TWI777650B - 基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法 - Google Patents

基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法 Download PDF

Info

Publication number
TWI777650B
TWI777650B TW110124437A TW110124437A TWI777650B TW I777650 B TWI777650 B TW I777650B TW 110124437 A TW110124437 A TW 110124437A TW 110124437 A TW110124437 A TW 110124437A TW I777650 B TWI777650 B TW I777650B
Authority
TW
Taiwan
Prior art keywords
layer
apnea
heartbeat interval
rate
classification
Prior art date
Application number
TW110124437A
Other languages
English (en)
Other versions
TW202302032A (zh
Inventor
林俊成
Original Assignee
國立勤益科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立勤益科技大學 filed Critical 國立勤益科技大學
Priority to TW110124437A priority Critical patent/TWI777650B/zh
Application granted granted Critical
Publication of TWI777650B publication Critical patent/TWI777650B/zh
Publication of TW202302032A publication Critical patent/TW202302032A/zh

Links

Images

Abstract

本發明基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法,其包含有量測、分組及偵測辨識等步驟,透過該量測步驟中對受測者量測取得之心電圖形號,經該分組步驟以一算式針對該心電圖形號的心跳間隔時間下降算式進行運算,並分別以取出、找出及選取、計算等模式對該心電圖形號中之不同的區間進行註記,以分組出一呼吸暫停與呼吸不足事件組訊號與一呼吸正常組訊號,並由該偵測辨識步驟再以一卷積神經網路作為學習模型技術的偵測辨識,以對所註記之區間訊號進行計算機率,以有效快速地提升偵測受測者之呼吸暫停事件嚴重的準確性。

Description

基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法
本發明是有關於一種睡眠呼吸功能障礙的偵測,特別是指一種基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法。
查,阻塞睡眠呼吸暫停(Obstructive Sleep Apnea; 以下簡稱OSA)是一種常見且嚴重的睡眠呼吸功能阻礙,這是一種會在睡眠期間因咽部塌陷影響,造成完全或部分上呼吸道阻塞,進而導致呼吸暫停或減弱,同時根據先前的研究顯示,會發生阻塞睡眠呼吸暫停與高血壓、冠心病、心律失常、心臟衰竭和中風的發病率有關,依據目前評估OSA嚴重程度標準方法是透過睡眠多項生理檢查(Polysomnography;以下簡稱PSG),即受試者必須到睡眠實驗室或睡眠中心睡一個晚上,且在護理人員的監督下,分別在頸部、眼角、下巴、心臟以及腿部貼上電極貼片,並且於胸部及腹部套上感應帶,並於手指套上血氧測量器,在口鼻套上呼吸感應器,在手臂上套上血壓計,以透過前述該等感應與測量器來記錄整個晚上的睡眠生理數據,包括腦電圖、眼電圖、心電圖、下巴肌電圖、胸部呼吸訊號、腹部呼吸訊號、口鼻氣流、血氧濃度、血壓變化、心率,以及睡眠體位等,而PSG是結合呼吸氣流、胸部呼吸訊號、腹部呼吸訊號、以及血氧濃度來判斷並計算受試者每小時平均出現的呼吸暫停(Apnea)與呼吸不足(Hypopnea)事件的次數(即呼吸暫停與呼吸不足指標;Apnea and Hypopnea Index(AHI)),藉以評估受試者OSA的嚴重程度,包括呼吸正常(Normal;AHI<5)、輕度OSA(Mild;AHI介於5到14)、中度OSA(Moderate;AHI介於15到30)、以及嚴重OSA(Severe;AHI>30)。
接續前述,有鑒於PSG檢查的費用昂貴且不便,所以近年來便有人致力於研究用量測較少的訊號來開發方便且花費少的呼吸暫停與不足事件偵測系統,其主要被使用的訊號有血氧濃度、呼吸氣流、胸部呼吸、心電圖、聲音訊號,以及結合不同的訊號,請配合參閱圖1,在圖1中所顯示的是PSG所量測的呼吸氣流、胸部呼吸訊號、腹部呼吸訊號(圖中標示c)、心電圖形訊號(圖中標示a)、以及PSG所提供的呼吸註記(準位0表示呼吸正常的期間,準位2表示呼吸暫停的期間,圖中標示d),心跳間隔時間訊號(RR間隔訊號,圖中標示b)則是心電圖形訊號中相鄰R波的間隔時間所組成的訊號,因此從圖1中可以觀察到呼吸暫停期間,心跳間隔時間訊號的變化緩慢,但是呼吸暫停結束之後,心跳間隔時間訊號明顯的減少且持續一段時間之後再恢復正常,是以,如果在原本正常平穩的心跳間隔時間訊號之後,持續出現一段心跳時間訊號的減少再恢復正常平穩的心跳間隔時間訊號,則代表出現一次呼吸暫停或呼吸不足事件,也稱為呼吸暫停與呼吸不足事件的心跳間隔時間變化模式;然而,因為PSG主要是結合呼吸訊號(包括呼吸氣流、胸部呼吸與腹部呼吸)與血氧濃度來檢測呼吸暫停與呼吸不足事件,如果僅單獨使用呼吸氣流、胸部呼吸與腹部呼吸及血氧濃度時,將無法檢測所有呼吸暫停不足事件,而基於聲音訊號的檢測方法則是受限於聲音訊號容易受到心臟聲音與環境噪音的干擾,因此相較於單獨使用呼吸氣流、胸部呼吸訊號、血氧濃渡及聲音訊號,單導心電圖則是一個能夠較好的反應出完 整呼吸事件之訊號。
仍續前述,在目前基於單導程心電圖形訊號與機器學習的呼吸暫停和呼吸不足的檢測方法在建立心電圖形訊號的分組時,即呼吸正常對應的心電圖和呼吸暫停與呼吸不足的心電圖,大部分是依據PSG所提供的呼吸註記,以呼吸註記為呼吸正常期間所對應的心電圖做為呼吸正常組,並以呼吸註記為呼吸暫停與呼吸不足期間所對應的心電圖做為呼吸暫停與呼吸不足組;惟,從圖1中可發現,心電圖通常要等呼吸暫停事件結束之後才會再恢復正常,因此,呼吸註記為呼吸暫停與呼吸不足期間的電圖不一定能夠反應呼吸暫停與不足的影響,而相對的,在呼吸暫停與呼吸不足的註記結束後,是接著呼吸正常的註記,但此時的心電圖卻是受到呼吸暫停與不足明顯的影響,因此,如果依據PSG所提供的呼吸註記來進行心電圖形訊號的分組,則是很容易出現錯誤的分組情形,藉此,進行降低機器學習模型的訓練與測試的正確性仍是目前所主要研究檢測的課題。
因此,本發明之目的,是在提供一種基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法,其能透過簡單的演算機率方式的偵測辨識,有效快速地偵測出受測者具有呼吸暫停與不足事件的嚴重程度。
於是,本發明基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法,包含有量測步驟、分組步驟及偵測辨識等步驟;其中,先由該量測步驟中所備具之心電圖機,得以對受測者分別進行心臟跳動、其周圍肌肉節律性收縮與呼吸反應等,記錄而形成一心電圖形訊號,並經該分組步驟備具之運算處理器,得以一算式針對心跳間隔時間 下降率進行運算,該算式分別以一取出/找出模式與一選取/計算模式,經過該取出/找出模式與選取/計算模式運算出心跳間隔時間下降率的正、負、及0值,再通過該運算處理器進一步對該心電圖形訊號中的呼吸暫停與呼吸不足事件、及呼吸正常進行訊號分組之區間註記動作,以分別得到一呼吸暫停與呼吸不足事件組訊號,與一呼吸正常組訊號,而後由該偵測辨識步驟透過運算處理器以一機器學習模型,以及一與該機器學習模型配合排列演算之一滑動視窗法,該機器學習模型進一步透過一學習模型技術且使用記錄有各自獨立且選自不同的受試者之心電圖形訊號的訓練資料集及測試資料集為進行偵測辨識的資料,以針對前述步驟所註記之區間訊號,使該等訊號受到正規化處理、被執行特徵提取而獲得較佳的多個心電圖形訊號特徵圖、並對該等特徵圖轉換為特徵向量及進行計算機率的偵測,最終輸出一辨識結果,以判斷該量測步驟所得的心電圖形訊號是否有呼吸暫停與呼吸不足事件態樣,藉此通過簡單的偵測方式,可有效快速地偵測辨識分類出受測者之呼吸暫停事件嚴重的準確性。
圖1是習知呼吸訊號、呼吸註記、心電圖與心跳間隔時間圖例之示意圖。
圖2是本發明一較佳實施例之流程圖。
圖3是本發明之計算心跳間隔(RR間隔)時間下降率的示意圖。
圖4是本發明之呼吸暫停與呼吸不足組心電圖形訊號與心跳間隔時間訊號圖例示意圖。
圖5是本發明之呼吸正常組訊號與心跳間隔時間訊號圖例示意 圖。
圖6是該較佳實施例之基於卷積神經網路的深度學習模型示意圖。
圖7是該較佳實施例之滑動視窗法的取樣點滑動示意圖。
圖8是該較佳實施例之滑動視窗法之3分鐘期間60個呼吸暫停與呼吸不足事件分類結果示意圖。
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的明白。
參閱圖2,本發明一較佳實施例,一種基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法,包含有一量測步驟,一分組步驟以及一偵測辨識步驟等;其中,在該量測步驟中備具有一心電圖機,而該心電圖機可針對心臟律動及呼吸頻率感應進行量測,以針對受試者的胸部之心臟自發性跳動與周圍肌肉節律性收縮,且依心臟組織電壓變化記錄成心電圖形訊號。
接續前述,參閱圖3,該分組步驟備具有一運算處理器,而該運算處理器得以一算式來針對受測者的心跳間隔時間下降率進行運算,同時該算式中分別包括有一取出/找出模式與一選取/計算模式,以經過該取出/找出模式與選取/計算模式運算出心跳間隔時間(圖中標示b)下降率的正、負、及0值,進一步針對該心電圖形訊號(圖中標示a)中的呼吸暫停與呼吸不足事件、及呼吸正常進行訊號分組動作,以分別得到一呼吸暫停與呼吸不足事件組訊號(請參圖4之(a)至(c)所示),與一呼吸正常組訊號(請參圖5之(a)至(c)所示),且如同在圖3中所示之粗線是心跳間隔時間訊號,細線所對應的心跳間隔時間下降率訊號,時間t 時的心跳間隔下降率之算式定義如下:
Figure 110124437-A0305-02-0009-2
透過該算式可知,當時間t時的心跳間隔時間下降率為得到一正值時,代表接下來心跳間隔時間是減少的,而當時間t的心跳間隔下降率為得到一負值時,代表接下來的心跳間隔時間是增加的,若心跳間隔時間下降率為得到一0值時,代表心跳間隔時間下降到最低點或上升到最高點,因此當該算式運用該取出/找出模式對應該心電圖形訊號選取呼吸暫停與呼吸不足事件組時,其至少會執行三個動作模式,即如當進行動作1模式時透過該心跳間隔時間下降率算式進一步取出在呼吸暫停與呼吸不足事件註記區間(圖中標示d),並接續進行動作2模式時找出在呼吸暫停與呼吸不足事件結束前10秒區間內,心跳間隔時間下降率的最大速率值Max Rate10(如圖3中所標示為*的即為Max Rate10)及其最大位置Max Loc10,而在進行動作3模式時如果找出最大速率值Max Rate10大於0.15且小於0.4時,表示出現明顯的心跳間隔時間減少,則選取最大位置Max Loc10前10秒到最大位置Max Loc10後20秒的心電圖形訊號與心跳間隔時間訊號進入呼吸暫停與呼吸不足組(請參圖3所示),是以,經前述所選取的30秒心電圖形訊號的前10秒是心跳間隔時間不變、增加、或是減少,後20秒則是心跳間隔時間減少,如果為最大速率值Max Rate10小於等於0.15或者大於等於0.4時,則回到動作1模式繼續取出下一個呼吸暫停與呼吸不足事件的註記區間;另,當運用該選取/計算模式對應該心電圖形訊號選取呼吸正常組時,其同樣至少會執行三個動作模式,且當在執行動作1模式時會通過該心跳間隔時間下降 率算式進一步選取30秒的心電圖形訊號與心跳間隔時間訊號區間,且該區間沒有出現呼吸暫停與呼吸不足事件註記,接續執行動作2模式時便會計算前述該30秒區間內心跳間隔時間下降率的最小速率值Mini Rate30,以及最大速率值Max Rate30,並且持續執行動作3模式時如果找出最大速率值Max Rate30大於-0.02且最大速率值Max Rate30小於0.02,表示在該30秒的區間內,心跳間隔時間沒有明顯變化,則選取該30秒區間的心電圖形訊號與心跳間隔訊號進入呼吸正常組,若如果找出最大速率值Max Rate30小於等於-0.02或者最大速率值Max Rate30大於等於0.02時,則回到動作1選取下一個30秒的心電圖形訊號與心跳間隔時間訊號區間。
是以,針對前述所取出之該呼吸暫停與呼吸不足組中可知,因為第10秒是對應心跳間隔時間(圖中標示c)下降率的最大值,所以第10秒以前的心跳間隔時間可能是增加、縮短或者不變的,在第10秒之後心跳間隔時間訊號就會呈現減少後再恢復,即如同圖4之(a)與(c)所示,而如果心跳間隔時間減少的持續時間較長,就會如同圖4之(b)所示,會來不及在第30秒內恢復,同時再由圖5之(a)至(c)所示可清楚得知,對於前述所選取之呼吸正常組中,其心跳間隔時間訊號則沒有呈現出明顯的變化。
至於,該偵測辨識步驟其運用該運算處理器透過一機器學習模型,以及一與該機器學習模型配合排列演算之滑動視窗法,進一步對該呼吸暫停與呼吸不足事件組訊號與該呼吸正常組訊號進行訓練演算以產生偵測辨識結果,而該機器學習模型以一卷積神經網路作為學習模型技術,且其中使用記錄有各自獨立且選自不同的受試者之心電圖形訊號的訓練資料集及測試資料集為進行偵測/辨識的資料,而前述所使用 之該訓練資料集與測試資料集的資料是採用睡眠心臟健康研究(Sleep Heart Health Study;簡稱SHHS)所提供的睡眠多項生理檢查(Polysomnography;簡稱PSG)資料庫來建立,同時該訓練資料集與測試資料集分別包括呼吸正常,以及呼吸暫停與呼吸不足組的30秒心電圖形訊號與心跳間隔時間訊號,以利用該訓練資料集中的心電圖形訊號與心跳間隔時間訊號用於訓練出最佳化的機器學習模型,以辨識輸入的心電圖形訊號與心跳間隔時間訊號是對應呼吸正常或是呼吸暫停與呼吸不足事件,而該測試資料集中的心電圖形訊號與心跳間隔時間訊號是用於測試最佳化後的機器學習模型對於該訓練資料集以外的心電圖形訊號與心跳間隔時間訊號的辨識正確性,其可以測試最佳化後的機器學習模型的真實效能。
再者,請參閱圖6,在本實施例中該機器學習模型為基於一卷積神經網路(CONVOLUTIONAL NEURAL NETWORKS;簡稱CNN)的深度學習模型技術,且其輸入訊號可以是以單獨30秒的心電圖形訊號、單獨30秒的心跳間隔時間訊號、或是同時輸入30秒的心電圖形訊號與心跳間隔時間訊號,且取樣頻率為100Hz,因此輸入訊號的長度可為1×3000或是為2×3000的方式輸入,而該深度學習模型技術包括有至少八個結構相同的特徵提取層(圖中A所示),至少一個與該八個特徵提取層連接之平坦層(圖中B所示),一與該平坦層連接之第一分類層(圖中C所示),一與該第一分類層連接之第二個分類層(圖中D所示),以及一與該第二分類層連接之第三個分類層(圖中E所示),而前述該每一特徵提取層包括有一個可取得至少45個1D特徵圖的卷積層、一個批次標準化層、一個激活層、一個池化大小為2的最大池化層及一個具有50%捨棄率的捨棄層,同時該等特徵提取層通過前述所述的運算技術對該分 組步驟輸入之該心電圖形訊號進行正規化處理,以及對該心電圖形訊號執行特徵提取與獲得較佳的多個心電圖形訊號特徵圖,而該平坦層則將45個1D特徵圖轉換為1D的特徵向量,以供後續該等分類層使用,同時該第一個分類層包括有一個採用2000個神經元的全連接層、一個批次標準化層、一個激活層與一個具有50%捨棄率的捨棄層,而該第二個分類層包括有一個採用1000個神經元的全連接層、一個批次標準化層、一個激活層與一個具有50%捨棄率的捨棄層,至於該第三個分類層包括有一個具有2個神經元的全連接層,並使用激活函數(Softmax)來計算該分類層兩個輸出的機率,機率高的類別即為辨識的結果,即以輸入的心電圖形訊號是對應呼吸正常或呼吸暫停與呼吸不足事件。
接續前述,該滑動視窗法則是對該機器學習模型完成受測者心電圖形訊號的模型訓練與測試後配合排列演算,其得以依據該滑動視窗法之視窗的大小來收集某個動作發生前或後的動作,並配合比重值的計算與演算,具體來說,即如以3分鐘長度(18000個取樣點)的待測心電圖形訊號或心跳間隔時間訊號為例,當視窗長度L為3000,每次從受測者的心電圖形訊號或心跳間隔時間訊號取出3000個取樣點,輸入到最佳化的模型中,便會得到一個呼吸暫停與呼吸不足事件的分類機率,該視窗每隔300個取樣點(3秒)滑動到下一個位置,再取出3000個取樣點,而前述滑動、取樣模式持續不斷直至完成3分鐘長度,如圖7所示;因此,在3分鐘期間總共會取出60個長度為3000個取樣點的訊號,分別輸入至最佳化的模型,取得60個呼吸暫停與呼吸不足事件的分類機率,即如圖8所示之範例,在呼吸暫停與呼吸不足事件的分類機率大於等於0.5時,代表在該滑動視窗法之視窗出現呼吸暫停與呼吸不足事件,並標示為A,當然,連續的在窗格被分類為A時,則被視為同一個呼吸暫 停與呼吸不足事件,即圖8中間所示有連續6個窗格被分類為A,而該每一窗格對應該視窗間隔300個取樣點(3秒),所以該18秒(6×3秒)的訊號區間被偵測為一個呼吸暫停與呼吸不足事件,最終輸出一辨識結果,藉此通過簡單的演算機率所產生較佳之偵測辨識方式,可有效快速地偵測辨識分類出受測者之呼吸暫停事件嚴重的準確性。
是以,本發明主要針對受測者是否具有呼吸暫停與呼吸不足事件時,即先透過以一算式來對受測者之心電圖形訊號中心跳間隔時間下降率進行運算,並分別以取出/找出模式與選取/計算模式運算出其心跳間隔時間下降率的正、負、及0值,進一步對該心電圖形訊號進行呼吸暫停與呼吸不足事件、及呼吸正常進行訊號分組,再藉由該偵測辨識步驟中通過使用該訓練資料集的心電圖形訊號訓練所得到最佳化的模型之技術,使分組後該呼吸暫停與呼吸不足事件組與該呼吸正常組之訊號受到正規化處理、被執行特徵提取而獲得較佳的多個心電圖形訊號的特徵圖、再進一步對該等特徵圖轉換為特徵向量及進行計算機率,使輸入該測試資料集的心電圖測試該機器學習模型的真實效能,且其結果顯示訓練與測試的正確性均可達到95%以上,藉此得以能透過簡單的偵測方式,最終輸出一辨識結果,有效快速地偵測辨識分類出受測者之呼吸暫停事件嚴重的準確性。
歸納前述,本發明基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法,其主要針對受測者是否具有呼吸暫停與呼吸不足事件,先進行心跳間隔下降率分組後再進行偵測與辨識,藉由在該偵測辨識步驟中以一卷積神經網路作為學習模型技術的模式下,以選自不同的受試者之心電圖形訊號的訓練資料集與測試資料集的資料做為偵測辨識之基準,同時再搭配一滑動視窗法的大小配合排列演算,並進一步透 過學習模型技術對量測步驟所得的心電圖形訊號進行計算、訓練學習,使該訊號受到正規化處理、被執行特徵提取而獲得較佳的多個心電圖形訊號的特徵圖、並對該等特徵圖轉換為特徵向量及進行計算機率,以輸出一辨識結果,藉此得以有效快速地偵測辨識分類出受測者之呼吸暫停事件嚴重的準確性。
惟以上所述者,僅為說明本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。

Claims (7)

  1. 一種基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法,其包含有: 一量測步驟,其備具有一心電圖機,該心電圖機可針對心臟律動及呼吸頻率感應進行量測,以針對受測者的胸部之心臟自發性跳動與周圍肌肉節律性收縮,且依心臟組織電壓變化記錄而形成一心電圖形訊號; 一分組步驟,其備具有一運算處理器,該運算處理器得以一算式針對心跳間隔時間下降率進行運算,同時該算式中分別包括有一取出/找出模式與一選取/計算模式,以經過該取出/找出模式與選取/計算模式運算出心跳間隔時間下降率的正、負、及0值,進一步針對該心電圖形訊號中的呼吸暫停與呼吸不足事件、及呼吸正常進行訊號分組動作,且分別得到一呼吸暫停與呼吸不足事件組訊號,與一呼吸正常組訊號;其中,該算式定義如下列: 心跳間隔時間下降率(t)= t之前5秒(50個)心跳間隔時間平均值
    Figure 03_image002
    t之後15秒(150個)心跳間隔時間中最小的50個心跳間隔時間的平均值 即當時間t時的心跳間隔時間下降率為得到一正值時,代表接下來心跳間隔時間是減少的,而當時間t的心跳間隔下降率為一負值時,代表接下來的心跳間隔時間是增加的,若心跳間隔時間下降率為一0值時,代表心跳間隔時間下降到最低點或上升到最高點;以及 一偵測辨識步驟,其該運算處理器透過一機器學習模型,以及一與該機器學習模型配合排列演算之滑動視窗法,而該機器學習模型以一卷積神經網路作為學習模型技術,且其中使用記錄有各自獨立且選自不同的受試者之心電圖形訊號的訓練資料集及測試資料集為進行偵測辨識的資料,同時該機器學習模型包括有至少八個結構相同的特徵提取層,至少一個與該八個特徵提取層連接之平坦層,一與該平坦層連接之第一個分類層,一與該第一分類層連接之第二個分類層,以及一與該第二分類層連接之第三個分類層,而前述該等特徵提取層恰可對該分組步驟輸入之該訊號進行正規化處理,以及對該訊號執行特徵提取與獲得較佳的多個心電圖形訊號的特徵圖,而該平坦層會針對該等特徵圖轉換為特徵向量,以供該等分類層使用,同時該等分類層會依據該等特徵向量進行計算機率,最終輸出一偵測辨識結果,藉以判斷該量測步驟所得的心電圖形訊號是否有呼吸暫停與呼吸不足事件態樣。
  2. 根據請求項1所述基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法,其中,該分組步驟之取出/找出模式為由該運算處理器透過該心跳間隔時間下降率算式進一步以取出方式取出在呼吸暫停與呼吸不足事件註記區間,以及找出方式找出在呼吸暫停與呼吸不足事件結束前10秒區間內,心跳間隔時間下降率的最大速率值Max Rate10及其最大位置Max Loc10;另,該分組步驟之選取/計算模式為由該運算處理器進一步利用該心跳間隔時間下降率算式,以選取方式選取30秒區間內心跳間隔時間訊號註記區間,且該區間沒有出現呼吸暫停與呼吸不足事件註記,以及以計算方式計算出30秒區間內,心跳間隔時間下降率的最小速率值Mini Rate30以及最大率值Max Rate30。
  3. 根據請求項1或2所述基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法,其中,該每一個特徵提取層包括有一個卷積層、一個批次標準化層、一個激活層、一個最大池化層及一個捨棄層而前述該卷積層為一個至少可取得45個ID特徵圖的設置,最大池化層為一個池化大小為2的設置,而該捨棄層為一具有50%捨棄率的設置。
  4. 根據請求項1所述基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法,其中,該第一、第二個分類層都包括有一個全連接層、一個批次標準化層、一個激活層及一個捨棄層,且該第一分類層之全連接層具有2000個神經元,而該第二分類層之全連接層具有1000個神經元。
  5. 根據請求項3所述基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法,其中,該第一、第二個分類層都包括有一個全連接層、一個批次標準化層、一個激活層及一個捨棄層,且該第一分類層之全連接層具有2000個神經元,而該第二分類層之全連接層具有1000個神經元。
  6. 根據請求項1所述基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法,其中,該第三個分類層包括有一個具有2個神經元的全連接層,且該全連接層係使用激活函數(Softmax)來計算機率。
  7. 根據請求項5所述基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法,其中,該第三個分類層包括有一個具有2個神經元的全連接層,且該全連接層係使用激活函數(Softmax)來計算機率。
TW110124437A 2021-07-02 2021-07-02 基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法 TWI777650B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110124437A TWI777650B (zh) 2021-07-02 2021-07-02 基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110124437A TWI777650B (zh) 2021-07-02 2021-07-02 基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法

Publications (2)

Publication Number Publication Date
TWI777650B true TWI777650B (zh) 2022-09-11
TW202302032A TW202302032A (zh) 2023-01-16

Family

ID=84958013

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110124437A TWI777650B (zh) 2021-07-02 2021-07-02 基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法

Country Status (1)

Country Link
TW (1) TWI777650B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117379021A (zh) * 2023-12-13 2024-01-12 深圳市光速时代科技有限公司 基于智能穿戴设备的老年人健康指标监测系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM593240U (zh) * 2019-11-12 2020-04-11 國立勤益科技大學 基於單極導程心電圖的呼吸暫停的偵測裝置
TWI728839B (zh) * 2020-06-12 2021-05-21 臺北醫學大學 居家睡眠監測器、居家睡眠監測系統以及居家睡眠監測及睡眠呼吸事件分類方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM593240U (zh) * 2019-11-12 2020-04-11 國立勤益科技大學 基於單極導程心電圖的呼吸暫停的偵測裝置
TWI728839B (zh) * 2020-06-12 2021-05-21 臺北醫學大學 居家睡眠監測器、居家睡眠監測系統以及居家睡眠監測及睡眠呼吸事件分類方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117379021A (zh) * 2023-12-13 2024-01-12 深圳市光速时代科技有限公司 基于智能穿戴设备的老年人健康指标监测系统
CN117379021B (zh) * 2023-12-13 2024-03-08 深圳市光速时代科技有限公司 基于智能穿戴设备的老年人健康指标监测系统

Also Published As

Publication number Publication date
TW202302032A (zh) 2023-01-16

Similar Documents

Publication Publication Date Title
Mendonca et al. A review of obstructive sleep apnea detection approaches
de Chazal et al. Automated detection of obstructive sleep apnoea at different time scales using the electrocardiogram
JP6199330B2 (ja) 酸素測定信号を用いるチェーンストークス呼吸パターンの識別
WO2019161607A1 (zh) 心电信息动态监护方法和动态监护系统
WO2019161609A1 (zh) 多参数监护数据分析方法和多参数监护仪
US11712198B2 (en) Estimation of sleep quality parameters from whole night audio analysis
Haidar et al. Convolutional neural networks on multiple respiratory channels to detect hypopnea and obstructive apnea events
WO2019161608A1 (zh) 多参数监护数据分析方法和多参数监护系统
US20220167856A1 (en) Lung function monitoring from heart signals
CN113633260B (zh) 多导睡眠监测方法、监测仪、计算机设备及可读存储介质
CN116098602B (zh) 一种基于ir-uwb雷达的非接触式睡眠呼吸监测方法及装置
TWI777650B (zh) 基於心跳間隔下降率分組之呼吸暫停與不足事件偵測方法
Motin et al. Sleep-wake classification using statistical features extracted from photoplethysmographic signals
TWM593240U (zh) 基於單極導程心電圖的呼吸暫停的偵測裝置
Sá et al. Automated breath detection on long-duration signals using feedforward backpropagation artificial neural networks
Khandoker et al. Modeling respiratory movement signals during central and obstructive sleep apnea events using electrocardiogram
TWI748485B (zh) 一種資訊處理系統及其方法
TWI772086B (zh) 使用全卷積神經網路之呼吸暫停與不足事件偵測方法
TWI784513B (zh) 基於心電圖延後反應的呼吸暫停事件偵測方法
TWM626332U (zh) 基於心跳間隔下降率之呼吸暫停與不足事件的偵測裝置
Li et al. A dirichlet process mixture model for autonomous sleep apnea detection using oxygen saturation data
US9402571B2 (en) Biological tissue function analysis
TWI837948B (zh) 可偵測完整呼吸暫停與不足事件的方法
TWM624488U (zh) 針對呼吸暫停或不足事件的偵測裝置
TWI756793B (zh) 一種通道資訊處理系統

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent