TWI778558B - Driving system and driving control method for electric vehicles - Google Patents
Driving system and driving control method for electric vehicles Download PDFInfo
- Publication number
- TWI778558B TWI778558B TW110111138A TW110111138A TWI778558B TW I778558 B TWI778558 B TW I778558B TW 110111138 A TW110111138 A TW 110111138A TW 110111138 A TW110111138 A TW 110111138A TW I778558 B TWI778558 B TW I778558B
- Authority
- TW
- Taiwan
- Prior art keywords
- speed
- wheel
- drive
- steering
- module
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Train Traffic Observation, Control, And Security (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
本發明係與電動載具有關,特別有關於電動載具的驅動系統及其驅動控制方法。 The present invention is related to an electric vehicle, especially a drive system of the electric vehicle and a drive control method thereof.
於現有的電動載具(如電動三輪車)中,是以單馬達來提供動力至所有驅動輪(如兩個後輪),這種設定方式使得所有驅動輪都具有相同的轉速,而無法靈活轉向,並存在翻車等安全風險。 In the existing electric vehicles (such as electric tricycles), a single motor is used to provide power to all the driving wheels (such as two rear wheels), and this setting method makes all the driving wheels have the same speed, and can not flexibly steer , and there are safety risks such as overturning.
目前另有一種具有輪速差的電動載具被提出。前述電動載具是設置一組機械差速器,並於轉向過程中透過機械結構來於轉向時分配給外側的驅動輪更多動力,藉以提升轉向速度。然而,增設機械差速器會增加電動載具的體積(如增加軸距),而降低轉向靈活性(迴轉半徑增加),並增加成本。此外,機械差速器的動力分配是固定的,這使得機械差速器無法依據當前速度與轉向幅度對動力分配進行動態調整。 At present, another electric vehicle with wheel speed difference has been proposed. The aforementioned electric vehicle is provided with a set of mechanical differentials, and during the steering process, the mechanical structure is used to distribute more power to the outer drive wheels during steering, thereby increasing the steering speed. However, adding a mechanical differential would increase the size of the electric vehicle (eg, increase the wheelbase), reduce steering flexibility (increase the turning radius), and increase cost. In addition, the power distribution of the mechanical differential is fixed, which makes it impossible for the mechanical differential to dynamically adjust the power distribution according to the current speed and steering range.
是以,現有電動載具存在上述問題,而亟待更有效的方案被提出。 Therefore, the existing electric vehicles have the above problems, and more effective solutions are urgently needed.
本發明之主要目的,係在於提供一種電動載具的驅動系統及其驅動控制方法,可透過多驅動模組與電子差速控制來實現驅動輪之間的速差控制。 The main purpose of the present invention is to provide a drive system of an electric vehicle and a drive control method thereof, which can realize speed difference control between driving wheels through multiple drive modules and electronic differential control.
本發明提出一種電動載具的驅動系統,包括一左驅動模組、一右驅動模組、一轉向裝置及一控制模組。該左驅動模組用以提供動力至一左驅動輪以控制該左驅動輪的轉動;該右驅動模組用以提供動力至一右驅動輪以控制該右驅動輪的轉動;該轉向裝置用以接受轉向操作來改變一轉向輪的朝向,並用以取得一轉向資訊;該控制模組電性連接該左驅動模組、該右驅動模組及該轉向裝置,被設定來基於該轉向資訊及該電動載具的一參考速度計算一左驅動控制命令及一右驅動控制命令,通過該左驅動控制命令控制該左驅動模組的速度,並通過該右驅動控制命令控制該右驅動模組的速度。其中,於轉向過程中,該控制模組是產生具有速差的該左驅動控制命令及該右驅動控制命令,以通過該左驅動輪與該右驅動輪之間的速差來使該電動載具穩定轉向。 The present invention provides a drive system of an electric vehicle, which includes a left drive module, a right drive module, a steering device and a control module. The left driving module is used for providing power to a left driving wheel to control the rotation of the left driving wheel; the right driving module is used for providing power to a right driving wheel to control the rotation of the right driving wheel; the steering device is used for The direction of a steering wheel is changed by accepting a steering operation, and a steering information is obtained; the control module is electrically connected to the left driving module, the right driving module and the steering device, and is set based on the steering information and the steering device. A reference speed of the electric vehicle calculates a left drive control command and a right drive control command, controls the speed of the left drive module through the left drive control command, and controls the right drive module through the right drive control command. speed. Wherein, during the steering process, the control module generates the left drive control command and the right drive control command with a speed difference, so as to make the electric load drive through the speed difference between the left drive wheel and the right drive wheel Steady steering.
本發明還提出一種驅動控制方法,應用於一電動載具的一驅動系統,該驅動系統包括用以驅動一左驅動輪的一左驅動模組、用以驅動一右驅動輪的一右驅動模組、用以改變一轉向輪的朝向的一轉向裝置、及一控制模組,該方法包括以下步驟:a)通過該轉向裝置取得對應該轉向輪的朝向的一轉向資訊;b)於該控制模組取得該電動載具的一參考速度;c)基於該轉向資訊及該電動載具的該參考速度計算一左驅動控制命令及一右驅動控制命令;及,d)通過該左驅動控制命令控制該左驅動模組的速度,並通過該右驅動控制命令控制該右驅動模組的速度,其中於轉向過程中所產生的該左驅動控制命令及該右驅動控制命令具有速差,以通過該左驅動輪與該右驅動輪之間的速差來使該電動載具穩定轉向。 The present invention also provides a drive control method, which is applied to a drive system of an electric vehicle. The drive system includes a left drive module for driving a left drive wheel, and a right drive module for driving a right drive wheel. Set, a steering device for changing the orientation of a steering wheel, and a control module, the method includes the following steps: a) obtaining a steering information corresponding to the orientation of the steering wheel through the steering device; b) in the control The module obtains a reference speed of the electric vehicle; c) calculates a left drive control command and a right drive control command based on the steering information and the reference speed of the electric vehicle; and, d) passes the left drive control command Control the speed of the left drive module, and control the speed of the right drive module through the right drive control command, wherein the left drive control command and the right drive control command generated during the steering process have a speed difference, so as to pass The speed difference between the left driving wheel and the right driving wheel makes the electric vehicle steer stably.
本發明可實現穩定轉向並提升安全性。 The present invention can realize stable steering and improve safety.
1:電動載具 1: Electric vehicle
10:差速控制器 10: Differential controller
11:左馬達控制器 11: Left Motor Controller
12:右馬達控制器 12: Right motor controller
13:左馬達 13: Left motor
14:右馬達 14: Right motor
15:左驅動輪 15: Left drive wheel
16:右驅動輪 16: Right drive wheel
2:電動載具 2: Electric vehicle
20:控制模組 20: Control Module
21:轉向裝置 21: Steering device
22:左驅動模組 22: Left drive module
23:右驅動模組 23: Right drive module
24:轉向輪 24: steering wheel
25、26:驅動輪 25, 26: drive wheel
30:轉向結構 30: Steering Structure
31:速度控制結構 31: Speed control structure
32:速度取得模組 32: Speed acquisition module
33:轉向感測模組 33: Steering Sensing Module
40:右驅動電路 40: Right drive circuit
41:右變頻模組 41: Right frequency conversion module
42:右馬達 42: Right motor
43:右馬達感測器 43: Right Motor Sensor
44:右傳動結構 44: Right transmission structure
50:左驅動電路 50: Left drive circuit
51:左變頻模組 51: Left inverter module
52:左馬達 52: Left motor
53:左馬達感測器 53: Left Motor Sensor
54:左傳動結構 54: Left transmission structure
60:轉角計算模組 60: Corner calculation module
61:速度計算模組 61: Speed calculation module
62:驅動控制模組 62: Drive control module
620:左驅動控制模組 620: Left drive control module
621:右驅動控制模組 621: Right drive control module
63:差速控制模組 63: Differential control module
630:左速度控制模組 630: Left speed control module
631:右速度控制模組 631: Right speed control module
64:磁場導向控制模組 64: Magnetic Field Guided Control Module
640:左磁場導向控制模組 640: Left Magnetic Field Guided Control Module
641:右磁場導向控制模組 641: Right Magnetic Field Guided Control Module
701:轉向資訊輸入 701: Steering information input
702:參考速度輸入 702: Reference speed input
704、705:轉角計算 704, 705: Corner calculation
706、707:組合 706, 707: Combination
708、709:因子加乘 708, 709: factor addition and multiplication
710、711:速度回授 710, 711: Speed feedback
712、713:速度控制 712, 713: Speed control
714、715:FOC 714, 715: FOC
716、717:分離與驅動電路 716, 717: Separation and Drive Circuits
718、719:變頻處理 718, 719: Frequency conversion processing
720、721:馬達 720, 721: Motor
722、723:霍爾感測器 722, 723: Hall sensor
724、725:速度計算 724, 725: Speed calculation
80:轉向輪 80: steering wheel
81:左驅動輪 81: Left drive wheel
82:右驅動輪 82: Right drive wheel
83:重心 83: Center of Gravity
84:彎中心 84: Bend Center
θ:轉角 θ: corner
C1:左差速命令 C 1 : Left differential command
C2:右差速命令 C 2 : Right differential command
C3:左驅動命令 C 3 : Left drive command
C4:右驅動命令 C 4 : Right drive command
δ:轉向資訊 delta: steering information
δ*:轉向座標 δ * : steering coordinates
Cl:左驅動控制命令 C l : Left drive control command
Cr:右驅動控制命令 C r : Right drive control command
Hl:左馬達的感測資料 H l : Sensing data of the left motor
Hr:右馬達的感測資料 H r : Sensing data of the right motor
L:長度 L: length
W:軸距 W: Wheelbase
R:距離 R: distance
PWM:脈波訊號 PWM: pulse signal
ωv:速度變換訊號 ω v : speed change signal
ωc:當前速度 ω c : current speed
ω*:參考速度 ω * : reference speed
ω l :左回授速度 ω l : Left feedback speed
:左參考速度 : Left reference speed
ω r :右回授速度 ω r : right feedback speed
:右參考速度 : Right reference speed
Kscale:因子 K scale : factor
T1L、T2L、T3L、T4L、T5L、T6L:左變頻器/功率晶體開關 T 1L , T 2L , T 3L , T 4L , T 5L , T 6L : Left inverter/power crystal switch
T1R、T2R、T3RL、T4R、T5R、T6R:右變頻器/功率晶體開關 T 1R , T 2R , T 3RL , T 4R , T 5R , T 6R : Right inverter/power crystal switch
:左參考速度控制訊號 : Left reference speed control signal
:右參考速度控制訊號 : Right reference speed control signal
S10-S13:第一控制步驟 S10-S13: The first control step
S20-S28:第二控制步驟 S20-S28: Second control step
S30-S31:轉向步驟 S30-S31: Steering steps
S40-S43:參考速度設定步驟 S40-S43: Reference speed setting steps
S50-S53:驅動步驟 S50-S53: Drive Steps
圖1為雙馬達控制器的電動載具的架構圖。 FIG. 1 is a structural diagram of an electric vehicle with a dual motor controller.
圖2為本發明一實施例的電動載具的驅動系統的架構圖。 FIG. 2 is a structural diagram of a drive system of an electric vehicle according to an embodiment of the present invention.
圖3為本發明一實施例的轉向裝置的架構圖。 FIG. 3 is a structural diagram of a steering device according to an embodiment of the present invention.
圖4為本發明一實施例的右驅動模組的架構圖。 FIG. 4 is a structural diagram of a right driving module according to an embodiment of the present invention.
圖5為本發明一實施例的左驅動模組的架構圖。 FIG. 5 is a structural diagram of a left drive module according to an embodiment of the present invention.
圖6為本發明一實施例的控制模組的架構圖。 FIG. 6 is a structural diagram of a control module according to an embodiment of the present invention.
圖7為本發明一實施例的驅動系統的電路架構圖。 FIG. 7 is a circuit structure diagram of a driving system according to an embodiment of the present invention.
圖8為本發明第一實施例的驅動控制方法的流程圖。 FIG. 8 is a flowchart of a driving control method according to the first embodiment of the present invention.
圖9A為本發明第二實施例的驅動控制方法的第一流程圖。 FIG. 9A is a first flowchart of a driving control method according to a second embodiment of the present invention.
圖9B為本發明一實施例的驅動控制方法的第二流程圖。 FIG. 9B is a second flowchart of a driving control method according to an embodiment of the present invention.
圖10為本發明一實施例的轉向示意圖。 FIG. 10 is a schematic diagram of steering according to an embodiment of the present invention.
茲就本發明之一較佳實施例,配合圖式,詳細說明如後。 Hereinafter, a preferred embodiment of the present invention will be described in detail in conjunction with the drawings.
請參閱圖1,為現有的雙馬達控制器的電動載具的架構圖。電動載具1(如電動三輪車)的左馬達控制器11可控制左馬達13單獨地提供動力至左驅動輪15,右馬達控制器12則可控制右馬達14單獨地提供動力至右驅動輪16。藉此,相較於單馬達驅動的電動載具,多馬達驅動的電動載具1可解決多驅動輪之間的傳動相關問題,並省略傳動結構而縮小體積。
Please refer to FIG. 1 , which is a structural diagram of a conventional electric vehicle with dual motor controllers. The
此外,為了於轉向時製造驅動輪15、16的速差。電動載具1設置差速控制器10(如電子差速器)。差速控制器10可以依據轉角θ計算兩個驅動輪15、16的速差,並發送指示速差的左差速命令C1與右差速命令C2(如不同的左輪速度與右輪速度)至左馬達控制器11與右馬達控制器12。接著,左馬達控制器11依據左差速命令C1發送左驅動命令C3至左馬達13以控制左馬達13以指定的左輪速度轉動左驅動輪15。並且,右馬達控制器12依據右差速命令C2發送右驅動命令C4至右馬達14以控制右馬達14以指定的右輪速度轉動右驅動輪16。藉此實現多馬達速差的動態控制。
In addition, in order to create a speed difference of the
然而,前述差速控制器10的設置不僅會增加成本,還會增加電動載具1的體積(如增加軸距),而降低轉向靈活性(迴轉半徑增加)。
However, the aforementioned arrangement of the
此外,前述多個馬達控制器11、12的設置同樣會造成成本與體積的增加。
In addition, the aforementioned arrangement of the plurality of
對此,本發明提出一種電動載具的驅動系統及其驅動控制方法,是用於具有多驅動模組的電動載具,並通過單一控制模組來分配控制各驅動模組的速度,藉以解決「多驅動模組的電動載具的動態速差控制、體積縮減與成本降低」等問題。 In this regard, the present invention proposes a drive system for an electric vehicle and a drive control method thereof, which is used for an electric vehicle with multiple drive modules, and distributes and controls the speed of each drive module through a single control module, so as to solve the problem of "Dynamic speed difference control, volume reduction and cost reduction of electric vehicles with multiple drive modules".
於本發明中,所述「轉向輪」與「驅動輪」,可以是單一輪胎,或於同一傳動軸上設置多個輪胎來組成,不加以限定。 In the present invention, the "steering wheel" and the "driving wheel" may be a single tire, or a plurality of tires are arranged on the same transmission shaft, which is not limited.
雖於本發明後述說明中,是以後驅之電動三輪車為例進行說明,但不以此限定本發明之動力設置位置與輪數。本發明所屬技術領域中具有通常知識者,自可依其需求參考本發明之揭露內容,將本發明之技術變更用於不同動力設置位置(如前驅)與輪數(如四輪電動汽車),這些變更都屬於本發明之保護範圍。 Although the following description of the present invention takes a rear-drive electric tricycle as an example, it does not limit the power setting position and the number of wheels of the present invention. Those with ordinary knowledge in the technical field to which the present invention pertains can refer to the disclosure content of the present invention according to their needs, and apply the technical changes of the present invention to different power setting positions (such as front-wheel drive) and number of wheels (such as four-wheel electric vehicles), These changes all belong to the protection scope of the present invention.
請參閱圖2,為本發明一實施例的電動載具的驅動系統的架構圖。本發明的電動載具2包括轉向輪24、多個驅動輪25(以左驅動輪25與右驅動輪26為例)與驅動系統。
Please refer to FIG. 2 , which is a structural diagram of a driving system of an electric vehicle according to an embodiment of the present invention. The
驅動系統可包括轉向裝置21、左驅動模組22、右驅動模組23與電性連接上述裝置的控制模組20。
The driving system may include a
轉向裝置21用來接受用戶的轉向操作來改變轉向輪24的朝向,而帶動電動載具2的車體往朝向偏移(如左彎、右彎或直線)。轉向裝置21並可用以取得轉向操作所對應的轉向資訊。
The
左驅動模組22可提供動力至左驅動輪25以控制左驅動輪25的轉動。右驅動模組23可提供動力至右驅動輪26以控制右驅動輪26的轉動。藉此,透過控制左驅動輪25與右驅動輪26的轉動,可帶動電動載具2進退方向與速度。
The
控制模組20(如包括處理器(或者微控制器、單晶片系統)、周邊控制電路與連接介面的控制盒)用來控制電動載具2(如啟動、關閉、增減速等)。 The control module 20 (eg, a control box including a processor (or a microcontroller, a single-chip system), a peripheral control circuit, and a connection interface) is used to control the electric vehicle 2 (eg, startup, shutdown, acceleration and deceleration, etc.).
於一實施例中,控制模組20進一步作為左驅動模組22與右驅動模組23的控制器。具體而言,控制模組20可以產生驅動控制命令(如左驅動控制命令與右驅動控制命令),並透過驅動控制命令來控制左驅動模組22與右驅動模組23的轉速與轉矩,進而控制電動載具2的各驅動輪的速度。
In one embodiment, the
更進一步地,控制模組20還可實現非對稱動力分配。具體而言,控制模組20可根據不同路況(如打滑、受困而單輪懸空、轉向等)讓左驅動控制命令與右驅動控制命令之間具有速差,而使得各驅動輪有不同的速度與動力,而實現穩定駕駛(如對打滑輪與未打滑輪進行不同的動力分配來穩定車體、提供未懸空輪更多動力來脫困、透過內外側速差穩定轉向等)。
Furthermore, the
於一實施例中,電動載具2為後驅設計的電動三輪車。前輪為轉向輪24,左驅動輪25與右驅動輪26為對稱設置的後輪。
In one embodiment, the
請參閱圖3,為本發明一實施例的轉向裝置的架構圖。本實施例的轉向裝置21可包括轉向結構30、速度控制結構31、速度取得模組32與轉向感測模組33。
Please refer to FIG. 3 , which is a structural diagram of a steering device according to an embodiment of the present invention. The
轉向結構30(如龍頭或方向盤)連接轉向輪24,可接受用戶的轉向操作,並透過機械結構改變轉向輪24的朝向。
The steering structure 30 (such as a faucet or a steering wheel) is connected to the
速度控制結構31,可接受用戶的速度變換操作(如加速操作、減速操作或倒車操作)觸發對應的速度變換訊號ωv(如加速訊號、減速訊號或倒車訊號)。
The
速度取得模組32可取得並提供電動載具2的當前速度ωc,如(透過碼表齒輪、碼表線與碼表模組)對轉向輪24、或驅動輪25-26的轉速進行速度感測,或者量測左驅動模組22與右驅動模組23的轉速。
The
轉向感測模組33可設置於轉向結構30(或轉向輪24)上,感測並提供轉向結構30(或轉向輪24)的轉向資訊δ。
The
於一實施例中,轉向資訊δ可以包括轉向座標,本實施例是將轉向結構30設定於一座標系中,並透過感測器(如光學或機械定位編碼器、加速度計、陀螺儀、電子羅盤等)量測轉向結構30(或轉向輪24)的當前的座標作為轉向座標。
In one embodiment, the steering information δ may include steering coordinates. In this embodiment, the
請一併參閱圖4與圖5,圖4為本發明一實施例的右驅動模組的架構圖,圖5為本發明一實施例的左驅動模組的架構圖。 Please refer to FIG. 4 and FIG. 5 together. FIG. 4 is a structural diagram of a right driving module according to an embodiment of the present invention, and FIG. 5 is a structural diagram of a left driving module according to an embodiment of the present invention.
右驅動模組23包括右驅動電路40、右變頻模組41、右馬達42與右馬達感測器43。左驅動模組22包括左驅動電路50、左變頻模組51、左馬達52與左馬達感測器53
The
右馬達42與左馬達52用來產生動力。具體而言,右馬達42透過右傳動結構44(如齒輪組、傳動皮帶或傳動鏈條)傳送動力至右驅動輪26,左馬達52透過左傳動結構54傳送動力至左驅動輪25。
The
於一實施例中,右馬達42與左馬達52為永磁同步馬達,但不以此限定。
In one embodiment, the
右驅動電路40與左驅動電路50是用來將類比電路訊號轉換為脈波訊號。具體而言,右驅動電路40可接受右驅動控制命令Cr,並依據右驅動控制命令Cr的右參考轉速輸出對應的右PWM(Pulse-width modulation,脈衝寬度調變)訊號。左驅動電路50可接受左驅動控制命令Cl,並依據左驅動控制命令Cl的左參考轉速輸出對應的左PWM訊號。
The
右變頻模組41與左變頻模組51分別用來依據所收到的脈波訊號調整右馬達42與左馬達52的輸入電壓與輸入電流,以分別調整右馬達42與左馬達52的轉矩與轉速。
The right
右馬達感測器43與左馬達感測器53(如霍爾感測器),分別設置於右馬達42與左馬達52,以分別感測右馬達42與左馬達52的當前轉動的感測資料(如位置與轉速)。
The
續請參閱圖6,為本發明一實施例的控制模組的架構圖。本發明之控制模組20可包括以下全部或部分模組60-64、620-621、630-631、640-641,前述各模組分別用以實現不同功能。
Please refer to FIG. 6 , which is a structural diagram of a control module according to an embodiment of the present invention. The
1.轉角計算模組60:被設定來分析轉向裝置21的轉向資訊,以將轉向結構30的轉向座標轉換為對應的轉向角度。
1. Steering angle calculation module 60 : configured to analyze the steering information of the
2.速度計算模組61:被設定來計算並分配各驅動輪(左驅動輪25與右驅動輪26)的參考速度(左參考速度與右參考速度),並產生對應的左驅動控制命令與右驅動控制命令。
2. Speed calculation module 61: is set to calculate and distribute the reference speed (left reference speed and right reference speed) of each driving wheel (left driving
3.驅動控制模組62:被設定來依據各驅動輪的驅動控制命令對對應的馬達的轉速與轉矩進行精準控制。 3. The drive control module 62 : is set to precisely control the rotational speed and torque of the corresponding motor according to the drive control command of each drive wheel.
於一實施例中,驅動控制模組62包括被設定來負責控制左馬達52的左驅動控制模組620與被設定來負責控制右馬達42的右驅動控制模組621。
In one embodiment, the
4.差速控制模組63:被設定來監測並修正各驅動輪的速度,以使感測到的各驅動輪的當前的實際速度(回授速度)符合最新的驅動控制命令所指定的參考速度。 4. Differential control module 63: set to monitor and correct the speed of each driving wheel, so that the sensed current actual speed (feedback speed) of each driving wheel conforms to the reference specified by the latest driving control command speed.
於一實施例中,差速控制模組63包括被設定來負責修正左馬達52的左當前速度(左回授速度)的左速度控制模組630與被設定來負責修正右馬達42的右當前速度(右回授速度)的右速度控制模組631。
In one embodiment, the
5.磁場導向控制模組64:透過霍爾感測器(hall sensor)取得各馬達的磁場變化的感測資料(同步磁場旋轉角度),並通過磁場導向控制(Field Oriented Control,FOC)技術來對各馬達進行向量控制(Vector Control)。透過向量控制,磁場導向控制模組64可即時調整轉矩與轉子速度,而可提供比傳統的電壓/頻率(V/F)控制法更為精準地馬達效能控制能力。
5. The magnetic field oriented control module 64: obtain the sensing data of the magnetic field change of each motor (synchronized magnetic field rotation angle) through the hall sensor, and use the Field Oriented Control (FOC) technology to Vector control is performed on each motor. Through vector control, the field-oriented
於一實施例中,磁場導向控制模組64包括被設定來負責精準控制左馬達52的轉矩與轉速的左磁場導向控制模組640與被設定來負責精準控制右馬達42的轉矩與轉速右磁場導向控制模組641。
In one embodiment, the field-guided
前述各模組是相互連接(可為電性連接與資訊連接),並可為硬體模組(如電子電路模組、積體電路模組、SoC等等)、軟體模組(如韌體、作業系統組件或應用程式)或軟硬體模組混搭,不加以限定。 The aforementioned modules are connected to each other (can be electrical connection and information connection), and can be hardware modules (such as electronic circuit modules, integrated circuit modules, SoC, etc.), software modules (such as firmware , operating system components or applications) or a mix of software and hardware modules, without limitation.
值得一提的是,當前述各模組為軟體模組(如應用程式)時,控制模組20可進一步包括儲存裝置。前述儲存裝置可包括非暫態電腦可讀取記錄媒體,前述非暫態電腦可讀取記錄媒體儲存有電腦程式,電腦程式記錄有電腦可
執行之程式碼,當控制模組20之處理器(或控制器)執行前述程式碼後,可實現前述各模組之功能。
It is worth mentioning that when the aforementioned modules are software modules (eg, application programs), the
圖8為本發明第一實施例的驅動控制方法的流程圖。本發明各實施例的驅動控制方法可應用於圖2至圖7所示的任一驅動系統組合。本實施例的驅動控制方法包括以下步驟。 FIG. 8 is a flowchart of a driving control method according to the first embodiment of the present invention. The driving control methods of the embodiments of the present invention can be applied to any combination of driving systems shown in FIGS. 2 to 7 . The drive control method of this embodiment includes the following steps.
步驟S10:控制模組20經由轉角計算模組60自轉向裝置21取得對應轉向輪24目前朝向的轉向資訊。前述轉向資訊可為座標資訊、角度資訊或其組合,不加以限定。
Step S10 : the
步驟S11:控制模組20經由速度計算模組61取得電動載具2的參考速度。
Step S11 : the
於一實施例中,控制模組20可自速度取得模組32取得電動載具2的當前速度ωc,自速度控制結構31取得速度變換訊號ωv,並依據速度變換訊號ωv調整當前速度ωc(如加速、減速或倒退等)以作為電動載具2的參考速度,即用戶輸入速度變換操作後所期望達到的速度。
In one embodiment, the
步驟S12:控制模組20經由速度計算模組61依據所取得的轉向資訊與電動載具2的參考速度分別計算用於控制左驅動模組22的左驅動控制命令與用於控制右驅動模組23的右驅動控制命令。前述驅動控制命令可為類比訊號或數位訊號,並用來指示對應的驅動模組的目標速度或目標速度增減幅度。
Step S12: The
步驟S13:控制模組20經由驅動控制模組62依據所產生的驅動控制命令控制各驅動模組調整速度(如轉速或轉矩)。
Step S13 : the
於一實施例中,控制模組20可經由左驅動控制模組620執行左驅動控制命令來控制左驅動模組22的左馬達52的速度,並經由右驅動控制模組621執行右驅動控制命令來控制右驅動模組23的右馬達42的速度。
In one embodiment, the
於一實施例中,為了大幅提升轉向穩定性、避免任一驅動輪懸空並造成翻覆,並同時兼顧轉向速度,本發明於轉向過程(如右彎或左彎)中會依據轉向幅度(即轉向角度)動態分配內側驅動輪與外側驅動輪的速度,使兩者具有速差。如外側驅動輪的速度大於內側驅動輪的速度,以適應轉向路線中,外側路線較內側路線長,藉以使所有驅動輪可穩定碰觸地面。 In one embodiment, in order to greatly improve the steering stability, prevent any driving wheel from hanging in the air and cause overturning, and at the same time take into account the steering speed, the present invention will determine the steering range (ie, the steering range) during the steering process (such as a right turn or a left turn). angle) to dynamically distribute the speed of the inner drive wheel and the outer drive wheel, so that there is a speed difference between the two. If the speed of the outer drive wheel is greater than the speed of the inner drive wheel, in order to adapt to the steering route, the outer route is longer than the inner route, so that all the drive wheels can stably touch the ground.
更進一步地,本發明是於轉向過程中產生具有速差的左驅動控制命令及右驅動控制命令,藉以製造左驅動輪25與右驅動輪26之間的速差來使電動載具2穩定轉向。
Furthermore, the present invention generates a left drive control command and a right drive control command with a speed difference during the turning process, so as to create a speed difference between the
於一實施例中,於轉向資訊指示為右轉時,左驅動控制命令的左輪參考速度是大於右驅動控制命令的右輪參考速度,以使行駛外側路線(較長)但速度較快的左驅動輪25可以與行駛內側路線(較短)但速度較慢的右驅動輪26維持在相同的彎角度。
In one embodiment, when the steering information indicates a right turn, the left wheel reference speed of the left drive control command is greater than the right wheel reference speed of the right drive control command, so that the left wheel driving the outer route (longer) but the speed is faster. The
於轉向資訊指示為左轉時,左輪參考速度是小於右輪參考速度,以使行駛外側路線但速度較快的右驅動輪26可以與行駛內側路線但速度較慢的左驅動輪25維持在相同的彎角度。
When the steering information indicates a left turn, the reference speed of the left wheel is lower than the reference speed of the right wheel, so that the
於轉向資訊為直行時,左輪參考速度與右輪參考速度之間的速差是不必要的,故可控制左輪參考速度與右輪參考速度之間的速差小於5%(如用來彌補左右負重的不平衡),或者設定為0%,不加以限定。 When the steering information is straight, the speed difference between the reference speed of the left wheel and the reference speed of the right wheel is unnecessary, so the speed difference between the reference speed of the left wheel and the reference speed of the right wheel can be controlled to be less than 5%. load imbalance), or set to 0%, without limitation.
請參閱圖10,為本發明一實施例的轉向示意圖。圖10用以示例性說明本發明於右轉時的參考速度的計算方式(同理亦可應用於左轉),但不以此限定本發明所涵蓋的參考速度計算方式。 Please refer to FIG. 10 , which is a schematic diagram of steering according to an embodiment of the present invention. FIG. 10 is used to illustrate the calculation method of the reference speed in the present invention when turning right (the same can also be applied to turning left), but this does not limit the calculation method of the reference speed covered by the present invention.
於本例子中,轉向輪80以轉向資訊δ進行右彎,重心為點83,彎中心為點84,彎中心距離為R。本例子是透過下述(式一)、(式二)來計算左參考速度與右參考速度。
In this example, the
其中,為左驅動輪的左參考速度;為右驅動輪的右參考速度;W為左驅動輪81與右驅動輪82之間的軸距;L為載具長度(如轉向輪80與驅動輪連線之間的垂直距離);δ為轉向資訊中的轉向角度;ω c 為當前速度,亦可替換為前述電動載具2的參考速度(當前速度加乘速度變換訊號);左驅動
輪81與右驅動輪82之間的速差為。
in, is the left reference speed of the left drive wheel; is the right reference speed of the right driving wheel; W is the wheelbase between the
更進一步地,於上述例子中,是設定以轉向輪80擺直的轉向角度為0,當轉向資訊δ(如30度的轉向角度)大於臨界值(如0度或5度)時,可判定為右轉,當轉向角度δ小於臨界值時,可判定為左轉,其餘情況判定為直行,但不以此限定,其角度之正負所對應的方向可依需求任意設定。
Furthermore, in the above example, the steering angle of the
請一併參閱圖9A及圖9B,圖9A為本發明第二實施例的驅動控制方法的第一流程圖,圖9B為本發明一實施例的驅動控制方法的第二流程圖。本實施例的驅動控制方法包括以下步驟。 Please refer to FIGS. 9A and 9B together. FIG. 9A is a first flowchart of a driving control method according to a second embodiment of the present invention, and FIG. 9B is a second flowchart of a driving control method according to an embodiment of the present invention. The drive control method of this embodiment includes the following steps.
步驟S20:控制模組20經由轉角計算模組60自轉向裝置21取得對應轉向輪24的朝向的轉向資訊。
Step S20 : the
於一實施例中,步驟S20可包括以下步驟S30-S31。 In one embodiment, the step S20 may include the following steps S30-S31.
步驟S30:控制模組20經由轉角計算模組60接收轉向感測模組33所提供的轉向座標(如轉向結構30當前的位置與姿態)。
Step S30 : the
步驟S31:控制模組20經由轉角計算模組60依據此轉向座標計算轉向輪24的轉向角度,並將轉向角度加入至轉向資訊。
Step S31 : the
步驟S21:控制模組20經由速度計算模組61取得電動載具2的參考速度。
Step S21 : the
步驟S22:控制模組20經由速度計算模組61計算左輪參考速度及右輪參考速度,並據以設定左驅動控制命令與右驅動控制命令。
Step S22: The
於一實施例中,參考前述(式一)與(式二),速度計算模組61可依據轉向角度的正切值或餘切值(即正切值之倒數,或可等效置換為其他三角函數)的其中之一、電動載具2的參考速度(或可採用當前速度)、電動載具2的長度及軸距計算左輪參考速度及右輪參考速度。
In one embodiment, referring to the above (Equation 1) and (Equation 2), the
於一實施例中,步驟S22可包括以下步驟S40-S43。 In one embodiment, step S22 may include the following steps S40-S43.
步驟S40:控制模組20經由轉角計算模組60依據轉向資訊決定轉向方向,如左彎、右彎或直行。
Step S40: The
並且,若為左彎或右彎,則執行步驟S41-S43以建立驅動輪之間的速差;若為直行,則略過建立速差。 And, if it is a left turn or a right turn, steps S41-S43 are executed to establish the speed difference between the driving wheels; if it is a straight run, the establishment of the speed difference is skipped.
步驟S41:控制模組20經由速度計算模組61依據前述(式一)與(式
二)計算半速差,即。
Step S41 : the
步驟S42:控制模組20經由速度計算模組61將電動載具2的參考速度(或當前速度)增加所算出的半速差來做為左輪參考速度與右輪參考速度之一(即外側的驅動輪,以右彎為左驅動輪25,左彎則為右驅動輪26),並設定對應的驅動控制命令。
Step S42: The
步驟S43:控制模組20經由速度計算模組61將電動載具2的參考速度(或當前速度)減少所算出的半速差來做為左輪參考速度與右輪參考速度之另一(即內側的驅動輪,以右彎為右驅動輪26,左彎則為左驅動輪25),並設定對應的驅動控制命令。
Step S43: The
接著,控制模組20可執行步驟S23-S26以取得各驅動輪與各馬達的速度。
Next, the
步驟S23:控制模組20經由左驅動控制模組620透過左馬達感測器53感測左馬達52的感測資料。
Step S23 : the
步驟S24:控制模組20經由左驅動控制模組620依據左馬達52的感測資料計算左驅動輪25的當前速度,如依據當前轉速、齒輪比與輪徑來計算當前速度。
Step S24 : the
步驟S25:控制模組20經由右驅動控制模組621透過右馬達感測器43感測右馬達42的感測資料。
Step S25 : the
步驟S26:控制模組20經由右驅動控制模組621依據右馬達42的感測資料計算右驅動輪26的當前速度。
Step S26 : the
步驟S27:控制模組20經由差速控制模組63依據左驅動控制命令與右驅動控制命令來控制左驅動模組22與右驅動模組23的速度。
Step S27 : the
於一實施例中,步驟S27可包括步驟S50、S52,步驟S50、S52是用來進行精確速度控制。 In one embodiment, step S27 may include steps S50 and S52, and steps S50 and S52 are used for precise speed control.
步驟S50:控制模組20經由左速度控制模組630持續調整左驅動模組22的速度,以使左驅動輪25的當前速度符合左驅動控制命令所指示的左輪參考速度。
Step S50: The
於一實施例中,左速度控制模組630取得左驅動模組22的左當前速度(左回授速度),依據左回授速度與左輪參考速度之間的差值來持續調整輸入至左變頻模組51的左參考速度之訊號。
In one embodiment, the left
步驟S52:控制模組20經由右速度控制模組631持續調整右驅動模組23的速度,以使右驅動輪26的當前速度符合右驅動控制命令所指示的右輪參考速度。
Step S52: The
於一實施例中,右速度控制模組631取得右驅動模組23的右當前速度(右回授速度),依據右回授速度與右輪參考速度之間的差值來持續調整輸入至右變頻模組41的右參考速度之訊號。
In one embodiment, the right
於一實施例中,步驟S27可包括步驟S51、S53,步驟S51、S53是用來基於FOC進行更精確轉速/轉矩控制。並且,左馬達52的感測資料包括左馬達52的轉速,右馬達42的感測資料包括右馬達42的轉速。
In one embodiment, step S27 may include steps S51 and S53, and steps S51 and S53 are used to perform more precise speed/torque control based on FOC. Moreover, the sensing data of the
步驟S51:控制模組20經由左磁場導向控制模組640通過調整用於左馬達52的PWM訊號來調整左馬達52的輸入電壓及輸入電流以調整左馬達52的轉速及/或轉矩,並使左馬達52的感測資料符合左驅動控制命令的左參考轉速。
Step S51 : the
於一實施例中,左磁場導向控制模組640取得左馬達52的感測資料(左回授資料,如透過霍爾感測器獲得的轉速資料),依據左回授資料與左輪參考轉速之間的差值來持續調整輸入至左馬達52的PWM訊號。
In one embodiment, the left magnetic field
步驟S53:控制模組20經由右磁場導向控制模組641通過調整用於右馬達42的PWM訊號來調整右馬達42的輸入電壓及輸入電流以調整右馬達42的轉速及/或轉矩,並使右馬達42的感測資料符合右驅動控制命令的右參考轉速。
Step S53 : the
於一實施例中,右磁場導向控制模組641取得右馬達42的感測資料(右回授資料),依據右回授資料與右輪參考轉速之間的差值來持續調整輸入至右馬達42的PWM訊號。
In one embodiment, the right magnetic field
步驟S28:控制模組20判斷驅動系統是否關閉,如用戶關閉電源,完成停車等。
Step S28 : the
若系統關閉,則結束控制。否則,再次執行步驟S20-S27以持續監測與控制。 If the system is turned off, the control is ended. Otherwise, steps S20-S27 are performed again to continuously monitor and control.
藉此,本發明可有效實現單控制盒多馬達的速差控制。 Thereby, the present invention can effectively realize the speed difference control of single control box and multiple motors.
請參閱圖7,為本發明一實施例的驅動系統的電路架構圖。各功能塊701-725可為硬體或軟體,不加以限定。 Please refer to FIG. 7 , which is a circuit structure diagram of a driving system according to an embodiment of the present invention. Each functional block 701-725 can be hardware or software, which is not limited.
首先,轉向資訊輸入701輸入轉向座標δ*,參考速度輸入702輸入參考速度ω*至虛線所示之電子差速系統(Electronic Differential System,,EDS)。
First, the steering
轉角計算704、705依據轉向座標δ*計算對應的轉向角度,並分別輸入至組合706、707,以使轉向角度結合參考速度ω*。
The
接著,因子加乘708、709分別基於轉向角度結合參考速度ω*計算並輸出左參考速度與右參考速度。
Next,
接著,速度回授710、711分別基於左回授速度ω l 與右回授速度ω r 計算新的左參考速度與右參考速度,並輸入至速度控制712、713。
Next, the
速度控制712、713將左參考速度與右參考速度轉換為類比的左參考速度控制訊號與類比的右參考速度控制訊號,並輸入至FOC 714、715。
The speed controls 712, 713 set the left reference speed with right reference speed Converted to analog left reference speed control signal Right reference speed control signal with analog , and input to
FOC 714、715分別依據收到的訊號產生對應的PWM訊號,並輸入至分離與驅動電路716、717。並且,FOC 714、715還可自霍爾感測器722、723取得回授轉速,並執行向量控制。
The
分離與驅動電路716、717透過變頻處理718(包括左變頻器T1L、T2L、T3L、T4L、T5L、T6L,如功率晶體開關)與變頻處理719(包括右變頻器T1R、T2R、T3RL、T4R、T5R、T6R,如功率晶體開關)改變馬達720、721的輸入電壓與輸入電流,藉以改變馬達720、721的轉速與轉矩。
Separation and drive
此外,霍爾感測器722、723可持續感測馬達720、721的感測資料,並由速度計算724、725據以算出左回授速度ω l 與右回授速度ω r ,以供作為速度回授。
In addition, the
本發明透過電子差速控制可實現穩定轉向並提升安全性。 The present invention can realize stable steering and improve safety through electronic differential control.
以上所述僅為本發明之較佳具體實例,非因此即侷限本發明之申請專利範圍,故舉凡運用本發明內容所為之等效變化,均同理皆包含於本發明之範圍內,合予陳明。 The above description is only a preferred specific example of the present invention, and therefore does not limit the scope of the present invention. Therefore, all equivalent changes made by using the content of the present invention are all included in the scope of the present invention. Chen Ming.
2:電動載具 2: Electric vehicle
20:控制模組 20: Control Module
21:轉向裝置 21: Steering device
22:左驅動模組 22: Left drive module
23:右驅動模組 23: Right drive module
24:轉向輪 24: steering wheel
25、26:驅動輪 25, 26: drive wheel
δ:轉向資訊 delta: steering information
Cl:左驅動控制命令 Cl: Left drive control command
Cr:右驅動控制命令 Cr: Right drive control command
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110111138A TWI778558B (en) | 2021-03-26 | 2021-03-26 | Driving system and driving control method for electric vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110111138A TWI778558B (en) | 2021-03-26 | 2021-03-26 | Driving system and driving control method for electric vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI778558B true TWI778558B (en) | 2022-09-21 |
TW202237452A TW202237452A (en) | 2022-10-01 |
Family
ID=84958320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110111138A TWI778558B (en) | 2021-03-26 | 2021-03-26 | Driving system and driving control method for electric vehicles |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI778558B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090065273A1 (en) * | 2007-09-11 | 2009-03-12 | Hydro-Gear Limited Partnership | Control Systems And Methods For Electric Drive Utility Vehicles |
CN102275580A (en) * | 2010-06-10 | 2011-12-14 | 福特全球技术公司 | Motor vehicle and method for controlling same |
CN107512200A (en) * | 2017-09-07 | 2017-12-26 | 东莞市奇立电源有限公司 | A kind of motor vehicle dual-motor drive dynamic control device and method |
CN108773409A (en) * | 2018-05-29 | 2018-11-09 | 山推工程机械股份有限公司 | A kind of Steerring in situ device, engineering machinery and bull-dozer control method |
US10202038B2 (en) * | 2013-09-18 | 2019-02-12 | Ntn Corporation | Electric-vehicle slip control device |
-
2021
- 2021-03-26 TW TW110111138A patent/TWI778558B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090065273A1 (en) * | 2007-09-11 | 2009-03-12 | Hydro-Gear Limited Partnership | Control Systems And Methods For Electric Drive Utility Vehicles |
CN102275580A (en) * | 2010-06-10 | 2011-12-14 | 福特全球技术公司 | Motor vehicle and method for controlling same |
US10202038B2 (en) * | 2013-09-18 | 2019-02-12 | Ntn Corporation | Electric-vehicle slip control device |
CN107512200A (en) * | 2017-09-07 | 2017-12-26 | 东莞市奇立电源有限公司 | A kind of motor vehicle dual-motor drive dynamic control device and method |
CN108773409A (en) * | 2018-05-29 | 2018-11-09 | 山推工程机械股份有限公司 | A kind of Steerring in situ device, engineering machinery and bull-dozer control method |
Also Published As
Publication number | Publication date |
---|---|
TW202237452A (en) | 2022-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107627900B (en) | Differential torque control system and control method for double-wheel-side motor of electric vehicle | |
CN103879307B (en) | A kind of trailing wheel individual drive control system for electronlmobil and method | |
US8544592B2 (en) | Steering apparatus for vehicle | |
CN103569194B (en) | The power steering control system of vehicle | |
KR101734277B1 (en) | Method for controlling vehicle using in wheel system | |
CN202201103U (en) | Electric two-wheel balance vehicle | |
CN108860296B (en) | Electronic differential control system of electric automobile and electric automobile based on steering angle closed loop | |
CN111422250B (en) | Rear wheel steering control method, device and system and computer storage medium | |
WO2017162125A1 (en) | Four-wheel balance scooter based on gravity center detection | |
US11472471B2 (en) | Differential cooperative active steering for a front-axle independent-drive vehicle with electric wheels and control method therefor | |
CN109263717A (en) | A kind of multi-mode steering-by-wire automobile and its rotating direction control method | |
CN113978549B (en) | Line control low-speed flexibility regulation control method and system | |
JP2006141150A (en) | Regenerative controller | |
JP2009133426A (en) | Driving force distribution device, control device of driving force distribution device, control method, program for realizing its method by computer and recording medium for recording its program | |
TWI778558B (en) | Driving system and driving control method for electric vehicles | |
CN112277929B (en) | Vehicle wheel slip rate control method and device, vehicle and storage medium | |
CN109532830A (en) | Vehicle and its crosswise joint method, system, electronic equipment and storage medium | |
CN112947432A (en) | Three-steering wheel control algorithm | |
CN109808698A (en) | A kind of calculation method of speed, device and mobile unit | |
CN205292899U (en) | Electric bicycle | |
JP2014113013A (en) | Motor drive device for forklift and electric forklift using the same | |
CN116968808A (en) | Control method of cross-symmetrical four-wheel independent drive steering robot and robot | |
CN111497927A (en) | Control device for vehicle | |
TW202243954A (en) | Electric vehicle with velocity difference control and velocity difference control method thereof | |
CN206537342U (en) | A kind of composite turning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |