TWI779137B - 多個錨通道上的窄頻實體廣播通道設計 - Google Patents

多個錨通道上的窄頻實體廣播通道設計 Download PDF

Info

Publication number
TWI779137B
TWI779137B TW107143631A TW107143631A TWI779137B TW I779137 B TWI779137 B TW I779137B TW 107143631 A TW107143631 A TW 107143631A TW 107143631 A TW107143631 A TW 107143631A TW I779137 B TWI779137 B TW I779137B
Authority
TW
Taiwan
Prior art keywords
anchor
narrowband
channel
channels
anchor channels
Prior art date
Application number
TW107143631A
Other languages
English (en)
Other versions
TW201929465A (zh
Inventor
劉志豪
史瑞凡斯 葉倫馬里
天爾 庫多茲
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW201929465A publication Critical patent/TW201929465A/zh
Application granted granted Critical
Publication of TWI779137B publication Critical patent/TWI779137B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7136Arrangements for generation of hop frequencies, e.g. using a bank of frequency sources, using continuous tuning or using a transform
    • H04B2001/71362Arrangements for generation of hop frequencies, e.g. using a bank of frequency sources, using continuous tuning or using a transform using a bank of frequency sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

本文描述的技術和裝置經由同時傳輸(例如,在相鄰通道中)複數個錨通道來促進免授權頻譜內的窄頻通訊。例如,基地站可以同時傳輸每個具有180 kHz的至少三個錨通道,以便滿足500 kHz的最小頻寬要求。此外,本文描述的技術和裝置提供探索參考信號(DRS)結構以使得在不同的錨通道上重複及/或傳輸不同類型的DRS,此舉改良了頻率分集。此外,錨通道的同步信號可以用於指示錨通道的配置。因此,實現了NB-IoT-免授權(NB-IoT-u)頻譜中的同步,並且相比於使用單個錨通道的同步,提高了效率。

Description

多個錨通道上的窄頻實體廣播通道設計
大體而言,本案內容的各態樣係關於無線通訊,並且更具體地,本案內容的各態樣係關於用於(例如,在窄頻系統中)多個錨通道上的窄頻實體廣播通道(NPBCH)設計的技術和裝置。
廣泛地部署無線通訊系統以提供各種電信服務,例如,電話、視訊、資料、訊息傳遞和廣播。典型的無線通訊系統可以採用能夠經由共享可用的系統資源(例如,頻寬、傳輸功率等等)來支援與多個使用者的通訊的多工存取技術。此種多工存取技術的實例係包括分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、正交分頻多工存取(OFDMA)系統、單載波分頻多工存取(SC-FDMA)系統、分時同步分碼多工存取(TD-SCDMA)系統和長期進化(LTE)。LTE/改進的LTE是對由第三代合作夥伴計畫(3GPP)發佈的通用行動電信系統(UMTS)行動服務標準的增強集。
無線通訊網路可以包括能夠支援針對多個使用者設備(UE)的通訊的多個基地站(BS)。UE可以經由下行鏈路和上行鏈路與BS進行通訊。下行鏈路(或前向鏈路)代表從BS到UE的通訊鏈路,而上行鏈路(或反向鏈路)代表從UE到BS的通訊鏈路。如本文將更加詳細描述的,BS可以被稱為節點B、gNB、存取點(AP)、無線電頭端、傳輸接收點(TRP)、5G BS、5G節點B等等。
已經在各種電信標準中採用了以上多工存取技術以提供共用協定,該共用協定使得不同的無線通訊設備能夠在城市、國家、地區,以及甚至全球層面上進行通訊。5G(其亦可以被稱為新無線電(NR))是對由第三代合作夥伴計畫(3GPP)發佈的LTE行動服務標準的增強集。5G被設計為經由提高頻譜效率、降低成本、改良服務、利用新頻譜以及在下行鏈路(DL)上使用具有循環字首(CP)的正交分頻多工(OFDM)(CP-OFDM)、在上行鏈路(UL)上使用CP-OFDM及/或SC-FDM(例如,亦被稱為離散傅裡葉變換展頻OFDM(DFT-s-OFDM))來更好地與其他開放標準整合,從而更好地支援行動寬頻網際網路存取,以及支援波束成形、多輸入多輸出(MIMO)天線技術和載波聚合。然而,隨著對行動寬頻存取的需求持續增長,存在對LTE和5G技術進一步改良的需求。較佳地,該等改良應當適用於其他多工存取技術以及採用該等技術的電信標準。
與用於LTE通訊的頻率頻寬相比,窄頻通訊涉及利用有限的頻率頻寬來進行通訊。窄頻通訊的一個實例是窄頻(NB)IoT(NB-IoT)通訊,其可以限於系統頻寬的單個資源區塊(RB),例如180 kHz。窄頻通訊的另一實例是增強型機器類型通訊(eMTC),其可以限於系統頻寬的六個RB,例如1.08 MHz。NB-IoT通訊及/或eMTC可以降低設備複雜度,實現多年電池壽命,以及提供更深的覆蓋以到達具有挑戰性的地點(例如建築物內部深處)。
與用於LTE通訊的頻率頻寬相比,窄頻通訊涉及利用有限的頻率頻寬來進行通訊。窄頻通訊的一個實例是NB-IoT通訊,其可以限於系統頻寬的單個RB(例如,180 kHz)。窄頻通訊的另一實例是eMTC,其可以限於系統頻寬的六個RB(例如,1.08 MHz)。NB-IoT通訊及/或eMTC可以降低設備複雜度,實現多年電池壽命,以及提供更深的覆蓋以到達具有挑戰性的地點(例如建築物內部深處)。
在某些eMTC配置中,用於窄頻通訊的通道頻寬可以是具有不同重複水平的六個RB,以支援低複雜度設備和高效率功率放大器(PA)。在某些NB-IoT配置中,用於窄頻通訊的通道頻寬可以限於單個音調(例如,3.75 kHz),以支援低複雜度設備和高效率PA。
然而,由於針對使用免授權頻譜(例如,5 GHz免授權頻譜、低於2.4 GHz免授權頻譜或低於GHz的免授權頻譜等)的窄頻通訊(例如,eMTC及/或NB-IoT)的某些功率譜密度(PSD)限制(例如,傳輸功率限制)和頻寬要求,也許不可能支援六RB(例如,1.08 MHz)的通訊頻寬及/或單音調(例如,3.75 kHz)的通訊頻寬。
例如,在美國用於數位調制(例如,差分時間信號傳遞(DTS)調制)的PSD可以被限制為最大8 dBm/3 kHz。因此,UE可能無法在免授權頻譜中使用全功率來傳輸單音調傳輸,是因為最大PSD被限制為小於單音調(例如,3.75 kHz)的頻寬(例如,3 kHz)。此外,在美國用於使用免授權頻譜的窄頻通訊的系統頻寬可以被限制為例如500 kHz。換言之,當使用一些數位調制模式(例如,DTS)時,基地站可能必須滿足最小頻寬要求(例如,500 kHz)和PSD限制(例如,8 dBm/3 kHz),以便被允許在美國(以及某些其他國家)運營。
基地站可以傳輸用於該基地站所覆蓋的UE的同步的探索參考信號(DRS)。如本文描述的探索參考信號可以包括例如窄頻主要同步信號、窄頻次要同步信號、窄頻實體廣播通道(例如,其可以包括主資訊區塊)、系統資訊區塊、同步信號區塊等等。可以在可以被稱為錨通道的通道中傳輸探索參考信號。錨通道的頻率對於基地站所覆蓋的UE而言可以是已知的。在傳統方法中,可以在單個通道或RB上週期性地(例如,定期地)傳輸DRS。然而,基地站可能需要滿足關於探索參考信號的最小頻寬要求和PSD限制。
本文描述的技術和裝置經由同時傳輸(例如,在相鄰通道中)複數個錨通道來促進免授權頻譜內的窄頻通訊。例如,基地站可以同時傳輸每個具有180 kHz的至少三個錨通道,以便滿足500 kHz的最小頻寬要求。此外,本文描述的技術和裝置提供DRS結構以使得在不同的錨通道上重複及/或傳輸不同類型的DRS,此舉改良了頻率分集。在一些態樣中,UE可以至少部分地基於在第一錨通道上接收的同步信號(例如,在第一錨通道上接收的同步信號的循環移位)來決定至少三個錨通道的配置,或者BS可以指示該至少三個錨通道的配置。因此,在遵守PSD限制的同時能夠實現NB-IoT-免授權(NB-IoT-u)頻譜中的同步,並且相比於使用單個錨通道的同步,提高了效率。
在本案內容的各態樣中,提供了一種方法、使用者設備(UE)、基地站、裝置和電腦程式產品。
在一些態樣中,該方法可以由基地站來執行。該方法可以包括以下步驟:決定複數個錨通道,其中該複數個錨通道中的第一錨通道包括至少一個同步信號,並且其中該複數個錨通道中的至少兩個錨通道包括廣播通道及/或資訊區塊;向至少一個UE同時傳輸該複數個錨通道;及至少部分地基於該複數個錨通道來與該至少一個UE進行通訊。
在一些態樣中,基地站可以包括記憶體以及操作地耦合到該記憶體的一或多個處理器。該記憶體和該一或多個處理器可以被配置為進行以下操作:決定複數個錨通道,其中該複數個錨通道中的第一錨通道包括至少一個同步信號,並且其中該複數個錨通道中的至少兩個錨通道包括廣播通道及/或資訊區塊;向至少一個UE同時傳輸該複數個錨通道;及至少部分地基於該複數個錨通道來與該至少一個UE進行通訊。
在一些態樣中,該裝置可以包括:用於決定複數個錨通道的構件,其中該複數個錨通道中的第一錨通道包括至少一個同步信號,並且其中該複數個錨通道中的至少兩個錨通道包括廣播通道及/或資訊區塊;用於向至少一個UE同時傳輸該複數個錨通道的構件;及用於至少部分地基於該複數個錨通道來與該至少一個UE進行通訊的構件。
在一些態樣中,該電腦程式產品可以包括一種儲存一或多個指令的非暫時性電腦可讀取媒體。該一或多個指令在由基地站的一或多個處理器執行時,可以使得該一或多個處理器進行以下操作:決定複數個錨通道,其中該複數個錨通道中的第一錨通道包括至少一個同步信號,並且其中該複數個錨通道中的至少兩個錨通道包括廣播通道及/或資訊區塊;向至少一個UE同時傳輸該複數個錨通道;及至少部分地基於該複數個錨通道來與該至少一個UE進行通訊。
在一些態樣中,該方法可以由UE來執行。該方法可以包括以下步驟:在第一錨通道上接收至少一個同步信號,其中該第一錨通道是被同時傳輸的複數個錨通道中的一個錨通道;在該第一錨通道和該複數個錨通道中的至少一個其他錨通道上接收廣播通道及/或資訊區塊;及至少部分地基於該同步信號來執行同步操作。
在一些態樣中,該UE可以包括記憶體以及操作地耦合到該記憶體的一或多個處理器。該記憶體和該一或多個處理器可以被配置為進行以下操作:在第一錨通道上接收至少一個同步信號,其中該第一錨通道是被同時傳輸的複數個錨通道中的一個錨通道;在該第一錨通道和該複數個錨通道中的至少一個其他錨通道上接收廣播通道及/或資訊區塊;及至少部分地基於該同步信號來執行同步操作。
在一些態樣中,該裝置可以包括:用於在第一錨通道上接收至少一個同步信號的構件,其中該第一錨通道是被同時傳輸的複數個錨通道中的一個錨通道;用於在該第一錨通道和該複數個錨通道中的至少一個其他錨通道上接收廣播通道及/或資訊區塊的構件;及用於至少部分地基於該同步信號來執行同步操作的構件。
在一些態樣中,該電腦程式產品可以包括一種儲存一或多個指令的非暫時性電腦可讀取媒體。該一或多個指令在由UE的一或多個處理器執行時,可以使得該一或多個處理器進行以下操作:在第一錨通道上接收至少一個同步信號,其中該第一錨通道是被同時傳輸的複數個錨通道中的一個錨通道;在該第一錨通道和該複數個錨通道中的至少一個其他錨通道上接收廣播通道及/或資訊區塊;及至少部分地基於該同步信號來執行同步操作。
大體而言,各態樣包括如本文中參照附圖和說明書充分描述的並且如經由附圖和說明書說明的方法、裝置、系統、電腦程式產品、非暫時性電腦可讀取媒體、使用者設備、基地站、無線通訊設備和處理系統。
前文已經相當寬泛地概述了根據本案內容的實例的特徵和技術優點,以便可以更好地理解以下的詳細描述。下文將描述額外的特徵和優點。所揭示的概念和特定實例可以容易地用作用於修改或設計用於實現本案內容的相同目的的其他結構的基礎。此種等效構造並不脫離所附的請求項的範疇。當結合附圖考慮時,根據下文的描述,將更好地理解本文揭示的概念的特性(其組織和操作方法二者)以及相關聯的優點。附圖之每一者附圖是出於說明和描述的目的而提供的,而並不作為對請求項的限制的定義。
下文結合附圖闡述的詳細描述意欲作為各種配置的描述,而並非意欲表示可以在其中實施本文所描述的概念的配置。為了提供對各個概念的透徹理解,詳細描述包括特定細節。然而,對於熟習此項技術者將顯而易見的是,可以在沒有該等特定細節的情況下實施該等概念。在一些例子中,以方塊圖形式圖示公知的結構和元件,以便避免模糊此種概念。
現在將參照各種裝置和方法來提供電信系統的若干態樣。將經由各個方塊、模組、元件、電路、步驟、過程、演算法等等(被統稱為「元素」),在以下的詳細描述中描述並且在附圖中圖示該等裝置和方法。該等元素可以使用電子硬體、電腦軟體或其任意組合來實現。至於該等元素是實現為硬體還是軟體,取決於特定的應用和對整體系統所施加的設計約束。
舉例而言,可以利用包括一或多個處理器的「處理系統」來實現元素,或元素的任何部分,或元素的任意組合。處理器的實例係包括:微處理器、微控制器、數位信號處理器(DSP)、現場可程式設計閘陣列(FPGA)、可程式設計邏輯設備(PLD)、狀態機、閘控邏輯、個別硬體電路以及被配置為執行貫穿本案內容描述的各種功能的其他適當的硬體。處理系統中的一或多個處理器可以執行軟體。無論被稱為軟體、韌體、中間軟體、微代碼、硬體描述語言還是其他名稱,軟體皆應當被廣義地解釋為意指指令、指令集、代碼、程式碼片段、程式碼、程式、副程式、軟體模組、應用程式、軟體應用程式、套裝軟體、常式、子常式、物件、可執行檔案、執行的執行緒、程序、函數等等。
相應地,在一或多個示例性實施例中,可以用硬體、軟體、韌體或其任意組合來實現所描述的功能。若用軟體來實現,該等功能可以作為一或多個指令或代碼儲存在電腦可讀取媒體上或編碼在電腦可讀取媒體上。電腦可讀取媒體包括電腦儲存媒體。儲存媒體可以是能夠由電腦存取的任何可用媒體。經由舉例而非限制的方式,此種電腦可讀取媒體可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電子可抹除可程式設計ROM(EEPROM)、壓縮光碟ROM(CD-ROM)或其他光碟儲存、磁碟儲存或其他磁儲存設備、上述類型的電腦可讀取媒體的組合,或者能夠用於儲存能夠由電腦存取的具有指令或資料結構形式的電腦可執行代碼的任何其他媒體。
應注意的是,儘管本文可能使用通常與3G及/或4G無線技術相關聯的術語來描述各態樣,但是本案內容的各態樣可以應用於基於其他代的通訊系統(例如,5G及以後的技術(包括5G技術))。
圖1是圖示可以在其中實施本案內容的各態樣的網路100的圖。網路100可以是LTE網路或某種其他無線網路(例如,5G網路)。無線網路100可以包括多個BS 110(被示為BS 110a、BS 110b、BS 110c和BS 110d)和其他網路實體。BS是與使用者設備(UE)進行通訊的實體並且亦可以被稱為基地站、5G BS、節點B、gNB、5G NB、存取點、傳輸接收點(TRP)等等。每個BS可以提供針對特定地理區域的通訊覆蓋。在3GPP中,術語「細胞」可以代表BS的覆蓋區域及/或為該覆蓋區域服務的BS子系統,此情形取決於使用該術語的上下文。
BS可以提供針對巨集細胞、微微細胞、毫微微細胞及/或另一種類型的細胞的通訊覆蓋。巨集細胞可以覆蓋相對大的地理區域(例如,半徑為若干公里),並且可以允許由具有服務訂閱的UE進行的不受限制的存取。微微細胞可以覆蓋相對小的地理區域,並且可以允許由具有服務訂閱的UE進行的不受限制的存取。毫微微細胞可以覆蓋相對小的地理區域(例如,住宅),並且可以允許由與該毫微微細胞具有關聯的UE(例如,封閉用戶群組(CSG)中的UE)進行的受限制的存取。用於巨集細胞的BS可以被稱為巨集BS。用於微微細胞的BS可以被稱為微微BS。用於毫微微細胞的BS可以被稱為毫微微BS或家庭BS。在圖1中圖示的實例中,BS 110a可以是用於巨集細胞102a的巨集BS,BS 110b可以是用於微微細胞102b的微微BS,以及BS 110c可以是用於毫微微細胞102c的毫微微BS。BS可以支援一或多個(例如,三個)細胞。術語「eNB」、「基地站」、「5G BS」、「gNB」、「TRP」、「AP」、「節點B」、「5G NB」和「細胞」在本文中可以互換地使用。BS可以傳輸用於UE的探索和同步的信號,例如,探索參考信號、同步信號等等。
在一些實例中,細胞可能未必是靜止的,並且細胞的地理區域可以根據行動BS的位置進行移動。在一些實例中,BS可以經由各種類型的回載介面(例如,直接實體連接、虛擬網路,及/或使用任何適當的傳輸網路的類似介面)來彼此互連及/或與存取網路100中的一或多個其他BS或網路節點(未圖示)互連。
無線網路100亦可以包括中繼站。中繼站是從上游站(例如,BS或UE)接收資料傳輸並且將資料傳輸發送給下游站(例如,UE或BS)的實體。中繼站亦可以是能夠為其他UE中繼傳輸的UE。在圖1中圖示的實例中,中繼站110d可以與巨集BS 110a和UE 120d進行通訊,以便促進BS 110a與UE 120d之間的通訊。中繼站亦可以被稱為中繼BS、中繼基地站、中繼器等等。
無線網路100可以是包括不同類型的BS(例如,巨集BS、微微BS、毫微微BS、中繼BS等等)的異質網路。該等不同類型的BS可以具有不同的傳輸功率位準、不同的覆蓋區域以及對無線網路100中的干擾的不同影響。例如,巨集BS可以具有高傳輸功率位準(例如,5到40瓦特),而微微BS、毫微微BS和中繼BS可以具有較低的傳輸功率位準(例如,0.1到2瓦特)。
網路控制器130可以耦合到一組BS,並且可以提供針對該等BS的協調和控制。網路控制器130可以經由回載與BS進行通訊。BS亦可以例如經由無線或有線回載直接地或間接地與彼此進行通訊。
UE 120(例如,120a、120b、120c)可以散佈於整個無線網路100中,並且每個UE可以是靜止的或行動的。UE亦可以被稱為存取終端、終端、行動站、用戶單元、站等。UE可以是蜂巢式電話(例如,智慧型電話)、個人數位助理(PDA)、無線數據機、無線通訊設備、手持設備、膝上型電腦、無線電話、無線區域迴路(WLL)站、平板設備、相機、遊戲設備、小筆電、智慧型電腦、超級本、醫療設備或裝置、生物計量感測器/設備、可穿戴設備(智慧手錶、智慧服裝、智慧眼鏡、智慧腕帶、智慧珠寶(例如,智慧指環、智慧手鏈))、娛樂設備(例如,音樂或視訊設備或衛星無線電單元)、車輛元件或感測器、智慧型儀器表/感測器、工業製造設備、全球定位系統設備或者被配置為經由無線或有線媒體進行通訊的任何其他適當的設備。
一些UE可以被認為是機器類型通訊(MTC)或者進化型或增強型機器類型通訊(eMTC)UE。MTC和eMTC UE包括例如機器人、無人機、遠端設備(例如,感測器、儀錶、監視器、位置標籤等),上述各者可以與基地站、另一設備(例如,遠端設備)或某個其他實體進行通訊。無線節點可以例如經由有線或無線通訊鏈路來提供針對網路(例如,諸如網際網路或蜂巢網路之類的廣域網路)的連接或到網路的連接。一些UE可以被認為是物聯網路(IoT)設備,及/或可以被實現為可以在免授權頻譜中操作的NB-IoT(窄頻物聯網路)設備或NB-IoT-U(免授權)設備,如本文其他地方更加詳細地描述的。一些UE可以被認為是客戶駐地設備(CPE)。UE 120可以被包括在容納UE 120的元件(例如,處理器元件、記憶體元件等等)的殼體內部。
通常,可以在給定的地理區域中部署任意數量的無線網路。每個無線網路可以支援特定的RAT並且可以在一或多個頻率上操作。RAT亦可以被稱為無線電技術、空中介面等等。頻率亦可以被稱為載波、頻率通道等等。每個頻率可以在給定的地理區域中支援單個RAT,以便避免不同RAT的無線網路之間的干擾。在一些情況下,可以部署5G RAT網路。
在一些實例中,可以排程對空中介面的存取,其中排程實體(例如,基地站)在排程實體的服務區域或細胞內的一些或所有設備和裝置之間分配用於通訊的資源。基地站不是可以用作排程實體的僅有實體。亦即,在一些實例中,UE可以用作排程實體,其排程用於一或多個從屬實體(例如,一或多個其他UE)的資源。在該實例中,UE正在用作排程實體,而其他UE利用由該UE排程的資源進行無線通訊。UE可以用作同級間(P2P)網路中及/或網狀網路中的排程實體。在網狀網路實例中,除了與排程實體進行通訊之外,UE亦可以可選地彼此直接進行通訊。
因此,在具有對時頻資源的排程存取且具有蜂巢配置、P2P配置和網狀配置的無線通訊網路中,排程實體和一或多個從屬實體可以利用所排程的資源來進行通訊。
如上所指出的,圖1僅是作為實例來提供的。其他實例是可能的並且可以不同於關於圖1所描述的實例。
圖2圖示BS 110和UE 120(BS 110和UE 120可以是圖1中的基地站之一以及UE之一)的設計的方塊圖200。BS 110可以被配備有T個天線234a至234t,以及UE 120可以被配備有R個天線252a至252r,其中一般而言,T≥1且R≥1。
在BS 110處,傳輸處理器220可以從資料來源212接收用於一或多個UE的資料,至少部分地基於從每個UE接收的通道品質指示符(CQI)來選擇用於該UE的一或多個調制和編碼方案(MCS),至少部分地基於被選擇用於每個UE的MCS來處理(例如,編碼和調制)針對該UE的資料,以及為所有UE提供資料符號。傳輸處理器220亦可以處理系統資訊(例如,針對半靜態資源劃分資訊(SRPI)等等)和控制資訊(例如,CQI請求、容許、上層信號傳遞等等),以及提供管理負擔符號和控制符號。傳輸處理器220亦可以產生用於參考信號(例如,特定於細胞的參考信號(CRS))和同步信號(例如,窄頻主要同步信號(NPSS)以及窄頻次要同步信號(NSSS))的參考符號。傳輸(TX)多輸入多輸出(MIMO)處理器230可以對資料符號、控制符號、管理負擔符號及/或參考符號執行空間處理(例如,預編碼)(若適用的話),並且可以向T個調制器(MOD)232a至232t提供T個輸出符號串流。每個調制器232可以(例如,針對OFDM等等)處理相應的輸出符號串流以獲得輸出取樣串流。每個調制器232可以進一步處理(例如,轉換到類比、放大、濾波以及升頻轉換)輸出取樣串流以獲得下行鏈路信號。可以分別經由T個天線234a至234t來傳輸來自調制器232a至232t的T個下行鏈路信號。根據下文更加詳細描述的各個態樣,可以產生具有位置編碼的同步信號以傳送額外的資訊。
在UE 120處,天線252a至252r可以從BS 110及/或其他基地站接收下行鏈路信號,並且可以分別向解調器(DEMOD)254a至254r提供接收的信號。每個解調器254可以調節(例如,濾波、放大、降頻轉換以及數位化)接收的信號以獲得輸入取樣。每個解調器254可以(例如,針對OFDM等等)進一步處理輸入取樣以獲得接收符號。MIMO偵測器256可以從所有R個解調器254a至254r獲得接收符號,對接收符號執行MIMO偵測(若適用的話),以及提供偵測到的符號。接收(RX)處理器258可以處理(例如,解調和解碼)所偵測到的符號,向資料槽260提供針對UE 120的經解碼的資料,以及向控制器/處理器280提供經解碼的控制資訊和系統資訊(例如,來自諸如窄頻主資訊區塊之類的主資訊區塊、系統資訊區塊、窄頻實體廣播通道等等)。通道處理器可以決定參考信號接收功率(RSRP)、接收信號強度指示符(RSSI)、參考信號接收品質(RSRQ)、通道品質指示符(CQI)等等。
在上行鏈路上,在UE 120處,傳輸處理器264可以接收並且處理來自資料來源262的資料和來自控制器/處理器280的控制資訊(例如,用於包括RSRP、RSSI、RSRQ、CQI等等的報告)。傳輸處理器264亦可以產生用於一或多個參考信號的參考符號。來自傳輸處理器264的符號可以由TX MIMO處理器266進行預編碼(若適用的話),由調制器254a至254r(例如,針對DFT-s-OFDM、CP-OFDM等等)進一步處理,以及被傳輸給BS 110。在BS 110處,來自UE 120和其他UE的上行鏈路信號可以由天線234接收,由解調器232處理,由MIMO偵測器236偵測(若適用的話),以及由接收處理器238進一步處理,以獲得經解碼的由UE 120發送的資料和控制資訊。接收處理器238可以向資料槽239提供經解碼的資料,並且向控制器/處理器240提供經解碼的控制資訊。BS 110可以包括通訊單元244並且經由通訊單元244來與網路控制器130進行通訊。網路控制器130可以包括通訊單元294、控制器/處理器290和記憶體292。
BS 110的控制器/處理器240、UE 120的控制器/處理器280及/或圖2的任何其他元件可以執行與具有多個錨通道的窄頻系統中的探索參考信號傳遞相關聯的一或多個技術,如本文其他地方更加詳細描述的。例如,BS 110的控制器/處理器240、UE 120的控制器/處理器280及/或圖2的任何其他元件可以執行或導引例如圖7的方法700、圖10的方法1000及/或如本文描述的其他過程的操作。記憶體242和282可以分別儲存用於BS 110和UE 120的資料和程式碼。排程器246可以排程UE在下行鏈路及/或上行鏈路上進行資料傳輸。
如上所指出的,圖2僅是作為實例來提供的。其他實例是可能的並且可以不同於關於圖2所描述的實例。
圖3A是圖示針對LTE載波內部的帶內部署的NB訊框結構(偶數無線電訊框)的實例的圖300。圖3B是圖示針對LTE載波內部的帶內部署的NB訊框結構(奇數無線電訊框)的實例的圖325。圖3C是圖示針對LTE載波內部的保護頻帶/獨立部署的NB訊框結構(偶數無線電訊框)的實例的圖350。圖3D是圖示針對LTE載波內部的保護頻帶/獨立部署的NB訊框結構(奇數無線電訊框)的實例的圖375。其他無線通訊技術可以具有不同的訊框結構及/或不同的通道。無線電訊框(10 ms)可以被劃分成10個大小相等的子訊框(例如,子訊框0-子訊框9)。每個子訊框可以包括兩個連續的時槽(例如,時槽0和時槽1)。可以使用資源柵格來表示兩個時槽,每個時槽包括一或多個時間併發的180 kHz的RB(亦被稱為實體RB(PRB))。資源柵格被劃分成多個資源元素(RE)。針對普通循環字首,RB可以包含頻域中的12個連續的次載波和時域中的7個連續的符號(對於DL,為正交分頻多工(OFDM)符號;對於UL,為SC-FDMA符號),總共為84個RE。針對擴展循環字首,RB可以包含頻域中的12個連續的次載波和時域中的6個連續的符號,總共為72個RE。每個RE攜帶的位元數量取決於調制方案。NB-IoT的帶內部署可以利用LTE載波內的RB。NB-IoT的保護頻帶部署可以利用LTE載波的保護頻帶內的未被使用的RB。NB-IoT的獨立部署可以利用行動通訊全球系統(GSM)載波內的RB。
如在圖3A-圖3D中所示,子訊框之每一者子訊框中的RE中的一些RE攜帶可以用於廣播傳輸或專用DL傳輸的NB參考信號(NRS),而不考慮是否實際地傳輸了資料。根據傳輸方案,可以在一個天線埠上或在兩個天線埠(例如,天線埠0和天線埠1)上傳輸NRS。NRS的值可以類似於LTE中的特定於細胞的參考信號(CRS)。NRS可以指示NB細胞標識符(NCellID),而LTE CRS可以指示實體細胞標識符(PCI)。對於帶內部署,亦可以在沒有被用於多播廣播單頻網路(MBSFN)的子訊框中傳輸LTE CRS,如在圖3A和圖3B中所示。儘管NRS和LTE CRS的結構可能不重疊,但是可以出於速率匹配和RE映射的目的來將CRS考慮在內。DL傳輸可以不使用被分配用於NRS及/或LTE CRS的RE。
針對初始同步並且為了決定NCellID,可以在偶數無線電訊框和奇數無線電訊框的子訊框5中傳輸窄頻主要同步信號(NPSS),並且可以在偶數無線電訊框的子訊框9中傳輸窄頻次要同步信號(NSSS)。使用帶內部署,子訊框5和子訊框9之每一者子訊框中的前三個OFDM符號可以攜帶LTE實體下行鏈路控制通道(PDCCH),並且因此,子訊框5和9中的前三個OFDM符號可以不攜帶NPSS和NSSS,如在圖3A和圖3B中所示。在帶內部署中,NPSS和NSSS可以被LTE CRS穿孔。使用保護頻帶部署及/或獨立部署,可以不使用子訊框5和子訊框9之每一者子訊框中的前三個OFDM符號,並且因此,子訊框5和9中的前三個OFDM符號可以不攜帶NPSS和NSSS,如在圖3C和圖3D中所示。
窄頻實體廣播通道(NPBCH)可以攜帶NB主資訊區塊(NB-MIB)。在實體層基頻處理之後,產生的NB-MIB可以被分離成八個區塊。可以在八個連續無線電訊框的集合之每一者無線電訊框的子訊框0中傳輸第一區塊。可以在後續的八個連續無線電訊框的集合之每一者無線電訊框的子訊框0中傳輸第二區塊。可以繼續NB-MIB區塊傳輸的過程,直到傳輸了整個NB-MIB為止。當使用NB-IoT的帶內部署時,經由使用子訊框0來進行所有NB-MIB區塊傳輸,可以避免NPBCH和潛在的LTE MBSFN傳輸之間的衝突。如在圖3A和圖3B中所示,針對帶內部署,可以在NRS和LTE CRS周圍映射NPBCH符號。如在圖3C和圖3D中所示,NPBCH可以佔用子訊框0的全部,除了未被用於保護頻帶部署及/或獨立部署的前三個符號之外。
控制通道和共享通道的原理亦適用於NB-IoT,其定義NB實體下行鏈路控制通道(NPDCCH)和NB實體下行鏈路共享通道(NPDSCH)。不是所有子訊框皆可以用於專用DL通道的傳輸。在無線電資源控制(RRC)信號傳遞中,可以向UE發信號通知指示用於NPDCCH及/或NPDSCH的有效子訊框的位元映像。當子訊框沒有被指示成有效的時,可以推遲NPDCCH及/或NPDSCH,直到下一有效子訊框為止。NPDCCH可以指示何者UE具有位於NPDSCH中的資料,在何處找到資料,以及資料被重複的頻繁程度。指示被分配給UE以用於UL資料傳輸的RE的UL容許亦可以位於NPDCCH中。NPDCCH亦可以攜帶傳呼及/或系統資訊更新。可以在NRS周圍映射NPDCCH符號和NPDSCH符號,並且針對NB-IoT的帶內部署,亦可以在LTE CRS周圍映射NPDCCH符號和NPDSCH符號。
如上所指出的,圖3A-圖3D是作為實例來提供的。其他實例是可能的並且可以不同於結合圖3A-圖3D所描述的實例。
圖4A是圖示用於單個錨通道的NB探索參考信號結構的實例400的圖。結合圖4A描述的傳輸可以由基地站(例如,BS 110等)來執行。如圖4中所示,可以以規律的間隔來傳輸NPBCH MIB區塊(下文被稱為探索參考信號(DRS))。例如,可以以8個SFN(例如,80 ms)的間隔來傳輸DRS。在一些態樣中,NPBCH MIB區塊的MIB有效負荷的4個最高有效位元(MSB)可以指示同步循環。例如,並且從SFN=0開始,從SFN # 64⋅m 到SFN # 64⋅m +63(例如,整個640 ms段),所有8個MIB區塊的MIB有效負荷可以是相同的。因此,同步UE可以在同步期間標識640 ms段。在一些態樣中,640 ms段可以在本文中被稱為資訊區塊循環。
在一些態樣中,如上文結合圖3A-圖3D所描述的,NPBCH MIB區塊可以包括不同的資訊。例如,每個MIB區塊可以包括標識640 ms段中的與MIB區塊相關聯的部分的特定資訊。此外,每個NPBCH MIB區塊可以是可自解碼的。因此,UE 120可以至少部分地基於解擾或接收單個NPBCH MIB區塊來標識當前NPBCH MIB區塊和640 ms段的當前部分。
然而,在某些系統(例如,免授權頻譜系統)中,規定可能要求最小頻寬大於單個錨通道的頻寬。因此,提供使用大於最小頻寬的頻寬的探索參考信號結構可能是有益的。下文描述此種探索參考信號結構。
如上所指出的,圖4A是作為實例來提供的。其他實例是可能的,並且可以與結合圖4A描述的實例不同。
圖4B圖示根據本案內容的某些態樣的可以用於在基地站與UE之間在免授權頻譜中的窄頻通訊的躍頻模式401。圖4B中圖示的躍頻模式401可以用於在DTS模式下操作的基地站(例如,基地站110、裝置802/802')與在躍頻模式下操作的UE(例如,UE 120、裝置1102/1102')之間的窄頻通訊。因為基地站正在免授權頻譜中以DTS模式操作,所以從基地站發送的DL資料可能需要以排程靈活性為代價而佔用至少最小頻寬(例如,500 kHz),並且由於與DTS模式相關聯的PSD限制(例如,8 dBm/3 kHz),DL資料可以以至少3RB來傳輸,以便以30 dBm的最大TX功率進行傳輸。因為UE正在免授權頻譜中以躍頻模式操作,所以UE可以在Nx (例如,x =50)個躍頻中向基地站發送UL資料,該等躍頻分別具有至少最小頻寬(例如,180 kHz、200 kHz等)。
在DTS模式下操作的基地站可以經由在不同的頻率通道(例如,錨通道404a、404b、404c和非錨通道406a、406b、406c、406d、406e、406f、406g)之間進行切換來利用免授權頻譜的頻率分集,從而使用圖4B中圖示的躍頻模式401來監測、接收及/或傳輸信號。
在每個躍變訊框430a、430b、430c的開始處,基地站可以在複數個錨通道404a、404b、404c之每一者錨通道中向至少一個UE同時傳輸探索參考信號(DRS)(例如,NPSS、NSSS、NPBCH和SIB-BR等)。UE可以使用NPSS和NSSS進行初始同步、細胞獲取、時序估計及/或頻率估計。
因為每個錨通道404a、404b、404c的頻寬可以受限於UE的接收器的頻寬能力(例如,1個RB、180 kHz、200 kHz等),所以可以滿足與DTS模式相關聯的頻寬要求(例如,180 kHz)。非錨通道406a、406b、406c、406d、406e、406f、406g之每一者非錨通道可以用於傳送DL資料和UL資料。UL資料可以由在躍頻模式下操作的UE來傳送。
錨通道404a、404b、404c可以分別用於攜帶向UE指示躍頻模式401的資訊。例如,該資訊可以指示:躍變訊框430a、430b、430c的持續時間(例如,160 ms、320 ms等);每個躍變訊框430a、430b、430c中的DRS傳輸的持續時間(例如,2個無線電訊框、4個無線電訊框等);每個躍變訊框的M 個非錨躍變通道(例如,在圖4B中,M =3);非錨躍變通道上的持續時間(例如,14個無線電訊框、28個無線電訊框等);DL資料傳輸的持續時間(例如,7個無線電訊框、14個無線電訊框等);UL資料傳輸的持續時間(例如,7個無線電訊框、14個無線電訊框等);每個躍變訊框430a、430b、430c內的M 個非錨通道之每一者非錨通道之間的通道偏移;與位於相鄰躍變訊框中的M 個非錨通道相關聯的通道偏移;將M 個非錨通道分類為M 個載波;與M 個載波之每一者載波中的非錨通道相關聯的固定偏移;等等。除了寬頻通道內的窄頻通道的最大數量(例如,100個窄頻通道),該資訊亦可以指示基地站和UE之間的通訊可以在最大數量的窄頻通道的子集上發生(例如,100個窄頻通道中的50個窄頻通道)。
在圖4B所示的實例中,躍頻模式401可以包括複數個躍變訊框430a、430b、430c,該等躍變訊框分別包括複數個錨通道(例如,三個錨通道)和複數個非錨通道(例如,N個非錨通道)。第一躍變訊框430a可以包括錨通道404a、404b、404c、第一非錨通道406a、第二非錨通道406b和第三非錨通道406c。第二躍變訊框430b可以包括錨通道404a、404b、404c、第二非錨通道406b、第三非錨通道406c和第四非錨通道406d。第三躍變訊框430c可以包括錨通道404a、404b、404c、第(N –2)非錨通道404e、第(N –1)非錨通道404f和第N 非錨通道404g。在某些配置中,位元於特定躍變訊框中的非錨躍變通道可以是寬頻內的連續非錨躍變通道。在某些其他配置中,位元於特定躍變訊框中的非錨躍變通道可以是寬頻內的非連續非錨躍變通道。在某些其他配置中,錨通道404a、404b、404c可以是寬頻內的連續通道。在某些其他配置中,錨通道404a、404b、404c可以是寬頻內的非連續通道。
在某些配置中,跨越多個躍變訊框430a、430b、430c的N 個非錨通道中每個非錨通道可以被分類到M 個載波中。M 個載波之每一者載波(例如,載波0(CA0)、載波1(CA1)和載波2(CA2),其中M =3)可以佔用跨越複數個躍變訊框430a、430b、430c的非錨通道集合。在圖4B所示的實例中,CA0可以佔用第一躍變訊框430a中的第一非錨通道406a、第二躍變訊框430b中的第二非錨通道406b,以及第三躍變訊框430c中的第(N –2)非錨通道406e。同樣在圖4B中所示的實例中可見,CA1可以佔用第一躍變訊框430a中的第二非錨通道406b、第二躍變訊框430b中的第三非錨通道406c,以及第三躍變訊框430c中的第(N –1)非錨通道406f。同樣在圖4B中所示的實例可見,CA2可以佔用第一躍變訊框430a中的第三非錨通道406c、第二躍變訊框430b中的第四非錨通道406d,以及第三躍變訊框430c中的第N 非錨通道406g。
舉例而言,當N =8時,CA0可以與非錨通道躍變序列[1, 2, 6]相關聯,CA1與非錨通道躍變序列[2, 3, 7]相關聯,並且CA2與非錨通道躍變序列[3, 4, 8]相關聯。換言之,非錨通道躍變序列可以是假性隨機躍變序列,其在不同的躍變訊框中的非錨通道之間具有不同的固定偏移。例如,第一躍變訊框430a中的載波的第一非錨通道與第二躍變訊框430b中的相同載波的第二非錨通道之間的固定偏移是一個非錨通道,而第二躍變訊框430b中的相同載波的第二非錨躍變通道與第三躍變訊框430c中的相同載波的第三非錨載波之間的固定偏移是四個非錨躍變通道。
M 個載波之每一者載波可以為相同或不同的UE服務。在某些配置中,CA0、CA1和CA2可以皆為UE 0服務。在某些其他配置中,CA0和CA1可以為UE 0服務,而CA2可以為UE 1服務。在某些其他配置中,CA0可以為UE 0服務,CA1可以為UE 1服務,而CA 2可以為UE 2服務。
在某些態樣中,M 個載波之每一者載波可以具有相同的訊框結構。如圖4B中所示,並且經由元件符號410所示,可以在由第一填充圖案指示的部分中提供CA0上的下行鏈路(DL)資料。如元件符號412所示,可以在由第二填充圖案指示的部分中提供CA0上的針對UE 0的UL資料。如元件符號414所示,可以在由第三填充圖案指示的部分中提供CA1上的DL資料。如元件符號416所示,可以在由第四填充圖案指示的部分中提供CA1上的針對UE 1的UL資料。如元件符號418所示,可以在由第五填充圖案指示的部分中提供CA2上的DL資料。如元件符號420所示,可以在由第六填充圖案指示的部分中提供CA2上的針對UE 2的UL資料。
在某些配置中,用於CA0、CA1和CA2的DL資料部分可以分別與被傳輸給UE 0、UE 1和UE 2的DL資料相關聯。換言之,可以在時域中併發地傳輸DL資料部分中的針對UE 0、UE 1和UE 2的DL資料。
在某些其他配置中,可以為被傳輸給UE 0的DL資料預留該等DL資料部分之每一者DL資料部分的第一持續時間440a;可以為被傳輸給UE 1的DL資料預留該等DL資料部分之每一者DL資料部分的第二持續時間440b;並且可以為被傳輸給UE 2的DL資料預留該等DL資料部分之每一者DL資料部分的第三持續時間440c。換言之,針對UE 0、UE 1和UE 2的DL資料可以在M 個載波之每一者載波中是分時多工(TDM)的。
在某些其他配置中,M 個載波之每一者載波的總頻寬可以滿足頻寬閾值(例如,180 kHz、200 kHz、1個RB等)。換言之,基地站可以在M 個載波之每一者載波上併發地針對一或多個UE排程DL資料,以確保DL頻寬至少為500 kHz(例如,針對DTS模式的最小頻寬要求)。當基地站具有要針對單個UE(而不是多個UE)而排程的DL資料並且該單個UE不是由M 個載波中的所有載波服務時,可以在M 個載波中的第一載波(例如,圖4B中的CA0)上傳輸DL資料,並且可以在M 個載波中的剩餘載波(例如,圖4B中的CA1和CA2)上傳輸DL資料的重傳,以確保最小DL頻寬至少是500 kHz。在某些其他配置中,當不存在要被排程的DL資料時,基地站可以在M 個載波之每一者載波上發送預留信號以便滿足頻寬閾值。在單個UE或者沒有要排程的DL資料的情況下,可以增加基地站處的功耗,以便在多個載波上重複DL資料傳輸,或者在多個載波上傳輸預留信號。
使用上文結合圖4B描述的技術,本案內容的窄頻系統能夠在基地站在DTS模式下操作時滿足針對DL資料的頻寬閾值和PSD限制,並且在UE在躍頻模式下操作時滿足針對UL資料的最小躍頻數量。
如上所指出的,圖4B是作為實例來提供的。其他實例可以與結合圖4B描述的實例不同。
圖5是圖示針對窄頻系統中的多個錨通道的同步循環的實例500的圖。在實例500中,BS 110(未圖示)可以向至少一個UE 120(亦未圖示)傳輸複數個錨通道。在實例500中,並且如元件符號505所示,每16個子訊框(例如,160 ms)(其對應於躍變訊框(例如,被示為M訊框))傳輸複數個錨通道。如本文所使用的,躍變訊框可以是160 ms、320 ms、與NB-IoT-u訊框(n訊框)、MTC訊框(m訊框)相同的長度等等。如圖所示,複數個錨通道的每個傳輸包括第一錨通道510、第二錨通道515和第三錨通道520。在一些態樣中,複數個錨通道可以包括不同數量的錨通道,例如2個錨通道、4個錨通道、6個錨通道或不同數量的錨通道。BS 110可以傳輸複數個錨通道,使得滿足(例如,與免授權頻譜、數位傳輸要求等等相關聯的)最小頻寬。例如,每個錨通道可以包括1個資源區塊(例如,RB)。在一些態樣中,每個錨通道可以具有大約180 kHz、200 kHz等等的頻寬,使得針對複數個錨通道而言滿足500 kHz的最小頻寬。在一些態樣中,如複數個錨通道的最左側傳輸上方所示,複數個錨通道的每個傳輸在長度上可以是大約20 ms。在一些態樣中,複數個錨通道的傳輸可以比20 ms長或者短。
如元件符號525所示,可以在複數個錨通道的每個傳輸的第一錨通道中包括至少一個同步信號(例如,NPSS及/或NSSS)。此處,第一錨通道被示為最頂端的錨通道(例如,通道510)。然而,可以在複數個錨通道中的任何錨通道中包括至少一個同步信號。在一些態樣中,可以在複數個錨通道的每個傳輸中的相同錨通道中(例如,在頻率態樣)包括至少一個同步信號。在一些態樣中,可以在複數個錨通道的兩個或更多個傳輸中的不同錨通道中(例如,在頻率態樣)包括至少一個同步信號。
如元件符號530所示,在一些態樣中,第一錨通道可以包括一或多個NPBCH及/或一或多個MIB。例如,在SFN 0處的第一錨通道的第一傳輸包括NPBCH,其包括MIB 0和1。MIB 0和1可以對應於上文結合圖4A描述的可自解碼的區塊0和1。注意的是,圖4A的可自解碼的區塊0和1被包括在圖4A中所示的段中的前16個子訊框中。MIB 0和1可以類似於可自解碼的區塊0和1來加擾,使得UE 120可以至少部分地基於MIB 0和1來決定時序資訊。類似地,在SFN 16處的第一錨通道的第二傳輸包括MIB 2和3,以此類推。在一些態樣中,第一MIB(例如,MIB 0、MIB 2等)可以與第二MIB(例如,MIB 1、MIB 3等)交替。另外或替代地,第一錨通道可以包括第一MIB和第二MIB的單個傳輸。另外或替代地,第一錨通道可以包括第一MIB的多個連續傳輸和第二MIB的多個連續重傳。在一些態樣中,在SFN=64⋅m 至64⋅m +63(亦即,相對於SFN=0的第m 個640 ms段)中,可以在第0躍變訊框的開始處決定MIB有效負荷,並且MIB的SFN索引可以是SFN=64m 中的4個最高有效位元(MSB)位元。
如元件符號535所示,在一些態樣中,第二錨通道可以包括一或多個NPBCH及/或一或多個MIB。例如,在SFN 0處的第二錨通道的第一傳輸包括NPBCH,其包括MIB 0和1。MIB 0和1可以對應於上文結合圖4A描述的可自解碼的區塊0和1。例如,MIB 0和1可以與可自解碼的區塊0和1類似地加擾,使得UE 120可以至少部分地基於MIB 0和1來決定時序資訊。類似地,在SFN 16處的第二錨通道的第二傳輸包括MIB 2和3,以此類推。在一些態樣中,第一MIB(例如,MIB 0、MIB 2等)可以與第二MIB(例如,MIB 1、MIB 3等)交替。另外或替代地,第二錨通道可以包括第一MIB和第二MIB的單個傳輸。另外或替代地,第二錨通道可以包括第一MIB的多個連續傳輸和第二MIB的多個連續重傳。
如元件符號540所示,在一些態樣中,第三錨通道可以包括一或多個NPBCH及/或一或多個MIB。此情形可以類似於上述第二錨通道。在執行同步操作之前,UE 120可以知道每個錨通道的頻率。
在一些態樣中,第三錨通道(經由元件符號540圖示)可以包括系統資訊區塊(SIB)(未圖示)。例如,第三錨通道可以包括SIB-a或不同類型的SIB。在一些態樣中,SIB可以儲存針對UE 120的躍頻資訊。例如,UE 120可以至少部分地基於躍頻白名單來執行躍頻。SIB可以儲存躍頻白名單。UE 120可以使用SIB來決定躍頻白名單,使得UE 120可以至少部分地基於至少一個同步信號、NPBCH及/或SIB來與BS 110進行通訊。在一些態樣中,可以在MIB中傳送躍頻白名單。在此種情況下,MIB和對應的NPDSCH可以使用TBCC(截尾迴旋編碼),其中若躍頻白名單和MIB是聯合編碼的,則TBCC可以節省循環冗餘檢查位元。在一些態樣中,可以在最後的錨通道、倒數第二個錨通道等等中傳輸躍頻白名單。在一些態樣中,可以在任何錨通道中傳輸躍頻白名單。
在一些態樣中,至少一個同步信號(經由元件符號525圖示)可以指示複數個錨通道的配置。例如,在不同地區中,NB-IoT-u(例如,免授權頻譜中的NB-IoT)可能需要不同數量的錨通道(例如,在美國需要至少三個錨通道,而在歐盟需要一個錨通道,但是該等僅是作為實例來提供的)。BS 110可以決定至少一個同步信號以指示複數個錨通道的配置。因此,UE 120可以在第一錨通道上執行同步時決定配置,以避免盲搜尋。
在一些態樣中,在複數個錨通道的第一傳輸上的DRS(例如,NPSS及/或NSSS)可以用於提供配置。與使用MIB相比,此舉可以允許UE 120更快地決定配置,並且比使用MIB相比,此舉可以更為可靠。在一些態樣中,BS 110可以使用應用於NSSS的時域循環移位來傳送配置。例如,與單個錨載波相關聯的NSSS可以使用4個時域循環移位(
Figure 02_image001
)來指示80 ms的持續時間內的20 ms段,或者發信號通知SFN的第二和第三最低有效位元。在NB-IoT-u中,DRS具有160 ms或320 ms的週期(例如,根據躍變訊框長度),因此NSSS的循環移位可以不用於指示20 ms段。本文描述的技術和裝置可以使用循環移位的四個潛在值來指示複數個錨通道的配置。例如,循環移位的一或多個值可以指示複數個錨通道的錨通道數量,或者可以指示要使用單個錨通道(例如,而不是複數個錨通道)。另外或替代地,循環移位的一或多個值可以指示特定錨通道是否要包括NPBCH/MIB或SIB。以此種方式,BS 110可以使用NPSS向UE 120發信號通知錨通道的配置,此舉節省了錨通道的其他部分的資源並且實現了高效同步。
如上所指出的,圖5是作為實例來提供的。其他實例是可能的,並且可以與結合圖5描述的實例不同。
圖6是圖示根據複數個錨通道的同步的實例600的圖。
如圖6中所示,並且經由元件符號610所示,BS 110可以決定複數個錨通道。如進一步所示,複數個錨通道可以包括至少一個同步信號(例如,NPSS和NSSS)、NPBCH(其可以包括MIB)和SIB-a。例如,SIB-a可以攜帶躍頻白名單及/或其他資訊。在一些態樣中,至少一個同步信號可以指示複數個錨通道的配置。上文結合圖4A、圖4B和圖5更加詳細地描述了複數個錨通道。
如元件符號620所示,BS 110可以同時傳輸複數個錨通道。例如,並且如圖所示,BS 110可以在每個躍變訊框的開始處(例如,每160 ms、每320 ms等)傳輸複數個錨通道。在一些態樣中,BS 110可以向至少一個UE(例如,UE 120)同時傳輸複數個錨通道。
如元件符號630所示,UE 120可以在第一錨通道上接收至少一個同步信號。例如,UE 120可以接收第一錨通道,作為UE 120的同步程序的一部分。為了執行同步程序,在初始同步時,UE 120可以在第一錨通道中搜尋NPSS和NSSS並且解碼NPBCH。在一些態樣中,UE 120可以至少部分地基於NPSS及/或NSSS來決定針對複數個錨通道的配置,如本文其他地方更加詳細描述的。
如元件符號640所示,UE 120可以在第二錨通道中接收NPBCH。例如,若UE 120沒有在第一錨通道中接收到NPBCH,則UE 120可以在第二錨通道中接收NPBCH。另外或替代地,當沒有在第一錨通道中成功地接收到NPBCH時,UE 120可以調諧到第二錨通道(例如,在下一訊框或m訊框的開始處)。在一些態樣中,若UE 120沒有成功地解碼第二錨通道中的NPBCH,則UE 120可以調諧到第三錨通道,嘗試解碼第三錨通道中的NPBCH,以此類推。以此種方式,多個錨通道的同時傳輸改良了錨通道的頻率分集,從而增加了同步成功的可能性。
如元件符號650所示,UE 120可以在第三錨通道上接收SIB-a,並且可以至少部分地基於SIB-a來決定躍頻白名單。如元件符號660所示,UE 120可以至少部分地基於躍頻白名單來與BS 110進行通訊。例如,UE 120可以調諧到第一頻率集合,並且可以在與第一頻率集合相關聯的載波上傳輸及/或接收訊務。隨後,UE 120可以調諧回去以接收複數個錨通道的第二傳輸。接下來,UE 120可以調諧到第二頻率集合(例如,其可以與第一頻率集合相同或不同),以在與第二頻率集合相關聯的載波上傳輸及/或接收訊務,以此類推。
如上所指出的,圖6是作為實例來提供的。其他實例是可能的,並且可以與關於圖6描述的實例不同。
圖7是一種無線通訊的方法700的流程圖。該方法可以由基地站(例如,圖1的BS 110、裝置802/802’等)來執行。
在710處,基地站(例如,使用控制器/處理器240等等)可以決定複數個錨通道。例如,基地站可以決定(例如,產生、映射、編碼等)複數個錨通道。在一些態樣中,複數個錨通道可以彼此相鄰。在一些態樣中,複數個錨通道中的一些錨通道可以彼此不相鄰。在一些態樣中,複數個錨通道可以共同佔用滿足(例如,針對免授權頻譜)要求的最小頻寬的頻寬。在一些態樣中,複數個錨通道中的第一錨通道可以指示針對複數個錨通道的配置(例如,使用NSSS等等)。在一些態樣中,複數個錨通道中的至少兩個錨通道可以包括廣播通道或資訊區塊中的至少一項。
在720處,基地站(例如,使用控制器/處理器240、傳輸處理器220、TX MIMO處理器230、MOD 232、天線234等等)可以向至少一個UE同時傳輸複數個錨通道。例如,基地站可以同時傳輸複數個錨通道。在一些態樣中,基地站可以執行複數個錨通道的第一傳輸。例如,基地站可以重複地傳輸複數個錨通道(例如,在躍變訊框的開始處),如下文更加詳細描述的。
在730處,基地站(例如,使用控制器/處理器240、傳輸處理器220、TX MIMO處理器230、MOD 232、天線234等等)可以至少部分地基於複數個錨通道來與至少一個UE進行通訊。例如,基地站可以至少部分地基於複數個錨通道來促進與UE的同步。另外或替代地,基地站可以至少部分地基於躍頻來與至少一個UE進行通訊,並且可以由基地站在複數個錨通道中提供針對至少一個UE的躍頻資訊。
在740處,基地站(例如,使用控制器/處理器240、傳輸處理器220、TX MIMO處理器230、MOD 232、天線234等等)可以可選地在第二傳輸中同時傳輸複數個錨通道。例如,基地站可以執行複數個錨通道的第二傳輸。第二傳輸可以與第一傳輸不同。例如,第二傳輸可以包括與第一傳輸不同的NPBCH、不同的MIB等等。
方法700可以包括額外的態樣,例如下文及/或結合本文其他地方描述的一或多個其他過程來描述的任何單個態樣或各態樣的任意組合。
在一些態樣中,第一錨通道是包括廣播通道或資訊區塊中的至少一項的至少兩個錨通道中的一個錨通道。在一些態樣中,在第一傳輸中同時傳輸複數個錨通道,並且基地站可以在第一傳輸之後在第二傳輸中同時傳輸複數個錨通道。在一些態樣中,第一傳輸在第一躍變訊框中,並且第二傳輸在第二躍變訊框中。在一些態樣中,被包括在第一傳輸中的資訊區塊包括資訊區塊循環中的第一資訊區塊和第二資訊區塊,並且其中被包括在第二傳輸中的資訊區塊是資訊區塊循環中的第三資訊區塊和第四資訊區塊。在一些態樣中,週期性地或重複地傳輸複數個錨通道。在一些態樣中,資訊區塊包括可自解碼的主資訊區塊。在一些態樣中,至少一個同步信號、廣播通道或資訊區塊中的至少一項是探索參考信號。在一些態樣中,複數個錨通道包括探索參考信號通道。在一些態樣中,資訊區塊標識針對至少一個UE的躍頻白名單。
在一些態樣中,在第一錨通道中傳輸至少一個同步信號,資訊區塊是第一資訊區塊並且是在複數個錨通道中的第二錨通道中傳輸的,並且包括主資訊區塊的第二資訊區塊是與廣播通道一起在複數個錨通道中的第三錨通道中傳輸的。在一些態樣中,至少一個同步信號指示複數個錨通道的配置。在一些態樣中,至少一個同步信號至少部分地基於至少一個同步信號的循環移位來指示複數個錨通道的配置。
儘管圖7圖示一種無線通訊的方法的示例性方塊,但是在一些態樣中,與圖7中圖示的彼等方塊相比,該方法可以包括額外的方塊、更少的方塊、不同的方塊,或者以不同方式佈置的方塊。另外或替代地,可以並行地執行圖7中圖示的兩個或更多個方塊。
圖8是圖示在示例性裝置802中的不同模組/構件/元件之間的資料流程的概念性資料流程圖800。裝置802可以是基地站,例如eNB或gNB(例如,BS 110)。在一些態樣中,裝置802包括接收模組804、決定模組806及/或傳輸模組808。
接收模組804可以從無線通訊設備850(例如,UE 120、裝置1102/1102’等等)接收信號810。信號810可以包括通訊、同步資訊等等。例如,接收模組804及/或傳輸模組808可以至少部分地基於複數個錨通道來與至少一個UE(例如,無線通訊設備850)進行通訊。
決定模組806可以決定複數個錨通道,其中複數個錨通道中的第一錨通道包括至少一個同步信號,並且其中複數個錨通道中的至少兩個錨通道包括廣播通道或資訊區塊中的至少一項。決定模組可以向傳輸模組808提供資料812。
傳輸模組808可以至少部分地基於資料812來傳輸信號814。信號814可以攜帶複數個錨通道(例如,複數個錨通道的至少一個傳輸)。例如,傳輸模組808可以向至少一個UE同時傳輸複數個錨通道。
該裝置可以包括執行上述圖7的方法700等等中的演算法的方塊之每一者方塊的額外模組。因此,上述圖7的方法700等等之每一者方塊可以由模組來執行,並且該裝置可以包括彼等模組中的一或多個模組。該等模組可以是被專門配置為執行所述過程/演算法的一或多個硬體元件,由被配置為執行所述過程/演算法的處理器來實現,被儲存在電腦可讀取媒體之內以由處理器來實現,或者其某種組合。
圖8中所示的模組的數量和佈置是作為實例來提供的。實際上,與圖8所示的彼等模組相比,可以存在額外的模組、更少的模組、不同的模組或者以不同方式佈置的模組。此外,圖8中所示的兩個或更多個模組可以在單個模組內實現,或者圖8中所示的單個模組可以實現為多個分散式模組。另外或替代地,圖8中所示的一組模組(例如,一或多個模組)可以執行被描述為由圖8中所示的另一組模組執行的一或多個功能。
圖9是圖示針對使用處理系統902的裝置802'的硬體實現的實例的圖900。裝置802'可以是基地站,例如eNB或gNB。
處理系統902可以用通常由匯流排904表示的匯流排架構來實現。匯流排904可以包括任何數量的互連匯流排以及橋接,該數量取決於處理系統902的特定應用以及整體設計約束。匯流排904將各種電路連接在一起,該等電路包括由處理器906、模組804、806、808和電腦可讀取媒體/記憶體908表示的一或多個處理器及/或硬體模組。匯流排904亦可以連接諸如定時源、周邊設備、電壓調節器以及功率管理電路之類的各種其他電路,該等電路是本領域中公知的,並且因此將不再進行描述。
處理系統902可以耦合到收發機910。收發機910耦合到一或多個天線912。收發機910提供用於在傳輸媒體上與各種其他裝置進行通訊的方式。收發機910從一或多個天線912接收信號,從所接收的信號中提取資訊,並且向處理系統902(具體而言,接收模組804)提供所提取的資訊。此外,收發機910從處理系統902(具體而言,傳輸模組808)接收資訊,並且至少部分地基於所接收的資訊來產生要施加於一或多個天線912的信號。處理系統902包括耦合到電腦可讀取媒體/記憶體908的處理器906。處理器906負責通用處理,其包括執行電腦可讀取媒體/記憶體908上儲存的軟體。軟體在由處理器906執行時使得處理系統902執行以上針對任何特定的裝置所描述的各種功能。電腦可讀取媒體/記憶體908亦可以用於儲存由處理器906在執行軟體時操控的資料。處理系統亦包括模組804、806和808中的至少一個模組。模組可以是常駐/儲存在電腦可讀取媒體/記憶體908中在處理器906中執行的軟體模組、耦合到處理器906的一或多個硬體模組,或其某種組合。處理系統902可以是BS 110的元件,並且可以包括TX MIMO處理器230、接收處理器238及/或控制器/處理器240中的至少一個及/或記憶體242。
在一些態樣中,用於無線通訊的裝置802/802'包括:用於決定複數個錨通道的構件;用於向至少一個UE同時傳輸複數個錨通道的構件;用於至少部分地基於複數個錨通道來與至少一個UE進行通訊的構件;及用於在第二傳輸中同時傳輸複數個錨通道的構件。上述構件可以是裝置802的上述模組中的一或多個模組及/或是裝置802'的被配置為執行由上述構件所記載的功能的處理系統902。如前述,處理系統902可以包括TX MIMO處理器230、接收處理器238及/或控制器/處理器240。因此,在一種配置中,上述構件可以是被配置為執行上述構件所記載的功能的TX MIMO處理器230、接收處理器238及/或控制器/處理器240。
圖9是作為實例來提供的。其他實例是可能的,並且可以與結合圖9描述的實例不同。
圖10是一種無線通訊的方法1000的流程圖。該方法可以由使用者設備(例如,圖1的UE 120、裝置1102/1102’等等)來執行。
在1010處,UE(例如,使用天線252、DEMOD 254、MIMO偵測器256、接收處理器258、控制器/處理器280等等)可以在複數個錨通道中的第一錨通道上接收至少一個同步信號。例如,至少一個同步信號可以包括探索參考信號(例如,NPSS、NSSS等)。在一些態樣中,可以週期性地或定期地接收至少一個同步信號。可以在第一錨通道上接收至少一個同步信號,其中第一錨通道是被同時傳輸的複數個錨通道中的一個錨通道。
在1020處,UE(例如,使用天線252、DEMOD 254、MIMO偵測器256、接收處理器258、控制器/處理器280等等)可以可選地調諧到複數個錨通道中的至少一個其他錨通道。例如,若UE沒有在第一錨通道上成功地接收到NPBCH、MIB或SIB,則UE可以調諧到複數個錨通道中的至少一個其他錨通道。以此種方式,UE經由在多個不同的錨通道上接收探索參考信號來實現頻率分集。
在1030處,UE(例如,使用天線252、DEMOD 254、MIMO偵測器256、接收處理器258、控制器/處理器280等等)可以在第一錨通道和複數個錨通道中的至少一個其他錨通道上接收廣播通道或資訊區塊中的至少一項。例如,UE可以接收複數個錨通道(例如,不考慮UE被調諧到的錨通道)。複數個錨通道可以在第一錨通道上包括至少一個同步信號,並且可以在兩個或更多個錨通道上包括廣播通道(例如,NPBCH等)及/或資訊區塊(例如,MIB、SIB等)。
在1040處,UE(例如,使用天線252、DEMOD 254、MIMO偵測器256、接收處理器258、控制器/處理器280等等)可以至少部分地基於至少一個同步信號來執行同步操作。例如,UE可以至少部分地基於至少一個同步信號來與基地站(例如,BS 110)進行同步。在一些態樣中,UE可以使用複數個錨通道的多個傳輸來執行同步操作。
在1050處,UE(例如,使用控制器/處理器280等等)可以可選地至少部分地基於至少一個同步信號來決定複數個錨通道的配置。例如,UE可以決定複數個錨通道中有多少個錨通道,可以決定由複數個錨通道攜帶的特定類型的資訊,等等。在一些態樣中,UE可以至少部分地基於該配置來接收或偵測複數個錨載波中的其他錨載波。
方法1000可以包括額外的態樣,例如下文及/或結合本文其他地方描述的一或多個其他過程來描述的任何單個態樣或各態樣的任意組合。
在一些態樣中,在複數個錨通道的第一傳輸中接收至少一個同步信號,以及在複數個錨通道的第二傳輸中的至少一個其他錨通道上接收廣播通道或資訊區塊中的至少一項。在一些態樣中,至少部分地基於在第一傳輸中的第一錨通道上對廣播通道或資訊區塊中的至少一項的接收是不成功的,來在第二傳輸中接收廣播通道或資訊區塊中的至少一項。
在一些態樣中,UE可以調諧到至少一個其他錨通道來接收廣播通道或資訊區塊中的至少一項。在一些態樣中,週期性地或重複地傳輸複數個錨通道。在一些態樣中,資訊區塊包括可自解碼的主資訊區塊。在一些態樣中,至少一個同步信號、廣播通道或資訊區塊中的至少一項是探索參考信號。
在一些態樣中,複數個錨通道包括探索參考信號通道。在一些態樣中,資訊區塊標識針對UE的躍頻白名單。在一些態樣中,UE可以至少部分地基於至少一個同步信號來決定複數個錨通道的配置。在一些態樣中,該決定至少部分地基於至少一個同步信號的循環移位。
儘管圖10圖示一種無線通訊的方法的示例性方塊,但是在一些態樣中,與圖10中圖示的彼等方塊相比,該方法可以包括額外的方塊、更少的方塊、不同的方塊,或者以不同方式佈置的方塊。另外或替代地,可以並行地執行圖10中圖示的兩個或更多個方塊。
圖11是圖示在示例性裝置1102中的不同模組/構件/元件之間的資料流程的概念性資料流程圖1100。裝置1102可以是UE。在一些態樣中,裝置1102包括接收模組1104、同步模組1106、決定模組1108及/或傳輸模組1110。
接收模組1104可以從基地站1150(例如,BS 110、裝置802/802'等)接收信號1112。信號1112可以包括第一錨通道上的至少一個同步信號,其中第一錨通道是被同時傳輸的複數個錨通道中的一個錨通道。另外或替代地,信號1112可以包括第一錨通道和複數個錨通道中的至少一個其他錨通道上的廣播通道及/或資訊區塊。接收模組1104可以將信號1112作為資料1114提供給同步模組1106,或者作為資料1116提供給決定模組1108。
同步模組1106可以至少部分地基於同步信號來執行同步操作,如本文其他地方更加詳細地描述的。同步模組1106可以向傳輸模組1110提供資料1118,傳輸模組1110可以經由傳輸信號1120來至少部分地基於資料1118進行通訊。
決定模組1108可以至少部分基於至少一個同步信號來決定複數個錨通道的配置。在一些態樣中,決定模組可以向同步模組1106及/或接收模組1104提供指示配置的資料1122。
該裝置可以包括執行上述圖10的方法1000等等中的演算法的方塊之每一者方塊的額外模組。因此,上述圖10的方法1000等等之每一者方塊可以由模組來執行,並且該裝置可以包括彼等模組中的一或多個模組。該等模組可以是被專門配置為執行所述過程/演算法的一或多個硬體元件,由被配置為執行所述過程/演算法的處理器來實現,被儲存在電腦可讀取媒體之內以由處理器來實現,或者其某種組合。
圖11中所示的模組的數量和佈置是作為實例來提供的。實際上,與圖11所示的彼等模組相比,可以存在額外的模組、更少的模組、不同的模組或者以不同方式佈置的模組。此外,圖11中所示的兩個或更多個模組可以在單個模組內實現,或者圖11中所示的單個模組可以實現為多個分散式模組。另外或替代地,圖11中所示的一組模組(例如,一或多個模組)可以執行被描述為由圖11中所示的另一組模組執行的一或多個功能。
圖12是圖示針對使用處理系統1202的裝置1102'的硬體實現的實例的圖1200。裝置1102'可以是UE。
處理系統1202可以用通常由匯流排1204表示的匯流排架構來實現。匯流排1204可以包括任何數量的互連匯流排以及橋接,該數量取決於處理系統1202的特定應用以及整體設計約束。匯流排1204將各種電路連接在一起,該等電路包括由處理器1206、模組1104、1106、1108、1110和電腦可讀取媒體/記憶體1208表示的一或多個處理器及/或硬體模組。匯流排1204亦可以連接諸如定時源、周邊設備、電壓調節器以及功率管理電路之類的各種其他電路,該等電路是本領域中公知的,並且因此將不再進行描述。
處理系統1202可以耦合到收發機1210。收發機1210耦合到一或多個天線1212。收發機1210提供用於在傳輸媒體上與各種其他裝置進行通訊的方式。收發機1210從一或多個天線1212接收信號,從所接收的信號中提取資訊,並且向處理系統1202(具體而言,接收模組1104)提供所提取的資訊。此外,收發機1210從處理系統1202(具體而言,傳輸模組1110)接收資訊,並且至少部分地基於所接收的資訊來產生要施加於一或多個天線1212的信號。處理系統1202包括耦合到電腦可讀取媒體/記憶體1208的處理器1206。處理器1206負責通用處理,其包括執行電腦可讀取媒體/記憶體1208上儲存的軟體。軟體在由處理器1206執行時使得處理系統1202執行以上針對任何特定的裝置所描述的各種功能。電腦可讀取媒體/記憶體1208亦可以用於儲存由處理器1206在執行軟體時操控的資料。處理系統亦包括模組1104、1106、1108和1110中的至少一個模組。模組可以是常駐/儲存在電腦可讀取媒體/記憶體1208中在處理器1206中執行的軟體模組、耦合到處理器1206的一或多個硬體模組,或其某種組合。處理系統1202可以是UE 120的元件,並且可以包括TX MIMO處理器266、RX處理器258及/或控制器/處理器280中的至少一個及/或記憶體282。
在一些態樣中,用於無線通訊的裝置1102/1102'包括:用於在第一錨通道上接收至少一個同步信號的構件;用於在第一錨通道和複數個錨通道中的至少一個其他錨通道上接收廣播通道及/或資訊區塊的構件;用於至少部分地基於同步信號來執行同步操作的構件;用於調諧到至少一個其他錨通道以接收廣播通道及/或資訊區塊的構件;及用於至少部分地基於至少一個同步信號來決定複數個錨通道的配置的構件。上述構件可以是裝置1102的上述模組中的一或多個模組及/或是裝置1102'的被配置為執行由上述構件所記載的功能的處理系統1202。如前述,處理系統1202可以包括TX MIMO處理器266、RX處理器258及/或控制器/處理器280。因此,在一種配置中,上述構件可以是被配置為執行上述構件所記載的功能的TX MIMO處理器266、RX處理器258及/或控制器/處理器280。
圖12是作為實例來提供的。其他實例是可能的,並且可以與結合圖12描述的實例不同。
應理解的是,所揭示的過程/流程圖中的方塊的特定次序或層次是示例性方法的說明。應理解的是,根據設計偏好,可以重新排列該等過程/流程圖中的方塊的特定次序或層次。此外,可以將一些方塊組合或者將其省略。所附的方法請求項以取樣次序提供了各個方塊的元素,而並不意味著限於所提供的特定次序或層次。
提供了先前描述以使任何熟習此項技術者能夠實施本文所描述的各個態樣。對該等態樣的各種修改對於熟習此項技術者而言將是顯而易見的,並且本文定義的通用原理可以應用於其他態樣。因此,請求項並不意欲限於本文所展示的態樣,而是被賦予與文字請求項一致的全部範疇,其中除非明確地聲明如此,否則以單數形式對元素的提及不意欲意指「一個且僅一個」,而是意指「一或多個」。本文中使用「示例性」一詞意指「用作示例、實例或說明」。在本文中被描述為「示例性」的任何態樣不一定被解釋為比其他態樣更佳或者有優勢。除非另外明確聲明,否則術語「一些」代表一或多個。諸如「A、B或C中的至少一個」、「A、B和C中的至少一個」以及「A、B、C或其任意組合」之類的組合包括A、B及/或C的任意組合,並且可以包括A的倍數、B的倍數或C的倍數。具體而言,諸如「A、B或C中的至少一個」、「A、B和C中的至少一個」以及「A、B、C或其任意組合」之類的組合可以是僅A、僅B、僅C、A和B、A和C、B和C,或者A和B和C,其中任何此種組合可以包含A、B或C中的一或多個成員或一些成員。貫穿本案內容所描述的各個態樣的元素的所有結構和功能均等物皆經由引用的方式明確地併入本文,並且意欲被請求項所包括,該等結構和功能均等物對於一般技術者而言是已知的或者將要是已知的。此外,本文中沒有任何揭示的內容意欲奉獻給公眾,不管此種揭示內容是否被明確地記載在請求項中。沒有請求項元素要被解釋為構件加功能,除非該元素是使用短語「用於……的構件」來明確地記載的。
100‧‧‧無線網路102a‧‧‧巨集細胞102b‧‧‧微微細胞102c‧‧‧毫微微細胞110‧‧‧BS110a‧‧‧BS110b‧‧‧BS110c‧‧‧BS110d‧‧‧中繼站120‧‧‧UE120a‧‧‧UE120b‧‧‧UE120c‧‧‧UE120d‧‧‧UE120e‧‧‧UE130‧‧‧網路控制器200‧‧‧方塊圖212‧‧‧資料來源220‧‧‧傳輸處理器230‧‧‧傳輸(TX)多輸入多輸出(MIMO)處理器232a‧‧‧調制器/解調器232t‧‧‧調制器/解調器234a‧‧‧天線234t‧‧‧天線236‧‧‧MIMO偵測器238‧‧‧接收處理器239‧‧‧資料槽240‧‧‧控制器/處理器242‧‧‧記憶體244‧‧‧通訊單元246‧‧‧排程器252a‧‧‧天線252r‧‧‧天線254a‧‧‧解調器/調制器254r‧‧‧解調器/調制器256‧‧‧MIMO偵測器258‧‧‧接收處理器260‧‧‧資料槽262‧‧‧資料來源264‧‧‧傳輸處理器266‧‧‧TX MIMO處理器280‧‧‧控制器/處理器282‧‧‧記憶體290‧‧‧控制器/處理器292‧‧‧記憶體294‧‧‧通訊單元300‧‧‧圖325‧‧‧圖350‧‧‧圖375‧‧‧圖400‧‧‧實例401‧‧‧躍頻模式404a‧‧‧錨通道404b‧‧‧錨通道404c‧‧‧錨通道406a‧‧‧非錨通道406b‧‧‧非錨通道406c‧‧‧非錨通道406d‧‧‧非錨通道406e‧‧‧非錨通道406f‧‧‧非錨通道406g‧‧‧非錨通道410‧‧‧元件符號412‧‧‧元件符號414‧‧‧元件符號416‧‧‧元件符號418‧‧‧元件符號420‧‧‧元件符號430a‧‧‧躍變訊框430b‧‧‧躍變訊框430c‧‧‧躍變訊框440a‧‧‧第一持續時間440b‧‧‧第二持續時間440c‧‧‧第三持續時間500‧‧‧實例505‧‧‧元件符號510‧‧‧第一錨通道515‧‧‧第二錨通道520‧‧‧第三錨通道525‧‧‧元件符號530‧‧‧元件符號535‧‧‧元件符號540‧‧‧元件符號600‧‧‧實例610‧‧‧元件符號620‧‧‧元件符號630‧‧‧元件符號640‧‧‧元件符號650‧‧‧元件符號660‧‧‧元件符號700‧‧‧方法710‧‧‧步驟720‧‧‧步驟730‧‧‧步驟740‧‧‧步驟800‧‧‧概念性資料流程圖802‧‧‧裝置802'‧‧‧裝置804‧‧‧接收模組806‧‧‧決定模組808‧‧‧傳輸模組810‧‧‧信號812‧‧‧資料814‧‧‧信號850‧‧‧無線通訊設備900‧‧‧圖902‧‧‧處理系統904‧‧‧匯流排906‧‧‧處理器908‧‧‧電腦可讀取媒體/記憶體910‧‧‧收發機912‧‧‧天線1000‧‧‧方法1010‧‧‧步驟1020‧‧‧步驟1030‧‧‧步驟1040‧‧‧步驟1050‧‧‧步驟1100‧‧‧概念性資料流程圖1102‧‧‧裝置1102'‧‧‧裝置1104‧‧‧接收模組1106‧‧‧同步模組1108‧‧‧決定模組1110‧‧‧傳輸模組1112‧‧‧信號1114‧‧‧資料1116‧‧‧資料1118‧‧‧資料1120‧‧‧信號1122‧‧‧資料1150‧‧‧基地站1200‧‧‧圖1202‧‧‧處理系統1204‧‧‧匯流排1206‧‧‧處理器1208‧‧‧電腦可讀取媒體/記憶體1210‧‧‧收發機1212‧‧‧天線
圖1是圖示無線通訊網路的實例的圖。
圖2是圖示與無線通訊網路中基地站與使用者設備(UE)相通訊的實例的圖。
圖3A-圖3D是分別圖示針對LTE載波內部的帶內部署的窄頻(NB)訊框結構(偶數無線電訊框)、針對LTE載波內部的帶內部署的NB訊框結構(奇數無線電訊框)、針對LTE載波內部的保護頻帶/獨立部署的NB訊框結構(偶數無線電訊框),以及針對LTE載波內部的保護頻帶/獨立部署的NB訊框結構(奇數無線電訊框)的實例的圖。
圖4A是圖示用於單個錨通道的NB探索參考信號結構的實例的圖。
圖4B是圖示可以用於基地站和UE之間的免授權頻譜中的窄頻通訊的躍頻模式的圖。
圖5是圖示用於窄頻系統中的多個錨通道的同步循環的實例的圖。
圖6是圖示在窄頻系統中針對多個錨通道來將UE同步的實例的圖。
圖7是一種無線通訊的方法的流程圖。
圖8是圖示示例性裝置中的不同模組/構件/元件之間的資料流程的概念性資料流程圖。
圖9是圖示針對採用處理系統的裝置的硬體實現的實例的圖。
圖10是一種無線通訊的方法的流程圖。
圖11是圖示示例性裝置中的不同模組/構件/元件之間的資料流程的概念性資料流程圖。
圖12是圖示針對採用處理系統的裝置的硬體實現的實例的圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
110‧‧‧BS
120‧‧‧UE
600‧‧‧實例
610‧‧‧元件符號
620‧‧‧元件符號
630‧‧‧元件符號
640‧‧‧元件符號
650‧‧‧元件符號
660‧‧‧元件符號

Claims (60)

  1. 一種由一基地站執行的無線通訊的方法,包括以下步驟:決定複數個錨通道,其中該複數個錨通道中的一第一錨通道包括至少一個窄頻同步信號,並且其中該複數個錨通道中的至少兩個錨通道包括一窄頻廣播通道或一窄頻資訊區塊中的至少一項;向至少一個使用者設備(UE)同時傳輸該複數個錨通道,該複數個錨通道具有滿足用於一免授權頻譜的一最小頻寬要求的一組合頻寬;及至少部分地基於該複數個錨通道來與該至少一個UE進行通訊。
  2. 根據請求項1之方法,其中該第一錨通道是包括該窄頻廣播通道或該窄頻資訊區塊中的該至少一項的該至少兩個錨通道中的一個錨通道。
  3. 根據請求項1之方法,其中該複數個錨通道是在一第一傳輸中同時傳輸的,並且其中該方法亦包括以下步驟:在該第一傳輸之後的一第二傳輸中同時傳輸該複數個錨通道。
  4. 根據請求項3之方法,其中該第一傳輸在一第一躍變訊框中,並且其中該第二傳輸在一第二躍變 訊框中。
  5. 根據請求項3之方法,其中被包括在該第一傳輸中的該窄頻資訊區塊包括一資訊區塊循環中的一第一資訊區塊和一第二資訊區塊,並且其中被包括在該第二傳輸中的一窄頻資訊區塊是該資訊區塊循環中的一第三資訊區塊和一第四資訊區塊。
  6. 根據請求項1之方法,其中該複數個錨通道是週期性地或重複地傳輸的。
  7. 根據請求項1之方法,其中該窄頻資訊區塊包括一可自解碼的主資訊區塊。
  8. 根據請求項1之方法,其中該至少一個窄頻同步信號、該窄頻廣播通道或該窄頻資訊區塊中的至少一項是一探索參考信號。
  9. 根據請求項1之方法,其中該複數個錨通道包括探索參考信號通道。
  10. 根據請求項1之方法,其中該窄頻資訊區塊標識針對該至少一個UE的一躍頻白名單。
  11. 根據請求項1之方法,其中該至少一個窄頻同步信號是在該第一錨通道中傳輸的,該窄頻資訊區塊是一第一資訊區塊並且是在該複數個錨通道中的一第二錨通道中傳輸的,以及包括一主資訊區塊的一第二資訊區塊是與該窄頻廣播通道一起在該複數個錨 通道中的一第三錨通道中傳輸的。
  12. 根據請求項1之方法,其中該至少一個窄頻同步信號指示該複數個錨通道的一配置。
  13. 根據請求項12之方法,其中該至少一個窄頻同步信號至少部分地基於該至少一個窄頻同步信號的一循環移位來指示該複數個錨通道的該配置。
  14. 一種用於無線通訊的基地站,包括:一記憶體;及操作地耦合到該記憶體的至少一個處理器,該記憶體和該至少一個處理器被配置為進行以下操作:決定複數個錨通道,其中該複數個錨通道中的一第一錨通道包括至少一個窄頻同步信號,並且其中該複數個錨通道中的至少兩個錨通道包括一窄頻廣播通道或一窄頻資訊區塊中的至少一項;向至少一個使用者設備(UE)同時傳輸該複數個錨通道,該複數個錨通道具有滿足用於一免授權頻譜的一最小頻寬要求的一組合頻寬;及至少部分地基於該複數個錨通道來與該至少一個UE進行通訊。
  15. 根據請求項14之基地站,其中該第一錨通道是包括該窄頻廣播通道或該窄頻資訊區塊中的該至少一項的該至少兩個錨通道中的一個錨通道。
  16. 根據請求項14之基地站,其中該複數個錨通道是在一第一傳輸中同時傳輸的,並且其中該至少一個處理器亦用於進行以下操作:在該第一傳輸之後的一第二傳輸中同時傳輸該複數個錨通道。
  17. 根據請求項16之基地站,其中該第一傳輸在一第一躍變訊框中,並且其中該第二傳輸在一第二躍變訊框中。
  18. 根據請求項16之基地站,其中被包括在該第一傳輸中的該窄頻資訊區塊包括一資訊區塊循環中的一第一資訊區塊和一第二資訊區塊,並且其中被包括在該第二傳輸中的一窄頻資訊區塊是該資訊區塊循環中的一第三資訊區塊和一第四資訊區塊。
  19. 根據請求項14之基地站,其中該複數個錨通道是週期性地或重複地傳輸的。
  20. 根據請求項14之基地站,其中該窄頻資訊區塊包括一可自解碼的主資訊區塊。
  21. 根據請求項14之基地站,其中該至少一個窄頻同步信號、該窄頻廣播通道或該窄頻資訊區塊中的至少一項是一探索參考信號。
  22. 根據請求項14之基地站,其中該複數個錨通道包括探索參考信號通道。
  23. 根據請求項14之基地站,其中該窄頻資訊區塊標識針對該至少一個UE的一躍頻白名單。
  24. 根據請求項14之基地站,其中該至少一個窄頻同步信號指示該複數個錨通道的一配置。
  25. 根據請求項24之基地站,其中該至少一個窄頻同步信號至少部分地基於該至少一個窄頻同步信號的一循環移位來指示該複數個錨通道的該配置。
  26. 根據請求項14之基地站,其中該至少一個窄頻同步信號是在該第一錨通道中傳輸的,該窄頻資訊區塊是一第一資訊區塊並且是在該複數個錨通道中的一第二錨通道中傳輸的,以及包括一主資訊區塊的一第二資訊區塊是與該窄頻廣播通道一起在該複數個錨通道中的一第三錨通道中傳輸的。
  27. 一種儲存用於無線通訊的一或多個指令的非暫時性電腦可讀取媒體,該一或多個指令在由一基地站的一或多個處理器執行時,使得該一或多個處理器進行以下操作:決定複數個錨通道,其中該複數個錨通道中的一第一錨通道包括至少一個窄頻同步信號,並且其中該複數個錨通道中的至少兩個錨通道包括一窄頻廣播通道或一窄頻資訊區塊中的至少一項;向至少一個使用者設備(UE)同時傳輸該複數個 錨通道,該複數個錨通道具有滿足用於一免授權頻譜的一最小頻寬要求的一組合頻寬;及至少部分地基於該複數個錨通道來與該至少一個UE進行通訊。
  28. 根據請求項27之非暫時性電腦可讀取媒體,其中該至少一個窄頻同步信號指示該複數個錨通道的一配置。
  29. 根據請求項28之非暫時性電腦可讀取媒體,其中該至少一個窄頻同步信號至少部分地基於該至少一個窄頻同步信號的一循環移位來指示該複數個錨通道的該配置。
  30. 一種用於無線通訊的裝置,包括:用於決定複數個錨通道的構件,其中該複數個錨通道中的一第一錨通道包括至少一個窄頻同步信號,並且其中該複數個錨通道中的至少兩個錨通道包括一窄頻廣播通道或一窄頻資訊區塊中的至少一項;用於向至少一個使用者設備(UE)同時傳輸該複數個錨通道的構件,該複數個錨通道具有滿足用於一免授權頻譜的一最小頻寬要求的一組合頻寬;及用於至少部分地基於該複數個錨通道來與該至少一個UE進行通訊的構件。
  31. 根據請求項30之裝置,其中該至少一個窄 頻同步信號指示該複數個錨通道的一配置。
  32. 根據請求項31之裝置,其中該至少一個窄頻同步信號至少部分地基於該至少一個窄頻同步信號的一循環移位來指示該複數個錨通道的該配置。
  33. 一種由一使用者設備(UE)執行的無線通訊的方法,包括以下步驟:在一第一錨通道上接收至少一個窄頻同步信號,其中該第一錨通道是被同時傳輸的複數個錨通道中的一個錨通道,該複數個錨通道具有滿足用於一免授權頻譜的一最小頻寬要求的一組合頻寬;在該第一錨通道和該複數個錨通道中的至少一個其他錨通道上接收一窄頻廣播通道或一窄頻資訊區塊中的至少一項;及至少部分地基於該至少一個窄頻同步信號來執行一同步操作。
  34. 根據請求項33之方法,其中該至少一個窄頻同步信號是在該複數個錨通道的一第一傳輸中接收的,並且其中該窄頻廣播通道或該窄頻資訊區塊中的該至少一項是在該複數個錨通道的一第二傳輸中的該至少一個個其他錨通道上接收的。
  35. 根據請求項34之方法,其中該窄頻廣播通道或該窄頻資訊區塊中的該至少一項是至少部分地基 於在該第一傳輸中的該第一錨通道上對該窄頻廣播通道或該窄頻資訊區塊中的該至少一項的接收不成功,來在該第二傳輸中接收的。
  36. 根據請求項33之方法,亦包括以下步驟:調諧到該至少一個其他錨通道以接收該窄頻廣播通道或該窄頻資訊區塊中的該至少一項。
  37. 根據請求項33之方法,其中該複數個錨通道是週期性地或重複地傳輸的。
  38. 根據請求項33之方法,其中該窄頻資訊區塊包括一可自解碼的主資訊區塊。
  39. 根據請求項33之方法,其中該至少一個窄頻同步信號、該窄頻廣播通道或該窄頻資訊區塊中的至少一項是一探索參考信號。
  40. 根據請求項33之方法,其中該複數個錨通道包括探索參考信號通道。
  41. 根據請求項33之方法,其中該窄頻資訊區塊標識針對該UE的一躍頻白名單。
  42. 根據請求項33之方法,亦包括以下步驟:至少部分地基於該至少一個窄頻同步信號來決定該複數個錨通道的一配置。
  43. 根據請求項42之方法,其中該決定是至少部分地基於該至少一個窄頻同步信號的一循環移位 的。
  44. 一種用於無線通訊的使用者設備(UE),包括:一記憶體;及操作地耦合到該記憶體的至少一個處理器,該記憶體和該至少一個處理器被配置為進行以下操作:在一第一錨通道上接收至少一個窄頻同步信號,其中該第一錨通道是被同時傳輸的複數個錨通道中的一個錨通道,該複數個錨通道具有滿足用於一免授權頻譜的一最小頻寬要求的一組合頻寬;在該第一錨通道和該複數個錨通道中的至少一個其他錨通道上接收一窄頻廣播通道或一窄頻資訊區塊中的至少一項;及至少部分地基於該至少一個窄頻同步信號來執行一同步操作。
  45. 根據請求項44之UE,其中該至少一個窄頻同步信號是在該複數個錨通道的一第一傳輸中接收的,並且其中該窄頻廣播通道或該窄頻資訊區塊中的該至少一項是在該複數個錨通道的一第二傳輸中的該至少一個個其他錨通道上接收的。
  46. 根據請求項45之UE,其中該窄頻廣播通道或該窄頻資訊區塊中的該至少一項是至少部分地基 於在該第一傳輸中的該第一錨通道上對該窄頻廣播通道或該窄頻資訊區塊中的該至少一項的接收不成功,來在該第二傳輸中接收的。
  47. 根據請求項44之UE,其中該至少一個處理器亦用於進行以下操作:調諧到該至少一個其他錨通道以接收該窄頻廣播通道或該窄頻資訊區塊中的該至少一項。
  48. 根據請求項44之UE,其中該複數個錨通道是週期性地或重複地傳輸的。
  49. 根據請求項44之UE,其中該窄頻資訊區塊包括一可自解碼的主資訊區塊。
  50. 根據請求項44之UE,其中該至少一個窄頻同步信號、該窄頻廣播通道或該窄頻資訊區塊中的至少一項是一探索參考信號。
  51. 根據請求項44之UE,其中該複數個錨通道包括探索參考信號通道。
  52. 根據請求項44之UE,其中該窄頻資訊區塊標識針對該UE的一躍頻白名單。
  53. 根據請求項44之UE,其中該至少一個處理器亦用於進行以下操作:至少部分地基於該至少一個窄頻同步信號來決定該複數個錨通道的一配置。
  54. 根據請求項53之UE,其中該決定是至少部分地基於該至少一個窄頻同步信號的一循環移位的。
  55. 一種儲存一或多個指令的非暫時性電腦可讀取媒體,該一或多個指令在由一使用者設備的一或多個處理器執行時,使得該一或多個處理器進行以下操作:在一第一錨通道上接收至少一個窄頻同步信號,其中該第一錨通道是被同時傳輸的複數個錨通道中的一個錨通道,該複數個錨通道具有滿足用於一免授權頻譜的一最小頻寬要求的一組合頻寬;在該第一錨通道和該複數個錨通道中的至少一個其他錨通道上接收一窄頻廣播通道或一窄頻資訊區塊中的至少一項;及至少部分地基於該至少一個窄頻同步信號來執行一同步操作。
  56. 根據請求項55之非暫時性電腦可讀取媒體,其中該一或多個指令在由該一或多個處理器執行時,使得該一或多個處理器進行以下操作:至少部分地基於該至少一個窄頻同步信號來決定該複數個錨通道的一配置。
  57. 根據請求項56之非暫時性電腦可讀取媒 體,其中該決定是至少部分地基於該至少一個窄頻同步信號的一循環移位的。
  58. 一種用於無線通訊的裝置,包括:用於在一第一錨通道上接收至少一個窄頻同步信號的構件,其中該第一錨通道是被同時傳輸的複數個錨通道中的一個錨通道,該複數個錨通道具有滿足用於一免授權頻譜的一最小頻寬要求的一組合頻寬;用於在該第一錨通道和該複數個錨通道中的至少一個其他錨通道上接收一窄頻廣播通道及/或一窄頻資訊區塊的構件;及用於至少部分地基於該至少一個窄頻同步信號來執行一同步操作的構件。
  59. 根據請求項58之裝置,亦包括:用於至少部分地基於該至少一個窄頻同步信號來決定該複數個錨通道的一配置的構件。
  60. 根據請求項59之裝置,其中該決定是至少部分地基於該至少一個窄頻同步信號的一循環移位的。
TW107143631A 2017-12-08 2018-12-05 多個錨通道上的窄頻實體廣播通道設計 TWI779137B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762596684P 2017-12-08 2017-12-08
US62/596,684 2017-12-08
US16/209,538 US10784999B2 (en) 2017-12-08 2018-12-04 Narrowband physical broadcast channel design on multiple anchor channels
US16/209,538 2018-12-04

Publications (2)

Publication Number Publication Date
TW201929465A TW201929465A (zh) 2019-07-16
TWI779137B true TWI779137B (zh) 2022-10-01

Family

ID=66697469

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107143631A TWI779137B (zh) 2017-12-08 2018-12-05 多個錨通道上的窄頻實體廣播通道設計

Country Status (9)

Country Link
US (1) US10784999B2 (zh)
EP (1) EP3721657A1 (zh)
JP (1) JP7245246B2 (zh)
KR (1) KR20200091877A (zh)
CN (1) CN111448828B (zh)
BR (1) BR112020011289A2 (zh)
SG (1) SG11202003918WA (zh)
TW (1) TWI779137B (zh)
WO (1) WO2019113167A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109510791A (zh) * 2017-09-15 2019-03-22 华为技术有限公司 传输方法和传输装置
US10715210B1 (en) * 2017-11-17 2020-07-14 Qualcomm Incorporated Synchronization signal repetition pattern for a discovery reference signal in narrowband communications
US10707915B2 (en) * 2017-12-04 2020-07-07 Qualcomm Incorporated Narrowband frequency hopping mechanisms to overcome bandwidth restrictions in the unlicensed frequency spectrum
WO2019202555A1 (en) * 2018-04-18 2019-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Sfn timing for frequency hopping systems
WO2019204990A1 (zh) * 2018-04-24 2019-10-31 华为技术有限公司 一种信道发送方法及网络设备
US10595300B2 (en) * 2018-06-15 2020-03-17 Landis+Gyr Innovations, Inc. Channel hopping sequence generation with variable channel width
US20190394706A1 (en) * 2018-06-22 2019-12-26 Telefonaktiebolaget L M Ericsson (Publ) Configurable discovery reference signal periodicity for narrowband internet-of-things in unlicensed spectrum
US20210306834A1 (en) * 2018-08-01 2021-09-30 Apple Inc. Narrowband reference signal transmission for measurement and synchronization
US11290172B2 (en) 2018-11-27 2022-03-29 XCOM Labs, Inc. Non-coherent cooperative multiple-input multiple-output communications
CN110224719B (zh) * 2019-06-25 2021-08-31 Oppo广东移动通信有限公司 通信控制方法及相关产品
US11425724B2 (en) * 2019-07-12 2022-08-23 Qualcomm Incorporated Carrier aggregation for narrowband internet of things user equipment
US11411778B2 (en) 2019-07-12 2022-08-09 XCOM Labs, Inc. Time-division duplex multiple input multiple output calibration
CN110536416B (zh) * 2019-08-16 2024-04-30 中兴通讯股份有限公司 信号发送、接收方法、装置、第一节点、第二节点及介质
US11411779B2 (en) 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
CN115699605A (zh) 2020-05-26 2023-02-03 艾斯康实验室公司 干扰感知波束成形
US11606118B2 (en) * 2020-08-27 2023-03-14 Connectify, Inc. Data transfer with multiple threshold actions
CA3195885A1 (en) 2020-10-19 2022-04-28 XCOM Labs, Inc. Reference signal for wireless communication systems
WO2022093988A1 (en) 2020-10-30 2022-05-05 XCOM Labs, Inc. Clustering and/or rate selection in multiple-input multiple-output communication systems
EP4280737A4 (en) * 2021-01-13 2024-03-13 Beijing Xiaomi Mobile Software Co Ltd RESOURCE DETERMINATION METHOD AND APPARATUS, AND COMMUNICATION DEVICE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120140714A1 (en) * 2010-12-03 2012-06-07 Nokia Corporation Implicit resource allocation using shifted synchronization sequence
US20130258938A1 (en) * 2010-12-20 2013-10-03 Telefonaktiebolaget L M Ericsson (Publ) Methods and Nodes for Setting Values of System Parameters Used in a Wireless Communication System
CN105210312A (zh) * 2013-05-15 2015-12-30 三星电子株式会社 用于无线通信系统的动态时分复用的操作方法和设备
US20160135124A1 (en) * 2014-11-06 2016-05-12 Sierra Wireless, Inc. Method and apparatus for communication of system information in a wireless system
US20170094621A1 (en) * 2015-09-24 2017-03-30 Qualcomm Incorporated Common synchronization channel design for narrowband communications
TW201733300A (zh) * 2016-01-15 2017-09-16 高通公司 用於針對機器類型通訊的窄頻操作的光柵設計

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9967752B2 (en) * 2013-08-12 2018-05-08 Qualcomm Incorporated Transmission and reception of common channel in an unlicensed or shared spectrum
WO2017184850A1 (en) * 2016-04-20 2017-10-26 Convida Wireless, Llc Physical channels in new radio
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN106255215B (zh) * 2016-08-05 2019-12-10 宇龙计算机通信科技(深圳)有限公司 通信方法及通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120140714A1 (en) * 2010-12-03 2012-06-07 Nokia Corporation Implicit resource allocation using shifted synchronization sequence
US20130258938A1 (en) * 2010-12-20 2013-10-03 Telefonaktiebolaget L M Ericsson (Publ) Methods and Nodes for Setting Values of System Parameters Used in a Wireless Communication System
CN105210312A (zh) * 2013-05-15 2015-12-30 三星电子株式会社 用于无线通信系统的动态时分复用的操作方法和设备
US20160135124A1 (en) * 2014-11-06 2016-05-12 Sierra Wireless, Inc. Method and apparatus for communication of system information in a wireless system
US20170094621A1 (en) * 2015-09-24 2017-03-30 Qualcomm Incorporated Common synchronization channel design for narrowband communications
TW201733300A (zh) * 2016-01-15 2017-09-16 高通公司 用於針對機器類型通訊的窄頻操作的光柵設計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 Nokia, Alcatel-Lucent Shanghai Bell NR-PBCH Design TSG-RAN WG1#87 R1-1612807 3GPP Reno,U.S.A.,November 14-18,2016 https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Docs/R1-1612807.zip *

Also Published As

Publication number Publication date
US10784999B2 (en) 2020-09-22
TW201929465A (zh) 2019-07-16
KR20200091877A (ko) 2020-07-31
BR112020011289A2 (pt) 2020-11-24
JP7245246B2 (ja) 2023-03-23
JP2021506172A (ja) 2021-02-18
CN111448828B (zh) 2022-04-01
SG11202003918WA (en) 2020-06-29
CN111448828A (zh) 2020-07-24
EP3721657A1 (en) 2020-10-14
WO2019113167A1 (en) 2019-06-13
US20190181995A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
TWI779137B (zh) 多個錨通道上的窄頻實體廣播通道設計
TWI786183B (zh) 用於喚醒信號設計和資源配置的技術和裝置
JP7440410B2 (ja) ウェイクアップ信号設計およびリソース割振りのための技法および装置
TWI824592B (zh) 用於重用其餘最小系統資訊配置位元以經由信號發送同步信號塊位置的技術和裝置
US10708850B2 (en) Wireless communications over unlicensed radio frequency spectrum
CN111819904A (zh) 用于新无线电无执照(nr-u)中的子带接入的带宽部分(bwp)配置
TW201921992A (zh) 用於喚醒信號傳輸的技術和裝置
KR20190118159A (ko) 협대역 통신들을 위한 협대역 시분할 듀플렉스 프레임 구조
CN115243361B (zh) 系统信息速率匹配
CN111295918B (zh) 信道列表信令
CN112243598A (zh) 跨多个毗邻载波的同步频谱共享
JP7291701B2 (ja) 5gネットワークにおけるキャリア情報シグナリング
CN111670557B (zh) 关于多个载波数字方案的载波能力信令
US11147093B2 (en) System information scheduling
US10581568B2 (en) Network discovery and synchronization for NR-SS
CN111226412A (zh) 用于传输和检测多频带唤醒信号的方法和装置
US20220417931A1 (en) Techniques and apparatuses for carrier management
ES2899302T3 (es) Técnicas y aparatos de retrocompatibilidad de procesamiento de canal
US20210307041A1 (en) Utilization of a control region for downlink transmission
CN112335269A (zh) 无线电接入技术之间的emtc共存
JP2023052292A (ja) 同期ラスタに少なくとも部分的に基づいた同期信号スキャンのための技法および装置

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent