TWI777676B - Data inspection system for inspecting operating situations of multiple iot devices in a plurality of target iot systems - Google Patents

Data inspection system for inspecting operating situations of multiple iot devices in a plurality of target iot systems Download PDF

Info

Publication number
TWI777676B
TWI777676B TW110126497A TW110126497A TWI777676B TW I777676 B TWI777676 B TW I777676B TW 110126497 A TW110126497 A TW 110126497A TW 110126497 A TW110126497 A TW 110126497A TW I777676 B TWI777676 B TW I777676B
Authority
TW
Taiwan
Prior art keywords
data
circuit
attribute
activity
iot
Prior art date
Application number
TW110126497A
Other languages
Chinese (zh)
Other versions
TW202215820A (en
Inventor
程智誼
何育昇
陳元瑀
Original Assignee
愛訊電網科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛訊電網科技股份有限公司 filed Critical 愛訊電網科技股份有限公司
Priority to US17/474,487 priority Critical patent/US11528211B2/en
Publication of TW202215820A publication Critical patent/TW202215820A/en
Application granted granted Critical
Publication of TWI777676B publication Critical patent/TWI777676B/en

Links

Images

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)
  • Alarm Systems (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)
  • Debugging And Monitoring (AREA)

Abstract

A data inspection system includes: a communication circuit arranged to operably communicate data with a plurality of attributes filtering devices to receive multiple activity records which are generated by the plurality of attributes filtering devices and corresponding to multiple IoT devices in a plurality of target IoT systems; a storage circuit arranged to operably store the multiple activity records received by the communication circuit; and a data classification circuit coupled with the storage circuit and arranged to operably classify each of the multiple activity records received by the communication circuit based on N attributes to form M data groups; wherein N is 2 or an integer greater than 2, while M is at least two times of N.

Description

用於檢測複數個標的物聯網系統中的多個物聯網裝置的運作情況的資料檢測系統 A data detection system for detecting the operation of a plurality of IoT devices in a plurality of target IoT systems

本發明涉及物聯網(Internet of Things,IoT),尤指一種用於檢測複數個標的物聯網系統中的多個物聯網裝置的運作情況的資料檢測系統。 The present invention relates to the Internet of Things (IoT), in particular to a data detection system for detecting the operation conditions of a plurality of Internet of Things devices in a plurality of target Internet of Things systems.

隨著技術的發展,各種大規模物聯網(massive Internet of Things,mIoT)的相關應用越來越普及。在許多大規模物聯網應用中,通常會利用電信網路、行動通訊網路、網際網路、或各種無線通訊機制,將佈署在不同地點的眾多物聯網終端裝置的相關運作資料,傳輸到遠方的數據中心進行彙整與分析。換言之,在為數眾多的物聯網終端裝置與數據中心之間,需要利用各種通訊基礎建設做為資料傳輸的媒介。 With the development of technology, various applications related to the massive Internet of Things (mIoT) are becoming more and more popular. In many large-scale IoT applications, telecommunication networks, mobile communication networks, the Internet, or various wireless communication mechanisms are usually used to transmit the relevant operation data of many IoT terminal devices deployed in different locations to remote locations. data center for aggregation and analysis. In other words, between the numerous IoT terminal devices and the data center, various communication infrastructures need to be used as the medium for data transmission.

倘若某些物聯網終端裝置或是通訊基礎建設中的某些環節出現問題,數據中心的分析結果就會出現偏差。因此,若不能迅速地檢測出異常狀況,就難以判斷大規模物聯網應用中的問題根源所在,連帶也會大幅降低大規模物聯網應用的整體系統效能與應用價值。 If there is a problem with some IoT terminal devices or some links in the communication infrastructure, the analysis results of the data center will be biased. Therefore, if abnormal conditions cannot be detected quickly, it is difficult to determine the root cause of problems in large-scale IoT applications, which will greatly reduce the overall system performance and application value of large-scale IoT applications.

有鑑於此,如何減輕或消除上述相關領域中的缺失,實為有待解決的問題。 In view of this, how to alleviate or eliminate the deficiencies in the above-mentioned related fields is a problem to be solved.

本說明書提供一種物聯網運作監控系統的實施例,用於監控複數個 標的物聯網系統中的多個物聯網裝置的運作情況。該物聯網運作監控系統包含:複數個屬性過濾裝置,設置成接收一或多個封包閘道裝置所產生與該多個物聯網裝置相對應的多個封包訊息,並依據該多個封包訊息產生分別與該多個物聯網裝置相對應的多筆活動紀錄;以及一資料檢測系統,其包含有:一通信電路,設置成透過網路與該複數個屬性過濾裝置進行資料通信,以接收該複數個屬性過濾裝置所產生的該多筆活動紀錄;一儲存電路,設置成儲存該通信電路所接收到的該多筆活動紀錄;以及一資料分類電路,耦接於該儲存電路,設置成將該多筆活動紀錄中的每一筆活動紀錄,依據N個屬性的內容進行分類,以形成M個資料群組,並將該M個資料群組儲存在該儲存電路中;其中,N為2或大於2的整數,且M至少為N的兩倍。 This specification provides an embodiment of an IoT operation monitoring system for monitoring a plurality of The operation of multiple IoT devices in the target IoT system. The Internet of Things operation monitoring system includes: a plurality of attribute filtering devices configured to receive a plurality of packet messages corresponding to the plurality of Internet of Things devices generated by one or more packet gateway devices, and generate according to the plurality of packet messages A plurality of activity records respectively corresponding to the plurality of Internet of Things devices; and a data detection system, which includes: a communication circuit configured to communicate data with the plurality of attribute filtering devices through a network to receive the plurality of attribute filtering devices the multiple activity records generated by an attribute filtering device; a storage circuit configured to store the multiple activity records received by the communication circuit; and a data classification circuit coupled to the storage circuit configured to store the multiple activity records received by the communication circuit Each activity record in the multiple activity records is classified according to the content of the N attributes to form M data groups, and the M data groups are stored in the storage circuit; wherein, N is 2 or greater than An integer of 2, and M is at least twice N.

本說明書另提供一種用於一物聯網運作監控系統中的資料檢測系統的實施例,用於檢測複數個標的物聯網系統中的多個物聯網裝置的運作情況。該資料檢測系統包含有:一通信電路,設置成透過網路與複數個屬性過濾裝置進行資料通信,以接收該複數個屬性過濾裝置所產生的與該多個物聯網裝置相對應的多筆活動紀錄;一儲存電路,設置成儲存該通信電路所接收到的該多筆活動紀錄;以及一資料分類電路,耦接於該儲存電路,設置成將該多筆活動紀錄中的每一筆活動紀錄,依據N個屬性的內容進行分類,以形成M個資料群組,並將該M個資料群組儲存在該儲存電路中;其中,N為2或大於2的整數,且M至少為N的兩倍。 The present specification further provides an embodiment of a data detection system used in an IoT operation monitoring system, which is used to detect the operation conditions of a plurality of IoT devices in a plurality of target IoT systems. The data detection system includes: a communication circuit configured to communicate data with a plurality of attribute filtering devices through a network, so as to receive a plurality of activities generated by the plurality of attribute filtering devices and corresponding to the plurality of Internet of Things devices record; a storage circuit configured to store the multiple activity records received by the communication circuit; and a data classification circuit, coupled to the storage circuit, configured to store each activity record in the multiple activity records, Classify according to the contents of the N attributes to form M data groups, and store the M data groups in the storage circuit; wherein, N is an integer of 2 or greater, and M is at least two of N times.

上述實施例的優點之一,是利用資料分類電路將多個物聯網裝置所對應的多筆活動紀錄依據多個屬性的內容分類成不同資料群組,可大幅降低後續分析個別資料群組內的活動紀錄的資料態樣時所需的運算量及複雜度,並提升資料態樣的分析速度。 One of the advantages of the above embodiment is that the data classification circuit is used to classify multiple activity records corresponding to multiple IoT devices into different data groups according to the content of multiple attributes, which can greatly reduce the subsequent analysis of individual data groups. The computational load and complexity required for the data aspect of the activity record, and the analysis speed of the data aspect is improved.

上述實施例的另一優點,是前述將多個活動紀錄分類成不同資料群 組的方式,還可大幅減少後續進行異常檢測時所需的運算量,有助於提升異常檢測的效率與速度。 Another advantage of the above-mentioned embodiment is the aforementioned classification of the plurality of activity records into different data groups The method of grouping can also greatly reduce the amount of computation required for subsequent anomaly detection, which helps to improve the efficiency and speed of anomaly detection.

本發明的其他優點將搭配以下的說明和圖式進行更詳細的解說。 Other advantages of the present invention will be explained in more detail in conjunction with the following description and drawings.

100:物聯網運作監控系統(IoT operations monitoring system) 100: IoT operations monitoring system

101、102、103:標的物聯網系統(target IoT system) 101, 102, 103: target IoT system

104、105、106:物聯網裝置(IoT device) 104, 105, 106: IoT device

110:資料檢測系統(data inspection system) 110: data inspection system

111:通信電路(communication circuit) 111: Communication circuit (communication circuit)

112:資料解譯電路(data interpreting circuit) 112: Data interpreting circuit

113:儲存電路(storage circuit) 113: storage circuit

114:資料分類電路(data classification circuit) 114: data classification circuit (data classification circuit)

115:資料態樣分析電路(data pattern analysis circuit) 115: Data pattern analysis circuit

116:異常檢測電路(abnormal inspection circuit) 116: Abnormal inspection circuit

117:用戶圖形介面產生電路(user graphical interface generating circuit) 117: user graphical interface generating circuit (user graphical interface generating circuit)

120、130、140:屬性過濾裝置(attributes filtering device) 120, 130, 140: attributes filtering device

122、132、142:資料處理電路(data processing circuit) 122, 132, 142: data processing circuit (data processing circuit)

124、134、144:資料傳輸電路(data transmission circuit) 124, 134, 144: data transmission circuit (data transmission circuit)

150、160、170:封包閘道裝置(packet gateway device) 150, 160, 170: packet gateway device

152、162、172:基地台(base station) 152, 162, 172: base station

154、164、174、182、184:網路(network) 154, 164, 174, 182, 184: network (network)

192、194:用戶裝置(client device) 192, 194: user device (client device)

202~220、402~414、502~514、602~610、1002~1022、1212~1222:運作流程(operation) 202~220, 402~414, 502~514, 602~610, 1002~1022, 1212~1222: Operation process (operation)

310、1110:封包訊息(packet message) 310, 1110: packet message (packet message)

311、1111:標頭(header) 311, 1111: header (header)

312~316、1112~1116:屬性(attribute) 312~316, 1112~1116: attribute

320~326、1120:活動紀錄(activity record) 320~326, 1120: activity record

330~334、1130~1134:資料群組(data group) 330~334, 1130~1134: data group

340~344、1140~1144、1160~1164:參考資料集(reference data set) 340~344, 1140~1144, 1160~1164: reference data set

710~730、810~830、910~930:統計圖表(statistic graph) 710~730, 810~830, 910~930: Statistic graph

712~732、812~832、912~932:資料統計結果(data statistic result) 712~732, 812~832, 912~932: data statistic result

圖1為本發明一實施例的物聯網運作監控系統簡化後的功能方塊圖。 FIG. 1 is a simplified functional block diagram of an IoT operation monitoring system according to an embodiment of the present invention.

圖2為本發明對物聯網裝置的屬性進行分類及分析的方法的一實施例簡化後的流程圖。 FIG. 2 is a simplified flowchart of an embodiment of a method for classifying and analyzing attributes of IoT devices according to the present invention.

圖3為本發明對物聯網裝置的屬性進行分類及分析運作的一實施例簡化後的資料流示意圖。 FIG. 3 is a simplified schematic diagram of data flow according to an embodiment of the present invention for classifying and analyzing attributes of IoT devices.

圖4為本發明將多筆活動紀錄依據屬性的內容進行分類的方法的一實施例簡化後的流程圖。 FIG. 4 is a simplified flowchart of an embodiment of a method for classifying multiple activity records according to content of attributes according to an embodiment of the present invention.

圖5為本發明將多筆活動紀錄依據屬性的內容進行分類的方法的另一實施例簡化後的流程圖。 FIG. 5 is a simplified flow chart of another embodiment of the method for classifying multiple activity records according to the content of attributes according to the present invention.

圖6為本發明產生個別資料群組所對應的參考資料集的方法的一實施例簡化後的流程圖。 FIG. 6 is a simplified flowchart of a method for generating reference data sets corresponding to individual data groups according to an embodiment of the present invention.

圖7至圖9為本發明產生的參考資料集的不同實施例所對應的統計圖表簡化後的示意圖。 7 to 9 are simplified schematic diagrams of statistical charts corresponding to different embodiments of the reference data set generated by the present invention.

圖10為本發明檢測物聯網運作是否發生異常的方法的一實施例簡化後的流程圖。 FIG. 10 is a simplified flowchart of an embodiment of a method for detecting whether an Internet of Things operation is abnormal according to an embodiment of the present invention.

圖11為本發明檢測物聯網運作是否發生異常的一實施例簡化後的資料流示意圖。 FIG. 11 is a simplified schematic diagram of data flow according to an embodiment of the present invention for detecting whether the operation of the Internet of Things is abnormal.

圖12為本發明檢測物聯網運作是否發生異常的方法的另一實施例簡化後的流程圖。 FIG. 12 is a simplified flowchart of another embodiment of the method for detecting whether the operation of the Internet of Things is abnormal according to the present invention.

以下將配合相關圖式來說明本發明的實施例。在圖式中,相同的標號表示相同或類似的元件或方法流程。 The embodiments of the present invention will be described below with reference to the relevant drawings. In the drawings, the same reference numbers refer to the same or similar elements or method flows.

圖1為本發明一實施例的物聯網運作監控系統100簡化後的功能方塊圖。物聯網運作監控系統100包含有一資料檢測系統110以及複數個屬性過濾裝置(例如,圖1中的示例性屬性過濾裝置120、130、及140)。物聯網運作監控系統100用於監控複數個不同的標的物聯網系統(例如,圖1中的示例性標的物聯網系統101、102、及103)中的多個物聯網裝置的運作情況。如圖1所示,每個標的物聯網系統中皆包含有多個物聯網裝置。例如,標的物聯網系統101中包含有多個物聯網裝置104,標的物聯網系統102中包含有多個物聯網裝置105,標的物聯網系統103中包含有多個物聯網裝置106。 FIG. 1 is a simplified functional block diagram of an IoT operation monitoring system 100 according to an embodiment of the present invention. The IoT operation monitoring system 100 includes a data detection system 110 and a plurality of attribute filtering devices (eg, the exemplary attribute filtering devices 120 , 130 , and 140 in FIG. 1 ). The IoT operation monitoring system 100 is used to monitor the operation of a plurality of IoT devices in a plurality of different target IoT systems (eg, the exemplary target IoT systems 101 , 102 , and 103 in FIG. 1 ). As shown in Figure 1, each target IoT system includes multiple IoT devices. For example, the target IoT system 101 includes multiple IoT devices 104 , the target IoT system 102 includes multiple IoT devices 105 , and the target IoT system 103 includes multiple IoT devices 106 .

在說明書及申請專利範圍中所指稱的「標的物聯網系統」一詞,指的是利用分別佈署在不同地點的多個物聯網裝置來偵測、收集、或產生特定類型資料,以實現特定用途的各種物聯網應用系統,例如,智慧電表系統、智慧瓦斯表系統、智慧路燈系統、交通號誌管理系統、物流監控系統、智慧製造系統、遠距健康監測系統、傳染病疫情統計系統等等。 The term "target IoT system" referred to in the description and the scope of the patent application refers to the use of multiple IoT devices deployed in different locations to detect, collect, or generate specific types of data to achieve specific Various IoT application systems for various purposes, such as smart electricity meter system, smart gas meter system, smart street light system, traffic sign management system, logistics monitoring system, smart manufacturing system, remote health monitoring system, infectious disease epidemic statistics system, etc. .

在說明書及申請專利範圍中所指稱的「物聯網裝置」一詞,指的是具備偵測、收集、或產生特定類型資料的能力,並可利用無線存取技術與鄰近的基地台進行資料通信的各種電子裝置,例如,智慧電表、智慧瓦斯表、智慧路燈、交通號誌監控電路、物流監控系統中的電子標籤、物流監控系統中的行動通訊裝置、智慧製造系統中的機台運作監控裝置、穿戴式健康監測裝置、疫情數據接收裝置等等。 The term "Internet of Things device" as referred to in the specification and the scope of the patent application refers to the ability to detect, collect, or generate specific types of data, and to communicate data with neighboring base stations using wireless access technology Various electronic devices, such as smart electricity meters, smart gas meters, smart street lights, traffic signal monitoring circuits, electronic labels in logistics monitoring systems, mobile communication devices in logistics monitoring systems, and machine operation monitoring devices in smart manufacturing systems , wearable health monitoring devices, epidemic data receiving devices, etc.

在實際應用中,前述的標的物聯網系統101、102、及103的應用可以有所不同,且不同標的物聯網系統中的物聯網裝置的數量也可以有所不同。標的物聯網系統101、102、及103皆可以是各種規模的物聯網系統,而且每個標的物聯網系統中的物聯網裝置的數量,從個位數、數十台、數百台、甚至超過千台以上都有可能。換言之, 標的物聯網系統101、102、及103也可以是各種類型的大規模物聯網(massive Internet of Things,mIoT)系統。 In practical applications, the applications of the aforementioned target IoT systems 101 , 102 , and 103 may be different, and the number of IoT devices in different target IoT systems may also be different. The target IoT systems 101, 102, and 103 can all be IoT systems of various scales, and the number of IoT devices in each target IoT system ranges from single digits, dozens, hundreds, or even more. Thousands or more are possible. In other words, The target IoT systems 101, 102, and 103 may also be various types of massive Internet of Things (mIoT) systems.

每個標的物聯網系統中的所有物聯網裝置,有可能都設置在同一個地理區域(例如,同一建築物、同一區塊、同一街道、同一鄉鎮、或是同一城市等等)內,也有可能是分散在不同的地理區域中(例如,不同的建築物、不同的區塊、不同的街道、不同的鄉鎮、或是不同的城市等等)。另外,個別的物聯網裝置可以裝設在固定的地點,也可以裝設在會移動的物體上。 All IoT devices in each target IoT system may be located in the same geographic area (eg, same building, same block, same street, same township, same city, etc.), or are scattered in different geographic areas (eg, different buildings, different blocks, different streets, different townships, or different cities, etc.). In addition, individual IoT devices can be installed in fixed locations or on moving objects.

在前述標的物聯網系統101、102、及103的運作過程中,個別的物聯網裝置可利用無線存取技術(Radio Access Technology,RAT)直接連線至鄰近的基地台進行各種資料通信,或是透過其他通信設備間接連線至鄰近的基地台進行各種資料通信。基地台則會將個別的物聯網裝置傳來的資料,經由相關的封包閘道裝置傳送給後端的物聯網運作監控系統100進行處理與分析。前述的無線存取技術,可以是各種第二代(2nd Generation,2G)行動通訊技術、各種第三代(3rd Generation,3G)行動通訊技術、各種第四代(4th Generation,4G)行動通訊技術、各種第五代(5th Generation,5G)行動通訊技術、各種物聯網(Internet-of-Thing,IoT)通訊技術、各種窄帶物聯網(Narrow Band Internet of Thing,NB-IoT)通訊技術、各種車際(Vehicle-to-Vehicle)通訊技術、各種車聯網(Vehicle-to-Everything,V2X)通訊技術、各種衛星通訊技術、或是由其他標準制定組織所發布的各種無線通訊技術等。 During the operation of the aforementioned target IoT systems 101 , 102 , and 103 , individual IoT devices can use Radio Access Technology (RAT) to directly connect to nearby base stations for various data communications, or Through other communication equipment, it is indirectly connected to the neighboring base station for various data communication. The base station transmits the data from the individual IoT devices to the back-end IoT operation monitoring system 100 via the relevant packet gateway device for processing and analysis. The aforementioned wireless access technologies can be various 2nd Generation (2G) mobile communication technologies, various 3rd Generation (3G) mobile communication technologies, and various 4th Generation (4G) mobile communication technologies , various 5th Generation (5G) mobile communication technologies, various Internet-of-Thing (IoT) communication technologies, various Narrow Band Internet of Things (NB-IoT) communication technologies, various vehicle International (Vehicle-to-Vehicle) communication technology, various Vehicle-to-Everything (V2X) communication technologies, various satellite communication technologies, or various wireless communication technologies released by other standard-setting organizations.

例如,在圖1的實施例中,標的物聯網系統101中的個別物聯網裝置104可直接或間接連線至一基地台152進行資料通信,而基地台152則會將物聯網裝置104傳來的資料,經由一封包閘道裝置150傳送給後端的物聯網運作監控系統100進行處理與分析。標的物聯網系統102中的個別物聯網裝置105可直接或間接連線至一基地台162進行 資料通信,而基地台162則會將物聯網裝置105傳來的資料,經由一封包閘道裝置160傳送給後端的物聯網運作監控系統100進行處理與分析。標的物聯網系統103中的個別物聯網裝置106可直接或間接連線至一基地台172進行資料通信,而基地台172則會將物聯網裝置106傳來的資料,經由一封包閘道裝置170傳送給後端的物聯網運作監控系統100進行處理與分析。 For example, in the embodiment of FIG. 1 , the individual IoT devices 104 in the target IoT system 101 can be directly or indirectly connected to a base station 152 for data communication, and the base station 152 transmits data from the IoT device 104 The data is transmitted to the back-end IoT operation monitoring system 100 through a packet gateway device 150 for processing and analysis. Individual IoT devices 105 in the target IoT system 102 may be directly or indirectly connected to a base station 162 for For data communication, the base station 162 transmits the data from the IoT device 105 to the back-end IoT operation monitoring system 100 via the packet gateway device 160 for processing and analysis. The individual IoT devices 106 in the target IoT system 103 can be directly or indirectly connected to a base station 172 for data communication, and the base station 172 transmits data from the IoT device 106 through a packet gateway device 170 It is sent to the back-end IoT operation monitoring system 100 for processing and analysis.

換言之,前述的封包閘道裝置150~170與基地台152~172,共同扮演著物聯網運作監控系統100與標的物聯網系統101、102、及103之間的資料傳遞橋樑的角色。 In other words, the aforementioned packet gateway devices 150 - 170 and the base stations 152 - 172 jointly play the role of a data transmission bridge between the IoT operation monitoring system 100 and the target IoT systems 101 , 102 , and 103 .

請注意,圖1中所繪示的屬性過濾裝置的數量、標的物聯網系統的數量、個別標的物聯網系統中的物聯網裝置的數量、基地台的數量、以及封包閘道裝置的數量,只是為了方便繪圖的示例性範例,並非有意將前述裝置或系統的數量侷限在特定數量。例如,在實際應用中,每個標的物聯網系統與物聯網運作監控系統100之間,有可能存在做為資料傳遞橋樑的多個基地台和/或多個封包閘道裝置。 Please note that the number of attribute filtering devices, the number of target IoT systems, the number of IoT devices in individual target IoT systems, the number of base stations, and the number of packet gateway devices shown in FIG. 1 are only It is not intended that the number of the aforementioned devices or systems be limited to a particular number in order to facilitate the illustrative examples of the drawings. For example, in practical applications, there may be multiple base stations and/or multiple packet gateway devices serving as data transmission bridges between each target IoT system and the IoT operation monitoring system 100 .

如圖1所示,在物聯網運作監控系統100中的資料檢測系統110包含一通信電路111、一資料解譯電路112、一儲存電路113、一資料分類電路114、一資料態樣分析電路115、一異常檢測電路116、以及一用戶圖形介面產生電路117。屬性過濾裝置120包含一資料處理電路122以及一資料傳輸電路124。屬性過濾裝置130包含一資料處理電路132以及一資料傳輸電路134。屬性過濾裝置140包含一資料處理電路142以及一資料傳輸電路144。 As shown in FIG. 1 , the data detection system 110 in the IoT operation monitoring system 100 includes a communication circuit 111 , a data interpretation circuit 112 , a storage circuit 113 , a data classification circuit 114 , and a data pattern analysis circuit 115 , an abnormality detection circuit 116 , and a user graphic interface generation circuit 117 . The attribute filtering device 120 includes a data processing circuit 122 and a data transmission circuit 124 . The attribute filtering device 130 includes a data processing circuit 132 and a data transmission circuit 134 . The attribute filtering device 140 includes a data processing circuit 142 and a data transmission circuit 144 .

屬性過濾裝置120、130、及140皆設置成可接收一或多個封包閘道裝置所產生與多個物聯網裝置相對應的多個封包訊息,並可依據接收到的多個封包訊息產生分別與多個物聯網裝置相對應的多筆活動紀錄。在實際應用中,每個封包閘道裝置所產生的多個封包訊息,有可能是對應於單一標的物聯網系統中的不同物聯網裝置,也可能 是對應於多個標的物聯網系統中的不同物聯網裝置。換言之,每個屬性過濾裝置所接收到的多個封包訊息,有可能是對應於單一標的物聯網系統中的不同物聯網裝置,也可能是對應於多個標的物聯網系統中的不同物聯網裝置。 The attribute filtering devices 120, 130, and 140 are all configured to receive a plurality of packet messages corresponding to a plurality of Internet of Things devices generated by one or more packet gateway devices, and can generate a plurality of packet messages according to the received plurality of packet messages. Multiple activity records corresponding to multiple IoT devices. In practical applications, multiple packet messages generated by each packet gateway device may correspond to different IoT devices in a single target IoT system, or may are different IoT devices in the multiple target IoT systems. In other words, the multiple packet messages received by each attribute filtering device may correspond to different IoT devices in a single target IoT system, or may correspond to different IoT devices in multiple target IoT systems .

例如,屬性過濾裝置120可透過網路154接收與標的物聯網系統101相應的一或多個封包閘道裝置150所產生與多個物聯網裝置104相對應的多個封包訊息,並可依據接收到的多個封包訊息產生分別與多個物聯網裝置104相對應的多筆活動紀錄。屬性過濾裝置130可透過網路164接收與標的物聯網系統102相應的一或多個封包閘道裝置160所產生與多個物聯網裝置105相對應的多個封包訊息,並可依據接收到的多個封包訊息產生分別與多個物聯網裝置105相對應的多筆活動紀錄。屬性過濾裝置140可透過網路174接收與標的物聯網系統103相應的一或多個封包閘道裝置170所產生與多個物聯網裝置106相對應的多個封包訊息,並可依據接收到的多個封包訊息產生分別與多個物聯網裝置106相對應的多筆活動紀錄。 For example, the attribute filtering device 120 can receive, through the network 154 , a plurality of packet messages corresponding to the plurality of IoT devices 104 generated by one or more packet gateway devices 150 corresponding to the target IoT system 101 , and can receive a plurality of packet messages corresponding to the plurality of IoT devices 104 . A plurality of received packet messages generate a plurality of activity records corresponding to the plurality of IoT devices 104 respectively. The attribute filtering device 130 can receive, through the network 164, a plurality of packet messages corresponding to the plurality of IoT devices 105 generated by one or more packet gateway devices 160 corresponding to the target IoT system 102, The plurality of packet messages generate a plurality of activity records corresponding to the plurality of IoT devices 105 respectively. The attribute filtering device 140 can receive, through the network 174, a plurality of packet messages corresponding to the plurality of IoT devices 106 generated by one or more packet gateway devices 170 corresponding to the target IoT system 103, The plurality of packet messages generate a plurality of activity records corresponding to the plurality of IoT devices 106 respectively.

實作上,前述的網路154、164、及174皆可用各種私有網路(例如,電信商的內部網路、或是其他專用的通信網路等等)來實現,也可以用網際網路來實現。 In practice, the aforementioned networks 154, 164, and 174 can be implemented by various private networks (eg, the intranet of a telecommunication company, or other dedicated communication networks, etc.), or the Internet can be used. to fulfill.

資料檢測系統110可依據屬性過濾裝置120、130、及140所產生的活動紀錄,檢測標的物聯網系統101、102、及103中的多個物聯網裝置的運作情況。 The data detection system 110 can detect the operation status of a plurality of IoT devices in the target IoT systems 101 , 102 , and 103 according to the activity records generated by the attribute filtering devices 120 , 130 , and 140 .

在資料檢測系統110中,通信電路111設置成可透過網路182與前述的屬性過濾裝置120、130、及140進行資料通信,以接收屬性過濾裝置120、130、及140所產生的多筆活動紀錄。前述的網路182可用各種私有網路(例如,電信商的內部網路、或是其他專用的通信網路等等)來實現,也可以用網際網路來實現。 In the data detection system 110, the communication circuit 111 is configured to perform data communication with the aforementioned attribute filtering devices 120, 130, and 140 through the network 182, so as to receive multiple activities generated by the attribute filtering devices 120, 130, and 140. record. The aforementioned network 182 can be implemented by various private networks (eg, the intranet of a telecommunication company, or other dedicated communication networks, etc.), and can also be implemented by the Internet.

資料解譯電路112耦接於通信電路111,設置成可解譯通信電路111 所接收到的資料,以取得前述的多筆活動紀錄。 The data interpretation circuit 112 is coupled to the communication circuit 111 and configured to be capable of deciphering the communication circuit 111 The information received to obtain the above-mentioned multiple activity records.

儲存電路113耦接於通信電路111,設置成可儲存通信電路111所接收到的活動紀錄。 The storage circuit 113 is coupled to the communication circuit 111 and configured to store the activity records received by the communication circuit 111 .

資料分類電路114耦接於儲存電路113,設置成可將該多筆活動紀錄中的每一筆活動紀錄,依據若干數量的屬性的內容進行分類,以形成多個資料群組。 The data classification circuit 114 is coupled to the storage circuit 113, and is configured to classify each activity record in the plurality of activity records according to the content of a certain number of attributes to form a plurality of data groups.

資料態樣分析電路115耦接於儲存電路113,設置成可分析個別資料群組內的複數筆活動紀錄在一資料收集期間內的資料態樣,以產生個別資料群組所對應的一或多個參考資料集,並將所產生的參考資料集儲存在儲存電路113中。 The data pattern analysis circuit 115 is coupled to the storage circuit 113, and is configured to analyze the data patterns of a plurality of activity records in an individual data group during a data collection period, so as to generate one or more data patterns corresponding to the individual data groups. A reference data set is generated, and the generated reference data set is stored in the storage circuit 113 .

異常檢測電路116耦接於儲存電路113,設置成可根據儲存電路113中所儲存的參考資料集,來檢測前述標的物聯網系統101、102、及103中的多個物聯網裝置的運作是否出現異常,並於出現異常情況時產生相應的一或多個告警信息。 The abnormality detection circuit 116 is coupled to the storage circuit 113 , and is configured to detect whether the operation of a plurality of IoT devices in the aforementioned target IoT systems 101 , 102 , and 103 occurs according to the reference data set stored in the storage circuit 113 . exception, and generate corresponding one or more alarm messages when an abnormal situation occurs.

用戶圖形介面產生電路117耦接於通信電路111、儲存電路113、及異常檢測電路116,設置成可將異常檢測電路116所產生的告警信息以適當的視覺方式呈現給使用者。 The user graphic interface generating circuit 117 is coupled to the communication circuit 111 , the storage circuit 113 , and the abnormality detection circuit 116 , and is configured to present the alarm information generated by the abnormality detection circuit 116 to the user in an appropriate visual manner.

在圖1的實施例中,資料檢測系統110還可從其他外部裝置接收與標的物聯網系統101、102、或103中的多個物聯網裝置相關的資料。 In the embodiment of FIG. 1 , the data detection system 110 may also receive data related to a plurality of IoT devices in the target IoT system 101 , 102 , or 103 from other external devices.

例如,標的物聯網系統101、102、或103的運營者(operator)、管理者(administrator)、和/或其他使用者,可將標的物聯網系統101、102、或103中的多個物聯網裝置,依據地理位置區分為多個案場(site),並分別對不同案場中的物聯網裝置賦予不同的相應識別資料(以下稱之為案場識別資料,site ID)。前述標的物聯網系統101、102、或103的運營者、管理者、和/或其他使用者,可利用合適的用戶裝置(例如,圖1中的示例性用戶裝置192和/或194)透過網路184連線到資料檢測系統110,並提供標的物聯網系統101、102、 或103中的個別物聯網裝置所對應的案場識別資料給資料檢測系統110。前述的網路184可用網際網路來實現,也用各種私有網路(例如,電信商的內部網路、或是其他專用的通信網路等等)來實現。 For example, an operator, administrator, and/or other user of the target IoT system 101 , 102 , or 103 may connect a plurality of IoTs in the target IoT system 101 , 102 , or 103 to the Internet of Things The device is divided into a plurality of sites (sites) according to the geographical location, and different corresponding identification data (hereinafter referred to as site identification data, site ID) are respectively assigned to the IoT devices in different sites. Operators, managers, and/or other users of the aforementioned subject IoT systems 101 , 102 , or 103 may utilize suitable user devices (eg, exemplary user devices 192 and/or 194 in FIG. 1 ) through the Internet Road 184 is connected to the data detection system 110, and provides the target IoT systems 101, 102, Or the case identification data corresponding to the individual IoT devices in 103 are sent to the data detection system 110 . The aforementioned network 184 may be implemented by the Internet, and may also be implemented by various private networks (eg, the intranet of a telecommunication company, or other dedicated communication networks, etc.).

在此情況下,通信電路111及資料解譯電路112會接收及處理用戶裝置192和/或194傳來的個別物聯網裝置的案場識別資料,並將對應於不同物聯網裝置的不同案場識別資料,儲存在儲存電路113中。 In this case, the communication circuit 111 and the data interpretation circuit 112 will receive and process the case identification data of the individual IoT devices transmitted from the user devices 192 and/or 194, and will correspond to different cases of different IoT devices. The identification data is stored in the storage circuit 113 .

在某些實施例中,前述的標的物聯網系統101、102、或103的運營者、管理者、稽核人員(auditor)、和/或其他使用者,還可利用合適的用戶裝置(例如,圖1中的示例性用戶裝置192或194)透過網路184連線到資料檢測系統110,以查詢相關標的物聯網系統的運作狀況,或是透過資料檢測系統110向前述的標的物聯網系統101、102、或103下達各種控制指令。在此情況下,資料檢測系統110的通信電路111可透過網路184與這些用戶裝置進行資料通信,以提供用戶圖形介面產生電路117所產生的網頁或操控介面給這些用戶裝置,以使得個別標的物聯網系統的運營者、管理者、稽核人員、和/或其他使用者能在這些網頁或操控介面上進行相關操作。 In some embodiments, operators, managers, auditors, and/or other users of the aforementioned subject IoT systems 101 , 102 , or 103 may also utilize suitable user devices (eg, FIG. The exemplary user device 192 or 194 in 1) is connected to the data detection system 110 through the network 184 to inquire about the operation status of the relevant target IoT system, or to the aforementioned target IoT system 101, 102 or 103 issues various control commands. In this case, the communication circuit 111 of the data detection system 110 can perform data communication with these user devices through the network 184, so as to provide the webpage or control interface generated by the user graphic interface generation circuit 117 to these user devices, so that the individual target Operators, managers, auditors, and/or other users of the IoT system can perform related operations on these web pages or control interfaces.

實作上,通信電路111可用各種有線傳輸電路、無線傳輸電路、整合前述兩種通信機制的混合電路、或是雲端通信系統來實現。 In practice, the communication circuit 111 can be implemented by various wired transmission circuits, wireless transmission circuits, a hybrid circuit integrating the aforementioned two communication mechanisms, or a cloud communication system.

資料解譯電路112可用各種封包解調變電路、數位運算電路、微處理器、微處理器組合、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)、或是具有封包解析能力的雲端應用模組來實現。實作上,也可以將資料解譯電路112整合在通信電路111或資料分類電路114中。 The data interpretation circuit 112 can use various packet demodulation circuits, digital operation circuits, microprocessors, combinations of microprocessors, application specific integrated circuits (ASICs), or cloud applications with packet analysis capabilities module to achieve. In practice, the data interpretation circuit 112 can also be integrated into the communication circuit 111 or the data classification circuit 114 .

資料分類電路114、資料態樣分析電路115、及異常檢測電路116,皆可用各種具有資料運算能力的單一處理器模塊、多個處理器模塊的組合、單一電腦系統、多個電腦系統的組合、單一伺服器、多個伺服器的組合、或是雲端運算系統來實現。 The data classification circuit 114, the data pattern analysis circuit 115, and the anomaly detection circuit 116 can all use a single processor module with data computing capability, a combination of multiple processor modules, a single computer system, a combination of multiple computer systems, It can be implemented by a single server, a combination of multiple servers, or a cloud computing system.

儲存電路113可用各種非揮發性儲存裝置、資料庫系統、或是雲端儲存系統來實現。 The storage circuit 113 can be implemented by various non-volatile storage devices, database systems, or cloud storage systems.

用戶圖形介面產生電路117可用各種具有影像處理能力的單一處理器模塊、多個處理器模塊的組合、單一影像處理電路、多個影像處理電路的組合、單一電腦系統、多個電腦系統的組合、單一伺服器、多個伺服器的組合、或是雲端處理系統來實現。 The user graphic interface generation circuit 117 can use various single processor module with image processing capability, combination of multiple processor modules, single image processing circuit, combination of multiple image processing circuits, single computer system, combination of multiple computer systems, It can be implemented by a single server, a combination of multiple servers, or a cloud processing system.

實作上,前述資料檢測系統110中的不同功能方塊,可以分別用不同的電路或不同的雲端應用模組來實現,也可整合成單一伺服器系統、或是單一雲端運算系統。 In practice, the different functional blocks in the aforementioned data detection system 110 can be implemented by different circuits or different cloud application modules respectively, and can also be integrated into a single server system or a single cloud computing system.

資料處理電路122、132、及142皆可用各種具有資料通訊能力及資料處理能力的單一電腦系統、多個電腦系統的組合、單一伺服器、多個伺服器的組合、或是雲端運算系統來實現。 The data processing circuits 122, 132, and 142 can be implemented by various single computer systems with data communication capability and data processing capability, a combination of multiple computer systems, a single server, a combination of multiple servers, or a cloud computing system .

資料傳輸電路124、134、及144皆可用各種有線傳輸電路、無線傳輸電路、整合前述兩種通信機制的混合電路、或是雲端通信系統來實現。 The data transmission circuits 124 , 134 , and 144 can be implemented by various wired transmission circuits, wireless transmission circuits, hybrid circuits integrating the aforementioned two communication mechanisms, or cloud communication systems.

實作上,前述個別屬性過濾裝置中的不同功能方塊,可以分別用不同的電路或不同的雲端應用模組來實現,也可整合成單一電腦系統、單一伺服器系統、或是單一雲端運算系統。 In practice, different functional blocks in the aforementioned individual attribute filtering devices can be implemented by different circuits or different cloud application modules, or can be integrated into a single computer system, a single server system, or a single cloud computing system. .

另外,前述的用戶裝置192及194皆可用具有連網能力、且可執行瀏覽器或相關應用程式以登入資料檢測系統110進行操作的裝置來實現,例如,各種電腦、伺服器、行動通信裝置(例如智慧型手機、穿戴式裝置)、或是其他類似的裝置。 In addition, the above-mentioned user devices 192 and 194 can be implemented by devices that have networking capabilities and can execute browsers or related applications to log in to the data detection system 110 for operation, such as various computers, servers, mobile communication devices ( such as smart phones, wearable devices), or other similar devices.

以下將搭配圖2至圖3來進一步說明物聯網運作監控系統100收集與分類標的物聯網系統101、102、及103中的多個物聯網裝置的相關運作資料的方式。圖2為本發明對物聯網裝置的屬性進行分類及分析的方法的一實施例簡化後的流程圖。圖3為本發明對物聯網裝置的屬性進行分類及分析運作的一實施例簡化後的資料流示意圖。 2 to 3 to further illustrate the manner in which the IoT operation monitoring system 100 collects and classifies the relevant operation data of the multiple IoT devices in the target IoT systems 101 , 102 , and 103 . FIG. 2 is a simplified flowchart of an embodiment of a method for classifying and analyzing attributes of IoT devices according to the present invention. FIG. 3 is a simplified schematic diagram of data flow according to an embodiment of the present invention for classifying and analyzing attributes of IoT devices.

在圖2的流程圖中,位於一特定裝置所屬欄位中的流程,即代表由該特定裝置所進行的流程。例如,標記在「封包閘道裝置」欄位中的部分,是由封包閘道裝置150、160、及170所進行的流程;標記在「屬性過濾裝置」欄位中的部分,是由屬性過濾裝置120、130、及140所進行的流程;標記在「資料檢測系統」欄位中的部分,則是由資料檢測系統110所進行的流程。前述的邏輯也適用於後續的其他流程圖中。 In the flowchart of FIG. 2 , the process in the column to which a specific device belongs represents the process performed by the specific device. For example, the part marked in the "Packet Gateway Device" field is the process performed by the packet gateway devices 150, 160, and 170; the part marked in the "Attribute Filter Device" field is filtered by the attribute The process performed by the devices 120 , 130 , and 140 ; the part marked in the “Data Detection System” field is the process performed by the data detection system 110 . The aforementioned logic is also applicable to other subsequent flowcharts.

為了方便說明,以下將以物聯網運作監控系統100收集與分類標的物聯網系統101中的多個物聯網裝置的相關運作資料的方式為例,來說明圖2的運作方法。 For the convenience of description, the operation method of FIG. 2 will be described below by taking the manner in which the IoT operation monitoring system 100 collects and classifies the related operation data of the multiple IoT devices in the target IoT system 101 as an example.

在運作時,標的物聯網系統101中的個別物聯網裝置104,會產生並傳送相關的認證請求(authentication request)給鄰近的基地台152以請求取得網路使用的授權資格。此時,基地台152會將個別物聯網裝置104傳來的認證請求,傳送給相關的封包閘道裝置150進行處理。 During operation, the individual IoT devices 104 in the target IoT system 101 will generate and transmit relevant authentication requests to the neighboring base stations 152 to request authorization for network use. At this time, the base station 152 will transmit the authentication request from the individual IoT device 104 to the relevant packet gateway device 150 for processing.

在此情況下,封包閘道裝置150會進行圖2中的流程202,以透過基地台152接收個別物聯網裝置104所產生的認證請求(authentication request)。 In this case, the packet gateway device 150 will perform the process 202 in FIG. 2 to receive an authentication request generated by the individual IoT device 104 through the base station 152 .

在流程204中,封包閘道裝置150可根據接收到的認證請求進行個別物聯網裝置104的認證程序。完成認證程序後,標的物聯網系統101中的個別物聯網裝置104便可取得網路使用的授權資格,並透過鄰近的基地台152及相關的封包閘道裝置150與遠端的後台系統(back-end system)進行各種資料通信或指令傳輸。前述的後台系統可以是資料檢測系統110,也可以是其他的應用控制系統(未繪示於圖1中)。 In the process 204, the packet gateway device 150 may perform an authentication procedure of the individual IoT device 104 according to the received authentication request. After the authentication process is completed, the individual IoT devices 104 in the target IoT system 101 can obtain the authorization qualification for network use, and communicate with the remote background system (back -end system) for various data communication or command transmission. The aforementioned background system may be the data detection system 110 or other application control systems (not shown in FIG. 1 ).

實作上,標的物聯網系統101中的不同的物聯網裝置可以在相同的時段進行認證程序,也可以在不同的時段進行認證程序。 In practice, different IoT devices in the target IoT system 101 may perform the authentication procedure in the same time period, or may perform the authentication procedure in different time periods.

在標的物聯網系統101的運作過程中,封包閘道裝置150會間歇地收 到個別物聯網裝置104傳來的相關資料,也會間歇地進行流程206。 During the operation of the target IoT system 101, the packet gateway device 150 will receive intermittent The process 206 is also performed intermittently for the relevant data transmitted to the individual IoT devices 104 .

在流程206中,封包閘道裝置150會產生及傳送包含個別物聯網裝置104的多項屬性的一封包訊息給相應的屬性過濾裝置120。封包閘道裝置150可將與個別物聯網裝置104有關的多項屬性,以適當的資料格式整合成一封包訊息310。換言之,每個封包訊息310會對應於標的物聯網系統101中的某一個物聯網裝置104。如圖3所示,封包訊息310包含一標頭311以及儲存在不同資料欄位中的多項屬性(例如,圖3中所繪示的示例性屬性312、313、314、315、及316)。 In the process 206 , the packet gateway device 150 generates and transmits a packet message including multiple attributes of the individual IoT device 104 to the corresponding attribute filtering device 120 . The packet gateway device 150 can integrate various attributes related to the individual IoT device 104 into a packet message 310 in an appropriate data format. In other words, each packet message 310 corresponds to a certain IoT device 104 in the target IoT system 101 . As shown in FIG. 3, the packet message 310 includes a header 311 and various attributes (eg, the exemplary attributes 312, 313, 314, 315, and 316 shown in FIG. 3) stored in different data fields.

封包閘道裝置150記載在封包訊息310中的屬性,可包含一封包時間(packet time)、一連線識別資料(session ID)、物聯網裝置104的一網路位址(network address)、物聯網裝置104的一裝置識別資料(device ID)、物聯網裝置104所對應的一用戶識別資料(group ID)、物聯網裝置104的一裝置狀態資料(device status)、物聯網裝置104的一上行流量(uplink throughput)、物聯網裝置104的一下行流量(downlink throughput)、基地台152的一基地台識別資料(base station ID)、和/或物聯網裝置104的一服務類型(service type)等多種相關資料。前述的用戶識別資料也可以是一存取點名稱(access point name,APN)。另外,在物聯網裝置104內建有一用戶身分模組(Subscriber Identity Module,SIM)的實施例中,前述的裝置識別資料也可以是該用戶身分模組的號碼(SIM number)。 The attributes recorded in the packet message 310 by the packet gateway device 150 may include a packet time, a session ID, a network address of the IoT device 104, A device identification data (device ID) of the Internet-connected device 104 , a user identification data (group ID) corresponding to the IoT device 104 , a device status data (device status) of the IoT device 104 , and an uplink of the IoT device 104 Uplink throughput, downlink throughput of the IoT device 104, a base station ID of the base station 152, and/or a service type of the IoT device 104, etc. Various related information. The aforementioned user identification data may also be an access point name (APN). In addition, in the embodiment in which a subscriber identity module (SIM) is built in the IoT device 104, the aforementioned device identification data may also be the number (SIM number) of the subscriber identity module.

在某些實施例中,封包閘道裝置150記載在封包訊息310中的屬性,還可包含封包閘道裝置150的一封包閘道識別資料(packet gateway ID)、和/或物聯網裝置104的一連線時間(session time)。前述的封包閘道識別資料也可以是封包閘道裝置150的網路位址。 In some embodiments, the attributes of the packet gateway device 150 recorded in the packet message 310 may also include a packet gateway ID of the packet gateway device 150 and/or the data of the IoT device 104 . A connection time (session time). The aforementioned packet gateway identification data may also be the network address of the packet gateway device 150 .

實作上,封包閘道裝置150還可依據標的物聯網系統101的應用目的,將與個別物聯網裝置104有關的其他屬性或資料,也記載在封包訊息310中。封包閘道裝置150可將包含個別物聯網裝置104的多項屬 性的封包訊息310以各種合適形式的封包來實現。例如,在某些實施例中,封包閘道裝置150所產生的封包訊息310可用一計費請求封包(Accounting-Request Packet)的形式來實現。 In practice, the packet gateway device 150 may also record other attributes or data related to the individual IoT device 104 in the packet message 310 according to the application purpose of the target IoT system 101 . The packet gateway device 150 may include multiple attributes of an individual IoT device 104 The packetized message 310 is implemented in various suitable forms of packets. For example, in some embodiments, the packet message 310 generated by the packet gateway device 150 may be implemented in the form of an Accounting-Request Packet.

為了方便理解以下流程的說明,在此假設封包閘道裝置150在流程206中所產生的封包訊息310所包含的多項屬性,是與標的物聯網系統101中的某一物聯網裝置104(以下稱之為目標物聯網裝置104)有關的屬性。 For the convenience of understanding the description of the following process, it is assumed here that the multiple attributes included in the packet message 310 generated by the packet gateway device 150 in the process 206 are the same as those of a certain IoT device 104 in the target IoT system 101 (hereinafter referred to as It is an attribute related to the target IoT device 104).

在流程208中,屬性過濾裝置120的資料處理電路122會接收並解析封包閘道裝置150透過網路154傳來的封包訊息310。 In the process 208 , the data processing circuit 122 of the attribute filtering device 120 receives and parses the packet message 310 transmitted from the packet gateway device 150 through the network 154 .

接著,資料處理電路122可進行流程210,以依據封包訊息310中的部分屬性,產生對應於目標物聯網裝置104的一活動紀錄320。 Next, the data processing circuit 122 may perform the process 210 to generate an activity record 320 corresponding to the target IoT device 104 according to some attributes in the packet information 310 .

如圖3所示,資料處理電路122在接收到屬性過濾裝置120傳來的封包訊息310後,會解析並解取出封包訊息310所記載的前述多項屬性。接著,資料處理電路122會從所擷取出來的多項屬性中過濾出部分屬性(例如,圖3中所繪示的示例性屬性313、314、及316),並依據這些屬性產生對應於目標物聯網裝置104的活動紀錄320。 As shown in FIG. 3 , after receiving the packet message 310 from the attribute filtering device 120 , the data processing circuit 122 parses and extracts the aforementioned multiple attributes recorded in the packet message 310 . Next, the data processing circuit 122 filters out some attributes (eg, the exemplary attributes 313, 314, and 316 shown in FIG. 3) from the multiple attributes extracted, and generates corresponding objects according to these attributes. Activity log 320 of networked device 104 .

換言之,資料處理電路122所產生的活動紀錄320,並不會包含封包訊息310中所記載的全部屬性,只會包含封包訊息310中所記載的部分屬性。 In other words, the activity record 320 generated by the data processing circuit 122 does not include all the attributes recorded in the packet information 310 , but only includes some attributes recorded in the packet information 310 .

例如,資料處理電路122可將封包訊息310中所記載的目標物聯網裝置104的一裝置識別資料、目標物聯網裝置104所對應的一用戶識別資料、目標物聯網裝置104的一裝置狀態資料、目標物聯網裝置104的一上行流量、目標物聯網裝置104的一下行流量、以及基地台152的一基地台識別資料,以適當的資料格式整合成對應於目標物聯網裝置104的活動紀錄320。 For example, the data processing circuit 122 can process a device identification data of the target IoT device 104 recorded in the packet message 310, a user identification data corresponding to the target IoT device 104, a device status data of the target IoT device 104, An upstream traffic of the target IoT device 104 , downstream traffic of the target IoT device 104 , and a base station identification data of the base station 152 are integrated into an activity record 320 corresponding to the target IoT device 104 in an appropriate data format.

在某些實施例中,資料處理電路122還可將封包訊息310中所記載的封包閘道裝置150的一封包閘道識別資料、和/或目標物聯網裝置104 的一連線時間,也一併整合到與目標物聯網裝置104相應的活動紀錄320中。 In some embodiments, the data processing circuit 122 may further convert the packet gateway identification data of the packet gateway device 150 recorded in the packet message 310 and/or the target IoT device 104 The connection time of the target IoT device 104 is also integrated into the activity record 320 corresponding to the target IoT device 104 .

很明顯地,在資料處理電路122產生的活動紀錄320中所記載的屬性的數量,會少於封包訊息310中所記載的屬性的數量。 Obviously, the number of attributes recorded in the activity record 320 generated by the data processing circuit 122 will be less than the number of attributes recorded in the packet message 310 .

在流程212中,屬性過濾裝置120的資料傳輸電路124可將資料處理電路122所產生的一或多筆活動紀錄,透過網路182傳送給資料檢測系統110。 In the process 212 , the data transmission circuit 124 of the attribute filtering device 120 can transmit one or more activity records generated by the data processing circuit 122 to the data detection system 110 through the network 182 .

在此情況下,資料檢測系統110的通信電路111會進行流程214,以接收屬性過濾裝置120傳來的一或多筆活動紀錄。如前所述,資料解譯電路112可解譯通信電路111所接收到的活動紀錄,以擷取出每一筆活動紀錄中的相關資料,亦即前述記載在每一筆活動紀錄中的多項屬性。 In this case, the communication circuit 111 of the data detection system 110 will perform the process 214 to receive one or more activity records from the attribute filtering device 120 . As mentioned above, the data interpretation circuit 112 can interpret the activity records received by the communication circuit 111 to extract relevant data in each activity record, that is, the aforementioned multiple attributes recorded in each activity record.

實作上,資料傳輸電路124可在每次資料處理電路122產生一筆活動紀錄後,就立刻進行流程212,將該筆活動紀錄傳送給資料檢測系統110。 In practice, each time the data processing circuit 122 generates an activity record, the data transmission circuit 124 can immediately perform the process 212 to transmit the activity record to the data detection system 110 .

或者,資料傳輸電路124也可以等到資料處理電路122所產生的活動紀錄累積到一預定數量,才批次性地進行前述的流程212。例如,資料傳輸電路124可設置成在資料處理電路122所產生的活動紀錄累積到10筆、30筆、50筆、100筆、300筆、500筆、700筆、1000筆、1500筆、或2000筆時,才批次性地將這些活動紀錄傳送給資料檢測系統110。 Alternatively, the data transmission circuit 124 can also wait until the activity records generated by the data processing circuit 122 are accumulated to a predetermined number, and then perform the aforementioned process 212 in batches. For example, the data transmission circuit 124 may be configured to accumulate 10, 30, 50, 100, 300, 500, 700, 1000, 1500, or 2000 activity records generated by the data processing circuit 122 These activity records are transmitted to the data detection system 110 in batches only when the pen is written.

又或者,資料傳輸電路124也可以間歇性或週期性地進行流程212的活動紀錄傳輸運作。例如,資料傳輸電路124可以設置成每隔1秒、3秒、5秒、10秒、15秒、30秒、60秒、100秒、3分鐘、5分鐘、10分鐘、20分鐘、30分鐘、1小時、或1.5小時等合適的時間間隔,週期性地將當時所累積的活動紀錄傳送給資料檢測系統110。 Alternatively, the data transmission circuit 124 may also perform the activity record transmission operation of the process 212 intermittently or periodically. For example, the data transmission circuit 124 may be set to every 1 second, 3 seconds, 5 seconds, 10 seconds, 15 seconds, 30 seconds, 60 seconds, 100 seconds, 3 minutes, 5 minutes, 10 minutes, 20 minutes, 30 minutes, At a suitable time interval such as 1 hour or 1.5 hours, the activity records accumulated at that time are periodically transmitted to the data detection system 110 .

在圖3的實施例中,資料傳輸電路124是將資料處理電路122所產生 的多筆活動紀錄(例如,圖3中所繪示的示例性活動紀錄320、322、324、及326),批次性地透過網路182傳送給資料檢測系統110。 In the embodiment of FIG. 3 , the data transmission circuit 124 is generated by the data processing circuit 122 A plurality of activity records (eg, the exemplary activity records 320 , 322 , 324 , and 326 shown in FIG. 3 ) are transmitted to the data detection system 110 via the network 182 in batches.

封包閘道裝置150會重複進行前述的流程202至流程206,以產生及傳送與標的物聯網系統101中的其他物聯網裝置相應的許多封包訊息給屬性過濾裝置120。屬性過濾裝置120也會重複進行前述的流程208至流程212,以產生及傳送與標的物聯網系統101中的其他物聯網裝置相應的許多活動紀錄給資料檢測系統110。 The packet gateway device 150 repeats the aforementioned processes 202 to 206 to generate and transmit a number of packet messages corresponding to other IoT devices in the target IoT system 101 to the attribute filtering device 120 . The attribute filtering device 120 also repeats the aforementioned process 208 to process 212 to generate and transmit to the data detection system 110 many activity records corresponding to other IoT devices in the target IoT system 101 .

另一方面,物聯網運作監控系統100中的其他封包閘道裝置(例如,前述的封包閘道裝置160及170)以及其他屬性過濾裝置(例如,前述的屬性過濾裝置130及140),皆可比照前述方式進行運作。 On the other hand, other packet gateway devices (eg, the aforementioned packet gateway devices 160 and 170 ) and other attribute filtering devices (eg, the aforementioned attribute filtering devices 130 and 140 ) in the IoT operation monitoring system 100 can be Work in the same way as before.

例如,封包閘道裝置160可比照前述封包閘道裝置150的運作方式重複進行流程202至流程206,以產生及傳送與標的物聯網系統102中的多個物聯網裝置105相應的許多封包訊息給屬性過濾裝置130。屬性過濾裝置130則可比照前述屬性過濾裝置120的運作方式重複進行流程208至流程212,以產生及傳送與標的物聯網系統102中的多個物聯網裝置105相應的許多活動紀錄給資料檢測系統110。 For example, the packet gateway device 160 may repeat the process 202 to the process 206 according to the operation mode of the packet gateway device 150 described above, so as to generate and transmit a number of packet messages corresponding to the plurality of IoT devices 105 in the target IoT system 102 to Attribute filtering means 130 . The attribute filtering device 130 can repeat the process 208 to the process 212 according to the operation mode of the aforementioned attribute filtering device 120 to generate and transmit a number of activity records corresponding to the multiple IoT devices 105 in the target IoT system 102 to the data detection system 110.

又例如,封包閘道裝置170可比照前述封包閘道裝置150的運作方式重複進行流程202至流程206,以產生及傳送與標的物聯網系統103中的多個物聯網裝置106相應的許多封包訊息給屬性過濾裝置140。屬性過濾裝置140則可比照前述屬性過濾裝置120的運作方式重複進行流程208至流程212,以產生及傳送與標的物聯網系統103中的多個物聯網裝置106相應的許多活動紀錄給資料檢測系統110。 For another example, the packet gateway device 170 may repeat the process 202 to the process 206 according to the operation mode of the packet gateway device 150 to generate and transmit a number of packet messages corresponding to the multiple IoT devices 106 in the target IoT system 103 to the attribute filtering means 140. The attribute filtering device 140 can repeat the process 208 to the process 212 according to the operation mode of the aforementioned attribute filtering device 120 to generate and transmit a number of activity records corresponding to the multiple IoT devices 106 in the target IoT system 103 to the data detection system 110.

因此,資料檢測系統110的通信電路111會陸續接收到屬性過濾裝置120、130、及140所產生的許多活動紀錄。 Therefore, the communication circuit 111 of the data detection system 110 will successively receive many activity records generated by the attribute filtering devices 120 , 130 , and 140 .

另一方面,資料分類電路114則會進行流程216,以將通信電路111陸續接收到的多筆活動紀錄中的每一筆活動紀錄,依據複數個屬性的內容進行分類,以形成多個資料群組。 On the other hand, the data classification circuit 114 will perform the process 216 to classify each activity record among the plurality of activity records successively received by the communication circuit 111 according to the content of the plurality of attributes to form a plurality of data groups .

以下將搭配圖4及圖5來進一步說明資料分類電路114在流程216中將多筆活動紀錄依據屬性的內容進行分類的運作方式。圖4為本發明將多筆活動紀錄依據屬性的內容進行分類的方法的一實施例簡化後的流程圖。圖5為本發明將多筆活動紀錄依據屬性的內容進行分類的方法的另一實施例簡化後的流程圖。 The operation of the data classification circuit 114 to classify the plurality of activity records according to the content of the attributes in the process 216 will be further described below with reference to FIG. 4 and FIG. 5 . FIG. 4 is a simplified flowchart of an embodiment of a method for classifying multiple activity records according to content of attributes according to an embodiment of the present invention. FIG. 5 is a simplified flow chart of another embodiment of the method for classifying multiple activity records according to the content of attributes according to the present invention.

資料分類電路114在進行前述的流程216時,可採用圖4的方法將通信電路111陸續接收到的多筆活動紀錄依據複數個屬性的內容進行分類,以形成多個資料群組。 When the data classification circuit 114 performs the aforementioned process 216, the method shown in FIG. 4 can be used to classify the plurality of activity records successively received by the communication circuit 111 according to the content of the plurality of attributes to form a plurality of data groups.

為了方便配合圖3的資料流示意圖來說明,以下假設資料分類電路114要進行分類的多筆活動紀錄,也包含了前述的活動紀錄320、322、324、及326在內。 In order to facilitate the description with the data flow diagram of FIG. 3 , it is assumed that the multiple activity records to be classified by the data classification circuit 114 also include the aforementioned activity records 320 , 322 , 324 , and 326 .

實作上,資料分類電路114可利用每一筆活動紀錄中所記載的部分屬性來做為該筆活動記錄的分類基礎(classification basis)。 In practice, the data classification circuit 114 can use some attributes recorded in each activity record as the classification basis of the activity record.

例如,在某些實施例中,資料分類電路114可利用每一筆活動紀錄中所記載的基地台識別資料以及用戶識別資料兩項屬性來做為分類基礎。 For example, in some embodiments, the data classification circuit 114 may use two attributes of the base station identification data and the user identification data recorded in each activity record as the classification basis.

在另一些實施例中,資料分類電路114可利用每一筆活動紀錄中所記載的基地台識別資料、用戶識別資料、以及封包閘道識別資料三項屬性來做為分類基礎。 In other embodiments, the data classification circuit 114 may use three attributes of base station identification data, user identification data, and packet gateway identification data recorded in each activity record as the classification basis.

在流程402中,資料分類電路114可選取通信電路111接收到的多筆活動紀錄的其中之一,做為一當前活動紀錄(current activity record)。 In the process 402, the data classification circuit 114 may select one of the plurality of activity records received by the communication circuit 111 as a current activity record.

在流程404中,資料分類電路114可選取當前活動紀錄的多項屬性的其中之一,做為一選定屬性(selected attribute)。在運作時,資料分類電路114可選取當前活動紀錄中可做為分類基礎的其中一項屬性來做為選定屬性。 In the process 404, the data classification circuit 114 may select one of the attributes of the current activity record as a selected attribute. In operation, the data classification circuit 114 can select one of the attributes in the current activity record that can be used as the basis for classification as the selected attribute.

在流程406中,資料分類電路114可判斷儲存電路113中是否存在與 選定屬性的內容相應的資料群組。倘若當時儲存電路113中已存在與選定屬性的內容相應的資料群組,則資料分類電路114可接著進行流程408。反之,倘若當時儲存電路113中並不存在與選定屬性的內容相應的資料群組,則資料分類電路114可接著進行流程410。 In the process 406 , the data classification circuit 114 can determine whether the storage circuit 113 exists with the The data group corresponding to the content of the selected attribute. If a data group corresponding to the content of the selected attribute already exists in the storage circuit 113 at that time, the data classification circuit 114 may proceed to the process 408 . On the contrary, if the data group corresponding to the content of the selected attribute does not exist in the storage circuit 113 at that time, the data classification circuit 114 may proceed to the process 410 .

在流程408中,資料分類電路114可將當前活動紀錄分類到對應選定屬性的內容的資料群組中。 In process 408, the data classification circuit 114 may classify the current activity record into data groups corresponding to the content of the selected attribute.

在流程410中,資料分類電路114可建立對應選定屬性的內容的新資料群組,並將當前活動紀錄分類到新建立的資料群組中。 In process 410, the data classification circuit 114 may create a new data group corresponding to the content of the selected attribute, and classify the current activity record into the newly created data group.

在進行了前述的流程408或流程410之後,倘若當前活動紀錄中還存在要做為分類基礎的其他屬性,則資料分類電路114可接著進行流程412。反之,倘若當前活動紀錄中已不存在做為分類基礎的其他屬性,則資料分類電路114可接著進行流程414。 After performing the aforementioned process 408 or process 410 , if there are other attributes to be used as a basis for classification in the current activity record, the data classification circuit 114 may proceed to process 412 . On the contrary, if there are no other attributes used as the basis for the classification in the current activity record, the data classification circuit 114 may proceed to the process 414 .

在流程412中,資料分類電路114可選取當前活動紀錄中的另一項屬性做為選定屬性,並接著重複進行前述的流程406及後續的流程。 In the process 412, the data classification circuit 114 may select another attribute in the current activity record as the selected attribute, and then repeat the aforementioned process 406 and subsequent processes.

在流程414中,資料分類電路114可選取下一筆活動紀錄做為新的當前活動紀錄,並接著重複進行前述的流程404及後續的流程。 In the process 414, the data classification circuit 114 may select the next activity record as the new current activity record, and then repeat the foregoing process 404 and subsequent processes.

例如,資料分類電路114可在流程402中選取活動紀錄320做為當前活動紀錄,並可在流程404中選取活動紀錄320中所記載的基地台識別資料做為選定屬性。 For example, the data classification circuit 114 may select the activity record 320 as the current activity record in the process 402 , and may select the base station identification data recorded in the activity record 320 as the selected attribute in the process 404 .

假設活動紀錄320中所記載的基地台識別資料的內容是對應於基地台152的基地台識別資料BS-152,則資料分類電路114在流程406中會檢查當時儲存電路113中是否已存在與選定屬性的內容(例如,在本例中為基地台識別資料BS-152)相應的資料群組。 Assuming that the content of the base station identification data recorded in the activity record 320 is the base station identification data BS-152 corresponding to the base station 152, the data classification circuit 114 will check whether the storage circuit 113 already exists and selected in the process 406. The content of the attribute (eg, the base station identification data BS-152 in this example) corresponds to the data group.

倘若當時儲存電路113中已存在與基地台識別資料BS-152相應的一資料群組330,則資料分類電路114可進行流程408,以將當前活動紀錄(例如,在本例中為活動紀錄320)分類到資料群組330中。反之,倘若當時儲存電路113中並不存在與基地台識別資料RS-152相 應的資料群組,則資料分類電路114可進行流程410,以建立對應基地台識別資料BS-152的一新資料群組330,並將當前活動紀錄(例如,在本例中為活動紀錄320)分類到新建立的資料群組330中。 If a data group 330 corresponding to the base station identification data BS-152 already exists in the storage circuit 113 at that time, the data classification circuit 114 can perform the process 408 to record the current activity (eg, the activity record 320 in this example). ) into the data group 330. On the contrary, if the storage circuit 113 does not have the base station identification data RS-152 at that time the corresponding data group, the data classification circuit 114 can perform the process 410 to create a new data group 330 corresponding to the base station identification data BS-152, and record the current activity (eg, the activity record 320 in this example) ) into the newly created data group 330.

在本範例中,由於活動紀錄320中還存在要做為分類基礎的其他屬性,所以資料分類電路114在將活動紀錄320分類到資料群組330之後,還可進行流程412,以選取活動紀錄320中可做為分類基礎的另一項屬性來做為選定屬性,並重複進行前述的流程406及後續的流程。 In this example, since the activity record 320 also has other attributes to be used as the basis for classification, the data classification circuit 114 can further perform the process 412 to select the activity record 320 after classifying the activity record 320 into the data group 330 . Another attribute that can be used as the basis for classification is used as the selected attribute, and the foregoing process 406 and subsequent processes are repeated.

為了便於說明,在此假設資料分類電路114在流程412中選取活動紀錄320中所記載的用戶識別資料來做為選定屬性,且用戶識別資料的內容是對應一第一特定用戶(例如,某一電力公司、某一物流業者、某一路燈管理機構等等)的識別資料APN-A。在此情況下,資料分類電路114在流程406中會檢查當時儲存電路113中是否已存在與識別資料APN-A相應的資料群組。 For the convenience of description, it is assumed here that the data classification circuit 114 selects the user identification data recorded in the activity record 320 as the selected attribute in the process 412, and the content of the user identification data corresponds to a first specific user (for example, a certain user). Identification data APN-A of a power company, a logistics company, a street light management agency, etc.). In this case, the data classification circuit 114 checks whether there is a data group corresponding to the identification data APN-A in the storage circuit 113 at that time in the process 406 .

倘若當時儲存電路113中已存在與識別資料APN-A相應的一資料群組332,則資料分類電路114可進行流程408,以將活動紀錄320分類到資料群組332中。反之,倘若當時儲存電路113中並不存在與識別資料APN-A相應的資料群組,則資料分類電路114可進行流程410,以建立對應識別資料APN-A的一新資料群組332,並將活動紀錄320分類到新建立的資料群組332中。 If a data group 332 corresponding to the identification data APN-A already exists in the storage circuit 113 at that time, the data classification circuit 114 can perform the process 408 to classify the activity record 320 into the data group 332 . On the contrary, if the data group corresponding to the identification data APN-A does not exist in the storage circuit 113 at that time, the data classification circuit 114 may perform the process 410 to create a new data group 332 corresponding to the identification data APN-A, and Activity records 320 are sorted into newly created data groups 332 .

如果活動紀錄320中還記載了可做為分類基礎的封包閘道識別資料,則資料分類電路114在將活動紀錄320分類到資料群組332之後,還可再次進行流程412,以選取活動紀錄320中所記載的封包閘道識別資料來做為選定屬性,並比照前述方式重複進行前述的流程406及後續的流程。如此一來,活動紀錄320最後就會被分類到三個不同的資料群組中。 If the activity record 320 also records the packet gateway identification data that can be used as the basis for classification, the data classification circuit 114 may perform the process 412 again after classifying the activity record 320 into the data group 332 to select the activity record 320 The packet gateway identification data recorded in is used as the selected attribute, and the foregoing process 406 and subsequent processes are repeated according to the foregoing method. In this way, the activity records 320 are finally classified into three different data groups.

由前述說明可知,如果資料分類電路114共依據活動紀錄320中所記 載的N個屬性來分類活動紀錄320,則活動紀錄320最後會被分類到N個不同的資料群組中。 As can be seen from the foregoing description, if the data classification circuit 114 is based on the records in the activity record 320 The activity records 320 are classified by the N attributes contained therein, and then the activity records 320 are finally classified into N different data groups.

如前所述,倘若活動紀錄320中已不存在做為分類基礎的其他屬性,則資料分類電路114可進行流程414,以選取下一筆活動紀錄做為新的當前活動紀錄,並接著重複進行前述的流程404及後續的流程。 As mentioned above, if there are no other attributes in the activity record 320 as the basis for classification, the data classification circuit 114 can perform the process 414 to select the next activity record as the new current activity record, and then repeat the above-mentioned process process 404 and subsequent processes.

例如,資料分類電路114可在流程402中選取活動紀錄322做為新的當前活動紀錄,並可在流程404中選取活動紀錄322中所記載的基地台識別資料做為選定屬性。 For example, the data classification circuit 114 may select the activity record 322 as the new current activity record in the process 402 , and may select the base station identification data recorded in the activity record 322 as the selected attribute in the process 404 .

在此假設活動紀錄322中所記載的基地台識別資料的內容是基地台152的識別資料BS-152。資料分類電路114在流程406中會檢查當時儲存電路113中是否已存在與選定屬性的內容(例如,在本例中為基地台152的識別資料BS-152)相應的資料群組。 Here, it is assumed that the content of the base station identification data recorded in the activity log 322 is the identification data BS-152 of the base station 152 . In the process 406, the data classification circuit 114 checks whether a data group corresponding to the content of the selected attribute (eg, the identification data BS-152 of the base station 152 in this example) already exists in the storage circuit 113 at that time.

由於當時儲存電路113中已存在與識別資料BS-152相應的資料群組330,所以資料分類電路114可進行流程408,以將活動紀錄322分類到資料群組330中。 Since the data group 330 corresponding to the identification data BS-152 already exists in the storage circuit 113 at that time, the data classification circuit 114 can perform the process 408 to classify the activity record 322 into the data group 330 .

由於活動紀錄322中還存在要做為分類基礎的其他屬性,所以資料分類電路114在將活動紀錄322分類到資料群組330之後,還可進行流程412,以選取活動紀錄322中可做為分類基礎的另一項屬性來做為選定屬性,並重複進行前述的流程406及後續的流程。 Since there are other attributes in the activity record 322 to be used as the basis for classification, the data classification circuit 114 can further perform the process 412 after classifying the activity record 322 into the data group 330 to select the activity record 322 that can be used for classification Another basic attribute is used as the selected attribute, and the foregoing process 406 and subsequent processes are repeated.

為了便於說明,在此假設資料分類電路114在流程412中選取活動紀錄322中所記載的用戶識別資料來做為選定屬性,且用戶識別資料的內容是對應一第二特定用戶的識別資料APN-B。在此情況下,資料分類電路114在流程406中會檢查當時儲存電路113中是否已存在與識別資料APN-B相應的資料群組。 For ease of description, it is assumed here that the data classification circuit 114 selects the user identification data recorded in the activity record 322 as the selected attribute in the process 412, and the content of the user identification data is the identification data APN- corresponding to a second specific user. B. In this case, in the process 406, the data classification circuit 114 checks whether the data group corresponding to the identification data APN-B already exists in the storage circuit 113 at that time.

倘若當時儲存電路113中已存在與識別資料APN-B相應的一資料群組334,則資料分類電路114可進行流程408,以將活動紀錄322分類到資料群組334中。反之,倘若當時儲存電路113中並不存在與識別 資料APN-B相應的資料群組,則資料分類電路114可進行流程410,以建立對應識別資料APN-B的一新資料群組334,並將活動紀錄322分類到新建立的資料群組334中。 If a data group 334 corresponding to the identification data APN-B already exists in the storage circuit 113 at that time, the data classification circuit 114 can perform the process 408 to classify the activity record 322 into the data group 334 . On the contrary, if the storage circuit 113 does not exist and identify A data group corresponding to the data APN-B, the data classification circuit 114 may perform the process 410 to create a new data group 334 corresponding to the identification data APN-B, and classify the activity record 322 into the newly created data group 334 middle.

同樣地,如果活動紀錄322中還記載了可做為分類基礎的封包閘道識別資料,則資料分類電路114在將活動紀錄322分類到資料群組334之後,還可再次進行流程412,以選取活動紀錄322中所記載的封包閘道識別資料來做為選定屬性,並比照前述方式重複進行前述的流程406及後續的流程。如此一來,活動紀錄322最後也會被分類到三個不同的資料群組中。 Similarly, if the activity record 322 also records the packet gateway identification data that can be used as the basis for classification, the data classification circuit 114 may perform the process 412 again after classifying the activity record 322 into the data group 334 to select The packet gateway identification data recorded in the activity record 322 is used as the selected attribute, and the aforementioned process 406 and subsequent processes are repeated according to the aforementioned method. In this way, the activity records 322 are finally classified into three different data groups.

資料分類電路114可比照前述方式,採用圖4的方法對通信電路111所接收到的其他活動紀錄進行分類。 The data classification circuit 114 can use the method of FIG. 4 to classify other activity records received by the communication circuit 111 in the same manner as described above.

例如,如圖3所示,倘若活動紀錄324中的基地台識別資料的內容是基地台識別資料BS-152、且活動紀錄324中的用戶識別資料的內容是識別資料APN-B,則資料分類電路114會根據前述的分類方式將活動紀錄324分類到資料群組330及資料群組334中。 For example, as shown in FIG. 3, if the content of the base station identification data in the activity record 324 is the base station identification data BS-152, and the content of the user identification data in the activity record 324 is the identification data APN-B, the data classification The circuit 114 classifies the activity records 324 into the data group 330 and the data group 334 according to the aforementioned classification method.

又例如,倘若活動紀錄326中的基地台識別資料的內容是基地台識別資料BS-152、且活動紀錄326中的用戶識別資料的內容是識別資料APN-A,則資料分類電路114會根據前述的分類方式將活動紀錄326分類到資料群組330及資料群組332中。 For another example, if the content of the base station identification data in the activity record 326 is the base station identification data BS-152, and the content of the user identification data in the activity record 326 is the identification data APN-A, the data classification circuit 114 will Activity records 326 are classified into data group 330 and data group 332 according to the classification method.

除了前述圖4的方法之外,資料分類電路114也可採用其他的方法來進行前述的流程216。例如,圖5為本發明將多筆活動紀錄依據屬性的內容進行分類的方法的另一實施例簡化後的流程圖。以下將搭配圖5來進一步說明資料分類電路114在流程216中將多筆活動紀錄依據屬性的內容進行分類的另一種運作方式。 In addition to the aforementioned method in FIG. 4 , the data classification circuit 114 may also use other methods to perform the aforementioned process 216 . For example, FIG. 5 is a simplified flow chart of another embodiment of the method for classifying multiple activity records according to the content of attributes of the present invention. Another operation of the data classification circuit 114 to classify the plurality of activity records according to the content of the attribute in the process 216 will be further described below with reference to FIG. 5 .

在圖5的實施例中,資料分類電路114同樣可利用記載在活動紀錄中的部分屬性(例如,前述的基地台識別資料、用戶識別資料、和/或封包閘道識別資料等等)來做為活動記錄的分類基礎。 In the embodiment of FIG. 5, the data classification circuit 114 can also use some attributes recorded in the activity record (for example, the aforementioned base station identification data, user identification data, and/or packet gateway identification data, etc.) The classification basis for activity records.

在流程502中,資料分類電路114可選取前述要做為活動記錄的分類基礎的多項屬性的其中之一,來做為第一選定屬性。例如,資料分類電路114可選取前述的用戶識別資料來做為第一選定屬性。 In the process 502, the data classification circuit 114 may select one of the aforementioned attributes to be used as the basis for classifying the activity record as the first selected attribute. For example, the data classification circuit 114 may select the aforementioned user identification data as the first selected attribute.

在流程504中,資料分類電路114可依據第一選定屬性的不同內容,產生相應的多個資料群組,並將通信電路111接收到的多筆活動紀錄分類到該多個資料群組中,以確保同一資料群組內的所有活動紀錄中的第一選定屬性的內容都相同。 In the process 504, the data classification circuit 114 may generate a plurality of corresponding data groups according to different contents of the first selected attribute, and classify the plurality of activity records received by the communication circuit 111 into the plurality of data groups, to ensure that the content of the first selected attribute is the same in all activity records within the same data group.

在運作時,資料分類電路114可檢查該多筆活動紀錄中所記載的第一選定屬性有多少種不同的內容,然後建立相應數量的多個資料群組。例如,倘若第一選定屬性是用戶識別資料,且該多筆活動紀錄中所記載的用戶識別資料共有10種不同內容,則資料分類電路114可建立分別與這10種不同內容的用戶識別資料相應的10個資料群組(以下稱之為第一屬性資料群組)。接著,資料分類電路114可將用戶識別資料的內容不同的活動紀錄分別分類到不同的第一屬性資料群組,使得同一個第一屬性資料群組內的所有活動紀錄中的用戶識別資料的內容都相同。在正常情況下,每個第一屬性資料群組中都會包含有複數筆活動紀錄,但不同的第一屬性資料群組中的活動紀錄的數量可能會有所不同。 During operation, the data classification circuit 114 can check how many different contents of the first selected attribute recorded in the plurality of activity records, and then create a corresponding number of data groups. For example, if the first selected attribute is user identification data, and the user identification data recorded in the multiple activity records has a total of 10 different contents, the data classification circuit 114 can establish user identification data corresponding to the 10 different contents respectively. 10 data groups (hereinafter referred to as the first attribute data group). Next, the data classification circuit 114 can classify the activity records with different contents of the user identification data into different first attribute data groups, so that the content of the user identification data in all the activity records in the same first attribute data group all the same. Under normal circumstances, each first attribute data group contains a plurality of activity records, but the number of activity records in different first attribute data groups may be different.

在流程506中,資料分類電路114可選取要做為分類基礎的另一項屬性,來做為一第二選定屬性。例如,資料分類電路114可選取前述的基地台識別資料來做為第二選定屬性。 In process 506, the data classification circuit 114 may select another attribute to be used as a basis for classification as a second selected attribute. For example, the data classification circuit 114 may select the aforementioned base station identification data as the second selected attribute.

在流程508中,資料分類電路114可依據第二選定屬性的不同內容,產生相應的多個資料群組,並將通信電路111接收到的多筆活動紀錄分類到該多個資料群組中,以確保同一資料群組內的所有活動紀錄中的第二選定屬性的內容都相同。 In the process 508, the data classification circuit 114 may generate a plurality of corresponding data groups according to different contents of the second selected attribute, and classify the plurality of activity records received by the communication circuit 111 into the plurality of data groups, to ensure that the content of the second selected attribute is the same in all activity records within the same data group.

例如,倘若第二選定屬性是基地台識別資料,且該多筆活動紀錄中所記載的基地台識別資料共有5種不同內容,則資料分類電路114可 建立分別與這5種不同內容的基地台識別資料相應的5個資料群組(以下稱之為第二屬性資料群組)。接著,資料分類電路114可將基地台識別資料的內容不同的活動紀錄分別分類到不同的第二屬性資料群組中,使得同一個第二屬性資料群組內的所有活動紀錄中的基地台識別資料的內容都相同。同樣地,在正常情況下,每個第二屬性資料群組中都會包含有複數筆活動紀錄,但不同的第二屬性資料群組中的活動紀錄的數量可能會有所不同。 For example, if the second selected attribute is base station identification data, and the base station identification data recorded in the plurality of activity records has five different contents, the data classification circuit 114 may Five data groups (hereinafter referred to as second attribute data groups) corresponding to the base station identification data of the five different contents are established. Next, the data classification circuit 114 can classify the activity records with different contents of the base station identification data into different second attribute data groups, so that the base station identifications in all the activity records in the same second attribute data group The content of the data is the same. Likewise, under normal circumstances, each second attribute data group contains a plurality of activity records, but the number of activity records in different second attribute data groups may be different.

在進行了前述的流程508之後,資料分類電路114會判斷是否還存在要做為資料群組分類基礎的其他屬性。倘若已不存在要做為資料群組分類基礎的其他屬性,則資料分類電路114可進行流程510。反之,倘若還存在要做為資料群組分類基礎的其他屬性,則資料分類電路114可接著進行流程512。 After performing the aforementioned process 508, the data classification circuit 114 will determine whether there are other attributes to be used as the basis for classifying the data group. If there are no other attributes on which to base the data group classification, the data classification circuit 114 may proceed to process 510 . Conversely, if there are other attributes to be used as a basis for classifying the data group, the data classification circuit 114 may proceed to process 512 .

在流程510中,資料分類電路114可等待屬性過濾裝置120、130、及140傳來其他的活動紀錄。 In process 510 , the data classification circuit 114 may wait for other activity records from the attribute filtering devices 120 , 130 , and 140 .

在流程512中,資料分類電路114可選取要做為分類基礎的另一項屬性,以做為下一選定屬性。 In process 512, the data classification circuit 114 may select another attribute to be used as a basis for classification as the next selected attribute.

在流程514中,資料分類電路114可依據下一選定屬性的不同內容,產生相應的多個資料群組,並將通信電路111接收到的多筆活動紀錄分類到該多個資料群組中,以確保同一資料群組內的所有活動紀錄中的下一選定屬性的內容都相同。 In the process 514, the data classification circuit 114 may generate a plurality of corresponding data groups according to different contents of the next selected attribute, and classify the plurality of activity records received by the communication circuit 111 into the plurality of data groups, to ensure that the content of the next selected attribute is the same in all activity records within the same data group.

例如,如果通信電路111接收到的多筆活動紀錄中還記載了可做為分類基礎的封包閘道識別資料,則資料分類電路114可進行流程512,以選取封包閘道識別資料來做為下一選定屬性。倘若該多筆活動紀錄中所記載的封包閘道識別資料共有3種不同內容,則資料分類電路114可在流程514中建立分別與這3種不同內容的封包閘道識別資料相應的3個資料群組(以下稱之為第三屬性資料群組)。接著,資料分類電路114可將封包閘道識別資料的內容不同的活動紀錄分 別分類到不同的第三屬性資料群組中,使得同一個第三屬性資料群組內的所有活動紀錄中的封包閘道識別資料的內容都相同。同樣地,在正常情況下,每個第三屬性資料群組中都會包含有複數筆活動紀錄,但不同的第三屬性資料群組中的活動紀錄的數量可能會有所不同。 For example, if the multiple activity records received by the communication circuit 111 also record the packet gateway identification data that can be used as the basis for classification, the data classification circuit 114 can perform the process 512 to select the packet gateway identification data as the following a selected attribute. If there are three different contents of the packet gateway identification data recorded in the multiple activity records, the data classification circuit 114 may create three data corresponding to the packet gateway identification data of the three different contents in the process 514 respectively. group (hereinafter referred to as the third attribute data group). Then, the data classification circuit 114 can classify the activity records with different contents of the packet gateway identification data into They are classified into different third attribute data groups, so that the content of the packet gateway identification data in all activity records in the same third attribute data group is the same. Likewise, under normal circumstances, each third attribute data group contains a plurality of activity records, but the number of activity records in different third attribute data groups may be different.

在進行了流程514之後,資料分類電路114會再次判斷是否還存在要做為資料群組分類基礎的其他屬性。倘若已不存在要做為資料群組分類基礎的其他屬性,則資料分類電路114可進行流程510。反之,倘若還存在要做為資料群組分類基礎的其他屬性,則資料分類電路114可重複進行前述的流程512及流程514的運作,繼續依據其他屬性的內容對通信電路111接收到的多筆活動紀錄進行分類,直到要做為分類基礎的所有屬性都用完為止。 After the process 514 is performed, the data classification circuit 114 will again determine whether there are other attributes to be used as the basis for classifying the data group. If there are no other attributes on which to base the data group classification, the data classification circuit 114 may proceed to process 510 . On the contrary, if there are other attributes to be used as the basis for classifying the data group, the data classification circuit 114 can repeat the operations of the aforementioned process 512 and process 514, and continue to classify the multiple data received by the communication circuit 111 according to the content of the other attributes. Activity records are sorted until all attributes to be used as a basis for sorting are used up.

資料分類電路114可比照前述方式,採用圖5的方法對通信電路111後續所接收到的其他活動紀錄進行分類。 The data classification circuit 114 can use the method of FIG. 5 to classify other activity records subsequently received by the communication circuit 111 in the same manner as described above.

由前述圖4與圖5的流程圖說明可知,由於不同活動紀錄中所記載的同一個屬性的內容可能會有所不同,所以資料分類電路114將屬性過濾裝置120、130、及140所產生的每一筆活動紀錄,依據N個屬性的內容進行分類之後,會形成M個資料群組,其中,N為2或大於2的整數,且M至少為N的兩倍。如果不同活動紀錄中的個別屬性的內容有超過2種的可能,則M就會是N的更高倍數。 It can be seen from the flow charts in FIGS. 4 and 5 that the content of the same attribute recorded in different activity records may be different, so the data classification circuit 114 filters the attributes generated by the attribute filtering devices 120 , 130 and 140 . After each activity record is classified according to the contents of the N attributes, M data groups will be formed, wherein N is an integer of 2 or greater, and M is at least twice as large as N. If there are more than two possibilities for the content of individual attributes in different activity records, M will be a higher multiple of N.

如前所述,資料檢測系統110有可能會從外部的用戶裝置192和/或194接收與標的物聯網系統101、102、或103相關的資料。在進行圖2的流程216時,資料分類電路114還可利用用戶裝置192和/或194所提供的資料來做為前述的多筆活動紀錄的額外分類基礎。 As mentioned above, the data detection system 110 may receive data related to the target IoT system 101 , 102 , or 103 from the external user devices 192 and/or 194 . When performing the process 216 of FIG. 2 , the data classification circuit 114 may also use the data provided by the user devices 192 and/or 194 as an additional classification basis for the aforementioned multiple activity records.

例如,在資料檢測系統110會從用戶裝置192和/或194接收與標的物聯網系統101、102、或103中的個別物聯網裝置所對應的案場識別資料的某些實施例中,資料分類電路114可將案場識別資料當成是 可做為前述多筆活動紀錄的分類基礎的一項額外屬性。 For example, in some embodiments in which data detection system 110 receives field identification data from user devices 192 and/or 194 corresponding to individual IoT devices in target IoT systems 101 , 102 , or 103 , data classification Circuit 114 may treat the scene identification data as An additional attribute that can be used as the basis for the classification of the aforementioned multiple activity records.

倘若資料分類電路114是採用前述圖4的方法來對多筆活動紀錄進行分類,則當資料分類電路114在對每一筆當前活動紀錄進行分類時,資料分類電路114可判斷儲存電路113中是否存在與當前活動紀錄中的案場識別資料的內容相應的資料群組。如果當時儲存電路113中已存在與案場識別資料的內容相應的資料群組,則資料分類電路114可接著進行流程408,以將當前活動紀錄分類到對應案場識別資料的內容的資料群組中。反之,倘若當時儲存電路113中並不存在與案場識別資料的內容相應的資料群組,則資料分類電路114可接著進行流程410,以建立對應案場識別資料的內容的新資料群組,並將當前活動紀錄分類到新建立的資料群組中。 If the data classification circuit 114 uses the method of FIG. 4 to classify multiple activity records, then when the data classification circuit 114 is classifying each current activity record, the data classification circuit 114 can determine whether the storage circuit 113 exists. The data group corresponding to the content of the scene identification data in the current activity record. If a data group corresponding to the content of the crime scene identification data already exists in the storage circuit 113 at that time, the data classification circuit 114 may proceed to process 408 to classify the current activity record into a data group corresponding to the content of the crime scene identification data middle. On the contrary, if the data group corresponding to the content of the field identification data does not exist in the storage circuit 113 at that time, the data classification circuit 114 may proceed to the process 410 to create a new data group corresponding to the content of the field identification data, And classify the current activity record into the newly created data group.

倘若資料分類電路114是採用前述圖5的方法來對多筆活動紀錄進行分類,則資料分類電路114可檢查該多筆活動紀錄中所記載的案場識別資料有多少種不同的內容,然後建立相應數量的多個資料群組。例如,假設該多筆活動紀錄中所記載的案場識別資料共有120種不同內容,則資料分類電路114可建立分別與這120種不同內容的案場識別資料相應的120個資料群組(以下稱之為第四屬性資料群組)。接著,資料分類電路114可將案場識別資料的內容不同的活動紀錄分別分類到不同的第四屬性資料群組中,使得同一個第四屬性資料群組內的所有活動紀錄中的案場識別資料的內容都相同。與前述說明類似,每個第四屬性資料群組中都會包含有複數筆活動紀錄,但不同的第四屬性資料群組中的活動紀錄的數量可能會有所不同。 If the data classification circuit 114 uses the method shown in FIG. 5 to classify multiple activity records, the data classification circuit 114 can check the number of different contents of the case identification data recorded in the multiple activity records, and then establish The corresponding number of multiple data groups. For example, assuming that there are 120 different contents of the crime scene identification data recorded in the multiple activity records, the data classification circuit 114 can create 120 data groups corresponding to the crime scene identification data of the 120 different contents (the following It is called the fourth attribute data group). Next, the data classification circuit 114 can classify the activity records with different contents of the crime scene identification data into different fourth attribute data groups, so that the crime scene identification in all the activity records in the same fourth attribute data group The content of the data is the same. Similar to the above description, each fourth attribute data group will contain a plurality of activity records, but the number of activity records in different fourth attribute data groups may be different.

實作上,資料分類電路114對每一筆活動紀錄進行的前述分類運作,可以透過把活動紀錄複製到多個相應資料群組中的方式來實現,也可以透過對每一筆活動紀錄設置與多個資料群組對應的標籤(tag)的方式來實現,或者也可以透過對每一筆活動紀錄附加註記資料的方式來實現。 In practice, the aforementioned classification operation performed by the data classification circuit 114 for each activity record can be realized by copying the activity record into a plurality of corresponding data groups, or by setting each activity record with multiple data groups. It can be realized by means of tags corresponding to the data groups, or it can also be realized by adding annotation data to each activity record.

隨著時間的經過,屬性過濾裝置120、130、及140會陸續產生跟標的物聯網系統101、102、及103中的不同物聯網裝置有關的許多活動紀錄,而資料檢測系統110則會按照前述方式,陸續對屬性過濾裝置120、130、及140所產生的許多活動紀錄進行分類。資料檢測系統110接收屬性過濾裝置120、130、及140產生的活動紀錄的期間,可稱之為一資料收集期間(data collection period)。 With the passage of time, the attribute filtering devices 120, 130, and 140 will successively generate many activity records related to different IoT devices in the target IoT systems 101, 102, and 103, and the data detection system 110 will follow the aforementioned steps. In this way, many activity records generated by the attribute filtering devices 120, 130, and 140 are successively classified. The period during which the data detection system 110 receives the activity records generated by the attribute filtering devices 120, 130, and 140 may be referred to as a data collection period.

在運作的過程中,資料檢測系統110的資料態樣分析電路115會判斷前述的資料收集期間是否已達到一預定時間長度。實作上,資料態樣分析電路115可將前述的預定時間長度設置為一合適的長度,例如,1天、3天、5天、7天、10天、14天、21天、28天、或30天等等。 During operation, the data pattern analysis circuit 115 of the data detection system 110 determines whether the aforementioned data collection period has reached a predetermined time length. In practice, the data aspect analysis circuit 115 can set the aforementioned predetermined time length to a suitable length, for example, 1 day, 3 days, 5 days, 7 days, 10 days, 14 days, 21 days, 28 days, or 30 days and so on.

如圖2所示,在資料收集期間尚未達到一預定時間長度之前,屬性過濾裝置120、130、及140會持續依據封包閘道裝置150、160、及170傳來的封包訊息產生更多活動紀錄;通信電路111會陸續接收屬性過濾裝置120、130、及140所產生的更多活動紀錄;而資料分類電路114則會陸續對通信電路111接收到的許多活動紀錄進行分類。 As shown in FIG. 2 , before the data collection period reaches a predetermined length of time, the attribute filtering devices 120 , 130 , and 140 will continue to generate more activity records according to the packet information sent from the packet gateway devices 150 , 160 , and 170 . The communication circuit 111 will successively receive more activity records generated by the attribute filtering devices 120 , 130 and 140 ; and the data classification circuit 114 will successively classify many activity records received by the communication circuit 111 .

在資料收集期間達到前述的預定時間長度之後,屬性過濾裝置120、130、及140、通信電路111、以及資料分類電路114仍然會繼續重複前述的運作,而資料態樣分析電路115則會進行圖2中的流程218及流程220。 After the data collection period reaches the aforementioned predetermined length of time, the attribute filtering devices 120 , 130 , and 140 , the communication circuit 111 , and the data classification circuit 114 will continue to repeat the aforementioned operations, and the data pattern analysis circuit 115 will perform Process 218 and Process 220 in 2.

在流程218中,資料檢測系統110的資料態樣分析電路115會分析資料分類電路114所產生的個別資料群組內的複數筆活動紀錄在該資料收集期間內的資料態樣,以產生個別資料群組所對應的一或多個參考資料集。 In the process 218 , the data pattern analysis circuit 115 of the data detection system 110 analyzes the data patterns of the plurality of activity records in the individual data groups generated by the data classification circuit 114 during the data collection period to generate individual data One or more reference datasets corresponding to the group.

由前述流程216的說明可知,資料分類電路114會將屬性過濾裝置120、130、及140產生的多筆活動紀錄,依據若干個屬性的內容進行分類,以形成多個資料群組,且每個資料群組中皆包含有複數個活動紀錄。不同的資料群組分別對應於不同的屬性內容,但同一個 資料群組中的所有活動紀錄所記載的某一項屬性的內容會相同。 As can be seen from the description of the aforementioned process 216, the data classification circuit 114 will classify the multiple activity records generated by the attribute filtering devices 120, 130, and 140 according to the content of a plurality of attributes to form a plurality of data groups, and each Each data group contains multiple activity records. Different data groups correspond to different attribute contents, but the same The content of an attribute recorded in all activity records in the data group will be the same.

在流程220中,資料態樣分析電路115會將所產生的一或多個參考資料集儲存在儲存電路113中。實作上,資料態樣分析電路115可以同時進行流程218與流程220。 In process 220 , the data aspect analysis circuit 115 stores the generated one or more reference data sets in the storage circuit 113 . In practice, the data aspect analysis circuit 115 can perform the process 218 and the process 220 at the same time.

以下將搭配圖6來進一步說明資料態樣分析電路115在流程218中分析個別資料群組的資料態樣以產生相應參考資料集的運作方式。圖6為本發明產生個別資料群組所對應的參考資料集的方法的一實施例簡化後的流程圖。 The operation of the data pattern analysis circuit 115 in the process 218 to analyze the data patterns of the individual data groups to generate the corresponding reference data sets will be further described below with reference to FIG. 6 . FIG. 6 is a simplified flowchart of a method for generating reference data sets corresponding to individual data groups according to an embodiment of the present invention.

資料態樣分析電路115在進行前述的流程218時,可採用圖6的方法來分析個別資料群組內的活動紀錄的資料態樣,以產生個別資料群組所對應的一或多個參考資料集。 When the data pattern analysis circuit 115 performs the aforementioned process 218, the method of FIG. 6 can be used to analyze the data patterns of the activity records in the individual data groups, so as to generate one or more reference data corresponding to the individual data groups set.

為了方便配合圖3的資料流示意圖來說明,以下假設資料態樣分析電路115要分析的多個資料群組,也包含了前述圖3中的資料群組330、332、及334在內。 In order to facilitate the description with the data flow diagram of FIG. 3 , it is assumed that the data groups to be analyzed by the data aspect analysis circuit 115 also include the data groups 330 , 332 , and 334 in FIG. 3 .

實作上,資料態樣分析電路115可利用同一資料群組中的多個活動紀錄中所記載的部分屬性,來做為該資料群組的分析基礎(analysis basis)。 In practice, the data aspect analysis circuit 115 can use some attributes recorded in a plurality of activity records in the same data group as the analysis basis of the data group.

例如,資料態樣分析電路115可利用這些活動紀錄中所記載的裝置狀態資料、上行流量、和/或下行流量三項屬性來做為分析基礎。 For example, the data profile analysis circuit 115 can use the three attributes of device status data, upstream traffic, and/or downstream traffic recorded in these activity records as the basis for analysis.

在前述的活動紀錄中還記載有相關物聯網裝置的連線時間的實施例中,除了前述的三項屬性之外,資料態樣分析電路115還可利用活動紀錄中所記載的連線時間來做為分析基礎。 In the aforementioned embodiment where the connection time of the related IoT device is also recorded in the aforementioned activity record, in addition to the aforementioned three attributes, the data pattern analysis circuit 115 can also use the connection time recorded in the activity record to determine as the basis for analysis.

倘若前述的活動紀錄中沒有記載相關物聯網裝置的連線時間,資料態樣分析電路115也可根據不同的活動紀錄中所記載的裝置狀態資料的內容,估算出相關物聯網裝置的連線時間。這是因為在同一資料群組中,裝置識別資料的內容相同的不同活動紀錄都是對應於同一個物聯網裝置。因此,如果同一資料群組中存在兩個裝置識別資 料的內容相同的活動紀錄(代表對應於同一個物聯網裝置),且其中一個活動紀錄所記載的裝置狀態資料的內容為「停止運作(Stop)」,而另一個在先(prior)的活動紀錄所記載的裝置狀態資料的內容為「開始運作(Start)」,則資料態樣分析電路115可計算這兩個活動紀錄的接收時間之間的差距,並利用計算結果來估算這兩個活動紀錄所對應的物聯網裝置的連線時間。 If the aforementioned activity record does not record the connection time of the relevant IoT device, the data pattern analysis circuit 115 can also estimate the connection time of the relevant IoT device according to the content of the device status data recorded in different activity records. . This is because in the same data group, different activity records with the same content of device identification data all correspond to the same IoT device. Therefore, if there are two device identifiers in the same data group, activity records with the same content (representing corresponding to the same IoT device), and the content of the device status data recorded in one of the activity records is "Stop", and the other activity record is a prior (prior) activity If the content of the device status data recorded in the record is "Start", the data pattern analysis circuit 115 can calculate the difference between the reception times of the two activity records, and use the calculation result to estimate the two activities Record the connection time of the corresponding IoT device.

在流程602中,資料態樣分析電路115可選取資料分類電路114所產生的多個資料群組的其中之一,做為一當前資料群組(current data group)。由前述說明可知,當前資料群組中會包含有複數個活動紀錄。 In the process 602, the data aspect analysis circuit 115 may select one of the plurality of data groups generated by the data classification circuit 114 as a current data group. As can be seen from the above description, the current data group will contain a plurality of activity records.

在流程604中,資料態樣分析電路115可分析當前資料群組內的複數筆活動紀錄中的一目標屬性(以下稱之為第一目標屬性)的內容,在資料收集期間內的多個不同統計時段(statistical period)的變化態樣,以產生當前資料群組關於第一目標屬性的一或多個參考資料集。 In the process 604, the data aspect analysis circuit 115 can analyze the content of a target attribute (hereinafter referred to as the first target attribute) in the plurality of activity records in the current data group. A variation of the statistical period to generate one or more reference data sets of the current data group with respect to the first target attribute.

在流程606中,資料態樣分析電路115可分析當前資料群組內的複數筆活動紀錄中的另一目標屬性(以下稱之為第二目標屬性)的內容,在資料收集期間內的多個不同統計時段的變化態樣,以產生當前資料群組關於第二目標屬性的參考資料集。 In the process 606, the data aspect analysis circuit 115 may analyze the content of another target attribute (hereinafter referred to as the second target attribute) in the plurality of activity records in the current data group. Variations in different statistical periods are used to generate a reference data set for the second target attribute of the current data group.

實作上,前述的第一目標屬性及第二目標屬性,是選自於前述可做為分析基礎的屬性(例如,裝置狀態資料、上行流量、下行流量、和/或連線時間)。 In practice, the aforementioned first target attribute and second target attribute are selected from the aforementioned attributes that can be used as an analysis basis (eg, device status data, upstream traffic, downstream traffic, and/or connection time).

在進行了前述的流程606之後,倘若當前資料群組中還存在要做為分析基礎的其他屬性,則資料態樣分析電路115可接著進行流程610。反之,倘若當前資料群組中已不存在做為分析基礎的其他屬性,則資料態樣分析電路115可接著進行流程608。 After performing the aforementioned process 606 , if there are other attributes to be used as the basis for analysis in the current data group, the data aspect analysis circuit 115 may proceed to process 610 . On the contrary, if there are no other attributes that are the basis for analysis in the current data group, the data aspect analysis circuit 115 may proceed to process 608 .

在流程608中,資料態樣分析電路115可選取資料分類電路114所產 生的另一個資料群組,做為新的當前資料群組,並接著對新的當前資料群組重複進行前述流程604與流程606及後續的流程。 In process 608 , the data pattern analysis circuit 115 may select the data generated by the data classification circuit 114 Another data group is created as a new current data group, and then the foregoing process 604 and process 606 and subsequent processes are repeated for the new current data group.

在流程610中,資料態樣分析電路115可分析當前資料群組內的下一目標屬性的內容,在資料收集期間內的多個不同統計時段的變化態樣,以產生當前資料群組關於下一目標屬性的一或多個參考資料集。 In the process 610 , the data pattern analysis circuit 115 can analyze the content of the next target attribute in the current data group, and the change patterns in a plurality of different statistical periods during the data collection period, so as to generate the information about the next target attribute of the current data group. One or more reference data sets for a target attribute.

在進行了前述的流程610之後,倘若當前資料群組中還存在要做為分析基礎的其他屬性,則資料態樣分析電路115可重複進行流程610。反之,倘若當前資料群組中已不存在做為分析基礎的其他屬性,則資料態樣分析電路115可接著進行流程608。 After performing the aforementioned process 610 , if there are other attributes to be used as the basis for analysis in the current data group, the data aspect analysis circuit 115 can repeat the process 610 . On the contrary, if there are no other attributes that are the basis for analysis in the current data group, the data aspect analysis circuit 115 may proceed to process 608 .

例如,資料態樣分析電路115可在流程602中選取圖3中的資料群組330做為當前資料群組,在流程604中選取資料群組330中的活動紀錄中所記載的裝置狀態資料做為第一目標屬性,並在流程606中選取資料群組330中的活動紀錄中所記載的上行流量做為第二目標屬性。由前述圖4的流程圖說明可知,資料群組330是與基地台識別資料BS-152相應的資料群組,且資料群組330中包含有在前述的活動紀錄320、322、及326內的複數個活動紀錄。 For example, the data aspect analysis circuit 115 can select the data group 330 in FIG. 3 as the current data group in the process 602, and select the device state data recorded in the activity record in the data group 330 in the process 604 as the current data group. is the first target attribute, and in the process 606, the upstream traffic recorded in the activity record in the data group 330 is selected as the second target attribute. It can be seen from the above-mentioned flowchart of FIG. 4 that the data group 330 is a data group corresponding to the base station identification data BS-152, and the data group 330 includes the above-mentioned activity records 320, 322, and 326. Multiple activity records.

由前述說明可知,每筆活動紀錄中所記載的裝置狀態資料的內容,代表相應的物聯網裝置的運作狀態。例如,資料群組330中的活動紀錄320中所記錄的裝置狀態資料的內容,代表一相應的物聯網裝置104的運作狀態。另外,每筆活動紀錄中所記載的上行流量的內容,代表相應的物聯網裝置的上行流量。例如,資料群組330中的活動紀錄320中所記錄的上行流量的內容,代表一相應的物聯網裝置104在一段特定時間內的上行流量的大小。 As can be seen from the foregoing description, the content of the device status data recorded in each activity record represents the operation status of the corresponding Internet of Things device. For example, the content of the device status data recorded in the activity record 320 in the data group 330 represents the operation status of a corresponding IoT device 104 . In addition, the content of the upstream traffic recorded in each activity record represents the upstream traffic of the corresponding IoT device. For example, the content of the upstream traffic recorded in the activity record 320 in the data group 330 represents the size of the upstream traffic of a corresponding IoT device 104 within a certain period of time.

在實際應用中,不同的物聯網裝置可能有不同的運作狀態,所以同一資料群組中的不同活動紀錄中所記載的裝置狀態資料的內容可能會有所不同。例如,在資料群組330中,可能有部分活動紀錄所記載的裝置狀態資料的內容是「開始運作」、有部分活動紀錄所記載 的裝置狀態資料的內容是「停止運作」、還有部分活動紀錄所記載的裝置狀態資料的內容是「運作中(Alive)」。 In practical applications, different IoT devices may have different operating states, so the content of the device state data recorded in different activity records in the same data group may be different. For example, in the data group 330, the content of the device status data recorded in some activity records may be "starting operation", and some activity records may record The content of the device status data is "Stopped", and the content of the device status data recorded in some activity records is "Alive".

在流程604中,資料態樣分析電路115可依據個別活動紀錄的接收時間,將資料群組330內的所有活動紀錄劃分成分別對應於資料收集期間內的多個不同統計時段的多個子群組(sub-group),其中,前述的多個不同統計時段的時間長度的總和,可以等於或小於資料收集期間的時間長度。例如,在資料態樣分析電路115將資料收集期間的時間長度設置為1天、3天、5天、7天、10天、14天、21天、28天、或30天的實施例中,資料態樣分析電路115可將資料群組330內的所有活動紀錄劃分成分別對應於每天的24個小時的24個子群組、分別對應於每天的12個統計時段(每個統計時段為2小時)的12個子群組、或是分別對應於每天的8個統計時段(每個統計時段為3小時)的8個子群組。又例如,在資料態樣分析電路115將資料收集期間的時間長度設置為7天、14天、21天、或28天的實施例中,資料態樣分析電路115也可將資料群組330內的所有活動紀錄劃分成分別對應於每個禮拜中的7天的7個子群組。 In the process 604, the data aspect analysis circuit 115 can divide all the activity records in the data group 330 into a plurality of subgroups corresponding to a plurality of different statistical periods in the data collection period according to the receiving time of the individual activity records (sub-group), wherein the sum of the time lengths of the aforementioned multiple different statistical periods may be equal to or less than the time length of the data collection period. For example, in embodiments where the data aspect analysis circuit 115 sets the length of the data collection period to 1 day, 3 days, 5 days, 7 days, 10 days, 14 days, 21 days, 28 days, or 30 days, The data aspect analysis circuit 115 can divide all the activity records in the data group 330 into 24 subgroups corresponding to the 24 hours of each day, respectively corresponding to 12 statistical periods of each day (each statistical period is 2 hours). ), or 8 subgroups corresponding to 8 statistical periods of each day (each statistical period is 3 hours). For another example, in the embodiment in which the data aspect analysis circuit 115 sets the time length of the data collection period to 7 days, 14 days, 21 days, or 28 days, the data aspect analysis circuit 115 may also All activity records of are divided into 7 subgroups corresponding to the 7 days of each week.

接著,資料態樣分析電路115可分別計算出個別子群組中裝置狀態資料具有一特定內容的活動紀錄的數量的總和(sum)或移動和(moving sum),並將不同子群組的計算結果彙整(consolidate)起來形成一組統計數據,以做為資料群組330關於特定運作狀態的一參考資料集,用以呈現具有特定內容的裝置狀態資料的活動紀錄的數量的總和或移動和,在資料收集期間內的多個不同統計時段的變化。 Next, the data aspect analysis circuit 115 can respectively calculate the sum or moving sum of the number of activity records whose device state data has a specific content in each subgroup, and combine the calculation of the different subgroups The results are consolidated to form a set of statistics that serve as a reference data set for the data group 330 for a particular operating state, presenting the sum or moving sum of the number of activity records for device state data with a particular content, Changes over a number of different statistical periods during the data collection period.

例如,資料態樣分析電路115可分別計算出個別子群組中裝置狀態資料的內容為「開始運作」的活動紀錄的數量的總和或移動和,並將不同子群組的計算結果彙整起來形成一第一組統計數據,用以呈現裝置狀態資料內容為「開始運作」的活動紀錄的數量的總和或移 動和,在資料收集期間內的多個不同統計時段的變化。 For example, the data aspect analysis circuit 115 can separately calculate the sum or the moving sum of the number of activity records whose content of the device status data in each subgroup is "starting operation", and aggregate the calculation results of the different subgroups to form A first set of statistical data, used to present the sum or shift of the number of activity records whose device status data content is "starting operation" and, changes over a number of different statistical periods during the data collection period.

又例如,資料態樣分析電路115可分別計算出個別子群組中裝置狀態資料的內容為「停止運作」的活動紀錄的數量的總和或移動和,並將不同子群組的計算結果彙整起來形成一第二組統計數據,用以呈現裝置狀態資料內容為「停止運作」的活動紀錄的數量的總和或移動和,在資料收集期間內的多個不同統計時段的變化。 For another example, the data aspect analysis circuit 115 can separately calculate the sum or moving sum of the number of activity records whose content of the device status data in each subgroup is "stopped", and aggregate the calculation results of the different subgroups A second set of statistical data is formed, which is used to present the total or moving sum of the number of activity records whose device status data content is "stopped operation", and changes in a plurality of different statistical periods during the data collection period.

又例如,資料態樣分析電路115可分別計算出個別子群組中裝置狀態資料的內容為「運作中」的活動紀錄的數量的總和或移動和,並將不同子群組的計算結果彙整起來形成一第三組統計數據,用以呈現裝置狀態資料內容為「運作中」的活動紀錄的數量的總和或移動和,在資料收集期間內的多個不同統計時段的變化。 For another example, the data aspect analysis circuit 115 can separately calculate the sum or moving sum of the number of activity records whose content of the device state data in each subgroup is "in operation", and aggregate the calculation results of the different subgroups A third group of statistical data is formed for presenting the total or moving sum of the number of activity records whose device status data content is "in operation", and changes in a plurality of different statistical periods during the data collection period.

實作上,資料態樣分析電路115可在流程604中產生前述的第一組統計數據、第二組統計數據、及第三組統計數據的其中之一,以做為資料群組330關於裝置狀態資料的某一特定內容的一組參考資料集。或者,資料態樣分析電路115可在流程604中產生前述的第一組統計數據、第二組統計數據、及第三組統計數據的其中之二,以分別做為資料群組330關於裝置狀態資料的兩種不同內容的兩組參考資料集。又或者,資料態樣分析電路115可在流程604中產生前述的第一組統計數據、第二組統計數據、及第三組統計數據,以分別做為資料群組330關於裝置狀態資料的三種不同內容的三組參考資料集。 In practice, the data aspect analysis circuit 115 can generate one of the aforementioned first set of statistical data, second set of statistical data, and third set of statistical data in the process 604 as the data group 330 about the device A set of reference materials for a specific content of state materials. Alternatively, the data aspect analysis circuit 115 may generate two of the aforementioned first set of statistical data, second set of statistical data, and third set of statistical data in the process 604 as the device status of the data group 330, respectively. Two sets of reference materials for two different contents of the material. Alternatively, the data aspect analysis circuit 115 may generate the aforementioned first set of statistical data, second set of statistical data, and third set of statistical data in the process 604 as the three types of device status data in the data group 330 respectively. Three sets of reference materials for different content.

另一方面,在流程606中,資料態樣分析電路115也可依據個別活動紀錄的接收時間,將資料群組330內的所有活動紀錄劃分成分別對應於資料收集期間內的多個不同統計時段的多個子群組。請注意,資料態樣分析電路115在流程606中對於統計時段的劃分方式,可以與前述流程604中的劃分方式相同,也可以與前述流程604中的劃分方式不同。換言之,資料態樣分析電路115在流程606中所劃分出來的子群組數量,可以與前述流程604中所劃分出來的子群組數量相 同,也可以與前述流程604中所劃分出來的子群組數量不同。 On the other hand, in the process 606, the data aspect analysis circuit 115 can also divide all the activity records in the data group 330 into a plurality of different statistical periods corresponding to the data collection period according to the receiving time of the individual activity records. of multiple subgroups. Please note that the division method of the statistical period in the process 606 by the data aspect analysis circuit 115 may be the same as that in the foregoing process 604 , or may be different from that in the foregoing process 604 . In other words, the number of subgroups divided by the data aspect analysis circuit 115 in the process 606 may be the same as the number of subgroups divided in the aforementioned process 604 Similarly, the number of subgroups divided in the foregoing process 604 may also be different.

在本實施例中,資料態樣分析電路115可分別計算出個別子群組中的所有活動紀錄中所記載的上行流量的總和(sum)、平均值(average)、移動和(moving sum)、或移動平均值(moving average),並將不同子群組的計算結果彙整起來形成一第四組統計數據,以做為資料群組330關於上行流量的一組參考資料集,用以呈現所有活動紀錄中所記載的上行流量的總和、平均值、移動和、或移動平均值,在資料收集期間內的多個不同統計時段的變化。 In this embodiment, the data aspect analysis circuit 115 can calculate the sum, average, moving sum, or a moving average, and aggregate the results of the calculations for the different subgroups to form a fourth set of statistics that serve as a set of reference data sets for data group 330 on upstream traffic to present all activity The sum, average, moving sum, or moving average of the upstream traffic recorded in the record, over multiple different statistical periods during the data collection period.

請注意,前述資料態樣分析電路115在流程604與流程606中所分析的第一目標屬性與第二目標屬性的具體內容,只是為了方便說明而舉的例子,並非侷限本發明的實際實施方式。實作上,資料態樣分析電路115亦可將前述流程604與流程606中所分析的屬性互相對調,或是選取資料群組330內的活動紀錄中所記載的其他屬性來取代前述的第一目標屬性與第二目標屬性。 Please note that the specific contents of the first target attribute and the second target attribute analyzed by the data aspect analysis circuit 115 in the process 604 and the process 606 are only examples for the convenience of description, and do not limit the actual implementation of the present invention. . In practice, the data aspect analysis circuit 115 can also exchange the attributes analyzed in the aforementioned process 604 and the process 606 with each other, or select other attributes recorded in the activity records in the data group 330 to replace the aforementioned first one. The target attribute and the second target attribute.

換言之,資料態樣分析電路115在對當前資料群組進行資料態樣分析時使用的分析基礎的順序,並沒有特別的限制。 In other words, the order of the analysis basis used by the data aspect analysis circuit 115 when performing the data aspect analysis on the current data group is not particularly limited.

如前所述,在進行了流程606之後,倘若當前資料群組(在本例中為資料群組330)中還存在要做為分析基礎的其他屬性,則資料態樣分析電路115可接著進行流程610。反之,倘若當前資料群組中已不存在做為分析基礎的其他屬性,則資料態樣分析電路115可接著進行流程608,選取另一個資料群組做為新的當前資料群組,並接著對新的當前資料群組重複進行前述流程604與流程606及後續的流程。 As mentioned above, after the process 606 is performed, if there are other attributes in the current data group (in this case, the data group 330) to be used as the basis for analysis, the data aspect analysis circuit 115 can then proceed to Process 610. On the other hand, if there are no other attributes that serve as the basis for analysis in the current data group, the data aspect analysis circuit 115 may proceed to process 608 to select another data group as the new current data group, and then analyze the For the new current data group, the foregoing process 604 and process 606 and subsequent processes are repeated.

例如,假設資料態樣分析電路115還要對資料群組330中的下行流量進行分析,則可進行流程610,以分別計算出個別子群組中的所有活動紀錄中所記載的下行流量的總和、平均值、移動和、或移動平均值,並將不同子群組的計算結果彙整起來形成一第五組統計數據, 以做為資料群組330關於下行流量的一組參考資料集,用以呈現所有活動紀錄中所記載的下行流量的總和、平均值、移動和、或移動平均值,在資料收集期間內的多個不同統計時段的變化。 For example, if the data aspect analysis circuit 115 also analyzes the downstream traffic in the data group 330, the process 610 can be performed to calculate the sum of the downstream traffic recorded in all the activity records in the individual subgroups respectively. , average, moving sum, or moving average, and aggregate the calculations for the different subgroups to form a fifth set of statistics, As a set of reference data sets for data group 330 about downstream traffic, it is used to present the sum, average, moving sum, or moving average of downstream traffic recorded in all activity records, and the number of times during the data collection period. changes in different statistical periods.

又例如,假設資料態樣分析電路115還要對資料群組330中的連線時間進行分析,則可進行流程610,以分別計算出個別子群組中的所有活動紀錄中所記載的連線時間的總和、平均值、移動和、或移動平均值,並將不同子群組的計算結果彙整起來形成一第六組統計數據,以做為資料群組330關於連線時間的一組參考資料集,用以呈現所有活動紀錄中所記載的連線時間的總和、平均值、移動和、或移動平均值,在資料收集期間內的多個不同統計時段的變化。 For another example, if the data aspect analysis circuit 115 also analyzes the connection time in the data group 330, the process 610 can be performed to calculate the connections recorded in all the activity records in the individual subgroups respectively. The sum, average, moving sum, or moving average of time, and the calculation results of different subgroups are aggregated to form a sixth set of statistical data, which is used as a set of reference data for data group 330 regarding connection time Set to present the sum, average, moving sum, or moving average of the connection time recorded in all activity records over multiple different statistical periods during the data collection period.

請注意,資料態樣分析電路115在流程610中對於統計時段的劃分方式,可以與前述流程604或流程606中的劃分方式相同,也可以有所不同。換言之,資料態樣分析電路115在流程610中所劃分出來的子群組數量,可能與前述流程604或流程606中所劃分出來的子群組數量相同,也可能有所不同。 Please note that the division manner of the statistical period in the process 610 by the data aspect analysis circuit 115 may be the same as that in the foregoing process 604 or 606, or may be different. In other words, the number of subgroups divided by the data aspect analysis circuit 115 in process 610 may be the same as the number of subgroups divided in process 604 or process 606, or may be different.

同樣地,在進行了流程610之後,倘若資料群組330中還存在要做為分析基礎的其他屬性,則資料態樣分析電路115還可重複進行流程610,以針對資料群組330內的所有活動紀錄中所記載的其他屬性進行資料態樣分析。反之,倘若資料群組330中已不存在做為分析基礎的其他屬性,則資料態樣分析電路115可接著進行前述的流程608。 Similarly, after the process 610 is performed, if there are other attributes in the data group 330 to be used as the basis for analysis, the data aspect analysis circuit 115 may repeat the process 610 to target all the attributes in the data group 330 . Other attributes recorded in the activity record are analyzed by data aspect. On the contrary, if there are no other attributes that are the basis for analysis in the data group 330, the data aspect analysis circuit 115 can proceed to the aforementioned process 608.

資料態樣分析電路115可利用前述圖6的方法來進行前述圖2中的流程218,以分析資料群組330內的複數筆活動紀錄在資料收集期間內的資料態樣,以產生資料群組330所對應的多個參考資料集(例如,圖3中的示例性參考資料集340、342、及344)。 The data pattern analysis circuit 115 can use the method of FIG. 6 to perform the process 218 in FIG. 2 to analyze the data patterns of the plurality of activity records in the data group 330 during the data collection period to generate a data group Multiple reference data sets corresponding to 330 (eg, exemplary reference data sets 340, 342, and 344 in FIG. 3).

由前述說明可知,資料群組330所對應的每個參考資料集的內容,都是一組統計數據,而這組統計數據等效上可用一相應的統計圖表的形式來描述。為幫助理解,以下將搭配圖7至圖9的範例來做進一 步說明。圖7至圖9為本發明產生的參考資料集的不同實施例所對應的統計圖表的簡化示意圖。 As can be seen from the foregoing description, the content of each reference data set corresponding to the data group 330 is a set of statistical data, and this set of statistical data can be equivalently described in the form of a corresponding statistical chart. In order to help understanding, the following will be combined with the examples of Figure 7 to Figure 9 to do further step-by-step instructions. 7 to 9 are simplified schematic diagrams of statistical charts corresponding to different embodiments of the reference data set generated by the present invention.

例如,在圖7的實施例中,資料態樣分析電路115可將資料群組330內的所有活動紀錄劃分成分別對應於每天的24個小時的24個子群組。 資料態樣分析電路115可分別計算出個別子群組內裝置狀態資料的內容為「運作中」的活動紀錄的數量的總和,並將24個子群組的計算結果彙整起來形成一組統計數據,以做為資料群組330關於「運作中」狀態的參考資料集340。參考資料集340的內容,等效上可用圖7中的統計圖表710的形式來描述,而在統計圖表710中以長條形式呈現的資料統計結果712,則代表在特定統計時段中裝置狀態資料的內容為「運作中」的活動紀錄的數量的總和。如圖7所示,統計圖表710顯示不同統計時段中的資料統計結果712的高度都在一第一數值附近,代表在不同統計時段中裝置狀態資料的內容為「運作中」的活動紀錄的數量的總和都很接近第一數值。這樣的分析結果代表在資料群組330所對應的多個物聯網裝置中,處於「運作中」狀態的物聯網裝置的數量的總和在不同統計時段中都穩定維持在第一數值上下。 For example, in the embodiment of FIG. 7 , the data aspect analysis circuit 115 may divide all activity records in the data group 330 into 24 subgroups corresponding to the 24 hours of each day. The data aspect analysis circuit 115 can separately calculate the sum of the number of activity records whose content of the device status data in each subgroup is "in operation", and aggregate the calculation results of the 24 subgroups to form a set of statistical data, As a reference data set 340 for the data group 330 regarding the "in operation" state. The content of the reference data set 340 can be described in the form of the statistical chart 710 in FIG. 7 equivalently, and the statistical results 712 of the data presented in the form of bars in the statistical chart 710 represent the device status data in a specific statistical period The content of is the sum of the number of "active" activity records. As shown in FIG. 7 , the statistical graph 710 shows that the heights of the data statistics results 712 in different statistical periods are all around a first value, which represents the number of activity records whose content of the device status data is “in operation” in different statistical periods The sums are very close to the first value. Such an analysis result means that among the plurality of IoT devices corresponding to the data group 330 , the sum of the number of IoT devices in the “operational” state is stably maintained around the first value in different statistical periods.

另外,資料態樣分析電路115可分別計算出個別子群組內裝置狀態資料的內容為「開始運作」的活動紀錄的數量的總和,並可將前述24個子群組的計算結果彙整起來形成另一組統計數據,以做為資料群組330關於「開始運作」狀態的參考資料集342。參考資料集342的內容,等效上可用圖7中的統計圖表720的形式來描述,而在統計圖表720中以長條形式呈現的資料統計結果722,則代表在特定統計時段中裝置狀態資料的內容為「開始運作」的活動紀錄的數量的總和。如圖7所示,統計圖表720顯示不同統計時段中的資料統計結果722的高度都差不多、且都很低,代表在不同統計時段中裝置狀態資料的內容為「開始運作」的活動紀錄的數量的總和都同樣很少。 這樣的分析結果代表在資料群組330所對應的多個物聯網裝置中,進入「開始運作」狀態的物聯網裝置的數量的總和在不同統計時段中都很低。 In addition, the data aspect analysis circuit 115 can separately calculate the sum of the number of activity records whose content of the device status data in each subgroup is "starting operation", and can aggregate the calculation results of the aforementioned 24 subgroups to form another A set of statistics to be used as reference data set 342 for data group 330 regarding the "starting operation" state. The content of the reference data set 342 can be described in the form of the statistical chart 720 in FIG. 7 equivalently, and the statistical results 722 of the data presented in the form of bars in the statistical chart 720 represent the device status data in a specific statistical period The content of is the sum of the number of activity records that are "running". As shown in FIG. 7 , the statistics chart 720 shows that the heights of the data statistics results 722 in different statistics periods are similar and low, which represent the number of activity records whose content of the device status data is “starting operation” in different statistics periods The sums are equally small. Such an analysis result means that among the multiple IoT devices corresponding to the data group 330, the sum of the number of IoT devices entering the "starting operation" state is very low in different statistical periods.

再者,資料態樣分析電路115還可分別計算出個別子群組中的所有活動紀錄中所記載的下行流量的總和,並將前述24個子群組的計算結果彙整起來形成另一組統計數據,以做為資料群組330關於「下行流量」的參考資料集344。參考資料集344的內容,等效上可用圖7中的統計圖表730的形式來描述,而在統計圖表730中以長條形式呈現的資料統計結果732,則代表在特定統計時段中所有活動紀錄所記載的下行流量的總和。如圖7所示,統計圖表730顯示在每天早上7點到9點左右以及下午5點到7點左右的資料統計結果732,會明顯比其他統計時段中的資料統計結果732來的高,代表在每天早上7點到9點左右以及下午5點到7點左右的活動紀錄所記載的下行流量的總和,會明顯高於其他統計時段。這樣的分析結果代表在資料群組330所對應的多個物聯網裝置,在每天早上7點到9點左右以及下午5點到7點左右的下行流量會明顯高於其他統計時段。 Furthermore, the data aspect analysis circuit 115 can separately calculate the sum of the downlink traffic recorded in all the activity records in the individual subgroups, and aggregate the calculation results of the aforementioned 24 subgroups to form another set of statistical data. , as the reference data set 344 of the data group 330 regarding "downlink traffic". The content of the reference data set 344 can be described in the form of the statistical chart 730 in FIG. 7 equivalently, and the statistical results 732 of the data presented in the form of long bars in the statistical chart 730 represent all activity records in a specific statistical period. The sum of recorded downstream traffic. As shown in FIG. 7 , the statistical chart 730 displays the data statistical results 732 from around 7:00 to 9:00 in the morning and from 5:00 to 7:00 in the afternoon, which are significantly higher than the data statistical results 732 in other statistical periods, representing The sum of the downlink traffic recorded in the activity records from 7:00 to 9:00 in the morning and from 5:00 to 7:00 in the afternoon will be significantly higher than other statistical periods. Such an analysis result means that the downlink traffic of the multiple IoT devices corresponding to the data group 330 is significantly higher than that in other statistical periods every day at around 7:00 am to 9:00 pm and around 5:00 pm to 7:00 pm.

如果前述資料群組330內的多筆活動紀錄分別對應於標的物聯網系統101中的多個物聯網裝置104,而標的物聯網系統101是一交通號誌管理系統,且標的物聯網系統101中的眾多物聯網裝置104是分設在不同位置的多個交通號誌監控電路,則圖7中所繪示的統計圖表710、720、及730在某種程度上可用來呈現該交通號誌管理系統中的眾多交通號誌在一般正常運作情況下的行為特徵。 If the multiple activity records in the aforementioned data group 330 correspond to multiple IoT devices 104 in the target IoT system 101 respectively, and the target IoT system 101 is a traffic sign management system, and the target IoT system 101 The many IoT devices 104 are divided into a plurality of traffic signal monitoring circuits located in different locations, so the statistical charts 710, 720, and 730 shown in FIG. 7 can be used to present the traffic signal management to some extent. Numerous traffic signals in the system characterize behavior under normal operating conditions.

又例如,在圖8的實施例中,資料態樣分析電路115可將資料群組330內的所有活動紀錄劃分成分別對應於每天的12個統計時段(每個統計時段為2小時)的12個子群組。資料態樣分析電路115可分別計算出個別子群組中的所有活動紀錄中所記載的連線時間的平均值,並將12個子群組的計算結果彙整起來形成一組統計數據,以做為資 料群組330關於「連線時間」的參考資料集340。參考資料集340的內容,等效上可用圖8中的統計圖表810的形式來描述,而在統計圖表810中以長條形式呈現的資料統計結果812,則代表在特定統計時段中所有活動紀錄所記載的連線時間的平均值。如圖8所示,統計圖表810顯示不同統計時段中的資料統計結果812的高度都在一第二數值附近,代表在不同統計時段中活動紀錄所記載的連線時間的平均值都很接近第二數值。這樣的分析結果代表在資料群組330所對應的多個物聯網裝置在不同統計時段中的連線時間平均值都穩定維持在第二數值上下。 For another example, in the embodiment of FIG. 8 , the data aspect analysis circuit 115 can divide all the activity records in the data group 330 into 12 corresponding to 12 statistical periods of each day (each statistical period is 2 hours). subgroups. The data aspect analysis circuit 115 can separately calculate the average value of the connection time recorded in all the activity records in the individual subgroups, and aggregate the calculation results of the 12 subgroups to form a set of statistical data as capital The reference data set 340 of the material group 330 for "connection time". The content of the reference data set 340 can be described in the form of the statistical chart 810 in FIG. 8 equivalently, and the statistical results 812 of the data presented in the form of long bars in the statistical chart 810 represent all activity records in a specific statistical period The average of the recorded connection times. As shown in FIG. 8 , the statistical chart 810 shows that the heights of the data statistics results 812 in different statistical periods are all around a second value, which means that the average value of the connection time recorded in the activity records in different statistical periods is very close to the first and second values. binary value. Such an analysis result means that the average connection time of the plurality of IoT devices corresponding to the data group 330 in different statistical periods is stably maintained around the second value.

另外,資料態樣分析電路115可分別計算出個別子群組內裝置狀態資料的內容為「停止運作」的活動紀錄的數量的總和,並可將前述12個子群組的計算結果彙整起來形成另一組統計數據,以做為資料群組330關於「停止運作」狀態的參考資料集342。參考資料集342的內容,等效上可用圖8中的統計圖表820的形式來描述,而在統計圖表820中以長條形式呈現的資料統計結果822,則代表在特定統計時段中裝置狀態資料的內容為「停止運作」的活動紀錄的數量的總和。如圖8所示,統計圖表820顯示不同統計時段中的資料統計結果822的高度都差不多、且都很低,代表在不同統計時段中裝置狀態資料的內容為「停止運作」的活動紀錄的數量的總和都同樣很少。這樣的分析結果代表在資料群組330所對應的多個物聯網裝置中,進入「停止運作」狀態的物聯網裝置的數量的總和在不同統計時段中都很低。 In addition, the data aspect analysis circuit 115 can separately calculate the sum of the number of activity records whose content of the device status data in each subgroup is "stopped operation", and can aggregate the calculation results of the aforementioned 12 subgroups to form another A set of statistics to be used as reference data set 342 for data group 330 regarding the "out of service" state. The content of the reference data set 342 can be described in the form of the statistical chart 820 in FIG. 8 equivalently, and the statistical results 822 of the data presented in the form of bars in the statistical chart 820 represent the device status data in a specific statistical period is the sum of the number of "defunct" activity records. As shown in FIG. 8 , the statistical graph 820 shows that the heights of the data statistics results 822 in different statistical periods are similar and low, which represent the number of activity records whose device status data content is “stopped” in different statistical periods The sums are equally small. Such an analysis result means that among the IoT devices corresponding to the data group 330 , the sum of the number of IoT devices entering the "stop operation" state is very low in different statistical periods.

再者,資料態樣分析電路115還可分別計算出個別子群組中的所有活動紀錄中所記載的上行流量的總和,並將前述12個子群組的計算結果彙整起來形成另一組統計數據,以做為資料群組330關於「上行流量」的參考資料集344。參考資料集344的內容,等效上可用圖8中的統計圖表830的形式來描述,而在統計圖表830中以長條形式 呈現的資料統計結果832,則代表在特定統計時段中所有活動紀錄所記載的上行流量的總和。如圖8所示,統計圖表830顯示在每天凌晨12點到早上8點左右以及傍晚6點到半夜12點左右的資料統計結果832,會明顯比其他統計時段中的資料統計結果832來的高,代表在每天傍晚6點到隔天早上8點左右的活動紀錄所記載的上行流量的總和,會明顯高於其他統計時段。這樣的分析結果代表在資料群組330所對應的多個物聯網裝置,在每天傍晚6點到隔天早上8點左右的上行流量會明顯高於其他統計時段。 Furthermore, the data aspect analysis circuit 115 can separately calculate the sum of the upstream traffic recorded in all the activity records in the individual subgroups, and aggregate the calculation results of the aforementioned 12 subgroups to form another set of statistical data. , as the reference data set 344 of the data group 330 regarding "upstream traffic". The content of the reference material set 344 can be equivalently described in the form of the statistical chart 830 in FIG. 8, and in the statistical chart 830 in the form of bars The presented data statistics result 832 represents the sum of the upstream traffic recorded in all activity records in a specific statistical period. As shown in FIG. 8 , the statistical chart 830 shows the statistical results 832 of data from 12:00 am to 8:00 am and from 6:00 pm to 12:00 midnight every day, which are significantly higher than the statistical results 832 of data in other statistical periods. , which means that the sum of the upstream traffic recorded in the activity records from 6:00 pm to 8:00 am the next day will be significantly higher than other statistical periods. Such an analysis result means that for the multiple IoT devices corresponding to the data group 330 , the upstream traffic from 6:00 pm to 8:00 am the next day is significantly higher than other statistical periods.

如果前述資料群組330內的多筆活動紀錄分別對應於標的物聯網系統101中的多個物聯網裝置104,而標的物聯網系統101是一智慧路燈系統,且標的物聯網系統101中的眾多物聯網裝置104是分設在不同位置的多個智慧路燈,則圖8中所繪示的統計圖表810、820、及830在某種程度上可用來呈現該智慧路燈系統中的眾多路燈在一般正常運作情況下的行為特徵。 If the multiple activity records in the aforementioned data group 330 respectively correspond to multiple IoT devices 104 in the target IoT system 101 , and the target IoT system 101 is a smart street light system, and many IoT devices in the target IoT system 101 The IoT device 104 is a plurality of smart street lamps located at different locations, so the statistical charts 810, 820, and 830 shown in FIG. Behavioral characteristics under normal operating conditions.

又例如,在圖9的實施例中,資料態樣分析電路115可將資料群組330內的所有活動紀錄劃分成分別對應於每個禮拜中的7天的7個子群組。資料態樣分析電路115可分別計算出個別子群組內裝置狀態資料的內容為「運作中」的活動紀錄的數量的總和,並將7個子群組的計算結果彙整起來形成一組統計數據,以做為資料群組330關於「運作中」狀態的參考資料集340。參考資料集340的內容,等效上可用圖9中的統計圖表910的形式來描述,而在統計圖表910中以長條形式呈現的資料統計結果912,則代表在特定統計時段中裝置狀態資料的內容為「運作中」的活動紀錄的數量的總和。如圖9所示,統計圖表910顯示不同統計時段中的資料統計結果912的高度都在一第三數值附近,代表在不同統計時段中裝置狀態資料的內容為「運作中」的活動紀錄的數量的總和都很接近第三數值。這樣的分析結果代表在資料群組330所對應的多個物聯網裝置中,處於「運 作中」狀態的物聯網裝置的數量的總和在不同統計時段中都穩定維持在第三數值上下。 For another example, in the embodiment of FIG. 9 , the data aspect analysis circuit 115 may divide all activity records in the data group 330 into 7 subgroups corresponding to the 7 days of each week. The data aspect analysis circuit 115 can separately calculate the sum of the number of activity records whose content of the device status data in each subgroup is "in operation", and aggregate the calculation results of the seven subgroups to form a set of statistical data, As a reference data set 340 for the data group 330 regarding the "in operation" state. The content of the reference data set 340 can be described in the form of the statistical chart 910 in FIG. 9 equivalently, and the statistical results 912 of the data presented in the form of bars in the statistical chart 910 represent the device status data in a specific statistical period The content of is the sum of the number of "active" activity records. As shown in FIG. 9 , the statistics chart 910 shows that the heights of the data statistics results 912 in different statistics periods are all around a third value, which represents the number of activity records whose content of the device status data is “in operation” in different statistics periods The sums are very close to the third value. Such an analysis result means that among the multiple IoT devices corresponding to the data group 330, the The sum of the number of IoT devices in the "in-progress" state is stable at around the third value in different statistical periods.

另外,資料態樣分析電路115可分別計算出個別子群組內裝置狀態資料的內容為「停止運作」的活動紀錄的數量的總和,並可將前述7個子群組的計算結果彙整起來形成另一組統計數據,以做為資料群組330關於「停止運作」狀態的參考資料集342。參考資料集342的內容,等效上可用圖9中的統計圖表920的形式來描述,而在統計圖表920中以長條形式呈現的資料統計結果922,則代表在特定統計時段中裝置狀態資料的內容為「停止運作」的活動紀錄的數量的總和。如圖9所示,統計圖表920顯示不同統計時段中的資料統計結果922的高度都差不多、且都很低,代表在不同統計時段中裝置狀態資料的內容為「停止運作」的活動紀錄的數量的總和都同樣很少。這樣的分析結果代表在資料群組330所對應的多個物聯網裝置中,進入「停止運作」狀態的物聯網裝置的數量的總和在不同統計時段中都很低。 In addition, the data aspect analysis circuit 115 can separately calculate the sum of the number of activity records whose content of the device status data in each subgroup is "stopped operation", and can aggregate the calculation results of the aforementioned seven subgroups to form another A set of statistics to be used as reference data set 342 for data group 330 regarding the "out of service" state. The content of the reference data set 342 can be described in the form of the statistical chart 920 in FIG. 9 equivalently, and the statistical results 922 of the data presented in the form of bars in the statistical chart 920 represent the device status data in a specific statistical period is the sum of the number of "defunct" activity records. As shown in FIG. 9 , the statistics chart 920 shows that the heights of the data statistics results 922 in different statistical periods are similar and low, which represent the number of activity records whose content of the device status data is “stopped” in different statistical periods The sums are equally small. Such an analysis result means that among the IoT devices corresponding to the data group 330 , the sum of the number of IoT devices entering the "stop operation" state is very low in different statistical periods.

再者,資料態樣分析電路115還可分別計算出個別子群組中的所有活動紀錄中所記載的上行流量的總和,並將前述7個子群組的計算結果彙整起來形成另一組統計數據,以做為資料群組330關於「上行流量」的參考資料集344。參考資料集344的內容,等效上可用圖9中的統計圖表930的形式來描述,而在統計圖表930中以長條形式呈現的資料統計結果932,則代表在特定統計時段中所有活動紀錄所記載的上行流量的總和。如圖9所示,統計圖表930顯示在星期六及星期日的資料統計結果932,會明顯比其他5天中的資料統計結果932來的低,代表在星期六及星期日的活動紀錄所記載的上行流量的總和,會明顯低於其他統計時段。這樣的分析結果代表在資料群組330所對應的多個物聯網裝置,在星期六及星期日的上行流量會明顯低於其他5天。 Furthermore, the data aspect analysis circuit 115 can separately calculate the sum of the upstream traffic recorded in all the activity records in the individual subgroups, and aggregate the calculation results of the aforementioned seven subgroups to form another set of statistical data. , as the reference data set 344 of the data group 330 regarding "upstream traffic". The content of the reference data set 344 can be described in the form of the statistical chart 930 in FIG. 9 equivalently, and the statistical results 932 of the data presented in the form of bars in the statistical chart 930 represent all activity records in a specific statistical period. The sum of recorded upstream traffic. As shown in FIG. 9 , the statistical chart 930 shows that the statistical results 932 of data on Saturday and Sunday are significantly lower than the statistical results 932 of data in the other 5 days, which represents that the upward traffic recorded in the activity records on Saturday and Sunday is less than The sum will be significantly lower than other statistical periods. Such an analysis result means that for the IoT devices corresponding to the data group 330, the upstream traffic on Saturday and Sunday is significantly lower than the other 5 days.

如果前述資料群組330內的多筆活動紀錄分別對應於標的物聯網系統101中的多個物聯網裝置104,而標的物聯網系統101是一智慧電表系統,且標的物聯網系統101中的眾多物聯網裝置104是分設在不同建築物中的多個智慧電表,則圖9中所繪示的統計圖表910、920、及930在某種程度上可用來呈現該智慧電表系統中的眾多智慧電表在一般正常運作情況下的行為特徵。 If the multiple activity records in the aforementioned data group 330 respectively correspond to multiple IoT devices 104 in the target IoT system 101 , and the target IoT system 101 is a smart meter system, and many IoT devices in the target IoT system 101 The IoT device 104 is a plurality of smart meters that are located in different buildings, so the statistical charts 910 , 920 , and 930 shown in FIG. 9 can be used to present the wisdom in the smart meter system to some extent. Behavioural characteristics of an electricity meter under typical normal operating conditions.

由前述說明可知,資料群組330所對應的每個參考資料集,可用來呈現資料群組330內的活動紀錄中的某項分析基礎(亦即,特定的屬性)的一相關統計結果(例如,總和、平均值、移動和、或移動平均值),在資料收集期間內的多個不同統計時段的變化態樣。 As can be seen from the foregoing description, each reference data set corresponding to the data group 330 can be used to present a relevant statistical result (eg , sum, average, moving sum, or moving average), the pattern of change over multiple different statistical periods during the data collection period.

資料態樣分析電路115可比照前述方式,採用圖6的方法分析其他各資料群組內的活動紀錄在資料收集期間內的資料態樣,以產生個別資料群組所對應的參考資料集。例如,資料態樣分析電路115可採用圖6的方法,分析資料群組332內的複數筆活動紀錄在資料收集期間內的資料態樣,以產生資料群組332所對應的多個參考資料集。同樣地,資料態樣分析電路115可採用圖6的方法,分析資料群組334內的複數筆活動紀錄在資料收集期間內的資料態樣,以產生資料群組334所對應的多個參考資料集。 The data aspect analysis circuit 115 can use the method shown in FIG. 6 to analyze the data aspects of the activity records in other data groups during the data collection period in the same manner as described above, so as to generate reference data sets corresponding to individual data groups. For example, the data pattern analysis circuit 115 can use the method shown in FIG. 6 to analyze the data patterns of a plurality of activity records in the data group 332 during the data collection period, so as to generate a plurality of reference data sets corresponding to the data group 332 . Similarly, the data pattern analysis circuit 115 can use the method shown in FIG. 6 to analyze the data patterns of the plurality of activity records in the data group 334 during the data collection period, so as to generate a plurality of reference data corresponding to the data group 334 set.

如前所述,資料態樣分析電路115可將個別資料群組所對應的多個參考資料集,以適當的資料形式儲存在儲存電路113中。 As mentioned above, the data aspect analysis circuit 115 can store the plurality of reference data sets corresponding to the individual data groups in the storage circuit 113 in an appropriate data format.

在建立個別資料群組所對應的一或多個參考資料集之後,物聯網運作監控系統100可動態地檢測標的物聯網系統101、102、及103中的多個物聯網裝置的運作情況。 After establishing one or more reference data sets corresponding to individual data groups, the IoT operation monitoring system 100 can dynamically detect the operation status of multiple IoT devices in the target IoT systems 101 , 102 , and 103 .

以下將搭配圖10及圖11來進一步說明物聯網運作監控系統100動態檢測標的物聯網系統101、102、及103的運作是否出現異常的運作方式。圖10為本發明檢測物聯網運作是否發生異常的方法的一實施例簡化後的流程圖。圖11為本發明檢測物聯網運作是否發生異常的 一實施例簡化後的資料流示意圖。 10 and FIG. 11 will be used to further illustrate the operation mode of the IoT operation monitoring system 100 to dynamically detect whether the operation of the target IoT systems 101 , 102 , and 103 is abnormal. FIG. 10 is a simplified flowchart of an embodiment of a method for detecting whether an Internet of Things operation is abnormal according to an embodiment of the present invention. FIG. 11 is the method for detecting whether the operation of the Internet of Things is abnormal according to the present invention. A schematic diagram of a simplified data flow according to an embodiment.

為了方便起見,以下以檢測標的物聯網系統101中的物聯網裝置104是否出現異常的運作方式為例來加以說明。 For the sake of convenience, the following is an example of the operation of detecting whether the IoT device 104 in the target IoT system 101 is abnormal.

在運作時,封包閘道裝置150會進行圖10中的流程1002,以透過基地台152與標的物聯網系統101中的個別物聯網裝置104進行後續互動。封包閘道裝置150在流程1002中的運作方式,與在前述圖2中的流程202與流程204的運作方式類似,為簡潔起見,在此不再重複敘述。 During operation, the packet gateway device 150 will perform the process 1002 in FIG. 10 for subsequent interaction with the individual IoT devices 104 in the target IoT system 101 through the base station 152 . The operation of the packet gateway device 150 in the process 1002 is similar to the operation of the process 202 and the process 204 in the aforementioned FIG. 2 , and for the sake of brevity, the description is not repeated here.

在標的物聯網系統101的運作過程中,封包閘道裝置150會間歇地收到不同物聯網裝置104傳來的相關資料,也會間歇地進行流程1004。 During the operation of the target IoT system 101 , the packet gateway device 150 will intermittently receive relevant data from different IoT devices 104 , and the process 1004 will also be performed intermittently.

在流程1004中,封包閘道裝置150會產生包含某一物聯網裝置104(以下稱之為目標物聯網裝置104)的多項屬性的一新封包訊息1110,並將新封包訊息1110傳送給相應的屬性過濾裝置120。封包閘道裝置150可將與目標物聯網裝置104有關的多項屬性,以適當的資料格式整合成對應於目標物聯網裝置104的新封包訊息1110。如圖11所示,新封包訊息1110包含一標頭1111以及儲存在不同資料欄位中的多項屬性(例如,圖11中所繪示的示例性屬性1112、1113、1114、1115、及1116)。 In the process 1004, the packet gateway device 150 generates a new packet message 1110 including multiple attributes of a certain IoT device 104 (hereinafter referred to as the target IoT device 104), and transmits the new packet message 1110 to the corresponding Attribute filtering means 120. The packet gateway device 150 can integrate various attributes related to the target IoT device 104 into a new packet message 1110 corresponding to the target IoT device 104 in an appropriate data format. As shown in FIG. 11, the new packet message 1110 includes a header 1111 and various attributes stored in different data fields (eg, the exemplary attributes 1112, 1113, 1114, 1115, and 1116 shown in FIG. 11) .

封包閘道裝置150在流程1004中產生新封包訊息1110的方式,可以跟在前述流程206中產生封包訊息310的方式相同。換言之,封包閘道裝置150記載在新封包訊息1110中的屬性,可包含一封包時間、一連線識別資料、目標物聯網裝置104的一網路位址、目標物聯網裝置104的一裝置識別資料、目標物聯網裝置104所對應的一用戶識別資料(例如,一存取點名稱)、目標物聯網裝置104的一裝置狀態資料、目標物聯網裝置104的一上行流量、目標物聯網裝置104的一下行流量、基地台152的一基地台識別資料、和/或目標物聯網裝置104的一服務類型等多種相關資料。在目標物聯網裝置104內建有 一用戶身分模組的實施例中,前述的裝置識別資料也可以是該用戶身分模組的號碼。 The manner in which the packet gateway device 150 generates the new packet message 1110 in the process 1004 may be the same as the manner in which the packet message 310 is generated in the aforementioned process 206 . In other words, the attributes of the packet gateway device 150 recorded in the new packet message 1110 may include a packet time, a connection identification data, a network address of the target IoT device 104 , and a device identification of the target IoT device 104 Data, a user identification data (eg, an access point name) corresponding to the target IoT device 104 , a device status data of the target IoT device 104 , an upstream traffic of the target IoT device 104 , the target IoT device 104 The downlink traffic of the base station 152 , a base station identification data of the base station 152 , and/or a service type of the target IoT device 104 and other related data. Built into target IoT device 104 In the embodiment of a user identity module, the aforementioned device identification data may also be the number of the user identity module.

在某些實施例中,封包閘道裝置150記載在新封包訊息1110中的屬性,還可包含封包閘道裝置150的一封包閘道識別資料(例如,封包閘道裝置150的網路位址)、和/或目標物聯網裝置104的一連線時間。 In some embodiments, the attributes of the packet gateway device 150 recorded in the new packet message 1110 may also include a packet gateway identification data of the packet gateway device 150 (eg, the network address of the packet gateway device 150 ). ), and/or a connection time of the target IoT device 104 .

實作上,封包閘道裝置150還可依據標的物聯網系統101的應用目的,將與目標物聯網裝置104有關的其他屬性或資料,也記載在新封包訊息1110中。封包閘道裝置150可將包含目標物聯網裝置104的多項屬性的新封包訊息1110以各種合適形式的封包來實現。與前述圖2的實施例相同,封包閘道裝置150所產生的新封包訊息1110可用一計費請求封包(Accounting-Request Packet)的形式來實現。 In practice, the packet gateway device 150 may also record other attributes or data related to the target IoT device 104 in the new packet message 1110 according to the application purpose of the target IoT system 101 . The packet gateway device 150 may implement the new packet message 1110 containing various attributes of the target IoT device 104 in various suitable forms of packets. Similar to the aforementioned embodiment of FIG. 2 , the new packet message 1110 generated by the packet gateway device 150 may be implemented in the form of an Accounting-Request Packet.

在流程1006中,屬性過濾裝置120的資料處理電路122會接收並解析封包閘道裝置150透過網路154傳來的新封包訊息1110。 In the process 1006 , the data processing circuit 122 of the attribute filtering device 120 receives and parses the new packet message 1110 transmitted from the packet gateway device 150 through the network 154 .

接著,資料處理電路122可進行流程1008,以依據新封包訊息1110中的部分屬性,產生對應於目標物聯網裝置104的一新活動紀錄1120。 Next, the data processing circuit 122 may perform the process 1008 to generate a new activity record 1120 corresponding to the target IoT device 104 according to some attributes in the new packet message 1110 .

資料處理電路122在流程1008中產生新活動紀錄1120的方式,可以跟在前述流程210中產生活動紀錄320的方式相同。如圖11所示,資料處理電路122在接收到新封包訊息1110後,會解析並解取出新封包訊息1110所記載的前述多項屬性。接著,資料處理電路122會從所擷取出來的多項屬性中過濾出部分屬性(例如,圖11中所繪示的示例性屬性1113、1114、及1116),並依據這些屬性產生對應於目標物聯網裝置104的新活動紀錄1120。 The manner in which the data processing circuit 122 generates the new activity record 1120 in the process 1008 may be the same as the manner in which the activity record 320 is generated in the aforementioned process 210 . As shown in FIG. 11 , after receiving the new packet message 1110 , the data processing circuit 122 parses and extracts the aforementioned properties recorded in the new packet message 1110 . Next, the data processing circuit 122 filters out some attributes (eg, the exemplary attributes 1113, 1114, and 1116 shown in FIG. 11 ) from the multiple attributes extracted, and generates corresponding objects according to these attributes. New activity record 1120 for networked device 104 .

換言之,資料處理電路122所產生的新活動紀錄1120,並不會包含新封包訊息1110中所記載的全部屬性,只會包含新封包訊息1110中所記載的部分屬性。 In other words, the new activity record 1120 generated by the data processing circuit 122 does not include all the attributes recorded in the new packet message 1110 , but only includes some of the attributes recorded in the new packet message 1110 .

例如,資料處理電路122可將新封包訊息1110中所記載的裝置識別資料、用戶識別資料、裝置狀態資料、上行流量、下行流量、以及基地台識別資料,以適當的資料格式整合成對應於目標物聯網裝置104的新活動紀錄1120。 For example, the data processing circuit 122 can integrate the device identification data, user identification data, device status data, upstream traffic, downstream traffic, and base station identification data recorded in the new packet message 1110 into a corresponding target in an appropriate data format. New activity record 1120 for IoT device 104 .

在某些實施例中,資料處理電路122還可將新封包訊息1110中所記載的封包閘道識別資料、和/或連線時間,也一併整合到與目標物聯網裝置104相應的新活動紀錄1120中。 In some embodiments, the data processing circuit 122 can also integrate the packet gateway identification data and/or the connection time recorded in the new packet message 1110 into the new activity corresponding to the target IoT device 104 . Record 1120.

很明顯地,資料處理電路122產生的新活動紀錄1120中所記載的屬性的數量,會少於新封包訊息1110中所記載的屬性的數量。 Obviously, the number of attributes recorded in the new activity record 1120 generated by the data processing circuit 122 will be less than the number of attributes recorded in the new packet message 1110 .

在流程1010中,屬性過濾裝置120的資料傳輸電路124可將資料處理電路122所產生的新活動紀錄1120,透過網路182傳送給資料檢測系統110。 In the process 1010 , the data transmission circuit 124 of the attribute filtering device 120 can transmit the new activity record 1120 generated by the data processing circuit 122 to the data detection system 110 through the network 182 .

在此情況下,資料檢測系統110的通信電路111會進行流程1012,以接收屬性過濾裝置120傳來的新活動紀錄1120。資料解譯電路112可解譯新活動紀錄1120,以擷取出記載在新活動紀錄1120中的多項屬性。 In this case, the communication circuit 111 of the data detection system 110 will perform the process 1012 to receive the new activity record 1120 from the attribute filtering device 120 . The data interpretation circuit 112 can interpret the new activity record 1120 to extract various attributes recorded in the new activity record 1120 .

實作上,資料傳輸電路124可在資料處理電路122產生新活動紀錄1120後,就立刻將新活動紀錄1120傳送給資料檢測系統110。 In practice, the data transmission circuit 124 can transmit the new activity record 1120 to the data detection system 110 immediately after the data processing circuit 122 generates the new activity record 1120 .

或者,資料傳輸電路124也可以等到資料處理電路122所產生的新活動紀錄累積到一預定數量(例如,10筆、30筆、50筆、100筆、300筆、500筆、700筆、1000筆、1500筆、或2000筆等合適的數量)時,才將新活動紀錄1120連同其他的新活動紀錄批次性地傳送給資料檢測系統110。 Alternatively, the data transmission circuit 124 can also wait until the new activity records generated by the data processing circuit 122 are accumulated to a predetermined number (eg, 10, 30, 50, 100, 300, 500, 700, 1000 records) , 1500, or 2000, etc.), the new activity record 1120 and other new activity records are sent to the data detection system 110 in batches.

又或者,資料傳輸電路124也可以間歇性或週期性地進行流程1010。例如,資料傳輸電路124可以設置成每隔1秒、3秒、5秒、10秒、15秒、30秒、60秒、100秒、3分鐘、5分鐘、10分鐘、20分鐘、30分鐘、1小時、或1.5小時等合適的時間間隔,週期性地將新活動紀錄 1120及當時所累積的其他新活動紀錄一起傳送給資料檢測系統110。 Alternatively, the data transmission circuit 124 may perform the process 1010 intermittently or periodically. For example, the data transmission circuit 124 may be set to every 1 second, 3 seconds, 5 seconds, 10 seconds, 15 seconds, 30 seconds, 60 seconds, 100 seconds, 3 minutes, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 1 hour, or 1.5 hours and other suitable time intervals, periodically record new activities 1120 is transmitted to the data detection system 110 along with other new activity records accumulated at that time.

在流程1014中,異常檢測電路116可從儲存電路113中找出與新活動紀錄1120中的一或多個選定屬性的內容相應的一或多個資料群組,以做為一或多個基準資料群組(baseline data group)。 In the process 1014, the anomaly detection circuit 116 can find from the storage circuit 113 one or more data groups corresponding to the content of the one or more selected attributes in the new activity record 1120 as one or more benchmarks Data group (baseline data group).

如前所述,資料分類電路114會將屬性過濾裝置120、130、及140產生的多筆活動紀錄,依據可做為分類基礎的若干個屬性(例如,前述的基地台識別資料、用戶識別資料、封包閘道識別資料、和/或案場識別資料)的內容進行分類,以形成多個資料群組,使得不同的資料群組分別對應於不同的屬性內容,但同一個資料群組中的所有活動紀錄所記載的某一項選定屬性的內容會相同。 As mentioned above, the data classification circuit 114 will classify the multiple activity records generated by the attribute filtering devices 120, 130, and 140 according to a number of attributes (eg, the aforementioned base station identification data, user identification data) that can be used as a basis for classification. , packet gateway identification data, and/or case site identification data) to form multiple data groups, so that different data groups correspond to different attribute contents, but the same data group The content of a selected attribute recorded in all activity records will be the same.

例如,在前述的實施例中,資料分類電路114所產生的資料群組330是與基地台識別資料BS-152相應的資料群組,且資料群組330內的所有活動紀錄所記載的基地台識別資料的內容,都是基地台識別資料BS-152。資料群組332是與識別資料APN-A相應的資料群組,且資料群組332內的所有活動紀錄所記載的用戶識別資料的內容,都是識別資料APN-A。資料群組334則是與識別資料APN-B相應的資料群組,且資料群組334內的所有活動紀錄所記載的用戶識別資料的內容,都是識別資料APN-B。 For example, in the aforementioned embodiment, the data group 330 generated by the data classification circuit 114 is the data group corresponding to the base station identification data BS-152, and all the activity records in the data group 330 record the base station The content of the identification data is the base station identification data BS-152. The data group 332 is a data group corresponding to the identification data APN-A, and the contents of the user identification data recorded in all the activity records in the data group 332 are the identification data APN-A. The data group 334 is a data group corresponding to the identification data APN-B, and the contents of the user identification data recorded in all the activity records in the data group 334 are the identification data APN-B.

在流程1014中所稱的選定屬性,是選自於前述可做為分類基礎的屬性(例如,基地台識別資料、用戶識別資料、封包閘道識別資料、和/或案場識別資料)。在運作時,異常檢測電路116可依據預定的規則或是使用者挑選的比較對象,來決定選定屬性的具體項目及數量,並根據選定屬性的內容從儲存電路113中找出相應的基準資料群組。 The selected attribute in process 1014 is selected from the aforementioned attributes that can be used as a basis for classification (eg, base station identification data, user identification data, packet gateway identification data, and/or site identification data). During operation, the abnormality detection circuit 116 can determine the specific items and quantity of the selected attribute according to a predetermined rule or a comparison object selected by the user, and find the corresponding reference data group from the storage circuit 113 according to the content of the selected attribute Group.

例如,倘若選定屬性是用戶識別資料,且新活動紀錄1120中所記載的用戶識別資料的內容是對應於第一特定用戶的識別資料APN-A,則異常檢測電路116可從儲存電路113中找出與識別資料APN-A相應 的資料群組來做為一基準資料群組。 For example, if the selected attribute is user identification data, and the content of the user identification data recorded in the new activity record 1120 is the identification data APN-A corresponding to the first specific user, the anomaly detection circuit 116 may find the user identification data from the storage circuit 113 The output corresponds to the identification data APN-A The data group is used as a benchmark data group.

又例如,倘若選定屬性是案場識別資料,且新活動紀錄1120中所記載的案場識別資料的內容是對應於一案場S1的案場識別資料S1-ID,則異常檢測電路116可從儲存電路113中找出與案場識別資料S1-ID相應的資料群組來做為一基準資料群組。 For another example, if the selected attribute is the case identification data, and the content of the case identification data recorded in the new activity record 1120 is the case identification data S1-ID corresponding to a case field S1, the abnormality detection circuit 116 can obtain A data group corresponding to the case identification data S1-ID is found in the storage circuit 113 as a reference data group.

又例如,倘若選定屬性是基地台識別資料,且新活動紀錄1120中所記載的基地台識別資料的內容是對應於基地台152的基地台識別資料BS-152,則異常檢測電路116可從儲存電路113中找出與基地台識別資料BS-152相應的資料群組來做為一基準資料群組。 For another example, if the selected attribute is the base station identification data, and the content of the base station identification data recorded in the new activity record 1120 is the base station identification data BS-152 corresponding to the base station 152, the anomaly detection circuit 116 can store the The circuit 113 finds a data group corresponding to the base station identification data BS-152 as a reference data group.

又例如,倘若選定屬性是封包閘道識別資料,且新活動紀錄1120中所記載的封包閘道識別資料的內容是對應於封包閘道裝置150的閘道識別資料GW-150,則異常檢測電路116可從儲存電路113中找出與閘道識別資料GW-150相應的資料群組來做為一基準資料群組。 For another example, if the selected attribute is the packet gateway identification data, and the content of the packet gateway identification data recorded in the new activity record 1120 is the gateway identification data GW-150 corresponding to the packet gateway device 150, the abnormality detection circuit 116 can find out the data group corresponding to the gateway identification data GW-150 from the storage circuit 113 as a reference data group.

每個基準資料群組內的活動紀錄,則是後續要對新活動紀錄1120進行異常分析時的比較對象。 The activity records in each benchmark data group are the objects of comparison when the new activity record 1120 is subsequently analyzed for abnormality.

為了方便以下說明起見,在此假設異常檢測電路116依據新活動紀錄1120中的複數個選定屬性的內容,從儲存電路113中找出了相應的複數個基準資料群組(例如,圖11中所繪示的示例性基準資料群組1130、1132、及1134)。 For the convenience of the following description, it is assumed here that the abnormality detection circuit 116 finds a plurality of corresponding reference data groups from the storage circuit 113 according to the content of the plurality of selected attributes in the new activity record 1120 (for example, in FIG. 11 , Exemplary benchmark data groups 1130, 1132, and 1134 are depicted).

在流程1016中,異常檢測電路116可將新活動紀錄1120中的一或多個目標屬性的內容,與在流程1014中找出來的基準資料群組1130、1132、及1134關於該一或多個目標屬性的參考資料集進行比對,以判斷是否出現異常。 In process 1016, the anomaly detection circuit 116 may associate the content of one or more target attributes in the new activity record 1120 with the reference data groups 1130, 1132, and 1134 found in process 1014 about the one or more target attributes The reference data set of the target attribute is compared to determine whether there is an abnormality.

如前所述,資料態樣分析電路115會針對個別資料群組內的活動紀錄進行資料態樣分析,並產生個別資料群組所對應的一或多個參考資料集,且每個參考資料集的內容都是一組統計數據,可用來呈現個別資料群組內的活動紀錄中可做為分析基礎的某項目標屬性(例 如,裝置狀態資料、上行流量、下行流量、和/或連線時間)的一相關統計結果(例如,總和、平均值、移動和、或移動平均值等),在資料收集期間內的多個不同統計時段的變化態樣。 As mentioned above, the data aspect analysis circuit 115 performs data aspect analysis on the activity records in the individual data groups, and generates one or more reference data sets corresponding to the individual data groups, and each reference data set The content is a set of statistical data that can be used to present a certain target attribute (eg For example, a relevant statistical result (eg, sum, average, moving sum, or moving average, etc.) of device status data, upstream traffic, downstream traffic, and/or connection time), multiple Changes in different statistical periods.

因此,異常檢測電路116在流程1014中找出來的基準資料群組1130、1132、及1134,也都分別具有一或多個相應的參考資料集,可用來呈現各基準資料群組內的活動紀錄中的某項目標屬性的一相關統計結果,在資料收集期間內的多個不同統計時段的變化態樣。 Therefore, the reference data groups 1130 , 1132 , and 1134 found by the abnormality detection circuit 116 in the process 1014 also each have one or more corresponding reference data sets, which can be used to present the activity records in each reference data group. A related statistical result of a certain target attribute in the data collection period in a plurality of different statistical periods of change patterns.

在流程1016中所稱的目標屬性,是選自於前述可做為分析基礎的屬性(例如,裝置狀態資料、上行流量、下行流量、和/或連線時間)。在運作時,異常檢測電路116可依據預定的規則或是使用者挑選的分析項目,來決定目標屬性的具體項目及數量,並從儲存電路113中找出與目標屬性相應的參考資料集。 The target attribute referred to in the process 1016 is selected from the aforementioned attributes that can be used as a basis for analysis (eg, device status data, upstream traffic, downstream traffic, and/or connection time). During operation, the abnormality detection circuit 116 can determine the specific items and quantity of the target attribute according to a predetermined rule or an analysis item selected by the user, and find the reference data set corresponding to the target attribute from the storage circuit 113 .

如圖11所示,假設異常檢測電路116要比較的對象是基準資料群組1130內的活動紀錄,異常檢測電路116可將新活動紀錄1120中要分析的屬性做為一目標屬性1113,並從儲存電路113中找出基準資料群組1130關於目標屬性1113的一參考資料集1140。接著,異常檢測電路116可將新活動紀錄1120中所記載的目標屬性1113的內容,與參考資料集1140的統計數據進行比對,以判斷目標屬性1113的內容與參考資料集1140中的相關統計時段的統計數據之間的差距,是否超過一預定臨界值。 As shown in FIG. 11 , assuming that the object to be compared by the anomaly detection circuit 116 is the activity records in the reference data group 1130 , the anomaly detection circuit 116 can take the attribute to be analyzed in the new activity record 1120 as a target attribute 1113 and extract the A reference data set 1140 about the target attribute 1113 of the reference data group 1130 is found in the storage circuit 113 . Next, the abnormality detection circuit 116 can compare the content of the target attribute 1113 recorded in the new activity record 1120 with the statistical data of the reference data set 1140 to determine the content of the target attribute 1113 and the relevant statistics in the reference data set 1140 Whether the gap between the statistical data of the time period exceeds a predetermined threshold.

例如,倘若要分析的項目是上行流量、且要比較的對象是基準資料群組1130內的活動紀錄,則異常檢測電路116可將上行流量做為一目標屬性,並從儲存電路113中找出基準資料群組1130關於上行流量的參考資料集(例如圖11中的參考資料集1142,在此稱之為第一基準資料集)。接著,異常檢測電路116可將新活動紀錄1120中所記載的上行流量的內容,與第一基準資料集的統計數據進行比對,以判斷上行流量的內容與第一基準資料集中的相關統計時段的統計 數據之間的差距,是否超過一第一預定臨界值(例如,10%、15%、20%、30%、40%、50%、或是一特定的流量大小等等)。 For example, if the item to be analyzed is upstream traffic and the object to be compared is the activity records in the reference data group 1130 , the abnormality detection circuit 116 can take the upstream traffic as a target attribute and find out from the storage circuit 113 The reference data set of the reference data group 1130 regarding the upstream traffic (eg, the reference data set 1142 in FIG. 11 , which is referred to as the first reference data set herein). Next, the abnormality detection circuit 116 can compare the content of the upstream traffic recorded in the new activity record 1120 with the statistical data of the first reference data set to determine the content of the upstream traffic and the relevant statistical period in the first reference data set registration Whether the gap between the data exceeds a first predetermined threshold (eg, 10%, 15%, 20%, 30%, 40%, 50%, or a specific flow rate, etc.).

在將新活動紀錄1120中所記載的上行流量的內容與第一基準資料集的統計數據進行比對之後,如果新活動紀錄1120中還存在其他要分析的項目,則異常檢測電路116可比照前述的方式進行比對。 After comparing the content of the upstream traffic recorded in the new activity record 1120 with the statistical data of the first reference data set, if there are other items to be analyzed in the new activity record 1120, the abnormality detection circuit 116 can compare the above-mentioned way to compare.

例如,倘若要分析的項目是上行流量、且要比較的對象是基準資料群組1132內的活動紀錄,則異常檢測電路116可將上行流量做為一目標屬性,並從儲存電路113中找出基準資料群組1132關於上行流量的參考資料集(在此稱之為第二基準資料集)。接著,異常檢測電路116可將新活動紀錄1120中所記載的上行流量的內容,與第二基準資料集的統計數據進行比對,以判斷上行流量的內容與第二基準資料集中的相關統計時段的統計數據之間的差距,是否超過前述第一臨界值。 For example, if the item to be analyzed is upstream traffic and the object to be compared is the activity records in the reference data group 1132 , the abnormality detection circuit 116 can take the upstream traffic as a target attribute and find out from the storage circuit 113 The reference data set of the reference data group 1132 regarding upstream traffic (referred to herein as the second reference data set). Next, the abnormality detection circuit 116 can compare the content of the upstream traffic recorded in the new activity record 1120 with the statistical data of the second reference data set to determine the content of the upstream traffic and the relevant statistical period in the second reference data set Whether the gap between the statistical data exceeds the aforementioned first critical value.

又例如,倘若要分析的項目是下行流量、且要比較的對象是基準資料群組1130內的活動紀錄,則異常檢測電路116可將下行流量做為一目標屬性,並從儲存電路113中找出基準資料群組1130關於下行流量的參考資料集(例如圖11中的參考資料集1144,在此稱之為第三基準資料集)。接著,異常檢測電路116可將新活動紀錄1120中所記載的下行流量的內容,與第三基準資料集的統計數據進行比對,以判斷下行流量的內容與第三基準資料集中的相關統計時段的統計數據之間的差距,是否超過一第二臨界值(例如,5%、10%、15%、20%、25%、30%、40%、或是一特定的流量大小等等)。 For another example, if the item to be analyzed is downlink traffic, and the object to be compared is the activity records in the reference data group 1130 , the abnormality detection circuit 116 can take the downlink traffic as a target attribute and find it from the storage circuit 113 . The reference data set of the reference data group 1130 about downlink traffic (for example, the reference data set 1144 in FIG. 11 , which is referred to as the third reference data set herein) is output. Next, the anomaly detection circuit 116 can compare the content of the downstream traffic recorded in the new activity record 1120 with the statistical data of the third reference data set to determine the content of the downstream traffic and the relevant statistical period in the third reference data set Whether the gap between the statistical data exceeds a second threshold (eg, 5%, 10%, 15%, 20%, 25%, 30%, 40%, or a specific traffic size, etc.).

又例如,倘若要分析的項目是下行流量、且要比較的對象是基準資料群組1134內的活動紀錄,則異常檢測電路116可將下行流量做為一目標屬性,並從儲存電路113中找出基準資料群組1134關於下行流量的參考資料集(在此稱之為第四基準資料集)。接著,異常檢測電路116可將新活動紀錄1120中所記載的下行流量的內容,與第 四基準資料集的統計數據進行比對,以判斷下行流量的內容與第四基準資料集中的相關統計時段的統計數據之間的差距,是否超過前述第二臨界值。 For another example, if the item to be analyzed is downlink traffic, and the object to be compared is the activity records in the reference data group 1134 , the abnormality detection circuit 116 can take the downlink traffic as a target attribute and find it from the storage circuit 113 . A reference data set (herein referred to as a fourth reference data set) of the reference data group 1134 about downlink traffic is output. Next, the abnormality detection circuit 116 can compare the content of the downstream traffic recorded in the new activity record 1120 with the first The statistical data of the four benchmark data sets are compared to determine whether the difference between the content of the downlink traffic and the statistical data of the relevant statistical period in the fourth benchmark data set exceeds the aforementioned second threshold.

又例如,倘若要分析的項目是連線時間、且要比較的對象是基準資料群組1132內的活動紀錄,則異常檢測電路116可將連線時間做為一目標屬性,並從儲存電路113中找出基準資料群組1132關於連線時間的參考資料集(在此稱之為第五基準資料集)。接著,異常檢測電路116可將新活動紀錄1120中所記載的連線時間的內容,與第五基準資料集的統計數據進行比對,以判斷連線時間的內容與第五基準資料集中的相關統計時段的統計數據之間的差距,是否超過一第三臨界值(例如,15%、20%、30%、50%、80%、100%、或是一特定的時間值等等)。 For another example, if the item to be analyzed is the connection time, and the object to be compared is the activity records in the reference data group 1132 , the abnormality detection circuit 116 can use the connection time as a target attribute, and store the data from the storage circuit 113 Find out the reference data set (herein referred to as the fifth reference data set) of the reference data group 1132 about the connection time. Next, the abnormality detection circuit 116 can compare the content of the connection time recorded in the new activity record 1120 with the statistical data of the fifth reference data set to determine the correlation between the content of the connection time and the fifth reference data set Whether the gap between the statistical data of the statistical period exceeds a third threshold (for example, 15%, 20%, 30%, 50%, 80%, 100%, or a specific time value, etc.).

又例如,倘若要分析的項目是連線時間、且要比較的對象是基準資料群組1134內的活動紀錄,則異常檢測電路116可將連線時間做為一目標屬性,並從儲存電路113中找出基準資料群組1134關於連線時間的參考資料集(在此稱之為第六基準資料集)。接著,異常檢測電路116可將新活動紀錄1120中所記載的連線時間的內容,與第六基準資料集的統計數據進行比對,以判斷連線時間的內容與第六基準資料集中的相關統計時段的統計數據之間的差距,是否超過前述第三臨界值。 For another example, if the item to be analyzed is connection time and the object to be compared is the activity records in the reference data group 1134 , the abnormality detection circuit 116 can use the connection time as a target attribute, and store the data from the storage circuit 113 Find the reference data set (herein referred to as the sixth reference data set) of the reference data group 1134 about the connection time. Next, the abnormality detection circuit 116 can compare the content of the connection time recorded in the new activity record 1120 with the statistical data of the sixth reference data set to determine the correlation between the content of the connection time and the sixth reference data set Whether the gap between the statistical data in the statistical period exceeds the aforementioned third threshold.

倘若要分析的項目是其他屬性,則異常檢測電路116可比照前述方式進行相關的比對。 If the item to be analyzed is other attributes, the abnormality detection circuit 116 can perform the related comparison in the aforementioned manner.

在一實施例中,異常檢測電路116可在新活動紀錄1120中所記載的單一目標屬性的內容與單一相應參考資料集之間的差距超過相關臨界值的情況下,便判定新活動紀錄1120所對應的目標物聯網裝置104的運作發生異常情況。 In one embodiment, the anomaly detection circuit 116 may determine that the new activity record 1120 has an abnormality when the difference between the content of the single target attribute recorded in the new activity record 1120 and a single corresponding reference data set exceeds a relevant threshold. The operation of the corresponding target IoT device 104 is abnormal.

在另一實施例中,異常檢測電路116可在新活動紀錄1120中所記載 的單一目標屬性的內容與多個相應參考資料集之間的差距超過相關臨界值的情況下,才判定新活動紀錄1120所對應的目標物聯網裝置104的運作發生異常情況。 In another embodiment, the anomaly detection circuit 116 may be recorded in the new activity log 1120 Only when the difference between the content of the single target attribute and the plurality of corresponding reference data sets exceeds the relevant threshold, it is determined that the operation of the target IoT device 104 corresponding to the new activity record 1120 is abnormal.

在另一實施例中,異常檢測電路116可在新活動紀錄1120中所記載的多個目標屬性的內容與多個相應參考資料集之間的差距超過相關臨界值的情況下,才判定新活動紀錄1120所對應的目標物聯網裝置104的運作發生異常情況。 In another embodiment, the anomaly detection circuit 116 may determine a new activity only when the difference between the content of the plurality of target attributes recorded in the new activity record 1120 and the plurality of corresponding reference data sets exceeds a relevant threshold value The operation of the target IoT device 104 corresponding to the record 1120 is abnormal.

倘若異常檢測電路116判定目標物聯網裝置104的運作沒有發生異常,則標的物聯網系統101、封包閘道裝置150、屬性過濾裝置120、及資料檢測系統110可重複進行圖10中的前述流程。反之,倘若異常檢測電路116判定目標物聯網裝置104的運作出現異常,則會進行圖10中的流程1018。 If the abnormality detection circuit 116 determines that the operation of the target IoT device 104 is not abnormal, the target IoT system 101 , the packet gateway device 150 , the attribute filtering device 120 , and the data detection system 110 can repeat the aforementioned process in FIG. 10 . On the contrary, if the abnormality detection circuit 116 determines that the operation of the target IoT device 104 is abnormal, the process 1018 in FIG. 10 will be performed.

在流程1018中,異常檢測電路116會產生與目標物聯網裝置104或標的物聯網系統101相應的一或多個告警信息。用戶圖形介面產生電路117則會將異常檢測電路116所產生的告警信息,以適當的視覺方式呈現給使用者。例如,用戶圖形介面產生電路117可產生相關的警示文字、警示圖案、和/或警示影像,並透過網路184傳送給用戶裝置192和/或用戶裝置194,以讓標的物聯網系統101的運營者、管理者、稽核人員、和/或其他使用者知悉相關情況。 In the process 1018 , the abnormality detection circuit 116 generates one or more alarm messages corresponding to the target IoT device 104 or the target IoT system 101 . The user graphic interface generation circuit 117 presents the alarm information generated by the abnormality detection circuit 116 to the user in an appropriate visual manner. For example, the user graphic interface generation circuit 117 can generate relevant warning texts, warning patterns, and/or warning images, and transmit them to the user device 192 and/or the user device 194 through the network 184, so as to enable the operation of the target IoT system 101 users, managers, auditors, and/or other users.

另一方面,在異常檢測電路116於前述的流程1014中找出與新活動紀錄1120中的複數個選定屬性的內容相應的複數個基準資料群組1130、1132、及1134之後,資料分類電路114還會進行圖10中的流程1020,而資料態樣分析電路115還會進行圖10中的流程1022。 On the other hand, after the abnormality detection circuit 116 finds a plurality of reference data groups 1130, 1132, and 1134 corresponding to the contents of the plurality of selected attributes in the new activity record 1120 in the aforementioned process 1014, the data classification circuit 114 The process 1020 in FIG. 10 will also be performed, and the data aspect analysis circuit 115 will also perform the process 1022 in FIG. 10 .

在流程1020中,資料分類電路114可將新活動紀錄1120依據可做為分類基礎的多個屬性的內容進行分類,以利用新活動紀錄1120來更新包含前述基準資料群組1130、1132、及1134在內的複數個相應資料群組的內容。資料分類電路114可比照前述流程216的方式,將新 活動紀錄1120依據可做為分類基礎的多個屬性的內容進行分類,找出新活動紀錄1120所對應的複數個資料群組,並將新活動紀錄1120添加到個別資料群組中,且同時移除個別資料群組中最舊的一個活動紀錄。例如,資料分類電路114可將新活動紀錄1120添加到基準資料群組1130中,並移除基準資料群組1130中最舊的一個活動紀錄。又例如,資料分類電路114可將新活動紀錄1120添加到基準資料群組1132中,並移除基準資料群組1132中最舊的一個活動紀錄。同樣地,資料分類電路114可將新活動紀錄1120添加到基準資料群組1134中,並移除基準資料群組1134中最舊的一個活動紀錄。 In the process 1020 , the data classification circuit 114 can classify the new activity record 1120 according to the content of a plurality of attributes that can be used as a basis for classification, so as to use the new activity record 1120 to update the reference data groups 1130 , 1132 , and 1134 including the aforementioned The contents of a plurality of corresponding data groups including . The data classification circuit 114 can compare the new process 216 to The activity record 1120 is classified according to the content of the multiple attributes that can be used as the basis for classification, finds a plurality of data groups corresponding to the new activity record 1120, adds the new activity record 1120 to the individual data group, and simultaneously moves the data group. Except for the oldest activity record in the individual data group. For example, the data sorting circuit 114 may add a new activity record 1120 to the reference data group 1130 and remove the oldest one activity record in the reference data group 1130 . For another example, the data classification circuit 114 may add a new activity record 1120 to the reference data group 1132 and remove the oldest one activity record in the reference data group 1132 . Likewise, the data sorting circuit 114 may add the new activity record 1120 to the reference data group 1134 and remove the oldest one activity record in the reference data group 1134 .

資料分類電路114會把更新後的相應資料群組儲存在儲存電路113中,以供異常檢測電路116在後續時間點進行異常分析之用。 The data classification circuit 114 stores the updated corresponding data groups in the storage circuit 113 for the abnormality detection circuit 116 to perform abnormality analysis at subsequent time points.

在流程1022中,資料態樣分析電路115可更新新活動紀錄1120的相應資料群組所對應的多個參考資料集。資料態樣分析電路115可比照前述流程218的運作方式,對納入新活動紀錄1120後的個別資料群組內的活動紀錄再次進行資料態樣分析,並更新個別資料群組所對應的一或多個參考資料集。例如,資料態樣分析電路115可對更新後的基準資料群組1130內的活動紀錄再次進行資料態樣分析,並產生基準資料群組1130所對應的一或多個更新後的參考資料集(例如,圖11中的示例性參考資料集1160、1162、及1164),以替換掉基準資料群組1130原先的參考資料集。資料態樣分析電路115可對更新後的基準資料群組1132內的活動紀錄再次進行資料態樣分析,並產生基準資料群組1132所對應的一或多個更新後的參考資料集,以替換掉基準資料群組1132原先的參考資料集。同樣地,資料態樣分析電路115可對更新後的基準資料群組1134內的活動紀錄再次進行資料態樣分析,並產生基準資料群組1134所對應的一或多個更新後的參考資料集,以替換掉基準資料群組1134原先的參考資料集。 In the process 1022 , the data aspect analysis circuit 115 may update the plurality of reference data sets corresponding to the corresponding data groups of the new activity record 1120 . The data aspect analysis circuit 115 can perform data aspect analysis again on the activity records in the individual data groups after the new activity record 1120 is included in the operation mode of the aforementioned process 218, and update one or more data corresponding to the individual data groups. a reference set. For example, the data aspect analysis circuit 115 may perform data aspect analysis again on the activity records in the updated reference data group 1130, and generate one or more updated reference data sets corresponding to the reference data group 1130 ( For example, the exemplary reference data sets 1160, 1162, and 1164 in FIG. 11) to replace the original reference data set of the reference data group 1130. The data aspect analysis circuit 115 can perform data aspect analysis on the activity records in the updated reference data group 1132 again, and generate one or more updated reference data sets corresponding to the reference data group 1132 to replace Delete the original reference data set of the reference data group 1132. Similarly, the data aspect analysis circuit 115 can perform data aspect analysis on the activity records in the updated reference data group 1134 again, and generate one or more updated reference data sets corresponding to the reference data group 1134 , to replace the original reference data set of the reference data group 1134.

資料態樣分析電路115會把更新後的相關參考資料集儲存在儲存電 路113中,以供異常檢測電路116在後續時間點進行異常分析之用。 The data pattern analysis circuit 115 stores the updated relevant reference data set in the storage battery. in the path 113 for the abnormality detection circuit 116 to perform abnormality analysis at a subsequent time point.

隨著時間的經過,資料分類電路114會不斷地更新所有資料群組內的活動紀錄。如此一來,每個基準資料群組內的活動紀錄,都會被資料分類電路114不斷地滾動式更新,使得個別基準資料群組內的活動紀錄都是屬於較近期產生的活動紀錄。 As time passes, the data classification circuit 114 will continuously update the activity records in all data groups. In this way, the activity records in each benchmark data group will be continuously updated by the data classification circuit 114 in a rolling manner, so that the activity records in each benchmark data group belong to the activity records generated relatively recently.

另一方面,資料態樣分析電路115也會不斷地更新所有資料群組所對應的參考資料集。如此一來,每個基準資料群組所對應的參考資料集,都會被資料態樣分析電路115不斷地滾動式更新,使得個別基準資料群組所對應的參考資料集能反映出較近期產生的活動紀錄中的目標屬性的統計結果。 On the other hand, the data aspect analysis circuit 115 also continuously updates the reference data sets corresponding to all the data groups. In this way, the reference data set corresponding to each reference data group will be continuously updated by the data pattern analysis circuit 115 in a rolling manner, so that the reference data set corresponding to each reference data group can reflect the relatively recently generated reference data set. Statistical results of target attributes in the activity log.

從另一個角度而言,異常檢測電路116在後續時間點進行異常分析時所依賴的基準資料群組、以及基準資料群組所對應的參考資料集,都會因為資料分類電路114與資料態樣分析電路115重複進行流程1020及流程1022的運作而適應性更新成較新的版本。 From another point of view, the reference data group on which the abnormality detection circuit 116 performs abnormality analysis at subsequent time points, and the reference data set corresponding to the reference data group are both determined by the data classification circuit 114 and the data aspect analysis. The circuit 115 repeats the operations of the process 1020 and the process 1022 to adaptively update to a newer version.

由前述說明可知,資料檢測系統110可藉由將單一新活動紀錄1120的內容與相關的基準資料群組所對應的參考資料集進行比對的方式,判斷出單一目標物聯網裝置104的運作是否出現異常。但這只是一示例性的實施例,而非侷限本發明的實際實施方式。實作上,資料檢測系統110也可以根據多筆活動紀錄的內容,來同時分析具有特定關聯性的一群物聯網裝置的運作是否發生異常。 As can be seen from the foregoing description, the data detection system 110 can determine whether the single target IoT device 104 is operating by comparing the content of the single new activity record 1120 with the reference data set corresponding to the relevant reference data group. Abnormal. However, this is only an exemplary embodiment and does not limit the actual implementation of the present invention. In practice, the data detection system 110 can also simultaneously analyze whether the operation of a group of IoT devices with a specific correlation is abnormal according to the contents of multiple activity records.

例如,圖12為本發明檢測物聯網運作是否發生異常的方法的另一實施例簡化後的流程圖。 For example, FIG. 12 is a simplified flow chart of another embodiment of the method for detecting whether the operation of the Internet of Things is abnormal according to the present invention.

在圖12的實施例中,個別封包閘道裝置與個別屬性過濾裝置的運作方式,都與圖10的實施例相同。因此,圖12中的流程1002至流程1010的運作方式,都與前述圖10中的對應流程相同,為了簡潔起見,在此不重複敘述。 In the embodiment of FIG. 12 , the operation modes of the individual packet gateway devices and the individual attribute filtering devices are the same as those of the embodiment of FIG. 10 . Therefore, the operations of the processes 1002 to 1010 in FIG. 12 are the same as the corresponding processes in the aforementioned FIG. 10 , and for the sake of brevity, the description is not repeated here.

如前所述,隨著時間的經過,屬性過濾裝置120、130、及140會陸 續產生跟標的物聯網系統101、102、及103中的不同物聯網裝置有關的許多活動紀錄。因此,資料檢測系統110可進行圖12中的流程1212。 As previously mentioned, attribute filtering devices 120, 130, and 140 meet over time A number of activity records related to the different IoT devices in the target IoT systems 101 , 102 , and 103 continue to be generated. Therefore, the data detection system 110 may perform the process 1212 in FIG. 12 .

在流程1212中,資料檢測系統110的通信電路111會陸續接收選定屬性(例如,基地台識別資料、用戶識別資料、封包閘道識別資料、和/或案場識別資料)的內容相同的多筆新活動紀錄。在此情況下,異常檢測電路116可比照前述流程1014的方式,依據選定屬性的內容從儲存電路113中找出相應的一或多個基準資料群組。 In the process 1212, the communication circuit 111 of the data detection system 110 will successively receive multiple data with the same content of the selected attribute (eg, base station identification data, user identification data, packet gateway identification data, and/or site identification data). New activity record. In this case, the abnormality detection circuit 116 can find out one or more corresponding reference data groups from the storage circuit 113 according to the content of the selected attribute according to the method of the aforementioned process 1014 .

在流程1214中,異常檢測電路116可計算前述的多筆新活動紀錄中的一或多個目標屬性(例如,裝置狀態資料、上行流量、下行流量、和/或連線時間)的內容所對應的統計數據。例如,異常檢測電路116可計算前述的多筆新活動紀錄中的某一目標屬性在一特定統計時段中的統計結果(例如,總和、平均值、移動和、或移動平均值等)。 In the process 1214, the anomaly detection circuit 116 can calculate the content corresponding to one or more target attributes (eg, device status data, upstream traffic, downstream traffic, and/or connection time) in the aforementioned multiple new activity records statistics. For example, the abnormality detection circuit 116 can calculate the statistical results (eg, sum, average, moving sum, or moving average, etc.) of a certain target attribute in the aforementioned multiple new activity records in a specific statistical period.

接著,異常檢測電路116可進行流程1216,將計算出來的統計數據與一或多個基準資料群組關於該目標屬性的參考資料集進行比對,以判斷是否出現異常。假設異常檢測電路116要比較的對象是前述基準資料群組1130,則異常檢測電路116可從儲存電路113中找出基準資料群組1130關於目標屬性的參考資料集(在此稱之為基準資料集)。接著,異常檢測電路116可將流程1214中所計算出來的統計數據,與基準資料集的統計數據進行比對,以判斷多筆新活動紀錄中的目標屬性在特定統計時段中的統計結果,是否明顯偏離基準資料集中的相應統計時段的統計數據。 Next, the abnormality detection circuit 116 may perform a process 1216 to compare the calculated statistical data with the reference data sets of one or more reference data groups regarding the target attribute to determine whether an abnormality occurs. Assuming that the object to be compared by the anomaly detection circuit 116 is the aforementioned reference data group 1130 , the anomaly detection circuit 116 can find out from the storage circuit 113 a reference data set (herein referred to as reference data) of the reference data group 1130 about the target attribute set). Next, the abnormality detection circuit 116 can compare the statistical data calculated in the process 1214 with the statistical data of the reference data set to determine whether the statistical results of the target attributes in the multiple new activity records in a specific statistical period are whether Significant deviations from the statistical data of the corresponding statistical period in the benchmark data set.

倘若異常檢測電路116判定前述的多筆新活動紀錄的統計數據出現異常,則會進行流程1218,以產生與前述的多筆新活動紀錄所對應的多個物聯網裝置或標的物聯網系統相關的一或多個告警信息。同樣地,用戶圖形介面產生電路117會將異常檢測電路116所產生的告 警信息,以適當的視覺方式呈現給相關使用者,例如,相關標的物聯網系統的運營者、管理者、稽核人員、和/或其他使用者。 If the abnormality detection circuit 116 determines that the statistical data of the aforementioned multiple new activity records is abnormal, the process 1218 will be performed to generate a plurality of IoT devices or target IoT systems corresponding to the aforementioned multiple new activity records. One or more warning messages. Similarly, the user graphic interface generation circuit 117 will generate the notification generated by the abnormality detection circuit 116 alert information, and present it to relevant users in an appropriate visual manner, such as operators, managers, auditors, and/or other users of the relevant subject IoT system.

例如,假設標的物聯網系統101是一智慧路燈系統,且標的物聯網系統101中的多個物聯網裝置104是設置在不同案場(site)中的多個智慧路燈。倘若資料檢測系統110要判斷標的物聯網系統101中的某一目標案場(在此稱為第一目標案場,並假設其案場識別資料為ST-ID1)中的多個智慧路燈(亦即,多個物聯網裝置104)的運作是否正常,則通信電路111在前述的流程1212中可陸續接收相關屬性過濾裝置所產生的案場識別資料內容為ST-ID1的多筆新活動紀錄。 For example, it is assumed that the target IoT system 101 is a smart street light system, and the plurality of IoT devices 104 in the target IoT system 101 are a plurality of smart street lights disposed in different sites. If the data detection system 110 wants to determine a certain target site (herein referred to as the first target site, and the site identification data is assumed to be ST-ID1) in the target Internet of Things system 101, a plurality of smart street lights (also known as ST-ID1) That is, whether the multiple IoT devices 104) operate normally, the communication circuit 111 can successively receive multiple new activity records whose content is ST-ID1 generated by the relevant attribute filtering device in the aforementioned process 1212.

為方便說明起見,在此假設與第一目標案場相應的基準資料群組關於連線時間、「停止運作」狀態、及上行流量相對應的三個參考資料集,分別稱為參考資料集R1、參考資料集R2、及參考資料集R3。在正常情況下,第一目標案場中的智慧路燈會在晚上6點至隔天早上6點的時段保持在開啟(turn-on)狀態。因此,參考資料集R1、參考資料集R2、及參考資料集R3所對應的統計圖表,會分別類似於前述圖8中所繪示的統計圖表810、820、及830。 For the convenience of description, it is assumed here that the reference data group corresponding to the first target site has three reference data sets corresponding to the connection time, the "stop operation" status, and the upstream traffic, which are called reference data sets respectively. R1, reference set R2, and reference set R3. Under normal circumstances, the smart street lights in the first target field will remain in a turn-on state from 6:00 pm to 6:00 am the next day. Therefore, the statistical charts corresponding to the reference data set R1 , the reference data set R2 , and the reference data set R3 are respectively similar to the statistical charts 810 , 820 , and 830 shown in FIG. 8 .

如前所述,異常檢測電路116可在流程1214中計算通信電路111接收到的多筆新活動紀錄中關於裝置狀態資料的內容所對應的統計數據,並在流程1216中將統計數據與基準資料群組關於裝置狀態資料的參考資料集進行比對。 As mentioned above, the abnormality detection circuit 116 can calculate the statistical data corresponding to the content of the device status data in the multiple new activity records received by the communication circuit 111 in the process 1214 , and compare the statistical data with the reference data in the process 1216 . Groups are compared against a reference set of device status data.

如果前述智慧路燈系統進行大規模的物聯網裝置軔體更新時發生錯誤,而導致第一目標案場中的多個智慧路燈無法正常運作,則這些智慧路燈可能會不斷地嘗試與後端的伺服器進行連線,而導致案場識別資料內容為ST-ID1的許多新活動紀錄中所記載的裝置狀態資料的內容出現「開始運作」或「停止運作」。如此一來,異常檢測電路116在流程1214所產生的統計數據,便會顯示出裝置狀態資料的內容為「停止運作」的活動紀錄的數量在短時間內大幅增加的現象。 If an error occurs when the aforementioned smart street light system performs a large-scale IoT device firmware update, causing multiple smart street lights in the first target site to fail to operate normally, these smart street lights may continuously try to communicate with the back-end servers. Connected, and the content of the device status data recorded in many new activity records of ST-ID1 with the identification data of the crime scene appears "starting operation" or "stopping operation". In this way, the statistical data generated by the abnormality detection circuit 116 in the process 1214 will show the phenomenon that the number of activity records whose content of the device status data is "stopped operation" increases significantly in a short period of time.

由於這樣的情況跟參考資料集R2所呈現的資料態樣(例如,圖8中所繪示的統計圖表820)有很大差異,異常檢測電路116便可判定第一目標案場中的多個智慧路燈的運作發生異常情況,並產生相關的告警信息。 Since such a situation is quite different from the data pattern presented by the reference data set R2 (eg, the statistical graph 820 shown in FIG. 8 ), the abnormality detection circuit 116 can determine the plurality of An abnormal situation occurs in the operation of the smart street light, and related alarm information is generated.

又例如,假設標的物聯網系統102是一智慧電表系統,且標的物聯網系統102中的多個物聯網裝置105是設置在不同案場中的多個智慧電表。倘若資料檢測系統110要判斷標的物聯網系統102中的某一目標案場(在此稱為第二目標案場,並假設其案場識別資料為ST-ID2)中的多個智慧電表(亦即,多個物聯網裝置105)的運作是否正常,則通信電路111在前述的流程1212中可陸續接收相關屬性過濾裝置所產生的案場識別資料內容為ST-ID2的多筆新活動紀錄。 For another example, it is assumed that the target IoT system 102 is a smart electricity meter system, and the plurality of IoT devices 105 in the target IoT system 102 are a plurality of smart electricity meters installed in different operation sites. If the data detection system 110 needs to determine the multiple smart meters (also called the second target site) in a certain target site (herein referred to as the second target site, and the site identification data is assumed to be ST-ID2) in the target Internet of Things system 102 That is, whether the multiple IoT devices 105) operate normally, the communication circuit 111 can successively receive multiple new activity records whose content is ST-ID2 generated by the relevant attribute filtering device in the aforementioned process 1212.

為方便說明起見,在此假設與第二目標案場相應的基準資料群組關於「運作中」狀態、「停止運作」狀態、及上行流量相對應的三個參考資料集,分別稱為參考資料集R4、參考資料集R5、及參考資料集R6。在正常情況下,第二目標案場中的智慧電表都會連接著電源,因此智慧電表通常是整天都處於「運作中」狀態,且在運作期間很少會進入「停止運作」狀態。因此,參考資料集R4、參考資料集R5、及參考資料集R6所對應的統計圖表,會分別類似於前述圖9中所繪示的統計圖表910、920、及930。 For the convenience of description, it is assumed here that the reference data group corresponding to the second target site has three reference data sets corresponding to the “in operation” state, the “stop operation” state, and the upstream traffic, which are respectively referred to as reference data sets. Data set R4, reference data set R5, and reference data set R6. Under normal circumstances, the smart meters in the second target field are all connected to the power supply, so the smart meters are usually in the "operational" state all day long, and rarely enter the "stopped operation" state during operation. Therefore, the statistical charts corresponding to the reference data set R4 , the reference data set R5 , and the reference data set R6 are respectively similar to the statistical charts 910 , 920 , and 930 shown in FIG. 9 .

如前所述,異常檢測電路116可在流程1214中計算通信電路111接收到的多筆新活動紀錄中關於裝置狀態資料的內容所對應的統計數據,並在流程1216中將統計數據與基準資料群組關於裝置狀態資料的參考資料集進行比對。 As mentioned above, the abnormality detection circuit 116 can calculate the statistical data corresponding to the content of the device status data in the multiple new activity records received by the communication circuit 111 in the process 1214 , and compare the statistical data with the reference data in the process 1216 . Groups are compared against a reference set of device status data.

如果前述第二目標案場的網路環境發生故障,而導致第二目標案場中的多個智慧電表無法順利傳輸資料給後端的伺服器,則這些智慧電表可能會不斷地嘗試與後端的伺服器進行連線,而導致案場識別資料內容為ST-ID2的許多新活動紀錄中所記載的裝置狀態資料的內 容很少出現「運作中」、且許多新活動紀錄所記載的上行流量很低。如此一來,異常檢測電路116在流程1214所產生的統計數據,便會顯示出裝置狀態資料的內容為「運作中」的活動紀錄的數量在短時間內大幅減少、且活動紀錄中所記載的上行流量在短時間內大幅降低的現象。 If the network environment of the second target site fails, so that multiple smart meters in the second target site cannot transmit data to the back-end server smoothly, these smart meters may continuously try to communicate with the back-end server. connected to the device, resulting in the content of the site identification data being the content of the device status data recorded in many new activity records of ST-ID2. Rong is rarely "in operation" and many new activity records record low up traffic. In this way, the statistical data generated by the abnormality detection circuit 116 in the process 1214 will show that the number of activity records whose content of the device status data is "in operation" is greatly reduced in a short period of time, and the number of activity records recorded in the activity records is greatly reduced in a short period of time. The phenomenon that the upstream traffic is greatly reduced in a short period of time.

由於這樣的情況跟參考資料集R4與R6所呈現的資料態樣(例如,圖9中所繪示的統計圖表910及930)有很大差異,異常檢測電路116便可判定第二目標案場中的多個智慧電表的運作發生異常情況,並產生相關的告警信息。 Since such a situation is quite different from the data patterns presented by the reference data sets R4 and R6 (eg, the statistical charts 910 and 930 shown in FIG. 9 ), the abnormality detection circuit 116 can determine the second target case field The operation of multiple smart meters in the system is abnormal, and related alarm information is generated.

又例如,假設標的物聯網系統103是一交通號誌管理系統,且標的物聯網系統103中的多個物聯網裝置106是設置在不同案場中的多個交通號誌監控電路。倘若資料檢測系統110要判斷標的物聯網系統103中的某一目標案場(在此稱為第三目標案場,並假設其案場識別資料為ST-ID3)中的多個交通號誌監控電路(亦即,多個物聯網裝置106)的運作是否正常,則通信電路111在前述的流程1212中可陸續接收相關屬性過濾裝置所產生的案場識別資料內容為ST-ID3的多筆新活動紀錄。 For another example, it is assumed that the target IoT system 103 is a traffic sign management system, and the plurality of IoT devices 106 in the target IoT system 103 are a plurality of traffic signal monitoring circuits arranged in different work sites. If the data detection system 110 wants to determine the monitoring of multiple traffic signs in a certain target case (herein referred to as the third target case, and the case identification data is assumed to be ST-ID3) in the target IoT system 103 Whether the circuit (ie, the plurality of IoT devices 106 ) operates normally, the communication circuit 111 can successively receive multiple new records of ST-ID3 generated by the relevant attribute filtering device in the aforementioned process 1212 . activity record.

為方便說明起見,在此假設與第三目標案場相應的基準資料群組關於「運作中」狀態、「開始運作」狀態、及下行流量相對應的三個參考資料集,分別稱為參考資料集R7、參考資料集R8、及參考資料集R9。在正常情況下,第三目標案場中的交通號誌監控電路都會連接著電源,因此交通號誌監控電路通常是整天都處於「運作中」狀態,且在運作期間很少會進入「停止運作」狀態或「開始運作」狀態。因此,參考資料集R7、參考資料集R8、及參考資料集R9所對應的統計圖表,會分別類似於前述圖7中所繪示的統計圖表710、720、及730。 For the convenience of description, it is assumed here that the reference data group corresponding to the third target site has three reference data sets corresponding to the “in operation” state, the “starting operation” state, and the downlink traffic, which are referred to as reference respectively. Data Set R7, Reference Data Set R8, and Reference Data Set R9. Under normal circumstances, the traffic signal monitoring circuit in the third target field is connected to the power supply, so the traffic signal monitoring circuit is usually in the "operational" state all day long, and rarely enters the "stopped" state during operation. Operational status or Start Operational status. Therefore, the statistical charts corresponding to the reference data set R7 , the reference data set R8 , and the reference data set R9 are respectively similar to the statistical charts 710 , 720 , and 730 shown in FIG. 7 .

如前所述,異常檢測電路116可在流程1214中計算通信電路111接收 到的多筆新活動紀錄中關於裝置狀態資料的內容所對應的統計數據,並在流程1216中將統計數據與基準資料群組關於裝置狀態資料的參考資料集進行比對。 As previously described, the anomaly detection circuit 116 may calculate the communication circuit 111 reception in process 1214 Statistical data corresponding to the content of the device status data in the multiple new activity records obtained, and in the process 1216, the statistical data is compared with the reference data set of the reference data group on the device status data.

如果前述第三目標案場附近地區的電力供應發生故障,而導致第三目標案場中的多個交通號誌監控電路無法保持在「運作中」狀態,則這些交通號誌監控電路可能會不斷地重開機並嘗試與後端的伺服器進行連線,而導致案場識別資料內容為ST-ID3的許多新活動紀錄中所記載的裝置狀態資料的內容很少出現「運作中」、卻時常出現「開始運作」或「停止運作」。如此一來,異常檢測電路116在流程1214所產生的統計數據,便會顯示出裝置狀態資料的內容為「運作中」的活動紀錄的數量在短時間內大幅減少、反而裝置狀態資料的內容為「開始運作」的活動紀錄的數量在短時間內大幅增加的現象。 If the power supply in the vicinity of the aforementioned third target site fails, and the plurality of traffic signal monitoring circuits in the third target site cannot remain in the "operational" state, these traffic signal monitoring circuits may be continuously After rebooting and trying to connect with the backend server, the content of the identification data of the crime scene is ST-ID3. The content of the device status data recorded in many new activity records rarely appears "in operation", but often appears "Start Operation" or "Stop Operation". In this way, the statistical data generated by the abnormality detection circuit 116 in the process 1214 will show that the number of activity records whose content of the device status data is "in operation" is greatly reduced in a short period of time. Instead, the content of the device status data is: A phenomenon in which the number of "running" activity records has increased significantly in a short period of time.

由於這樣的情況跟參考資料集R7與R8所呈現的資料態樣(例如,圖7中所繪示的統計圖表710及720)有很大差異,異常檢測電路116便可判定第三目標案場中的多個交通號誌監控電路的運作發生異常情況,並產生相關的告警信息。 Since such a situation is quite different from the data patterns presented by the reference data sets R7 and R8 (eg, the statistical charts 710 and 720 shown in FIG. 7 ), the abnormality detection circuit 116 can determine the third target case field The operation of a plurality of traffic signal monitoring circuits in the system is abnormal, and related alarm information is generated.

另一方面,在異常檢測電路116於前述的流程1214中計算出與多筆新活動紀錄中的目標屬性的內容對應的統計數據之後,資料分類電路114還會進行圖12中的流程1220,而資料態樣分析電路115還會進行圖12中的流程1222。 On the other hand, after the abnormality detection circuit 116 calculates the statistical data corresponding to the content of the target attributes in the multiple new activity records in the aforementioned process 1214, the data classification circuit 114 will also perform the process 1220 in FIG. 12, and The data aspect analysis circuit 115 also performs the process 1222 in FIG. 12 .

在流程1220中,資料分類電路114可比照前述流程1020的方式,利用前述的多筆新活動紀錄來更新複數個相應資料群組的內容。資料分類電路114可比照前述流程216的方式,將每一筆新活動紀錄依據可做為分類基礎的多個屬性的內容進行分類,找出每一筆新活動紀錄所對應的複數個資料群組,並將新活動紀錄添加到個別資料群組中,且同時移除個別資料群組中最舊的一個活動紀錄。另外,資料 分類電路114也會把更新後的相應資料群組儲存在儲存電路113中,以供異常檢測電路116在後續時間點進行異常分析之用。 In the process 1220, the data classification circuit 114 can update the content of the plurality of corresponding data groups by using the above-mentioned multiple new activity records according to the method of the above-mentioned process 1020. The data classification circuit 114 can classify each new activity record according to the content of a plurality of attributes that can be used as a basis for classification, find out a plurality of data groups corresponding to each new activity record, and Adds a new activity record to the individual data group, and removes the oldest activity record in the individual data group at the same time. In addition, data The classification circuit 114 also stores the updated corresponding data groups in the storage circuit 113 for the abnormality detection circuit 116 to perform abnormality analysis at a subsequent time point.

在流程1222中,資料態樣分析電路115可更新每一筆新活動紀錄的相應資料群組所對應的多個參考資料集。資料態樣分析電路115可比照前述流程1020的方式,對納入新活動紀錄後的個別資料群組內的活動紀錄再次進行資料態樣分析,並更新個別資料群組所對應的一或多個參考資料集。同樣地,資料態樣分析電路115也會把更新後的相關參考資料集儲存在儲存電路113中,以供異常檢測電路116在後續時間點進行異常分析之用。 In the process 1222, the data aspect analysis circuit 115 may update the reference data sets corresponding to the corresponding data groups of each new activity record. The data aspect analysis circuit 115 can perform data aspect analysis again on the activity records in the individual data groups after the new activity records are included in the method of the aforementioned process 1020, and update one or more references corresponding to the individual data groups dataset. Likewise, the data pattern analysis circuit 115 also stores the updated relevant reference data set in the storage circuit 113 for the abnormality detection circuit 116 to perform abnormality analysis at a subsequent time point.

與前述圖10的實施例相同,資料分類電路114會隨著時間的經過不斷地更新所有資料群組內的活動紀錄,資料態樣分析電路115也會不斷地更新所有資料群組所對應的參考資料集。 Similar to the above-mentioned embodiment of FIG. 10 , the data classification circuit 114 will continuously update the activity records in all the data groups with the passage of time, and the data pattern analysis circuit 115 will also continuously update the references corresponding to all the data groups. dataset.

如此一來,每個基準資料群組內的活動紀錄,都會被資料分類電路114不斷地滾動式更新,使得個別基準資料群組內的活動紀錄都是屬於較近期產生的活動紀錄。 In this way, the activity records in each benchmark data group will be continuously updated by the data classification circuit 114 in a rolling manner, so that the activity records in each benchmark data group belong to the activity records generated relatively recently.

另一方面,每個基準資料群組所對應的參考資料集,都會被資料態樣分析電路115不斷地滾動式更新,使得個別基準資料群組所對應的參考資料集能反映出較近期產生的活動紀錄中的目標屬性的統計結果。 On the other hand, the reference data set corresponding to each reference data group will be continuously updated by the data pattern analysis circuit 115 in a rolling manner, so that the reference data set corresponding to each reference data group can reflect the more recently generated reference data sets. Statistical results of target attributes in the activity log.

因此,異常檢測電路116在後續時間點進行異常分析時所依賴的基準資料群組、以及基準資料群組所對應的參考資料集,都會因為資料分類電路114與資料態樣分析電路115重複進行流程1220及流程1222的運作而適應性更新成較新的版本。 Therefore, the reference data group that the abnormality detection circuit 116 relies on when performing abnormality analysis at subsequent time points, and the reference data set corresponding to the reference data group will repeat the process because the data classification circuit 114 and the data aspect analysis circuit 115 repeat the process. 1220 and the operation of process 1222 are adaptively updated to a newer version.

由前述說明可知,利用資料分類電路114將多個物聯網裝置所對應的多筆活動紀錄,依據多個屬性的內容分類成不同資料群組,可大幅降低資料態樣分析電路115後續分析個別資料群組內的活動紀錄的資料態樣時所需的運算量及複雜度,並提升資料態樣的分析速度。 As can be seen from the foregoing description, using the data classification circuit 114 to classify multiple activity records corresponding to multiple IoT devices into different data groups according to the content of multiple attributes can greatly reduce the subsequent analysis of individual data by the data pattern analysis circuit 115 . The computational load and complexity required for the data aspect of the activity records in the group, and the analysis speed of the data aspect is improved.

另外,將為數眾多的活動紀錄分類成不同資料群組的方式,還可大幅減少異常檢測電路116後續進行異常檢測時所需的運算量,有助於提升異常檢測的效率與速度。 In addition, the method of classifying a large number of activity records into different data groups can also greatly reduce the amount of computation required by the abnormality detection circuit 116 for subsequent abnormality detection, which helps to improve the efficiency and speed of abnormality detection.

眾所周知,大規模物聯網應用中的物聯網裝置的數量往往很龐大,所以監控這些物聯網裝置往往需要耗費大量的資源。倘若要隨時檢查每個物聯網裝置是否出現異常,所需的資料傳輸頻寬與分析資源的需求量將高到不切實際的程度。而且當物聯網裝置的數量達到一定程度以上時,就算系統有能力即時監控每個終端裝置的運作狀況,也會產生大量的異常告警信息,這會導致系統的監控人員受到大量資訊的疲勞轟炸,而難以快速地分析、診斷出到底是系統中的哪個環節出了問題。 As we all know, the number of IoT devices in large-scale IoT applications is often huge, so monitoring these IoT devices often requires a lot of resources. If every IoT device were to be checked for anomalies at any time, the required data transmission bandwidth and analysis resources would be unrealistically high. Moreover, when the number of IoT devices reaches a certain level, even if the system has the ability to monitor the operation status of each terminal device in real time, a large amount of abnormal alarm information will be generated, which will cause the monitoring personnel of the system to be fatigued and bombarded with a large amount of information. It is difficult to quickly analyze and diagnose which part of the system is wrong.

前述的屬性過濾裝置120、130、及140會對封包閘道裝置150、160、及170所產生的眾多封包訊息中的屬性資料進行初步過濾,以有效減少資料檢測系統110所需處理的資料量,有助於提升資料檢測系統110的整體運作效能。 The aforementioned attribute filtering devices 120 , 130 , and 140 will preliminarily filter the attribute data in numerous packet messages generated by the packet gateway devices 150 , 160 , and 170 , so as to effectively reduce the amount of data that the data detection system 110 needs to process. , which helps to improve the overall operation performance of the data detection system 110 .

由於前述資料檢測系統110能夠自動將大量的活動紀錄依據不同的分類基礎進行分組、並依據不同的分析基礎進行比對分析,所以能快速地找出大規模物聯網應用中可能出現問題的環節。 Since the aforementioned data detection system 110 can automatically group a large number of activity records according to different classification bases, and perform comparative analysis according to different analysis bases, it can quickly find out possible problems in large-scale IoT applications.

再者,資料分類電路114與資料態樣分析電路115會滾動式更新異常檢測電路116在後續時間點進行異常分析時所依賴的基準資料群組、以及基準資料群組所對應的參考資料集。因此,異常檢測電路116進行異常分析時所依賴的基準資料群組、以及基準資料群組所對應的參考資料集,會隨著時間不斷地適應性調整,所以能夠大幅降低人為介入調整相關參數或比較基準的麻煩。 Furthermore, the data classification circuit 114 and the data aspect analysis circuit 115 will update the reference data group and the reference data set corresponding to the reference data group on which the abnormality detection circuit 116 relies when performing abnormality analysis at subsequent time points in a rolling manner. Therefore, the reference data group on which the abnormality detection circuit 116 performs abnormality analysis, and the reference data set corresponding to the reference data group will be continuously adaptively adjusted over time, which can greatly reduce the need for human intervention to adjust relevant parameters or The hassle of comparing benchmarks.

根據認知科學的研究可以發現,人類對於圖像化信息的理解效率,要比對於純文字內容的理解效率高出許多。由於資料檢測系統110可將異常分析的結果以視覺化方式呈現給相關使用者,因此有助於 大幅減少使用者耗費在分析異常根源所需的時間,進而能夠有效提升診斷標的物聯網系統問題根源的效率。 According to the research of cognitive science, it can be found that the human's comprehension efficiency of image information is much higher than that of plain text content. Since the data detection system 110 can present the abnormal analysis results to the relevant users in a visual manner, it is helpful to Significantly reduces the time users spend on analyzing the root cause of anomalies, thereby effectively improving the efficiency of diagnosing the root cause of the target IoT system problem.

此外,由於資料檢測系統110能夠從不同的面向進行異常分析,並將分析結果進行交叉比對,所以能夠正確釐清物聯網應用發生異常時的責任歸屬,進而大幅降低共同建構各種物聯網應用的不同合作夥伴之間產生糾紛的可能性。 In addition, since the data detection system 110 can perform anomaly analysis from different aspects and cross-comparison the analysis results, it can correctly clarify the attribution of responsibilities when an abnormality occurs in an IoT application, thereby greatly reducing the differences in co-constructing various IoT applications. Potential for disputes between partners.

在說明書及申請專利範圍中使用了某些詞彙來指稱特定的元件,而本領域內的技術人員可能會用不同的名詞來稱呼同樣的元件。本說明書及申請專利範圍並不以名稱的差異來做為區分元件的方式,而是以元件在功能上的差異來做為區分的基準。在說明書及申請專利範圍中所提及的「包含」為開放式的用語,應解釋成「包含但不限定於」。另外,「耦接」一詞在此包含任何直接及間接的連接手段。因此,若文中描述第一元件耦接於第二元件,則代表第一元件可通過電性連接或無線傳輸、光學傳輸等信號連接方式而直接地連接於第二元件,或通過其它元件或連接手段間接地電性或信號連接至第二元件。 Certain terms are used in the description and the scope of the claims to refer to specific elements, and those skilled in the art may refer to the same elements by different terms. This specification and the scope of the patent application do not use the difference in name as a way to distinguish elements, but use the difference in function of the elements as a criterion for distinguishing. The "comprising" mentioned in the description and the scope of the patent application is an open-ended term, and should be interpreted as "including but not limited to". In addition, the term "coupled" herein includes any direct and indirect means of connection. Therefore, if it is described in the text that the first element is coupled to the second element, it means that the first element can be directly connected to the second element through electrical connection or signal connection such as wireless transmission or optical transmission, or through other elements or connections. The means is indirectly electrically or signally connected to the second element.

在說明書中所使用的「和/或」的描述方式,包含所列舉的其中一個項目或多個項目的任意組合。另外,除非說明書中特別指明,否則任何單數格的用語都同時包含複數格的含義。 The descriptions of "and/or" used in the specification include any combination of one or more of the listed items. In addition, unless otherwise specified in the specification, any term in the singular also includes the meaning in the plural.

以上僅為本發明的較佳實施例,凡依本發明請求項所做的等效變化與修改,皆應屬本發明的涵蓋範圍。 The above are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.

100:物聯網運作監控系統 100: IoT Operation Monitoring System

101、102、103:標的物聯網系統 101, 102, 103: Target IoT systems

104、105、106:物聯網裝置 104, 105, 106: IoT Devices

110:資料檢測系統 110: Data detection system

111:通信電路 111: Communication circuit

112:資料解譯電路 112: Data interpretation circuit

113:儲存電路 113: Storage circuit

114:資料分類電路 114: Data classification circuit

115:資料態樣分析電路 115: Data Pattern Analysis Circuit

116:異常檢測電路 116: Abnormal detection circuit

117:用戶圖形介面產生電路 117: User Graphics Interface Generation Circuit

120、130、140:屬性過濾裝置 120, 130, 140: attribute filtering device

122、132、142:資料處理電路 122, 132, 142: Data processing circuit

124、134、144:資料傳輸電路 124, 134, 144: Data transmission circuit

150、160、170:封包閘道裝置 150, 160, 170: Packet gateway device

152、162、172:基地台 152, 162, 172: base station

154、164、174、182、184:網路 154, 164, 174, 182, 184: Internet

192、194:用戶裝置 192, 194: User device

Claims (8)

一種用於一物聯網運作監控系統(100)中的資料檢測系統(110),用於檢測複數個標的物聯網系統(101、102、103)中的多個物聯網裝置(104、105、106)的運作情況,該資料檢測系統(110)包含有:一通信電路(111),設置成透過網路與複數個屬性過濾裝置(120、130、140)進行資料通信,以接收該複數個屬性過濾裝置(120、130、140)所產生的與該多個物聯網裝置(104、105、106)相對應的多筆活動紀錄(320、322、324、326);一儲存電路(113),設置成儲存該通信電路(111)所接收到的該多筆活動紀錄(320、322、324、326);一資料分類電路(114),耦接於該儲存電路(113),設置成將該多筆活動紀錄(320、322、324、326)中的每一筆活動紀錄,依據N個屬性的內容進行分類,以形成M個資料群組(330、332、334),並將該M個資料群組(330、332、334)儲存在該儲存電路(113)中,其中,N為2或大於2的整數,且M至少為N的兩倍;一資料態樣分析電路(115),耦接於該儲存電路(113),設置成分析個別資料群組(330)內的複數筆活動紀錄在一資料收集期間內的資料態樣,以產生個別資料群組(330)所對應的一或多個參考資料集(340、342、344),並將該一或多個參考資料集(340、342、344)儲存在該儲存電路(113)中;以及一異常檢測電路(116),耦接於該儲存電路(113);其中,在該多個物聯網裝置(104、105、106)中的一目標物聯網裝置(104)與一或多個封包閘道裝置(150、160、170)進行後續互動後,該一或多個封包閘道裝置(150、160、170)會 產生包含該目標物聯網裝置(104)的多項屬性的一新封包訊息(1110),而該複數個屬性過濾裝置(120、130、140)則會依據該新封包訊息(1110)中的部分屬性,產生對應於該目標物聯網裝置(104)的一新活動紀錄(1120);其中,該通信電路(111)還設置成接收該複數個屬性過濾裝置(120、130、140)所產生的該新活動紀錄(1120),且該異常檢測電路(116)設置成將該新活動紀錄(1120)中的一或多個目標屬性(1113)的內容,與一相應資料群組(1130)關於該一或多個目標屬性的一或多個參考資料集(1140、1142、1144)進行比對,以判斷是否出現異常情況,且倘若該異常檢測電路(116)比對後判定出現異常情況,則會產生相應的一或多個告警信息。 A data detection system (110) used in an IoT operation monitoring system (100) for detecting a plurality of IoT devices (104, 105, 106) in a plurality of target IoT systems (101, 102, 103) ), the data detection system (110) includes: a communication circuit (111) configured to communicate data with a plurality of attribute filtering devices (120, 130, 140) through a network to receive the plurality of attributes A plurality of activity records (320, 322, 324, 326) generated by the filtering device (120, 130, 140) and corresponding to the plurality of IoT devices (104, 105, 106); a storage circuit (113), configured to store the plurality of activity records (320, 322, 324, 326) received by the communication circuit (111); a data classification circuit (114), coupled to the storage circuit (113), configured to Each activity record in the multiple activity records (320, 322, 324, 326) is classified according to the content of the N attributes to form M data groups (330, 332, 334), and the M data The groups (330, 332, 334) are stored in the storage circuit (113), wherein N is an integer of 2 or greater, and M is at least twice as large as N; a data pattern analysis circuit (115) coupled to connected to the storage circuit (113), and configured to analyze the data patterns of a plurality of activity records in the individual data group (330) during a data collection period, so as to generate an or a plurality of reference data sets (340, 342, 344), storing the one or more reference data sets (340, 342, 344) in the storage circuit (113); and an abnormality detection circuit (116) coupled to Connected to the storage circuit (113); wherein, a target IoT device (104) and one or more packet gateway devices (150, 160, 170) in the plurality of IoT devices (104, 105, 106) ) after the subsequent interaction, the one or more packet gateway devices (150, 160, 170) will A new packet message (1110) containing multiple attributes of the target IoT device (104) is generated, and the multiple attribute filtering devices (120, 130, 140) are based on some attributes in the new packet information (1110) , generating a new activity record (1120) corresponding to the target IoT device (104); wherein, the communication circuit (111) is further configured to receive the data generated by the plurality of attribute filtering devices (120, 130, 140). a new activity record (1120), and the anomaly detection circuit (116) is configured to associate the content of one or more target attributes (1113) in the new activity record (1120) with a corresponding data group (1130) about the One or more reference data sets (1140, 1142, 1144) of one or more target attributes are compared to determine whether an abnormality occurs, and if the abnormality detection circuit (116) determines that an abnormality occurs after the comparison, then One or more corresponding alarm messages will be generated. 如請求項1所述的資料檢測系統(110),其中,該資料態樣分析電路(115)產生個別資料群組所對應的一或多個參考資料集(340、342、344)的運作,包含:選取該M個資料群組的其中之一,做為一當前資料群組;分析該當前資料群組內的複數筆活動紀錄中的一第一目標屬性的內容,在該資料收集期間內的多個不同統計時段的變化態樣,以產生該當前資料群組關於該第一目標屬性的一第一參考資料集;以及分析該當前資料群組內的複數筆活動紀錄中的一第二目標屬性的內容,在該資料收集期間內的多個不同統計時段的變化態樣,以產生該當前資料群組關於該第二目標屬性的一第二參考資料集。 The data detection system (110) of claim 1, wherein the data pattern analysis circuit (115) generates the operation of one or more reference data sets (340, 342, 344) corresponding to individual data groups, Including: selecting one of the M data groups as a current data group; analyzing the content of a first target attribute in a plurality of activity records in the current data group, during the data collection period changes in a plurality of different statistical periods to generate a first reference data set of the current data group about the first target attribute; and analyze a second one of the plurality of activity records in the current data group The content of the target attribute, and the changes in a plurality of different statistical periods during the data collection period, are used to generate a second reference data set of the current data group with respect to the second target attribute. 如請求項2所述的資料檢測系統(110),其中,該第一目標屬性的內容,是一相應物聯網裝置的一上行流量(uplink throughput)、一下行流量(downlink throughput)、一裝置狀態(status)、或一連線時間(session time)。 The data detection system (110) according to claim 2, wherein the content of the first target attribute is an uplink throughput (uplink throughput), downlink throughput (downlink throughput), and a device status of a corresponding IoT device (status), or a connection time (session time). 如請求項3所述的資料檢測系統(110),其中,該第一參考資料集用來呈現該當前資料群組內的複數筆活動紀錄的以下分析結果之一:具有特定內容的裝置狀態資料的活動紀錄的數量的總和或移動和,在該資料收集期間內的多個不同統計時段的變化;該複數筆活動紀錄中所記載的下行流量的總和、平均值、移動和、或移動平均值,在該資料收集期間內的多個不同統計時段的變化;該複數筆活動紀錄中所記載的上行流量的總和、平均值、移動和、或移動平均值,在該資料收集期間內的多個不同統計時段的變化;以及該複數筆活動紀錄中所記載的連線時間的總和、平均值、移動和、或移動平均值,在該資料收集期間內的多個不同統計時段的變化。 The data detection system (110) according to claim 3, wherein the first reference data set is used to present one of the following analysis results of a plurality of activity records in the current data group: device status data with specific content The sum or moving sum of the number of activity records, changes in multiple different statistical periods during the data collection period; the sum, average, moving sum, or moving average of the downlink traffic recorded in the plurality of activity records , the changes in multiple different statistical periods during the data collection period; the sum, average, moving sum, or moving average of the upstream traffic recorded in the plurality of activity records, during the data collection period Changes in different statistical periods; and the sum, average, moving sum, or moving average of the connection times recorded in the multiple activity records, and changes in multiple different statistical periods during the data collection period. 如請求項1所述的資料檢測系統(110),其中,該資料分類電路(114)對該多筆活動紀錄(320、322、324、326)進行分類的運作,包含:選取該多筆活動紀錄(320、322、324、326)的其中之一,做為一當前活動紀錄;選取該當前活動紀錄的多項屬性的其中之一做為一第一選定屬性;倘若當時不存在與該第一選定屬性的內容相應的任何資料群組,則建立對應該第一選定屬性的內容的一第一資料群組;將該當前活動紀錄分類到該第一資料群組中;選取該當前活動紀錄中的另一項屬性做為一第二選定屬性;倘若當時不存在與該第二選定屬性的內容相應的任何資料群組,則建立對應該第二選定屬性的內容的一第二資料群組;以及將該當前活動紀錄分類到該第二資料群組中。 The data detection system (110) according to claim 1, wherein the operation of the data classification circuit (114) for classifying the plurality of activity records (320, 322, 324, 326) comprises: selecting the plurality of activities One of the records (320, 322, 324, 326) is used as a current activity record; one of the multiple attributes of the current activity record is selected as a first selected attribute; Any data group corresponding to the content of the selected attribute, create a first data group corresponding to the content of the first selected attribute; classify the current activity record into the first data group; select the current activity record Another attribute of is used as a second selected attribute; if there is no any data group corresponding to the content of the second selected attribute at that time, a second data group corresponding to the content of the second selected attribute is established; and classifying the current activity record into the second data group. 如請求項1所述的資料檢測系統(110),其中,該資料分類電路(114)對該多筆活動紀錄(320、322、324、326)進行分類的運作,包含:選取該N個屬性的其中之一,做為一第一選定屬性;依據該第一選定屬性的不同內容,產生相應的多個第一屬性資料群組,並將該多筆活動紀錄(320、322、324、326)分類到該多個第一屬性資料群組中,以確保同一個第一屬性資料群組內的所有活動紀錄中的該第一選定屬性的內容都相同;選取該N個屬性中的另一項屬性,做為一第二選定屬性;以及依據該第二選定屬性的不同內容,產生相應的多個第二屬性資料群組,並將該多筆活動紀錄(320、322、324、326)分類到該多個第二屬性資料群組中,以確保同一個第二屬性資料群組內的所有活動紀錄中的該第二選定屬性的內容都相同。 The data detection system (110) according to claim 1, wherein the operation of the data classification circuit (114) for classifying the plurality of activity records (320, 322, 324, 326) includes: selecting the N attributes One of them is used as a first selected attribute; according to the different contents of the first selected attribute, a plurality of corresponding first attribute data groups are generated, and the multiple activity records (320, 322, 324, 326 ) into the plurality of first attribute data groups to ensure that the content of the first selected attribute in all activity records in the same first attribute data group is the same; select another one of the N attributes item attribute as a second selected attribute; and according to the different contents of the second selected attribute, generate corresponding multiple second attribute data groups, and record the multiple activities (320, 322, 324, 326) Sorting into the plurality of second attribute data groups to ensure that the content of the second selected attribute in all activity records in the same second attribute data group is the same. 如請求項1所述的資料檢測系統(110),其中,該資料分類電路(114)還設置成將該新活動紀錄(1120)依據該N個屬性的內容進行分類,以利用該新活動紀錄(1120)更新複數個相應資料群組(1130、1132、1134)。 The data detection system (110) of claim 1, wherein the data classification circuit (114) is further configured to classify the new activity record (1120) according to the content of the N attributes, so as to utilize the new activity record (1120) Update a plurality of corresponding data groups (1130, 1132, 1134). 如請求項7所述的資料檢測系統(110),其中,該資料態樣分析電路(115)還設置成更新該複數個相應資料群組(1130、1132、1134)所對應的複數個參考資料集(1160、1162、1164)。 The data detection system (110) according to claim 7, wherein the data pattern analysis circuit (115) is further configured to update a plurality of reference data corresponding to the plurality of corresponding data groups (1130, 1132, 1134) Sets (1160, 1162, 1164).
TW110126497A 2020-09-30 2021-07-19 Data inspection system for inspecting operating situations of multiple iot devices in a plurality of target iot systems TWI777676B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/474,487 US11528211B2 (en) 2020-09-30 2021-09-14 Data inspection system for inspecting operating situations of multiple IoT devices in a plurality of target IoT systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063085299P 2020-09-30 2020-09-30
US63/085,299 2020-09-30

Publications (2)

Publication Number Publication Date
TW202215820A TW202215820A (en) 2022-04-16
TWI777676B true TWI777676B (en) 2022-09-11

Family

ID=82197266

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110126498A TWI773441B (en) 2020-09-30 2021-07-19 Internet of things operations monitoring system
TW110126497A TWI777676B (en) 2020-09-30 2021-07-19 Data inspection system for inspecting operating situations of multiple iot devices in a plurality of target iot systems

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110126498A TWI773441B (en) 2020-09-30 2021-07-19 Internet of things operations monitoring system

Country Status (1)

Country Link
TW (2) TWI773441B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160147506A1 (en) * 2014-11-21 2016-05-26 Kiban Labs, Inc. Internet of things platforms, apparatuses, and methods
US20170187588A1 (en) * 2015-12-23 2017-06-29 Intel Corporation Selective measurement reporting from internet of things devices
US20190098028A1 (en) * 2017-09-27 2019-03-28 ZingBox, Inc. Iot device management visualization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160147506A1 (en) * 2014-11-21 2016-05-26 Kiban Labs, Inc. Internet of things platforms, apparatuses, and methods
US20170187588A1 (en) * 2015-12-23 2017-06-29 Intel Corporation Selective measurement reporting from internet of things devices
US20190098028A1 (en) * 2017-09-27 2019-03-28 ZingBox, Inc. Iot device management visualization

Also Published As

Publication number Publication date
TW202215820A (en) 2022-04-16
TW202215821A (en) 2022-04-16
TWI773441B (en) 2022-08-01

Similar Documents

Publication Publication Date Title
Sultan et al. Call detail records driven anomaly detection and traffic prediction in mobile cellular networks
Parwez et al. Big data analytics for user-activity analysis and user-anomaly detection in mobile wireless network
Fiadino et al. Steps towards the extraction of vehicular mobility patterns from 3G signaling data
US20220103442A1 (en) Internet of things operations monitoring system
CN109104438B (en) Botnet early warning method and device in narrow-band Internet of things and readable storage medium
US10097417B2 (en) Method and system for visualizing and analyzing a field area network
EP1325588A1 (en) System, device and method for automatic anomaly detection
CN113904921B (en) Dynamic network topology graph generation method, system, processing equipment and storage medium based on log and graph
CN106533832B (en) Network flow detection system based on distributed deployment
CN102546274A (en) Alarm monitoring method and alarm monitoring equipment in communication service
WO2022151680A1 (en) Automata-based internet of things device flow anomaly detection method and apparatus
CN104994076A (en) Machine-learning-based daily access model implementation method and system
Nguyen et al. Absence: Usage-based failure detection in mobile networks
CN105763387A (en) Network traffic monitoring method and device
Geissler et al. Signaling traffic in internet-of-things mobile networks
Mata et al. Detection of traffic changes in large-scale backbone networks: The case of the Spanish academic network
Yao et al. Understanding human activity and urban mobility patterns from massive cellphone data: Platform design and applications
Qian et al. Characterization of 3g data-plane traffic and application towards centralized control and management for software defined networking
TWI777676B (en) Data inspection system for inspecting operating situations of multiple iot devices in a plurality of target iot systems
CN102638442A (en) System and method for detecting GTP (GPRS Tunnel Protocol) attack
US11528211B2 (en) Data inspection system for inspecting operating situations of multiple IoT devices in a plurality of target IoT systems
CN115766471B (en) Network service quality analysis method based on multicast flow
Iacus et al. Anomaly detection of mobile positioning data with applications to covid-19 situational awareness
CN102075990B (en) Large-area base station out-of-service alarm monitoring method and system
CN111654413B (en) Method, equipment and storage medium for selecting effective measurement points of network flow

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent