TWI777866B - Photovoltaic module detecting system and method thereof - Google Patents

Photovoltaic module detecting system and method thereof Download PDF

Info

Publication number
TWI777866B
TWI777866B TW110144290A TW110144290A TWI777866B TW I777866 B TWI777866 B TW I777866B TW 110144290 A TW110144290 A TW 110144290A TW 110144290 A TW110144290 A TW 110144290A TW I777866 B TWI777866 B TW I777866B
Authority
TW
Taiwan
Prior art keywords
image
module
photovoltaic module
solar photovoltaic
output
Prior art date
Application number
TW110144290A
Other languages
Chinese (zh)
Other versions
TW202322549A (en
Inventor
趙貴祥
李佳諺
Original Assignee
國立勤益科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立勤益科技大學 filed Critical 國立勤益科技大學
Priority to TW110144290A priority Critical patent/TWI777866B/en
Application granted granted Critical
Publication of TWI777866B publication Critical patent/TWI777866B/en
Publication of TW202322549A publication Critical patent/TW202322549A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Photovoltaic Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

A photovoltaic module detecting system includes a drone and a processing terminal. The drone includes an infrared camera lens assembly and a visible light camera lens assembly, and the camera lens assemblies shoot a picture on a photovoltaic module and outputs an image. The processing terminal is signally connected to the drone, and includes an image clarifying module, an image blackscaling module, a negative image module and a state detecting module. The image clarifying module receives the image and outputs a clarified image. The image blackscaling module is signally connected to the image clarifying module and outputs a blackscaled image. The negative image module is signally connected to the image blackscaling module and output a negative image. The state detecting module is signally connected to the image clarifying module, the image blackscaling module and the negative image module and output a plurality of characteristics. According to an extension algorithm, the state detecting module output a state signal. Therefore, fault states can be categorized and the accuracy of detecting can be improved.

Description

太陽光電模組檢測系統及其方法Solar photovoltaic module detection system and method

本揭示內容係關於一種太陽光電模組檢測系統及其方法,且特別是關於一種可檢測不同故障狀態的太陽光電模組檢測系統及其方法。The present disclosure relates to a photovoltaic module detection system and method thereof, and more particularly, to a photovoltaic photovoltaic module detection system and method capable of detecting different fault states.

因應目前環保的趨勢,太陽光電模組正逐漸發展,其檢測系統也隨之受到人們重視。習知的檢測系統透過裝設旁路二極體(bypass diode)或阻絕二極體(blocking diode)分析太陽光電模組的電流、電壓及功率變化以判斷是否故障,然而因環境變化的影響以及故障時的電流、電壓及功率不同,導致分析上無法準確判斷。隨後,雖然發展出透過無人機拍攝照片以增進檢測的準確度,但因為無人機搭載鏡頭的畫素過低而無法判斷故障的種類,使得準確度無法提升,而若搭配高畫素鏡頭,則會造成過高的成本。是以,在無法準確判斷太陽光電模組故障情形下,業者往往必須更換一整組太陽光電模組,導致成本上無謂的浪費。In response to the current trend of environmental protection, solar photovoltaic modules are gradually developing, and their detection systems have also received attention. The conventional detection system analyzes the current, voltage and power changes of the solar photovoltaic module by installing bypass diodes or blocking diodes to determine whether there is a fault. However, due to the influence of environmental changes and The current, voltage and power at the time of failure are different, resulting in an inaccurate judgment in analysis. Later, although the use of drones to take photos was developed to improve the accuracy of detection, the type of fault cannot be determined because the pixels of the lens mounted on the drone are too low, so the accuracy cannot be improved. would result in excessive costs. Therefore, when it is impossible to accurately determine the failure of the photovoltaic modules, the industry often has to replace a whole set of photovoltaic modules, resulting in unnecessary waste of cost.

有鑑於此,一種能夠檢測不同太陽光電模組故障狀態以及提高檢測準確度的太陽光電模組檢測系統仍是目前相關業者共同努力的目標。In view of this, a solar photovoltaic module detection system that can detect the fault states of different photovoltaic modules and improve the detection accuracy is still the goal of joint efforts of related industries.

本揭示內容之一目的在於提供一種太陽光電模組檢測系統及其方法,透過無人機拍攝太陽光電模組,並藉由處理終端的狀態檢測模組依據可拓演算法輸出關聯函數值,並且根據關聯函數值之最大者輸出一狀態訊號。藉此,可將太陽光電模組不同的故障狀態進行分類並檢測,且提升檢測的準確度。One of the objectives of the present disclosure is to provide a solar photovoltaic module detection system and a method thereof, wherein the photovoltaic module is photographed by a drone, and the state detection module of the processing terminal outputs the correlation function value according to the extension algorithm, and according to the The largest value of the correlation function outputs a status signal. Thereby, different fault states of the solar photovoltaic module can be classified and detected, and the detection accuracy can be improved.

本揭示內容之一實施方式提供一種太陽光電模組檢測系統,其包含一無人機及一處理終端。無人機包含至少一鏡頭,且鏡頭拍攝至少一太陽光電模組並輸出至少一影像。處理終端訊號連接無人機,且包含一影像清晰模組、一影像黑階模組、一影像負片模組及一狀態檢測模組。影像清晰模組接收影像並輸出一清晰影像。影像黑階模組訊號連接影像清晰模組,且接收清晰影像並輸出一黑階影像。影像負片模組訊號連接影像黑階模組,且接收黑階影像並依據一環境設定值輸出一負片影像。狀態檢測模組訊號連接影像黑階模組及影像負片模組,接收黑階影像及負片影像並輸出複數特徵。各特徵包含一節域值,且各特徵對應複數狀態分別具有複數經典域範圍。依據一可拓演算法,節域值與經典域範圍的距離對應各狀態分別輸出一關聯函數值,且根據關聯函數值之最大者輸出一狀態訊號。An embodiment of the present disclosure provides a photovoltaic module detection system, which includes a drone and a processing terminal. The drone includes at least one lens, and the lens captures at least one solar photovoltaic module and outputs at least one image. The processing terminal signal is connected to the drone, and includes a clear image module, an image black level module, an image negative film module and a state detection module. The image clearing module receives the image and outputs a clear image. The signal of the image black level module is connected to the clear image module, and receives the clear image and outputs a black level image. The signal of the image negative film module is connected to the image black level module, and receives the black level image and outputs a negative film image according to an environment setting value. The signal of the state detection module is connected to the image black level module and the image negative film module, receives the black level image and the negative film image and outputs complex features. Each feature includes a field value, and the corresponding complex state of each feature has a complex classical field range. According to an extension algorithm, the distance between the node domain value and the classical domain range corresponds to each state to output a correlation function value, and output a state signal according to the largest correlation function value.

藉此,透過處理終端分析無人機拍攝之太陽光電模組的影像,狀態檢測模組可將太陽光電模組不同的故障狀態進行分類並檢測,且提升檢測的準確度。Therefore, by analyzing the image of the solar photovoltaic module captured by the drone through the processing terminal, the status detection module can classify and detect different fault states of the solar photovoltaic module, and improve the detection accuracy.

依據前段所述之實施方式的太陽光電模組檢測系統,其中至少一鏡頭的數量可為二,二鏡頭分別為一可見光鏡頭及一紅外線鏡頭,且影像包含一可見光影像及一熱影像。In the solar photovoltaic module detection system according to the embodiment described in the preceding paragraph, the number of at least one lens may be two, the two lenses are a visible light lens and an infrared lens respectively, and the images include a visible light image and a thermal image.

依據前段所述之實施方式的太陽光電模組檢測系統,其中無人機可依據一規劃路徑拍攝太陽光電模組。According to the solar photoelectric module detection system of the embodiment described in the preceding paragraph, the drone can photograph the solar photoelectric module according to a planned path.

依據前段所述之實施方式的太陽光電模組檢測系統,可更包含一電子裝置,其訊號連接處理終端並接收狀態訊號。The solar photovoltaic module detection system according to the embodiment described in the preceding paragraph may further include an electronic device, the signal of which is connected to the processing terminal and receives the status signal.

本揭示內容之一實施方式提供一種太陽光電模組檢測方法,其包含一拍攝步驟、一影像處理步驟及一狀態檢測步驟。拍攝步驟透過一無人機拍攝至少一太陽光電模組並輸出至少一影像至一處理終端。影像處理步驟包含一影像清晰化步驟、一影像黑階化步驟、一影像負片化步驟及一特徵輸出步驟。影像清晰化步驟係依據影像透過處理終端的一影像清晰模組輸出一清晰影像。影像黑階化步驟係依據清晰影像透過處理終端的一影像黑階模組輸出一黑階影像。影像負片化步驟係依據黑階影像透過處理終端的一影像負片模組輸出一負片影像。特徵輸出步驟係依據黑階影像及負片影像透過處理終端的一狀態檢測模組輸出複數特徵,其中各特徵包含一節域值,且各特徵對應複數狀態分別具有複數經典域範圍。狀態檢測步驟係依據一可拓演算法,將節域值與經典域範圍的距離對應各狀態分別輸出一關聯函數值,且根據關聯函數值之最大者輸出一狀態訊號。An embodiment of the present disclosure provides a solar photovoltaic module detection method, which includes a photographing step, an image processing step, and a state detection step. The photographing step uses a drone to photograph at least one solar photovoltaic module and outputs at least one image to a processing terminal. The image processing step includes an image sharpening step, an image black leveling step, an image negative filming step and a feature outputting step. The image sharpening step is to output a clear image through an image sharpening module of the processing terminal according to the image. The step of image black leveling is to output a black level image through an image black level module of the processing terminal according to the clear image. The step of image negative filming is to output a negative film image through an image negative film module of the processing terminal according to the black level image. The feature output step is to output complex features through a state detection module of the processing terminal according to the black level image and the negative image, wherein each feature includes a domain value, and each feature corresponding to the complex state has a complex classical domain range. The state detection step is based on an extension algorithm, outputs a correlation function value corresponding to each state corresponding to the distance between the node domain value and the classical domain range, and outputs a state signal according to the maximum value of the correlation function value.

藉此,透過無人機拍攝太陽光電模組的影像,可將太陽光電模組不同的故障狀態進行分類並檢測,且提升檢測的準確度。In this way, by taking images of the photovoltaic modules by drones, different fault states of the photovoltaic modules can be classified and detected, and the detection accuracy can be improved.

依據前段所述之實施方式的太陽光電模組檢測方法,其中狀態檢測步驟可包含各特徵設定一權重值,且將節域值與經典域範圍的距離對應各狀態的權重值分別輸出各關聯函數值。According to the solar photovoltaic module detection method of the embodiment described in the preceding paragraph, the state detection step may include setting a weight value for each feature, and outputting each correlation function corresponding to the weight value of each state corresponding to the distance between the node domain value and the classical domain range value.

依據前段所述之實施方式的太陽光電模組檢測方法,其中影像負片化步驟可包含影像負片模組依據一環境溫度設定一環境設定值,並根據環境設定值輸出負片影像。According to the solar photovoltaic module detection method of the embodiment described in the preceding paragraph, the image negative filming step may include that the image negative film module sets an environmental setting value according to an environmental temperature, and outputs a negative film image according to the environmental setting value.

依據前段所述之實施方式的太陽光電模組檢測方法,其中特徵輸出步驟可包含特徵包含一發熱特徵,且狀態檢測模組依據負片影像輸出一發熱點影像,發熱特徵對應發熱點影像。According to the solar photovoltaic module detection method of the embodiment described in the preceding paragraph, the feature output step may include that the feature includes a heating feature, and the state detection module outputs a heating point image according to the negative film image, and the heating feature corresponds to the heating point image.

依據前段所述之實施方式的太陽光電模組檢測方法,可更包含一路徑規劃步驟。路徑規劃步驟中,將無人機依據一規劃路徑拍攝太陽光電模組。The solar photovoltaic module detection method according to the embodiment described in the preceding paragraph may further include a path planning step. In the path planning step, the drone shoots the solar photovoltaic module according to a planned path.

依據前段所述之實施方式的太陽光電模組檢測方法,可更包含一狀態回報步驟。狀態回報步驟中,當狀態訊號為一故障訊號,處理終端將故障訊號傳輸至一電子裝置。The solar photovoltaic module detection method according to the embodiment described in the preceding paragraph may further include a status reporting step. In the status reporting step, when the status signal is a fault signal, the processing terminal transmits the fault signal to an electronic device.

請參照第1圖及第2圖,其中第1圖繪示依照本揭示內容之一實施例的太陽光電模組檢測系統100的示意圖,第2圖繪示依照第1圖實施例中處理終端120及電子裝置130的示意圖。如第1圖及第2圖所示,太陽光電模組檢測系統100包含一無人機110及一處理終端120。無人機110包含至少一鏡頭,鏡頭拍攝至少一太陽光電模組140並輸出至少一影像 (圖未繪示)。處理終端120訊號連接無人機110,且包含一影像清晰模組121、一影像黑階模組122、一影像負片模組123及一狀態檢測模組124。影像清晰模組121接收影像並輸出一清晰影像。影像黑階模組122訊號連接影像清晰模組121,且接收清晰影像並輸出一黑階影像。影像負片模組123訊號連接影像黑階模組122,且接收黑階影像並依據一環境設定值輸出一負片影像。狀態檢測模組124訊號連接影像黑階模組122及影像負片模組123,接收黑階影像及負片影像並輸出複數特徵。各特徵包含一節域值,且各特徵對應複數狀態分別具有複數經典域範圍。依據一可拓演算法,節域值與經典域範圍的距離對應各狀態分別輸出一關聯函數值,且根據關聯函數值之最大者輸出一狀態訊號S1。Please refer to FIG. 1 and FIG. 2, wherein FIG. 1 shows a schematic diagram of a photovoltaic module detection system 100 according to an embodiment of the present disclosure, and FIG. 2 shows a processing terminal 120 according to the embodiment of FIG. 1 and a schematic diagram of the electronic device 130 . As shown in FIG. 1 and FIG. 2 , the photovoltaic module detection system 100 includes a drone 110 and a processing terminal 120 . The drone 110 includes at least one lens, and the lens captures at least one solar photovoltaic module 140 and outputs at least one image (not shown). The signal processing terminal 120 is connected to the drone 110 and includes an image clearing module 121 , an image black level module 122 , an image negative film module 123 and a state detection module 124 . The image clearing module 121 receives the image and outputs a clear image. The signal of the image black level module 122 is connected to the clear image module 121, and receives the clear image and outputs a black level image. The signal of the image negative film module 123 is connected to the image black level module 122, and receives the black level image and outputs a negative film image according to an environment setting value. The signal of the state detection module 124 is connected to the image black level module 122 and the image negative film module 123 , receives the black level image and the negative film image, and outputs complex features. Each feature includes a field value, and the corresponding complex state of each feature has a complex classical field range. According to an extension algorithm, the distance between the node domain value and the classical domain range corresponds to each state to output a correlation function value respectively, and output a state signal S1 according to the maximum of the correlation function values.

透過處理終端120分析無人機110拍攝之太陽光電模組140的影像,不須使用搭載高畫素鏡頭的無人機仍可維持檢測的精準度,並且本揭示內容之太陽光電模組檢測系統100可將太陽光電模組140不同的故障狀態進行分類並檢測,且提升檢測的準確度,藉以提升維修時的效率並可根據故障狀態更換故障的太陽光電模組140,減少太陽光電模組不必要的發電量損失。太陽光電模組檢測系統100的結構細節將細述如下。By analyzing the image of the solar photovoltaic module 140 captured by the drone 110 through the processing terminal 120, the detection accuracy can still be maintained without using a drone equipped with a high-pixel lens, and the solar photovoltaic module detection system 100 of the present disclosure can The different fault states of the photovoltaic modules 140 are classified and detected, and the detection accuracy is improved, so as to improve the efficiency of maintenance, and the faulty photovoltaic modules 140 can be replaced according to the fault state, thereby reducing unnecessary solar photovoltaic modules. Loss of power generation. The structural details of the solar photovoltaic module detection system 100 will be described in detail as follows.

第1圖實施例中,鏡頭的數量可為二,且二鏡頭分別為一可見光鏡頭111及一紅外線鏡頭112,且影像包含一可見光影像及一熱影像,但本揭示內容不以此為限。無人機110可依據一規劃路徑拍攝太陽光電模組140。藉此,無人機110可定時拍攝,進而節省操作時的時間成本。具體而言,影像清晰模組121可包含一可見光影像輸出模組1211及一熱影像輸出模組1212。可見光影像輸出模組1211接收可見光影像且訊號連接影像黑階模組122。熱影像輸出模組1212接收熱影像且訊號連接影像黑階模組122,但本揭示內容不以此為限。In the embodiment of FIG. 1, the number of lenses may be two, and the two lenses are a visible light lens 111 and an infrared lens 112 respectively, and the images include a visible light image and a thermal image, but the disclosure is not limited thereto. The drone 110 can photograph the solar photovoltaic module 140 according to a planned path. In this way, the drone 110 can take pictures periodically, thereby saving time and cost during operation. Specifically, the image clearing module 121 may include a visible light image output module 1211 and a thermal image output module 1212 . The visible light image output module 1211 receives the visible light image and the signal is connected to the image black level module 122 . The thermal image output module 1212 receives the thermal image and the signal is connected to the image black level module 122, but the present disclosure is not limited thereto.

太陽光電模組檢測系統100之電子裝置130訊號連接處理終端120並接收狀態訊號S1,且訊號連接可為有線訊號連接或無線訊號連接。電子裝置130可以是手機或電腦,但本揭示內容不以此為限。藉此,可將太陽光電模組140的狀況即時回傳給使用者。The electronic device 130 of the photovoltaic module detection system 100 is signal-connected to the processing terminal 120 and receives the status signal S1, and the signal connection can be a wired signal connection or a wireless signal connection. The electronic device 130 may be a mobile phone or a computer, but the present disclosure is not limited thereto. In this way, the status of the photovoltaic module 140 can be sent back to the user in real time.

具體而言,處理終端120可以是電腦或雲端系統,且影像清晰模組121、影像黑階模組122、影像負片模組123及狀態檢測模組124可依據MATLAB的指令執行前述功能,但本揭示內容不以此為限。影像清晰模組121可依據拉普拉斯(Laplace)影像檢測方法將影像透過二階導數銳化以輸出一清晰影像,但本揭示內容不以此為限。進一步來說,清晰影像可包含一清晰可見光影像及一清晰熱影像。可見光影像輸出模組1211及熱影像輸出模組1212分別透過二階導數銳化以輸出清晰可見光影像及清晰熱影像。影像黑階模組122可依據清晰可見光影像及清晰熱影像分別輸出黑階影像。其他實施例中,熱影像輸出模組1212亦可不透過二階導數銳化並直接輸出熱影像。拉普拉斯影像檢測方法係通過對影像進行二階微分處理實現邊緣檢測的方法如式(1):

Figure 02_image001
…(1)。 Specifically, the processing terminal 120 can be a computer or a cloud system, and the image clearing module 121 , the image black level module 122 , the image negative film module 123 and the state detection module 124 can perform the aforementioned functions according to the instructions of MATLAB. The disclosure content is not limited to this. The image clearing module 121 can sharpen the image through the second derivative according to the Laplace image detection method to output a clear image, but the present disclosure is not limited thereto. Further, the clear image may include a clear visible light image and a clear thermal image. The visible light image output module 1211 and the thermal image output module 1212 are respectively sharpened by the second derivative to output a clear visible light image and a clear thermal image. The image black level module 122 can respectively output black level images according to the clear visible light image and the clear thermal image. In other embodiments, the thermal image output module 1212 can also directly output the thermal image without sharpening through the second derivative. The Laplacian image detection method is a method for realizing edge detection by performing second-order differential processing on the image, as shown in formula (1):
Figure 02_image001
…(1).

而二階導數對離散點和雜訊比較敏感。因此,首先將對影像進行高斯卷積濾波降噪處理,再採用拉普拉斯運算式進行邊緣檢測,這種濾波組合被稱為高斯濾波的拉普拉斯,其方程式分別如式(2)及式(3):

Figure 02_image003
…(2);以及
Figure 02_image005
…(3)。 The second derivative is more sensitive to discrete points and noise. Therefore, the image is first subjected to Gaussian convolution filtering and noise reduction, and then the Laplacian formula is used for edge detection. This filtering combination is called Laplacian of Gaussian filtering, and its equations are as shown in Equation (2) And formula (3):
Figure 02_image003
…(2); and
Figure 02_image005
…(3).

清晰影像的清晰度值F AMP可透過式(4)得知:

Figure 02_image007
…(4)。 The sharpness value F AMP of a clear image can be obtained by formula (4):
Figure 02_image007
…(4).

清晰影像為N*N的點構成的圖像,I(x,y)為清晰影像在每個點上的影像值,u為整張清晰影像的平均值。當清晰度值F AMP越大時,代表經過二階導數銳化的清晰影像越清晰。 The clear image is an image composed of N*N points, I(x,y) is the image value of the clear image at each point, and u is the average value of the entire clear image. When the sharpness value F AMP is larger, it represents the sharper image sharpened by the second derivative.

請參照第3A圖及第3B圖,其中第3A圖繪示依照第2圖實施例中一黑階影像B10及依據一環境設定值level1輸出的負片影像N10的示意圖,第3B圖繪示依照第2圖實施例中一黑階影像B10及依據另一環境設定值level2輸出的另一負片影像N20的示意圖。如第3A圖所示,影像黑階模組122及影像負片模組123可分別接收清晰熱影像輸出黑階影像B10及依據一環境設定值level1輸出負片影像N10。在第3A圖實施例中,影像負片模組123可依據MATLAB的指令,設定level1=0.65,並且透過負片影像N10得出高溫特徵C1、C2。如第3B圖所示,影像負片模組123可依據另一環境設定值level2輸出負片影像N20。在第3B圖實施例中,level2=0.75,並且透過負片影像N20得出高溫特徵C3。進一步來說,影像負片模組123可依據無人機110拍攝之太陽光電模組140的環境溫度設定環境設定值,並根據環境設定值輸出負片影像N10、N20。透過比較第3A圖及第3B圖可得知,高溫特徵C2並非太陽光電模組140實際產生高溫的部分,且藉由將環境設定值由level1調整為level2,可得知太陽光電模組140產生高溫的部分在高溫特徵C1(即高溫特徵C3)。藉此,依據太陽光電模組140的環境溫度調整環境設定值,可更準確判斷太陽光電模組140產生高溫的部位並提升判斷故障的精準度。Please refer to FIGS. 3A and 3B, wherein FIG. 3A shows a black level image B10 according to the embodiment of FIG. 2 and a schematic diagram of a negative image N10 output according to an environmental setting value level1, and FIG. 3B shows a schematic diagram according to the first 2 is a schematic diagram of a black-level image B10 and another negative image N20 output according to another environment setting value level2 in the embodiment. As shown in FIG. 3A , the image black level module 122 and the image negative film module 123 can respectively receive a clear thermal image to output a black level image B10 and output a negative film image N10 according to an environmental setting value level1. In the embodiment of FIG. 3A, the image negative film module 123 can set level1=0.65 according to the instruction of MATLAB, and obtain the high temperature characteristics C1 and C2 through the negative film image N10. As shown in FIG. 3B , the image negative film module 123 can output the negative film image N20 according to another environment setting value level2. In the embodiment of Fig. 3B, level2=0.75, and the high temperature characteristic C3 is obtained through the negative image N20. Further, the image negative film module 123 can set an environmental setting value according to the environmental temperature of the solar photovoltaic module 140 captured by the drone 110, and output the negative film images N10 and N20 according to the environmental setting value. By comparing Fig. 3A and Fig. 3B, it can be seen that the high temperature characteristic C2 is not the part of the solar photovoltaic module 140 that actually generates high temperature, and by adjusting the environmental setting value from level1 to level2, it can be known that the photovoltaic module 140 generates a high temperature The high temperature portion is in high temperature feature C1 (ie, high temperature feature C3). In this way, the environment setting value is adjusted according to the ambient temperature of the photovoltaic module 140 , so that the location of the photovoltaic module 140 where high temperature is generated can be more accurately determined and the accuracy of fault determination can be improved.

請配合參照第4圖,其繪示依照第2圖實施例中清晰熱影像H30結合負片影像N30的示意圖。如第4圖所示,狀態檢測模組124,由黑階影像取得發熱點並輸出一發熱點影像,為方便辨識輸出清晰熱影像H30,且狀態檢測模組124輸出的特徵包含三發熱特徵HP,發熱特徵HP為太陽光電模組140的三個發熱點並對應發熱點影像。藉此,狀態檢測模組124可透過發熱特徵HP判斷太陽光電模組140是否發生故障。Please refer to FIG. 4 , which is a schematic diagram of a clear thermal image H30 combined with a negative image N30 according to the embodiment of FIG. 2 . As shown in FIG. 4 , the state detection module 124 obtains the hot spot from the black level image and outputs a hot spot image, and outputs a clear thermal image H30 for the convenience of identification, and the features output by the state detection module 124 include three heat generation features HP , the heat-generating feature HP is the three heat-generating points of the solar photovoltaic module 140 and corresponds to the image of the heat-generating points. In this way, the state detection module 124 can determine whether the solar photovoltaic module 140 is faulty through the heating characteristic HP.

請配合參照第5A圖、第5B圖、第6A圖及第6B圖,其中第5A圖繪示依照第1圖實施例中太陽光電模組140的可見光影像,第5B圖繪示依照第5A圖實施例中太陽光電模組140的熱影像,第6A圖繪示依照第1圖實施例中太陽光電模組140的另一可見光影像,第6B圖繪示依照第6A圖實施例中太陽光電模組140的熱影像。如第5A圖及第5B圖所示,狀態檢測模組124接收可見光影像及熱影像輸出的黑階影像,可檢測並輸出破裂導致的髒污特徵C4及發熱特徵C6、灰塵造成高溫的發熱特徵C5以及二極體短路造成的發熱特徵C7。再者,如第6A圖及第6B圖所示,狀態檢測模組124亦可檢測並輸出膠帶導致的髒污特徵C8以及發熱特徵C9。藉此,透過可見光影像及熱影像,可對太陽光電模組140的故障分類為不同狀態。Please refer to Figures 5A, 5B, 6A and 6B, wherein Figure 5A shows the visible light image of the photovoltaic module 140 according to the embodiment of Figure 1, and Figure 5B shows the image according to Figure 5A The thermal image of the photovoltaic module 140 in the embodiment, FIG. 6A shows another visible light image of the photovoltaic module 140 in the embodiment according to FIG. 1 , and FIG. 6B shows the photovoltaic module in the embodiment according to FIG. 6A . Thermal image of group 140. As shown in FIG. 5A and FIG. 5B , the state detection module 124 receives the visible light image and the black-level image output from the thermal image, and can detect and output the contamination feature C4 and the heating feature C6 caused by cracking, and the heating feature of high temperature caused by dust. C5 and the heating characteristic C7 caused by the diode short circuit. Furthermore, as shown in FIGS. 6A and 6B , the state detection module 124 can also detect and output the contamination feature C8 and the heating feature C9 caused by the tape. Thereby, the failure of the solar photovoltaic module 140 can be classified into different states through the visible light image and the thermal image.

具體而言,狀態檢測模組124輸出的複數特徵可為發熱特徵、發熱面積特徵、模組溫度特徵及髒污特徵,其中發熱特徵、發熱面積特徵及模組溫度特徵依據熱影像輸出的黑階影像及負片影像,髒污特徵依據可見光影像輸出的黑階影像,但本揭示內容不以此為限。發熱特徵、發熱面積特徵、模組溫度特徵及髒污特徵分別包含一節域值。在本實施例中,節域值設定在1-10,但本揭示內容不以此為限。在本揭示內容中,太陽光電模組140的狀態可分類為旁路二極體短路故障狀態、蝸牛紋故障狀態、灰塵故障狀態、隱裂故障狀態、正常狀態以及全部損壞狀態。而發熱特徵、發熱面積特徵、模組溫度特徵及髒污特徵對應前述狀態可分別具有經典域範圍如表一: 表一、狀態對應各特徵的經典域範圍      特徵 狀態 發熱 發熱面積 模組溫度 髒污程度 旁路二極體短路 10 3-5 9-10 2-7 蝸牛紋 10 1-7 6-7 1-2 灰塵 10 1-3 4-5 5-9 隱裂 10 4-8 5-6 1-3 正常 1 1-2 2-3 1-3 全部損壞 10 8-10 7-8 2-6 Specifically, the complex features output by the state detection module 124 can be heating features, heating area features, module temperature features, and dirt features, wherein the heating features, heating area features, and module temperature features are based on the black level output by the thermal image. For images and negative images, the contamination characteristics are based on the black-level images output by the visible light images, but the present disclosure is not limited thereto. The heating feature, heating area feature, module temperature feature and dirt feature respectively contain a section of domain values. In this embodiment, the section field value is set at 1-10, but the present disclosure is not limited to this. In the present disclosure, the states of the solar photovoltaic module 140 can be classified into a bypass diode short-circuit fault state, a snail fault state, a dust fault state, a cracked fault state, a normal state, and a fully damaged state. The heating characteristics, heating area characteristics, module temperature characteristics and dirt characteristics corresponding to the aforementioned states can respectively have classical domain ranges as shown in Table 1: Table 1. The classical domain range of each feature corresponding to the state Feature status fever Heating area Module temperature Degree of dirt Bypass Diode Shorted 10 3-5 9-10 2-7 snail pattern 10 1-7 6-7 1-2 dust 10 1-3 4-5 5-9 cracked 10 4-8 5-6 1-3 normal 1 1-2 2-3 1-3 all damaged 10 8-10 7-8 2-6

節域值與經典域範圍為可拓理論(Extension theory)描述可拓集合(Extension set)及關聯函數(Correlation function)的概念,在此不另贅述。可拓理論中,關聯函數是用來表達事物特徵的影響程度,因此可透過複數特徵之節域值與經典域範圍的距離關係來判斷太陽光電模組140的狀態,並以式(5)、(6)、(7)表示:

Figure 02_image009
…(5);
Figure 02_image011
…(6);以及
Figure 02_image013
…(7)。 The section field value and the classical field range are concepts of extension theory describing extension set and correlation function, and will not be repeated here. In the extension theory, the correlation function is used to express the degree of influence of the characteristics of things, so the state of the solar photovoltaic module 140 can be judged through the distance relationship between the node domain value of the complex feature and the classical domain range, and formula (5), (6), (7) means:
Figure 02_image009
...(5);
Figure 02_image011
…(6); and
Figure 02_image013
…(7).

其中ϕ是節域值與經典域的距離,F 0為太陽光電模組140的狀態之一者的區間,f為節域值,v a、v b為經典域範圍,F為太陽光電模組140的另一狀態的區間,D為F 0與F的位置值,K為關聯函數。 where ϕ is the distance between the node domain value and the classical domain, F 0 is the interval of one of the states of the photovoltaic module 140 , f is the node domain value, v a , v b are the classical domain range, and F is the photovoltaic module In another state interval of 140, D is the position value of F 0 and F, and K is the correlation function.

當關聯函數K>0時,代表f落在區間F 0,意即太陽光電模組140處於F 0的狀態;當-1<K<0時,f位在F 0的可拓域中,透過比較不同狀態的關聯函數,並根據關聯函數值之最大者來判斷太陽光電模組140的狀態。藉此,透過將太陽光電模組140的故障分類為不同狀態,可進一步提升檢測的精準度。 When the correlation function K>0, it means that f falls in the interval F 0 , which means that the photovoltaic module 140 is in the state of F 0 ; when -1<K<0, f is located in the extension domain of F 0 , through The correlation functions of different states are compared, and the state of the solar photovoltaic module 140 is determined according to the largest value of the correlation function. In this way, by classifying the failures of the photovoltaic module 140 into different states, the detection accuracy can be further improved.

再者,為了提升狀態檢測模組124檢測的精準度,各特徵可設定一權重值,在本實施例中,各特徵權重值的設定,如表二所示: 表二、各特徵設定之權重值 特徵 權重值 發熱 0.30 發熱面積 0.20 模組溫度 0.30 髒污 0.20 Furthermore, in order to improve the detection accuracy of the state detection module 124, a weight value can be set for each feature. In this embodiment, the setting of each feature weight value is as shown in Table 2: Table 2. Weights set for each feature feature Weights fever 0.30 Heating area 0.20 Module temperature 0.30 dirty 0.20

表三為已知故障狀態的太陽光電模組140對應不同特徵的節域值: 表三、 筆數 發熱 發熱面積 模組溫度 髒污 已知狀態 1 10 4 9 3 旁路二極體短路 2 10 5 8 6 旁路二極體短路 3 10 3 6 1 有蝸牛紋 4 10 4 7 2 有蝸牛紋 5 10 2 4 6 有灰塵 6 10 3 6 9 有灰塵 7 10 6 5 1 發生隱裂 8 10 7 6 3 發生隱裂 9 1 2 3 1 正常 10 1 1 2 2 正常 11 10 8 8 2 全部損壞 12 10 10 7 5 全部損壞 Table 3 shows the node domain values corresponding to different characteristics of the solar photovoltaic module 140 in a known fault state: Table 3. pen count fever Heating area Module temperature dirty known state 1 10 4 9 3 Bypass Diode Shorted 2 10 5 8 6 Bypass Diode Shorted 3 10 3 6 1 with snail pattern 4 10 4 7 2 with snail pattern 5 10 2 4 6 dusty 6 10 3 6 9 dusty 7 10 6 5 1 Crack occurs 8 10 7 6 3 Crack occurs 9 1 2 3 1 normal 10 1 1 2 2 normal 11 10 8 8 2 all damaged 12 10 10 7 5 all damaged

本實施例中,將前述已知故障狀態的太陽光電模組140透過狀態檢測模組124檢測並輸出關聯函數值及狀態訊號如表四所示: 表四、狀態檢測模組124輸出的關聯函數值及狀態訊號   筆數 旁路二極體短路 有蝸牛紋 有灰塵 發生隱裂 正常 全部損壞 狀態訊號 1 0.13 -0.08 -0.30 -0.18 -0.57 -0.14 旁路二極體短路 2 -0.04 -0.07 -0.16 -0.12 -0.60 -0.05 旁路二極體短路 3 -0.18 0.06 -0.17 -0.07 -0.41 -0.23 有蝸牛紋 4 -0.1 0.06 -0.22 -0.01 -0.31 -0.11 有蝸牛紋 5 -0.19 -0.15 0.15 -0.23 -0.29 -0.27 有灰塵 6 -0.21 -0.08 -0.05 -0.20 -0.52 -0.28 有灰塵 7 -0.26 -0.01 -0.23 0.10 -0.42 -0.21 發生隱裂 8 -0.13 -0.05 -0.23 0.05 -0.47 -0.10 發生隱裂 9 -0.63 -0.38 -0.40 -0.48 0.10 -0.68 正常 10 -0.63 -0.46 -0.53 -0.49 0.10 -0.65 正常 11 -0.17 -0.12 -0.39 -0.02 -0.47 0.06 全部損壞 12 -0.18 -0.22 -0.27 -0.25 -0.64 0.05 全部損壞 In this embodiment, the solar photovoltaic module 140 in the known fault state is detected through the state detection module 124 and outputs the correlation function value and the state signal as shown in Table 4: Table 4. Correlation function values and status signals output by the status detection module 124 pen count Bypass Diode Shorted with snail pattern dusty Crack occurs normal all damaged status signal 1 0.13 -0.08 -0.30 -0.18 -0.57 -0.14 Bypass Diode Shorted 2 -0.04 -0.07 -0.16 -0.12 -0.60 -0.05 Bypass Diode Shorted 3 -0.18 0.06 -0.17 -0.07 -0.41 -0.23 with snail pattern 4 -0.1 0.06 -0.22 -0.01 -0.31 -0.11 with snail pattern 5 -0.19 -0.15 0.15 -0.23 -0.29 -0.27 dusty 6 -0.21 -0.08 -0.05 -0.20 -0.52 -0.28 dusty 7 -0.26 -0.01 -0.23 0.10 -0.42 -0.21 Crack occurs 8 -0.13 -0.05 -0.23 0.05 -0.47 -0.10 Crack occurs 9 -0.63 -0.38 -0.40 -0.48 0.10 -0.68 normal 10 -0.63 -0.46 -0.53 -0.49 0.10 -0.65 normal 11 -0.17 -0.12 -0.39 -0.02 -0.47 0.06 all damaged 12 -0.18 -0.22 -0.27 -0.25 -0.64 0.05 all damaged

透過表三及表四可得知,本揭示內容之太陽光電模組檢測系統100不僅可將太陽光電模組140的故障狀態分類,並且維持檢測的高準確度。From Tables 3 and 4, it can be known that the photovoltaic module detection system 100 of the present disclosure can not only classify the fault state of the photovoltaic module 140, but also maintain high detection accuracy.

請參照第7圖,其繪示依照本揭示內容之一實施例的太陽光電模組檢測方法S100的步驟流程圖。特別說明的是,第7圖實施例之太陽光電模組檢測方法S100可配合第1圖實施例之太陽光電模組檢測系統100進行,但本揭示內容不以此為限。太陽光電模組檢測方法S100包含一拍攝步驟S120、一影像處理步驟S130及一狀態檢測步驟S140。拍攝步驟S120透過一無人機110拍攝至少一太陽光電模組140並輸出至少一影像至一處理終端120。影像處理步驟S130包含一影像清晰化步驟S131、一影像黑階化步驟S132、一影像負片化步驟S133及一特徵輸出步驟S134。影像清晰化步驟S131係依據影像透過處理終端120的一影像清晰模組121輸出一清晰影像。影像清晰化步驟S131可包含一可見光影像清晰化步驟S1311及一熱影像清晰化步驟S1312。清晰影像可包含一清晰可見光影像及一清晰熱影像。可見光影像清晰化步驟S1311係依據影像的一可見光影像透過處理終端120的一可見光影像輸出模組1211輸出清晰可見光影像。熱影像清晰化步驟S1312係依據影像的一熱影像透過處理終端120的熱影像輸出模組1212輸出清晰熱影像。影像黑階化步驟S132係依據清晰影像透過處理終端120的一影像黑階模組122輸出一黑階影像。影像負片化步驟S133係依據黑階影像透過處理終端120的一影像負片模組123輸出一負片影像。進一步來說,影像黑階化步驟S132係依據清晰影像中的清晰可見光影像及清晰熱影像來執行,影像負片化步驟S133係依據清晰熱影像輸出的黑階影像來執行。特徵輸出步驟S134係依據黑階影像及負片影像透過處理終端120的一狀態檢測模組124輸出複數特徵,其中各特徵包含一節域值,且各特徵對應複數狀態分別具有複數經典域範圍。狀態檢測步驟S140係依據一可拓演算法,將節域值與經典域範圍的距離對應各狀態分別輸出一關聯函數值,且根據關聯函數值之最大者輸出一狀態訊號S1。Please refer to FIG. 7 , which shows a flow chart of steps of a solar photovoltaic module detection method S100 according to an embodiment of the present disclosure. In particular, the photovoltaic module detection method S100 of the embodiment of FIG. 7 can be performed in conjunction with the photovoltaic module detection system 100 of the embodiment of FIG. 1, but the present disclosure is not limited thereto. The solar photovoltaic module detection method S100 includes a photographing step S120, an image processing step S130 and a state detection step S140. In the photographing step S120 , a drone 110 is used to photograph at least one solar photovoltaic module 140 and output at least one image to a processing terminal 120 . The image processing step S130 includes an image sharpening step S131 , an image black leveling step S132 , an image negative filming step S133 and a feature outputting step S134 . The image clearing step S131 is to output a clear image through an image clearing module 121 of the processing terminal 120 according to the image. The image sharpening step S131 may include a visible light image sharpening step S1311 and a thermal image sharpening step S1312. The clear image may include a clear visible light image and a clear thermal image. The visible light image sharpening step S1311 is to output a clear visible light image through a visible light image output module 1211 of the processing terminal 120 according to a visible light image of the image. The thermal image sharpening step S1312 is to output a clear thermal image through the thermal image output module 1212 of the processing terminal 120 according to a thermal image of the image. The image black leveling step S132 is to output a black level image through an image black level module 122 of the processing terminal 120 according to the clear image. The image negative filming step S133 is to output a negative film image through an image negative film module 123 of the processing terminal 120 according to the black level image. Further, the image black leveling step S132 is performed according to the clear visible light image and the clear thermal image in the clear image, and the image negative filming step S133 is performed based on the black level image output from the clear thermal image. The feature output step S134 is to output complex features through a state detection module 124 of the processing terminal 120 according to the black level image and the negative image, wherein each feature includes a domain value, and each feature corresponding to the complex state has a complex classical domain range respectively. The state detection step S140 is based on an extension algorithm, outputs a correlation function value corresponding to each state corresponding to the distance between the node domain value and the classical domain range, and outputs a state signal S1 according to the largest correlation function value.

藉此,太陽光電模組檢測方法S100可將太陽光電模組140不同的故障狀態進行分類並檢測,且提升檢測的準確度,藉以提升維修時的效率並可根據故障狀態更換故障的太陽光電模組140,減少太陽光電模組不必要的發電量損失。Thereby, the solar photovoltaic module detection method S100 can classify and detect different fault states of the photovoltaic module 140, and improve the detection accuracy, thereby improving the efficiency during maintenance and replacing the faulty photovoltaic module according to the fault state. Group 140, reducing unnecessary loss of power generation of the solar photovoltaic module.

太陽光電模組檢測方法S100可更包含一路徑規劃步驟S110及一狀態回報步驟S150。路徑規劃步驟S110係將無人機110依據一規劃路徑拍攝太陽光電模組140。狀態回報步驟S150中,當狀態訊號S1為一故障訊號,處理終端120將故障訊號傳輸至一電子裝置130。The solar photovoltaic module detection method S100 may further include a path planning step S110 and a status reporting step S150. The path planning step S110 is to shoot the solar photovoltaic module 140 by the drone 110 according to a planned path. In the status reporting step S150 , when the status signal S1 is a fault signal, the processing terminal 120 transmits the fault signal to an electronic device 130 .

請配合參照第8圖,其繪示依照第7圖實施例中太陽光電模組檢測方法S100的詳細步驟圖。如第8圖所示,路徑規劃步驟S110可包含子步驟S111、S112。子步驟S111中,於無人機110輸入規劃路徑後,驅動無人機110,使其依照規劃路徑進行飛行作業。接著,執行子步驟S112,無人機110依據規劃路徑移動至拍攝太陽光電模組140的地點。拍攝步驟S120可包含子步驟S121、S122、S123、S124。子步驟S121中,無人機110以鏡頭拍攝太陽光電模組140;當無人機110成功拍攝時,執行子步驟S122,將影像以無線的方式,傳送至雲端系統並回傳至處理終端120,並且執行子步驟S123,確認無人機110是否已拍攝完全部太陽光電模組140,當無人機110尚未拍攝完畢時,執行子步驟S112,將無人機110移動至拍攝其他太陽光電模組140的地點,並重新執行子步驟S121、S122;當無人機110拍攝完全部太陽光電模組140時,將無人機110移動至無人機停靠站;當無人機110拍攝失敗時,執行子步驟S124,移動無人機110的拍攝位置,並重新執行子步驟S121。太陽光電模組檢測方法S100可更包含一步驟S151。處理終端120接收影像後依序執行影像處理步驟S130、狀態檢測步驟S140、狀態回報步驟S150及步驟S151。在步驟S151中,透過電子裝置130將故障訊號傳至客戶端或廠商。藉此,可進行後續的維修或處理。Please refer to FIG. 8 , which shows a detailed step diagram of the solar photovoltaic module detection method S100 in the embodiment according to FIG. 7 . As shown in FIG. 8, the path planning step S110 may include sub-steps S111 and S112. In sub-step S111, after the UAV 110 inputs the planned path, the UAV 110 is driven to perform the flight operation according to the planned path. Next, sub-step S112 is executed, and the drone 110 moves to the location where the photovoltaic module 140 is photographed according to the planned path. The photographing step S120 may include sub-steps S121, S122, S123, and S124. In sub-step S121, the drone 110 shoots the photoelectric module 140 with the camera lens; when the drone 110 successfully shoots, the sub-step S122 is executed to wirelessly transmit the image to the cloud system and back to the processing terminal 120, and Execute sub-step S123 to confirm whether the drone 110 has photographed all the photovoltaic modules 140. When the drone 110 has not finished photographing, execute sub-step S112, move the drone 110 to the location of photographing other photovoltaic modules 140, And re-execute sub-steps S121 and S122; when the drone 110 shoots all the solar photovoltaic modules 140, move the drone 110 to the drone docking station; when the drone 110 fails to shoot, execute sub-step S124, move the drone 110, and re-execute sub-step S121. The solar photovoltaic module detection method S100 may further include a step S151. After receiving the image, the processing terminal 120 sequentially executes the image processing step S130 , the state detection step S140 , the state reporting step S150 and the step S151 . In step S151 , the fault signal is transmitted to the client or the manufacturer through the electronic device 130 . Thereby, subsequent maintenance or treatment can be performed.

雖然本揭示內容已以實施方式揭露如上,然其並非用以限定本揭示內容,任何熟習此技藝者,在不脫離本揭示內容的精神和範圍內,當可作各種的更動與潤飾,因此本揭示內容的保護範圍當視後附的申請專利範圍所界定者為準。Although the present disclosure has been disclosed as above in embodiments, it is not intended to limit the present disclosure. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present disclosure. The protection scope of the disclosed content shall be determined by the scope of the appended patent application.

100:太陽光電模組檢測系統 110:無人機 111:可見光鏡頭 112:紅外線鏡頭 120:處理終端 121:影像清晰模組 1211:可見光影像輸出模組 1212:熱影像輸出模組 122:影像黑階模組 123:影像負片模組 124:狀態檢測模組 130:電子裝置 140:太陽光電模組 B10:黑階影像 C1,C2,C3:高溫特徵 C4,C8:髒污特徵 C5,C6,C7,C9:發熱特徵 H30:清晰熱影像 HP:發熱特徵 N10,N20,N30:負片影像 S1:狀態訊號 S100:太陽光電模組檢測方法 S110:路徑規劃步驟 S111,S112,S121,S122,S123,S124:子步驟 S120:拍攝步驟 S130:影像處理步驟 S131:影像清晰化步驟 S1311:可見光影像清晰化步驟 S1312:熱影像清晰化步驟 S132:影像黑階化步驟 S133:影像負片化步驟 S134:特徵輸出步驟 S140:狀態檢測步驟 S150:狀態回報步驟 S151:步驟100: Solar Photoelectric Module Detection System 110: Drone 111: Visible light lens 112: Infrared lens 120: Process Terminal 121: Image clear module 1211: Visible light image output module 1212: Thermal image output module 122: Image black level module 123: Image negative film module 124: Status detection module 130: Electronic Devices 140: Solar photovoltaic module B10: Black Level Image C1, C2, C3: high temperature characteristics C4, C8: Dirty features C5, C6, C7, C9: Thermal characteristics H30: Clear thermal image HP: heat characteristics N10, N20, N30: Negative image S1: Status signal S100: Detection method of solar photovoltaic modules S110: Path Planning Step S111, S112, S121, S122, S123, S124: Sub-steps S120: Shooting steps S130: Image processing step S131: Image sharpening step S1311: Visible light image sharpening steps S1312: Thermal image sharpening steps S132: Image black leveling step S133: Image negative filming step S134: Feature output step S140: state detection step S150: Status reporting step S151: Steps

第1圖繪示依照本揭示內容之一實施例的太陽光電模組檢測系統的示意圖; 第2圖繪示依照第1圖實施例中處理終端及電子裝置的示意圖; 第3A圖繪示依照第2圖實施例中一黑階影像及依據一環境設定值輸出的負片影像的示意圖; 第3B圖繪示依照第2圖實施例中一黑階影像及依據另一環境設定值輸出另一負片影像的示意圖; 第4圖繪示依照第2圖實施例中清晰熱影像結合負片影像的示意圖; 第5A圖繪示依照第1圖實施例中太陽光電模組的可見光影像; 第5B圖繪示依照第5A圖實施例中太陽光電模組的熱影像; 第6A圖繪示依照第1圖實施例中太陽光電模組的另一可見光影像; 第6B圖繪示依照第6A圖實施例中太陽光電模組的熱影像; 第7圖繪示依照本揭示內容之一實施例的太陽光電模組檢測方法的步驟流程圖;以及 第8圖繪示依照第7圖實施例中太陽光電模組檢測方法的詳細步驟圖。 FIG. 1 is a schematic diagram of a solar photovoltaic module detection system according to an embodiment of the present disclosure; FIG. 2 shows a schematic diagram of the processing terminal and the electronic device according to the embodiment of FIG. 1; FIG. 3A is a schematic diagram of a black-level image and a negative image output according to an environmental setting value in the embodiment of FIG. 2; FIG. 3B is a schematic diagram illustrating a black-level image according to the embodiment of FIG. 2 and outputting another negative image according to another environment setting value; FIG. 4 shows a schematic diagram of a clear thermal image combined with a negative film image according to the embodiment of FIG. 2; FIG. 5A shows a visible light image of the solar photovoltaic module according to the embodiment of FIG. 1; Fig. 5B shows a thermal image of the solar photovoltaic module according to the embodiment of Fig. 5A; FIG. 6A shows another visible light image of the solar photovoltaic module according to the embodiment of FIG. 1; FIG. 6B shows a thermal image of the solar photovoltaic module according to the embodiment of FIG. 6A; FIG. 7 illustrates a flow chart of steps of a method for detecting a solar photovoltaic module according to an embodiment of the present disclosure; and FIG. 8 is a detailed step diagram of the solar photovoltaic module detection method according to the embodiment of FIG. 7 .

100:太陽光電模組檢測系統 100: Solar Photoelectric Module Detection System

110:無人機 110: Drone

111:可見光鏡頭 111: Visible light lens

112:紅外線鏡頭 112: Infrared lens

120:處理終端 120: Process Terminal

130:電子裝置 130: Electronic Devices

140:太陽光電模組 140: Solar photovoltaic module

S1:狀態訊號 S1: Status signal

Claims (10)

一種太陽光電模組檢測系統,包含: 一無人機,包含: 至少一鏡頭,拍攝至少一太陽光電模組並輸出至少一影像;以及 一處理終端,訊號連接該無人機,包含: 一影像清晰模組,接收該影像並輸出一清晰影像; 一影像黑階模組,訊號連接該影像清晰模組,接收該清晰影像並輸出一黑階影像; 一影像負片模組,訊號連接該影像黑階模組,接收該黑階影像並依據一環境設定值輸出一負片影像;及 一狀態檢測模組,訊號連接該影像黑階模組及該影像負片模組,接收該黑階影像及該負片影像並輸出複數特徵,其中各該特徵包含一節域值,且各該特徵對應複數狀態分別具有複數經典域範圍; 其中,依據一可拓演算法,該些節域值與該些經典域範圍的距離對應各該狀態分別輸出一關聯函數值,且根據該些關聯函數值之最大者輸出一狀態訊號。 A solar photovoltaic module detection system, comprising: 1 UAV, including: at least one lens, capturing at least one solar photovoltaic module and outputting at least one image; and A processing terminal, the signal is connected to the drone, including: a clear image module, receiving the image and outputting a clear image; an image black level module, the signal is connected to the clear image module, receives the clear image and outputs a black level image; an image negative film module, the signal is connected to the image black level module, receives the black level image and outputs a negative film image according to an environment setting value; and a state detection module, the signal is connected to the image black level module and the image negative film module, receives the black level image and the negative film image and outputs a complex number of features, wherein each of the features includes a field value, and each of the features corresponds to a complex number The states respectively have complex classical domain ranges; Wherein, according to an extension algorithm, the distances between the node domain values and the classical domain ranges correspond to each of the states to output a correlation function value respectively, and output a state signal according to the largest of the correlation function values. 如請求項1所述之太陽光電模組檢測系統,其中該至少一鏡頭的數量為二,該二鏡頭分別為一可見光鏡頭及一紅外線鏡頭,且該至少一影像包含一可見光影像及一熱影像。The photovoltaic module detection system of claim 1, wherein the number of the at least one lens is two, the two lenses are a visible light lens and an infrared lens respectively, and the at least one image includes a visible light image and a thermal image . 如請求項1所述之太陽光電模組檢測系統,其中該無人機依據一規劃路徑拍攝該至少一太陽光電模組。The solar photoelectric module detection system of claim 1, wherein the drone photographs the at least one solar photoelectric module according to a planned path. 如請求項1所述之太陽光電模組檢測系統,更包含: 一電子裝置,訊號連接該處理終端並接收該狀態訊號。 The solar photovoltaic module detection system as described in claim 1, further comprising: An electronic device, the signal is connected to the processing terminal and receives the status signal. 一種太陽光電模組檢測方法,包含: 一拍攝步驟,係透過一無人機拍攝至少一太陽光電模組並輸出至少一影像至一處理終端; 一影像處理步驟,包含: 一影像清晰化步驟,係依據該影像透過該處理終端的一影像清晰模組輸出一清晰影像; 一影像黑階化步驟,係依據該清晰影像透過該處理終端的一影像黑階模組輸出一黑階影像; 一影像負片化步驟,係依據該黑階影像透過該處理終端的一影像負片模組輸出一負片影像;及 一特徵輸出步驟,係依據該黑階影像及該負片影像透過該處理終端的一狀態檢測模組輸出複數特徵,其中各該特徵包含一節域值,且各該特徵對應複數狀態分別具有複數經典域範圍;以及 一狀態檢測步驟,係依據一可拓演算法,將該些節域值與該些經典域範圍的距離對應各該狀態分別輸出一關聯函數值,且根據該些關聯函數值之最大者輸出一狀態訊號。 A solar photovoltaic module detection method, comprising: a photographing step of photographing at least one solar photovoltaic module through a drone and outputting at least one image to a processing terminal; An image processing step, including: an image clearing step, outputting a clear image through an image clearing module of the processing terminal according to the image; an image black leveling step, outputting a black level image through an image black level module of the processing terminal according to the clear image; an image negative filming step, outputting a negative film image through an image negative film module of the processing terminal according to the black level image; and A feature output step is to output complex features through a state detection module of the processing terminal according to the black-level image and the negative image, wherein each feature includes a field value, and each feature corresponding to the complex state has a complex classical field respectively scope; and A state detection step is to output a correlation function value according to the distance between the node domain values and the classical domain ranges corresponding to each of the states according to an extension algorithm, and output a correlation function value according to the largest one of the correlation function values. status signal. 如請求項5所述之太陽光電模組檢測方法,其中該狀態檢測步驟包含: 各該特徵設定一權重值,且將該些節域值與該些經典域範圍的距離對應各該狀態的權重值分別輸出各該關聯函數值。 The solar photovoltaic module detection method as claimed in claim 5, wherein the state detection step comprises: A weight value is set for each of the features, and the distances between the node domain values and the classical domain ranges correspond to the weight values of the states to output the correlation function values respectively. 如請求項5所述之太陽光電模組檢測方法,其中該影像負片化步驟包含: 該影像負片模組依據一環境溫度設定一環境設定值,並根據該環境設定值輸出該負片影像。 The solar photovoltaic module detection method as claimed in claim 5, wherein the image negative filming step comprises: The image negative film module sets an environmental setting value according to an environmental temperature, and outputs the negative film image according to the environmental setting value. 如請求項5所述之太陽光電模組檢測方法,其中特徵輸出步驟包含: 該些特徵包含一發熱特徵,且該狀態檢測模組依據該負片影像輸出一發熱點影像,該發熱特徵對應該發熱點影像。 The solar photovoltaic module detection method as claimed in claim 5, wherein the feature output step comprises: The features include a heat-generating feature, and the state detection module outputs a heat-generating spot image according to the negative film image, and the heat-generating feature corresponds to the heat-generating spot image. 如請求項5所述之太陽光電模組檢測方法,更包含: 一路徑規劃步驟,係將該無人機依據一規劃路徑拍攝該至少一太陽光電模組。 The solar photovoltaic module detection method as described in claim 5, further comprising: In a path planning step, the drone shoots the at least one solar photovoltaic module according to a planned path. 如請求項5所述之太陽光電模組檢測方法,更包含: 一狀態回報步驟,當該狀態訊號為一故障訊號,該處理終端將該故障訊號傳輸至一電子裝置。 The solar photovoltaic module detection method as described in claim 5, further comprising: In a status reporting step, when the status signal is a fault signal, the processing terminal transmits the fault signal to an electronic device.
TW110144290A 2021-11-26 2021-11-26 Photovoltaic module detecting system and method thereof TWI777866B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110144290A TWI777866B (en) 2021-11-26 2021-11-26 Photovoltaic module detecting system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110144290A TWI777866B (en) 2021-11-26 2021-11-26 Photovoltaic module detecting system and method thereof

Publications (2)

Publication Number Publication Date
TWI777866B true TWI777866B (en) 2022-09-11
TW202322549A TW202322549A (en) 2023-06-01

Family

ID=84958215

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110144290A TWI777866B (en) 2021-11-26 2021-11-26 Photovoltaic module detecting system and method thereof

Country Status (1)

Country Link
TW (1) TWI777866B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190331602A1 (en) * 2018-04-30 2019-10-31 The Southern Company Systems and Methods for Inspecting Solar Modules Using High-Power Light Sources
TWM605424U (en) * 2020-07-09 2020-12-11 信鼎技術服務股份有限公司 Artificial intelligence real-time abnormal image analysis system of solar photovoltaic system
TWM605881U (en) * 2020-09-25 2020-12-21 向陽優能電力股份有限公司 Detection and management system for solar panel
US20210050817A1 (en) * 2018-03-16 2021-02-18 Sumitomo Electric Industries, Ltd. Inspection system for concentrating photovoltaic apparatus and inspection method for light receiving part
CN113418925A (en) * 2021-05-18 2021-09-21 平衡机器科技(深圳)有限公司 Photovoltaic panel abnormal target detection system and method based on satellite images

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210050817A1 (en) * 2018-03-16 2021-02-18 Sumitomo Electric Industries, Ltd. Inspection system for concentrating photovoltaic apparatus and inspection method for light receiving part
US20190331602A1 (en) * 2018-04-30 2019-10-31 The Southern Company Systems and Methods for Inspecting Solar Modules Using High-Power Light Sources
TWM605424U (en) * 2020-07-09 2020-12-11 信鼎技術服務股份有限公司 Artificial intelligence real-time abnormal image analysis system of solar photovoltaic system
TWM605881U (en) * 2020-09-25 2020-12-21 向陽優能電力股份有限公司 Detection and management system for solar panel
CN113418925A (en) * 2021-05-18 2021-09-21 平衡机器科技(深圳)有限公司 Photovoltaic panel abnormal target detection system and method based on satellite images

Also Published As

Publication number Publication date
TW202322549A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
CN109671106B (en) Image processing method, device and equipment
US20090316002A1 (en) Image-capturing system diagnostic device, image-capturing system diagnostic program product and image-capturing device for monitoring foreign matter
US9706189B2 (en) Image capturing device and method for calibrating image defection thereof
TW201419853A (en) Image processor and image dead pixel detection method thereof
KR102336030B1 (en) Electric vehicle charger fire detection and charger condition prediction system
WO2018209936A1 (en) Coordinate correction method for image obtaining device, and image obtaining device
CN102075679A (en) Method and device for acquiring image
CN102262348A (en) Optical detection device
CN102542254A (en) Image processing apparatus and image processing method
CN103312972B (en) Electronic installation and its its focalization method
US10484591B2 (en) Focus adjusting apparatus, focus adjusting method, and image capturing apparatus
US20210281738A1 (en) Determining whether a camera is out-of-focus
JP2014192528A (en) Image capturing device, image processing system, image capturing system, image processing method, image processing program, and recording medium
KR101437234B1 (en) System and method for performing depth estimation utilizing defocused pillbox images
TWI777866B (en) Photovoltaic module detecting system and method thereof
CN105450933A (en) Restoration apparatus of fuzzy image in pneumatic optical effect
US9118878B2 (en) Image processing apparatus that corrects for chromatic aberration for taken image, image pickup apparatus, method of correcting for chromatic aberration of magnification therefor, and storage medium
TW201340687A (en) Method for checking camera and camera
WO2021168707A1 (en) Focusing method, apparatus and device
US20130142386A1 (en) System And Method For Evaluating Focus Direction Under Various Lighting Conditions
CN107172410A (en) Dual camera focusing method and device
KR102078877B1 (en) Photovoltaic module thermal imaging system with trio imaging device
CN112037274B (en) Multi-rotor unmanned aerial vehicle viewpoint determining method based on solar illumination condition
CN108243305A (en) Image capturing device and the bearing calibration of its phase focusing
JP2016114785A (en) Imaging device, imaging method and imaging program

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent