氟氣體所佔成分高。在一些實施例中,含氧氣體比含氟氣體的成分比為約10比1。在一些實施例中,第一氣相清潔製程430的氣體組成包括氧氣以及含氟氣體,其中氧氣多於含氟氣體。在一些實施例中,第一氣相清潔製程430為具選擇性的等向性蝕刻。 Please refer to FIG. 4C , which shows a cross-sectional view of the semiconductor structure 100 in FIG. 4A along the section line AA at the stage of the first vapor-phase cleaning process 430 according to some embodiments of the present disclosure. First, at least a portion of the residue 420 is removed using a first vapor phase cleaning process 430 . The gas composition of the first gas-phase cleaning process 430 includes an oxygen-containing gas. In an embodiment including an oxygen-containing gas, the gas composition of the first gas-phase cleaning process 430 further includes a fluorine-containing gas, which includes at least one of CF 4 , SF 6 , NF 3 , or CHF 3 , and the oxygen-containing gas The composition is higher than that of fluorine-containing gases. In some embodiments, the composition ratio of oxygen-containing gas to fluorine-containing gas is about 10 to 1. In some embodiments, the gas composition of the first gas-phase cleaning process 430 includes oxygen and a fluorine-containing gas, wherein the oxygen is more than the fluorine-containing gas. In some embodiments, the first vapor phase cleaning process 430 is a selective isotropic etch.

第一氣相清潔製程430的操作溫度可在約10℃ 和約120℃的範圍之內,例如10、20、30、40、50、60、70、80、90、100、110或120℃。若第一氣相清潔製程430的操作溫度高於上述之上限值,則可能降低氣體組成對殘留物420比半導體柱412之材料的蝕刻選擇比,而造成半導體結構100預期外的損耗(例如,造成下文中氧化物440的過度形成)。若第一氣相清潔製程430的操作溫度低於上述之下限值,對製程上無實質的益處。在一些實施例中,第一氣相清潔製程430的操作溫度在約10°C至約30℃之間。在一些實施例中,第一氣相清潔製程430的操作溫度在約60℃至約80℃之間。 The operating temperature of the first vapor cleaning process 430 may be about 10° C. and about 120°C, such as 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 or 120°C. If the operating temperature of the first gas-phase cleaning process 430 is higher than the above-mentioned upper limit, the etching selectivity of the gas composition to the residue 420 to the material of the semiconductor pillar 412 may be reduced, resulting in unexpected loss of the semiconductor structure 100 (eg, , resulting in the excessive formation of oxide 440 hereinafter). If the operating temperature of the first vapor-phase cleaning process 430 is lower than the above-mentioned lower limit, there is no substantial benefit to the process. In some embodiments, the operating temperature of the first vapor-phase cleaning process 430 is between about 10°C and about 30°C. In some embodiments, the operating temperature of the first vapor-phase cleaning process 430 is between about 60°C and about 80°C.

第一氣相清潔製程430可搭配使用電漿。藉由調整電漿之操作參數,電漿與製程中使用的氣體交互作用而產生自由基(radical)狀態之氣體組成。接著,將電漿與自由基狀態之氣體組成分離。在一些實施例中,可藉由帶電光柵(未繪出)其阻止來自電漿的帶電離子的運動,並允許不帶電粒子(例如,自由基狀態之氣體組成)穿過帶電光柵。舉例而言,帶電光柵可藉由排斥或吸引帶電離子來防止帶電離子(例如,帶正電離子或帶負電離子)穿過。任何元件可分離電漿和自由基狀態之氣體組成皆可適用於本揭示案。然後,自由基狀態之氣體組成可擴散至溝槽204和溝槽414內,並可與殘留物420進行反應。 The first vapor phase cleaning process 430 can be combined with plasma. By adjusting the operating parameters of the plasma, the plasma interacts with the gas used in the process to generate a gas composition in a radical state. Next, the plasma is separated from the gas composition in the free radical state. In some embodiments, a charged grating (not shown) may be used to block the movement of charged ions from the plasma and allow uncharged particles (eg, gas constituents in a free radical state) to pass through the charged grating. For example, a charged grating can prevent the passage of charged ions (eg, positively or negatively charged ions) by repelling or attracting the charged ions. Any device that can separate the gas composition of the plasmonic and radical states is applicable to the present disclosure. The gas composition in a free radical state can then diffuse into trenches 204 and 414 and can react with residue 420 .

第一氣相清潔製程430可移除第4B圖的殘留物420的至少一部分。當第一氣相清潔製程430未能完全除去殘留物420時,在第一氣相清潔製程430之後仍有殘留 物420的剩餘部分420A留在溝槽414內。半導體柱412的一部分(例如,第一部分)受殘留物420的剩餘部分420A覆蓋,另一部分(例如,第二部分)未受殘留物420的剩餘部分420A覆蓋。 The first vapor phase cleaning process 430 may remove at least a portion of the residue 420 of FIG. 4B. When the first vapor cleaning process 430 fails to completely remove the residue 420, there are still residues after the first vapor cleaning process 430 The remaining portion 420A of object 420 remains in trench 414. A portion (eg, the first portion) of the semiconductor pillar 412 is covered by the remaining portion 420A of the residue 420 and another portion (eg, the second portion) is not covered by the remaining portion 420A of the residue 420 .

在一些實施例中,未受殘留物420的剩餘部分420A覆蓋並且暴露於溝槽414內的半導體柱412(即,第二部分),於蝕刻製程400、第一氣相清潔製程430或其他的製程中,暴露出來的材料可能接觸到製程環境中的水氣或其他氣體,而發生氧化反應導致氧化物440的形成,如第4C圖所示。舉例來說,氧化物440可能是原生氧化層(native oxide)形成在暴露的半導體柱412上(即,第二部分上)。又或者,氧化物440可能是第一氣相清潔製程430的至少部分氣體組成(例如,含氧氣體)與暴露的半導體柱412的材料反應而形成的氧化物440。因此,在第一氣相清潔製程430之後,未受殘留物420的剩餘部分420A覆蓋的半導體柱412(即,第二部分)可具有氧化物440。 In some embodiments, the semiconductor pillar 412 (ie, the second portion) that is not covered by the remaining portion 420A of the residue 420 and exposed in the trench 414 is removed during the etching process 400, the first vapor-phase cleaning process 430, or other During the process, the exposed material may come into contact with moisture or other gases in the process environment, and an oxidation reaction occurs to form oxide 440, as shown in FIG. 4C. For example, the oxide 440 may be a native oxide formed on the exposed semiconductor pillar 412 (ie, on the second portion). Alternatively, the oxide 440 may be the oxide 440 formed by the reaction of at least part of the gas composition (eg, oxygen-containing gas) of the first gas-phase cleaning process 430 with the material of the exposed semiconductor pillar 412 . Therefore, after the first vapor-phase cleaning process 430 , the semiconductor pillar 412 (ie, the second portion) not covered by the remaining portion 420A of the residue 420 may have the oxide 440 .

在一些實施例中,受到殘留物420的剩餘部分420A覆蓋住的半導體柱412(即,第一部分)因不易接觸水氣或其他氣體,所以不利於氧化物440的生成。在此情況下,氧化物440之位置與殘留物420的剩餘部分420A之位置不重疊。 In some embodiments, the semiconductor pillar 412 (ie, the first portion) covered by the remaining portion 420A of the residue 420 is not conducive to the formation of the oxide 440 because it is not easily exposed to moisture or other gases. In this case, the location of the oxide 440 does not overlap with the location of the remaining portion 420A of the residue 420 .

在另一些實施例中,雖然半導體柱412受到殘留物420的剩餘部分420A覆蓋(即,第一部分),但是水氣 或其他氣體可藉由擴散,或是殘留物420的剩餘部分420A的結構無法阻擋水氣或其他氣體通過,導致氧化物440仍可形成在殘留物420覆蓋住的位置(即,第一部分)。在此情況下,氧化物440除了形成在暴露出來的半導體柱412上(即,第二部分),亦可形成在殘留物420的剩餘部分420A與半導體柱412之間(即,第一部分)。 In other embodiments, although the semiconductor pillar 412 is covered by the remaining portion 420A of the residue 420 (ie, the first portion), the moisture Or other gases may be diffused, or the structure of the remaining portion 420A of the residue 420 cannot block the passage of water vapor or other gases, so that the oxide 440 may still be formed at the position covered by the residue 420 (ie, the first portion). In this case, besides being formed on the exposed semiconductor pillar 412 (ie, the second portion), the oxide 440 may also be formed between the remaining portion 420A of the residue 420 and the semiconductor pillar 412 (ie, the first portion).

請接續參照第4D圖,第4D圖根據本揭示案的一些實施例繪示第4A圖半導體結構100在第二氣相清潔製程450的階段沿剖線A-A之截面圖。在使用第一氣相清潔製程430之後,可進一步使用第二氣相清潔製程450以移除殘留物420的剩餘部分420A,其中第一氣相清潔製程430的條件不同於第二氣相清潔製程450的條件。 Please refer to FIG. 4D in succession. FIG. 4D shows a cross-sectional view of the semiconductor structure 100 in FIG. 4A along the line A-A at the stage of the second vapor-phase cleaning process 450 according to some embodiments of the present disclosure. After using the first vapor cleaning process 430, a second vapor cleaning process 450 may be further used to remove the remaining portion 420A of the residue 420, wherein the conditions of the first vapor cleaning process 430 are different from those of the second vapor cleaning process. 450 condition.

針對氣體組成,第二氣相清潔製程450的氣體組成包括含氫氣體和載流氣體。在一些實施例中,第二氣相清潔製程450的氣體組成可包括氫氣和載流氣體。再者,氫氣所佔的成分比為約4%至約50%,例如5、10、15、20、25、30、35、40、45、或50%。在一些實施例中,氫氣所佔的成分比為約4%。載流氣體所選之氣體對半導體結構100之材料的反應活性低,例如氮氣、惰性氣體(氦、氖、氬、氪、氙)、其他合適的低活性之氣體、或上述之組合。在一些實施例中,第二氣相清潔製程450的氣體組成可使用常規的氫氮混合氣體(forming gas)等之還原氣體。在一些實施例中,第二氣相清潔製程450為具選擇性的等向性蝕刻。 Regarding the gas composition, the gas composition of the second gas phase cleaning process 450 includes a hydrogen-containing gas and a carrier gas. In some embodiments, the gas composition of the second gas phase cleaning process 450 may include hydrogen and a carrier gas. Furthermore, the composition ratio of hydrogen is about 4% to about 50%, such as 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50%. In some embodiments, the composition ratio of hydrogen is about 4%. The selected carrier gas has low reactivity to the material of the semiconductor structure 100 , such as nitrogen, inert gases (helium, neon, argon, krypton, xenon), other suitable low-reactivity gases, or combinations thereof. In some embodiments, the gas composition of the second gas-phase cleaning process 450 can use conventional reducing gases such as hydrogen-nitrogen mixed gas (forming gas). In some embodiments, the second vapor phase cleaning process 450 is a selective isotropic etch.

針對操作溫度,第二氣相清潔製程450的操作溫度高於第一氣相清潔製程430的操作溫度。第二氣相清潔製程450的操作溫度可為約200℃和300℃的範圍內,例如200、210、220、230、240、250、260、270、280、290、或300℃。若第二氣相清潔製程450的操作溫度低於上述之下限值,則第二氣相清潔製程450的氣體組成無法在預期的時間內移除殘留物420的剩餘部分420A。若第二氣相清潔製程450的操作溫度高於上述之上限值,對製程上無實質的益處。在一些實施例中,第二氣相清潔製程450的操作溫度在約270℃至約290℃之間。針對操作時間,第二氣相清潔製程450的操作時間小於第一氣相清潔製程430的操作時間。 Regarding the operating temperature, the operating temperature of the second vapor cleaning process 450 is higher than the operating temperature of the first vapor cleaning process 430 . The operating temperature of the second vapor cleaning process 450 may be in the range of about 200°C and 300°C, such as 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, or 300°C. If the operating temperature of the second vapor cleaning process 450 is lower than the above lower limit, the gas composition of the second vapor cleaning process 450 cannot remove the remaining portion 420A of the residue 420 within the expected time. If the operating temperature of the second vapor-phase cleaning process 450 is higher than the above-mentioned upper limit, there is no substantial benefit to the process. In some embodiments, the operating temperature of the second vapor-phase cleaning process 450 is between about 270°C and about 290°C. Regarding the operating time, the operating time of the second vapor cleaning process 450 is less than that of the first vapor cleaning process 430 .

第二氣相清潔製程450可搭配使用電漿。藉由調整電漿之操作參數,電漿與蝕刻製程中使用的氣體交互作用而產生自由基(radical)狀態之氣體組成。第二氣相清潔製程450可搭配使用電漿的方式相似於第一氣相清潔製程430搭配使用電漿的方式,因此在此不再詳述。 The second vapor-phase cleaning process 450 can be combined with plasma. By adjusting the operating parameters of the plasma, the plasma interacts with the gas used in the etching process to produce a gas composition in a radical state. The manner in which the second vapor-phase cleaning process 450 can be used in combination with plasma is similar to the manner in which the first vapor-phase cleaning process 430 can be used in combination with plasma, so it will not be described in detail here.

第二氣相清潔製程450除了移除殘留物420的剩餘部分420A以達到清潔半導體結構100之目的之外,亦可移除氧化物440(第4C圖)。移除氧化物440是指在第二氣相清潔製程450中使氧化物440還原。具體而言,在第一氣相清潔製程430中暴露出來的半導體柱412的材料和製程環境中的水氣(或其他氣體)形成的氧化物440,可與第二氣相清潔製程450的至少部分氣體組成(例如,含 氫氣體)產生反應,使氧化物440進行還原反應並形成半導體柱412的材料。藉此最小化對半導體結構100的半導體柱412的耗損。 In addition to removing the remaining portion 420A of the residue 420 to clean the semiconductor structure 100, the second vapor-phase cleaning process 450 can also remove the oxide 440 (FIG. 4C). Removing the oxide 440 refers to reducing the oxide 440 in the second vapor phase cleaning process 450 . Specifically, the oxide 440 formed by the material of the semiconductor pillar 412 exposed in the first gas-phase cleaning process 430 and the moisture (or other gas) in the process environment can be combined with at least the second gas-phase cleaning process 450 Partial gas composition (for example, containing Hydrogen gas) reacts to reduce the oxide 440 and form the material of the semiconductor pillar 412 . The wear to the semiconductor pillar 412 of the semiconductor structure 100 is thereby minimized.

在依序進行第一氣相清潔製程430和第二氣相清潔製程450之後,在第4D圖的半導體柱412具有寬度W2以及高度H2。在一些實施例中,寬度W2實質上與寬度W1相同。在一些實施例中,高度H2實質上與高度H1相同。因此,前述的半導體柱412之高寬比的說明可適用於此,在此不再詳述。 After sequentially performing the first vapor cleaning process 430 and the second vapor cleaning process 450 , the semiconductor pillar 412 in FIG. 4D has a width W2 and a height H2 . In some embodiments, width W2 is substantially the same as width W1. In some embodiments, height H2 is substantially the same as height H1. Therefore, the foregoing description of the aspect ratio of the semiconductor pillar 412 is applicable here, and will not be described in detail here.

請參照第5A圖和第5B圖,第5A圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之俯視圖,第5B圖根據本揭示案的一些實施例繪示第5A圖半導體結構100沿剖線A-A之截面圖。接下來,移除圖案化硬遮罩200。由於圖案化硬遮罩200的材料對圖案化半導體材料410的材料具有蝕刻選擇比,因此僅圖案化硬遮罩200移除。 Please refer to FIG. 5A and FIG. 5B. FIG. 5A shows a top view of one of the process stages of forming semiconductor structure 100 according to some embodiments of the present disclosure, and FIG. FIG. 1 is a cross-sectional view of the semiconductor structure 100 along the section line A-A. Next, the patterned hard mask 200 is removed. Since the material of the patterned hard mask 200 has etch selectivity to the material of the patterned semiconductor material 410, only the patterned hard mask 200 is removed.

請參照第6A圖和第6B圖,第6A圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之俯視圖,第6B圖根據本揭示案的一些實施例繪示第6A圖半導體結構100沿剖線A-A之截面圖。 Please refer to FIG. 6A and FIG. 6B. FIG. 6A shows a top view of one of the process stages of forming semiconductor structure 100 according to some embodiments of the present disclosure, and FIG. FIG. 1 is a cross-sectional view of the semiconductor structure 100 along the section line A-A.

接著,形成隔離區域600在相鄰的半導體柱412之間,藉此隔開半導體柱412。隔離區域600的形成可包括沉積製程、退火製程、化學機械研磨(chemical mechanical planarization,CMP)製程、回蝕 (etching back)製程、其他合適的製程、或上述之組合。舉例來說,在圖案化半導體材料410上沉積可流動介電材料並填入溝槽414(第4D圖)。隨後,退火製程使流動介電材料轉換成固態介電材料。接著,執行一或多個CMP製程及/或回蝕製程以移除多餘的介電材料。隔離區域600所具有的介電材料可包括氧化矽(silicon oxide)、氮化矽(silicon nitride)、和氮氧化矽(silicon oxynitride)以上三者中的至少一者。隔離區域600可為單層或多層結構。舉例來說,隔離區域600可包括氧化矽和氮化矽。 Next, an isolation region 600 is formed between adjacent semiconductor pillars 412 , thereby separating the semiconductor pillars 412 . The formation of the isolation region 600 may include a deposition process, an annealing process, a chemical mechanical planarization (CMP) process, etch back (etching back) process, other suitable processes, or a combination of the above. For example, a flowable dielectric material is deposited on patterned semiconductor material 410 and fills trenches 414 (FIG. 4D). Subsequently, an annealing process converts the fluid dielectric material into a solid dielectric material. Next, one or more CMP processes and/or etch-back processes are performed to remove excess dielectric material. The dielectric material of the isolation region 600 may include at least one of silicon oxide, silicon nitride, and silicon oxynitride. The isolation region 600 may be a single-layer or multi-layer structure. For example, the isolation region 600 may include silicon oxide and silicon nitride.

隔離區域600、半導體柱412和半導體基底416之組合可作為後續製程(未繪出)的基材。舉例來說,第6A圖和第6B圖的半導體柱412於DRAM後續製程中可作為主動區域。 The combination of the isolation region 600, the semiconductor pillar 412 and the semiconductor substrate 416 can be used as a substrate for a subsequent process (not shown). For example, the semiconductor pillar 412 in FIG. 6A and FIG. 6B can be used as an active area in subsequent DRAM manufacturing processes.

綜合以上,本揭示案提供一種形成半導體結構的方法,方法中使用氣相清潔製程移除半導體結構上的殘留物以作為蝕刻後清潔。對於大高寬比之半導體結構,藉由氣體組成的選擇、操作順序、以及製程條件的安排,在移除殘留物的過程最小化對半導體結構的影響。 In summary, the present disclosure provides a method of forming a semiconductor structure, in which a vapor phase cleaning process is used to remove residues on the semiconductor structure as a post-etch clean. For a semiconductor structure with a large aspect ratio, the impact on the semiconductor structure is minimized during the process of removing residues through the selection of gas composition, operation sequence, and arrangement of process conditions.

以上概略說明了本揭示案數個實施例的特徵,使所屬技術領域內具有通常知識者對於本揭示案可更為容易理解。任何所屬技術領域內具有通常知識者應瞭解到本說明書可輕易作為其他結構或製程的變更或設計基礎,以進行相同於本揭示案實施例的目的及/或獲得相同的優點。任何 所屬技術領域內具有通常知識者亦可理解與上述等同的結構並未脫離本揭示案之精神及保護範圍內,且可在不脫離本揭示案之精神及範圍內,可作更動、替代與修改。 The features of several embodiments of the present disclosure are briefly described above, so that those skilled in the art can understand the present disclosure more easily. Those skilled in the art should understand that this specification can be easily used as a basis for other structural or process changes or designs to achieve the same purpose and/or obtain the same advantages as the embodiments of the present disclosure. any Those with ordinary knowledge in the technical field can also understand that the structures equivalent to the above do not deviate from the spirit and protection scope of the disclosure, and can be changed, substituted and modified without departing from the spirit and scope of the disclosure. .

100:半導體結構 100: Semiconductor Structures

200:圖案化硬遮罩 200: Patterned Hard Mask

202:平行結構 202: Parallel structure

204:溝槽 204: Groove

410:圖案化半導體材料 410: Patterned semiconductor materials

412:半導體柱 412: Semiconductor pillar

414:溝槽 414: Groove

416:半導體基底 416: Semiconductor substrate

450:第二氣相清潔製程 450: The second vapor phase cleaning process

W2:寬度 W2: width

H2:高度 H2: height

X,Y,Z:軸 X, Y, Z: axes

Claims (10)

一種形成半導體結構的方法,包括:形成一圖案化硬遮罩在一半導體材料層上;藉由一蝕刻製程和該圖案化硬遮罩移除該半導體材料層的一部分以形成複數個半導體柱和複數個溝槽,其中該蝕刻製程的過程中產生一殘留物在該些溝槽內;以及移除該殘留物,包括:使用一第一氣相清潔製程以移除該殘留物的至少一部分,其中在使用該第一氣相清潔製程之後,該些半導體柱包括一氧化物;以及在使用該第一氣相清潔製程之後,使用一第二氣相清潔製程以移除該殘留物的一剩餘部分,其中該第一氣相清潔製程的條件不同於該第二氣相清潔製程的條件,並且該氧化物在該第二氣相清潔製程中還原。 A method of forming a semiconductor structure, comprising: forming a patterned hard mask on a semiconductor material layer; removing a portion of the semiconductor material layer by an etching process and the patterned hard mask to form a plurality of semiconductor pillars and a plurality of trenches, wherein a residue is generated in the trenches during the etching process; and removing the residue comprises: using a first vapor-phase cleaning process to remove at least a portion of the residue, wherein after using the first vapor-phase cleaning process, the semiconductor pillars include an oxide; and after using the first vapor-phase cleaning process, using a second vapor-phase cleaning process to remove a remainder of the residue part, wherein the conditions of the first gas-phase cleaning process are different from the conditions of the second gas-phase cleaning process, and the oxide is reduced in the second gas-phase cleaning process. 如請求項1所述之形成半導體結構的方法,其中該第一氣相清潔製程的一第一氣體組成包括一含氧氣體。 The method of forming a semiconductor structure as claimed in claim 1, wherein a first gas composition of the first gas-phase cleaning process includes an oxygen-containing gas. 如請求項2所述之形成半導體結構的方法,其中該第一氣體組成包括一含氟氣體,其中該含氟氣體包括CF4、SF6、NF3、或CHF3中的至少一者。 The method of forming a semiconductor structure as claimed in claim 2, wherein the first gas composition includes a fluorine-containing gas, wherein the fluorine-containing gas includes at least one of CF 4 , SF 6 , NF 3 , or CHF 3 . 如請求項3所述之形成半導體結構的方法, 其中該含氧氣體比該含氟氣體的成分比為約10比1。 The method for forming a semiconductor structure as claimed in claim 3, Wherein the composition ratio of the oxygen-containing gas to the fluorine-containing gas is about 10:1. 如請求項1所述之形成半導體結構的方法,其中該第二氣相清潔製程的一第二氣體組成包括一含氫氣體和一載流氣體。 The method of forming a semiconductor structure as claimed in claim 1, wherein a second gas composition of the second gas-phase cleaning process includes a hydrogen-containing gas and a carrier gas. 如請求項1所述之形成半導體結構的方法,其中在使用該第一氣相清潔製程之後,該些半導體柱包括:一第一部分,其中該殘留物的該剩餘部分覆蓋住該第一部分;以及一第二部分,未受該殘留物的該剩餘部分覆蓋並暴露於該些溝槽內而形成該氧化物。 The method of forming a semiconductor structure as claimed in claim 1, wherein after using the first vapor-phase cleaning process, the semiconductor pillars comprise: a first portion, wherein the remaining portion of the residue covers the first portion; and A second portion, uncovered by the remainder of the residue and exposed within the trenches to form the oxide. 如請求項1所述之形成半導體結構的方法,其中該第一氣相清潔製程的操作溫度為一第一溫度,該第二氣相清潔製程的操作溫度為一第二溫度,其中該第二溫度高於該第一溫度。 The method for forming a semiconductor structure as claimed in claim 1, wherein the operating temperature of the first gas-phase cleaning process is a first temperature, and the operating temperature of the second gas-phase cleaning process is a second temperature, wherein the second The temperature is higher than the first temperature. 如請求項7所述之形成半導體結構的方法,其中該第一溫度在約10℃和約120℃的範圍之內。 The method of forming a semiconductor structure as claimed in claim 7, wherein the first temperature is in the range of about 10°C and about 120°C. 如請求項1所述之形成半導體結構的方法,其中該第一氣相清潔製程的操作時間為一第一時間,該第 二氣相清潔製程的操作時間為一第二時間,其中該第二時間小於該第一時間。 The method for forming a semiconductor structure as claimed in claim 1, wherein the operating time of the first gas-phase cleaning process is a first time, and the second The operating time of the two gas-phase cleaning processes is a second time, wherein the second time is shorter than the first time. 如請求項1所述之形成半導體結構的方法,其中該第一氣相清潔製程或該第二氣相清潔製程為等向性蝕刻。The method for forming a semiconductor structure as claimed in claim 1, wherein the first vapor-phase cleaning process or the second vapor-phase cleaning process is isotropic etching.
TW110117330A 2021-05-13 2021-05-13 Method of forming semiconductor structure TWI779607B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110117330A TWI779607B (en) 2021-05-13 2021-05-13 Method of forming semiconductor structure
CN202110709302.6A CN115346867A (en) 2021-05-13 2021-06-25 Method for forming semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110117330A TWI779607B (en) 2021-05-13 2021-05-13 Method of forming semiconductor structure

Publications (2)

Publication Number Publication Date
TWI779607B true TWI779607B (en) 2022-10-01
TW202245052A TW202245052A (en) 2022-11-16

Family

ID=83947165

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110117330A TWI779607B (en) 2021-05-13 2021-05-13 Method of forming semiconductor structure

Country Status (2)

Country Link
CN (1) CN115346867A (en)
TW (1) TWI779607B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955177B1 (en) * 2001-12-07 2005-10-18 Novellus Systems, Inc. Methods for post polysilicon etch photoresist and polymer removal with minimal gate oxide loss
TW202032659A (en) * 2018-09-26 2020-09-01 日商東京威力科創股份有限公司 Etching method, method for removing etching residue, and storage medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955177B1 (en) * 2001-12-07 2005-10-18 Novellus Systems, Inc. Methods for post polysilicon etch photoresist and polymer removal with minimal gate oxide loss
TW202032659A (en) * 2018-09-26 2020-09-01 日商東京威力科創股份有限公司 Etching method, method for removing etching residue, and storage medium

Also Published As

Publication number Publication date
CN115346867A (en) 2022-11-15
TW202245052A (en) 2022-11-16

Similar Documents

Publication Publication Date Title
US9704974B2 (en) Process of manufacturing Fin-FET device
US8450214B2 (en) Methods of etching single crystal silicon
US7163869B2 (en) Shallow trench isolation structure with converted liner layer
US7390750B1 (en) Method of patterning elements within a semiconductor topography
US9318438B2 (en) Semiconductor structures comprising at least one through-substrate via filled with conductive materials
CN111524795B (en) Self-aligned double patterning method and semiconductor structure formed by same
CN107346759B (en) Semiconductor structure and manufacturing method thereof
CN111092080A (en) Semiconductor device with a plurality of semiconductor chips
US10483269B2 (en) EEPROM device
US20210098256A1 (en) Semiconductor structure and fabrication method thereof
CN107039272B (en) Method for forming fin type transistor
US9548369B2 (en) Memory device and method of manufacturing the same
TWI779607B (en) Method of forming semiconductor structure
TWI748496B (en) Semiconductor structure and method of forming the same
US12100598B2 (en) Methods for planarizing a substrate using a combined wet etch and chemical mechanical polishing (CMP) process
CN112117192B (en) Method for forming semiconductor structure
JP2013089801A (en) Method of manufacturing semiconductor device
CN117976607B (en) Method for preparing trench isolation of semiconductor device and semiconductor device
US12100599B2 (en) Wet etch process and method to provide uniform etching of material formed within features having different critical dimension (CD)
TWI833669B (en) Semiconductor device structure with composite hard mask and method for preparing the same
CN112185811B (en) Semiconductor structure and forming method thereof
TWI838068B (en) Semiconductor device methods of formation
US20240105455A1 (en) Methods to provide uniform wet etching of material within high aspect ratio features provided on a patterned substrate
US11569121B2 (en) Methods for forming semiconductor devices
US20230217650A1 (en) Semiconductor structure and manufacturing method thereof

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent