TWI777583B - Water resources treatment method and apparatus thereof - Google Patents

Water resources treatment method and apparatus thereof Download PDF

Info

Publication number
TWI777583B
TWI777583B TW110119309A TW110119309A TWI777583B TW I777583 B TWI777583 B TW I777583B TW 110119309 A TW110119309 A TW 110119309A TW 110119309 A TW110119309 A TW 110119309A TW I777583 B TWI777583 B TW I777583B
Authority
TW
Taiwan
Prior art keywords
orp
parameter
sensing
control
target value
Prior art date
Application number
TW110119309A
Other languages
Chinese (zh)
Other versions
TW202212273A (en
Inventor
卓伯全
Original Assignee
基士德環科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 基士德環科股份有限公司 filed Critical 基士德環科股份有限公司
Publication of TW202212273A publication Critical patent/TW202212273A/en
Application granted granted Critical
Publication of TWI777583B publication Critical patent/TWI777583B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

A method of treating water resources by an electronic device is provided. The method includes obtaining at least one oxidation-reduction potential (ORP) target value. A first ORP parameter generated by detecting a water body at first detection time is received from an ORP detecting apparatus. The first ORP parameter is compared with the at least one ORP target value to generate a first comparison result. A control parameter is generated based on the first comparison result, and an operation parameter of a controlled device for the water body is adjusted based on the control parameter.

Description

水資源處理方法及裝置 Water resource treatment method and device

本發明涉及一種水資源處理方法及裝置。 The invention relates to a water resource treatment method and device.

隨著環保意識的增強,在水資源處理過程中通常採用生物處理程序去除污水中的有機性水質污染物以及氮磷等生物營養鹽。生物處理程序主要包括生物活性污泥程序以及生物脫氮除磷程序。其中,影響生物活性污泥程序以及生物脫氮除磷程序的成效因子包括微生物的保有量、生化反應的時間、微生物活性、碳源的供應以及電子接受者的多少。上述因子反應在程序操作上分別對應的監測參數為混合液懸浮固體物(Mixed liquor suspended solids,MLSS)、污泥停留時間(Sludge retention time,SRT)、水力停留時間(Hydraulic retention time,HRT)、活性污泥攝氧率(Oxygen uptake rate,OUR)或比攝氧率(Specific oxygen uptake rate,SOUR)、污泥層沉降速率(Zone settling velocity,ZSV)、脫氮除磷所需之碳氮比(C/N)以及碳磷比(C/P)、溶氧(Dissolved oxygen,DO)。然而,前述因子中僅有MLSS以及DO參數可被即時獲得,其他參數均需要通過人工進行實驗室長時間分析後才能得到,因此已經不是即時有效的監測參數,導致生物處理程序難以即時針對所有的因子進行監測與調整。 With the increasing awareness of environmental protection, biological treatment procedures are usually used to remove organic water pollutants and biological nutrients such as nitrogen and phosphorus in the wastewater. Biological treatment procedures mainly include biological activated sludge procedures and biological nitrogen and phosphorus removal procedures. Among them, the effectiveness factors affecting the biological activated sludge process and the biological nitrogen and phosphorus removal process include the amount of microorganisms, the time of biochemical reaction, the activity of microorganisms, the supply of carbon sources and the number of electron acceptors. The monitoring parameters corresponding to the above factor responses in the program operation are the mixed liquor suspended solids (Mixed liquor suspended solids, MLSS), the sludge retention time (Sludge retention time, SRT), the hydraulic retention time (Hydraulic retention time, HRT), Activated sludge oxygen uptake rate (Oxygen uptake rate, OUR) or specific oxygen uptake rate (Specific oxygen uptake rate, SOUR), sludge bed settling velocity (Zone settling velocity, ZSV), carbon and nitrogen ratio required for nitrogen and phosphorus removal (C/N), carbon to phosphorus ratio (C/P), dissolved oxygen (DO). However, among the aforementioned factors, only MLSS and DO parameters can be obtained immediately, and other parameters can only be obtained after a long period of manual laboratory analysis, so they are no longer effective monitoring parameters, making it difficult for biological treatment procedures to target all factors are monitored and adjusted.

另外,生物處理程序在設計時,為了依據符合保護承受水體與放流水標準的前提下,通常會以穩態進流的方式(即任何時間進流水量以及水質均不會變動的方式)進行設計。但在污水處理過程中通常為一個動態且十分複雜的過程,進流水量以及水質均隨時間不斷變化,同時生物活性污泥程序以及生物脫氮除磷程序的控制又受到微生物新陳代謝、機械運轉以及環境條件等因素的交互作用與影響,進而對污水處理系統的水質處理效果以及系統運行的穩定性均會產生影響。因此,在傳統以穩態控制方式設計的自動化控制系統中,上述將所列之因子往往淪為人為控制而非自動控制。 In addition, in the design of biological treatment programs, in order to comply with the protection of receiving water bodies and discharge water standards, they are usually designed in a steady-state inflow way (that is, in a way that the inflow water volume and water quality will not change at any time). . However, in the process of sewage treatment, it is usually a dynamic and very complex process. The amount of influent water and water quality are constantly changing with time. At the same time, the biological activated sludge process and biological nitrogen and phosphorus removal process are controlled by microbial metabolism, mechanical operation and The interaction and influence of environmental conditions and other factors will have an impact on the water quality treatment effect of the sewage treatment system and the stability of the system operation. Therefore, in the traditional automatic control system designed by the steady-state control method, the factors listed above are often reduced to human control rather than automatic control.

有必要提供一種水資源處理方法及系統,旨在解決現有技術中無法實現污水處理系統智能化的技術問題。 It is necessary to provide a water resource treatment method and system, aiming at solving the technical problem that the intelligence of the sewage treatment system cannot be realized in the prior art.

一種用於水資源處理的電子裝置。該電子裝置包括至少一個處理器以及儲存裝置。該儲存裝置耦接到該至少一個處理器並且儲存多個指令,該多個指令在由該至少一個處理器執行時,使得該至少一個處理器取得至少一個ORP目標值;接收ORP感測裝置在一第一感測時刻對一待測水體所感測到的一第一ORP參數;將該第一ORP參數與該至少一個ORP目標值進行比較以產生第一比較結果;依據該第一比較結果產生一控制參數;並依據該控制參數調控對該待測水體進行處理的一受控裝置的一操作參數。 An electronic device for water treatment. The electronic device includes at least one processor and a storage device. The storage device is coupled to the at least one processor and stores a plurality of instructions that, when executed by the at least one processor, cause the at least one processor to obtain at least one ORP target value; the receiving ORP sensing device is in A first ORP parameter sensed by a water body to be measured at a first sensing time; comparing the first ORP parameter with the at least one ORP target value to generate a first comparison result; generating according to the first comparison result A control parameter; and an operation parameter of a controlled device for processing the water body to be measured is regulated according to the control parameter.

一種用於一電子裝置的水資源處理的方法。該方法包括取得至少一個ORP目標值。接收ORP感測裝置在一第一感測時刻對一待測水體所感測到的一第一ORP參數。將該第一ORP參數與該至少一個ORP目標值進 行比較以產生第一比較結果。依據該第一比較結果產生一控制參數,並依據該控制參數調控對該待測水體進行處理的一受控裝置的一操作參數。 A method of water treatment for an electronic device. The method includes obtaining at least one ORP target value. A first ORP parameter sensed by the ORP sensing device for a water body to be measured at a first sensing moment is received. Combining the first ORP parameter with the at least one ORP target value The comparison is performed to produce the first comparison result. A control parameter is generated according to the first comparison result, and an operation parameter of a controlled device for processing the water body to be measured is regulated according to the control parameter.

1:水資源監控與處理系統 1: Water resources monitoring and treatment system

10:待測水體 10: Water to be tested

11,411-413,611-613,711-713,911-914:感測裝置 11, 411-413, 611-613, 711-713, 911-914: Sensing devices

12:第一控制裝置 12: The first control device

13:第二控制裝置 13: Second control device

14:受控裝置 14: Controlled device

221:處理器 221: Processor

222:儲存器 222: Storage

2221:操作系統 2221: Operating System

2222:參數監控暨水資源處理模組 2222: Parameter monitoring and water treatment module

223:訊號接收器 223: Signal receiver

224:訊號傳送器 224: Signal Transmitter

S310-S350:步驟 S310-S350: Steps

4:即時曝氣控制系統 4: Instant aeration control system

4411-4412,941,1941:鼓風機 4411-4412, 941, 1941: Blowers

4421-4422,642,742,942:變頻器 4421-4422, 642, 742, 942: Inverter

4431-4432:電動閥 4431-4432: Electric valve

4511-4516:壓力感測裝置 4511-4516: Pressure Sensing Device

452:空氣流量計 452: Air Flow Meter

S510-S550,S561-S562,S571-S573,S580:步驟 S510-S550, S561-S562, S571-S573, S580: Steps

6:硝化液內迴流控制系統 6: Internal reflux control system of nitrification solution

601,701,1901:厭氧池 601, 701, 1901: Anaerobic ponds

602,702,11021-11023,1902:缺氧池 602, 702, 11021-11023, 1902: Hypoxic Pool

603,703,903,11031-11033,1903:好氧池 603, 703, 903, 11031-11033, 1903: Aerobic Pool

604,704,1904:沉降池 604, 704, 1904: Settlement ponds

643,1943:內部迴流泵 643, 1943: Internal return pump

644,744,1944:汙泥回流泵 644, 744, 1944: Sludge return pump

7:汙泥迴流控制系統 7: Sludge return control system

S810-S850,S861-S862,S871-S873,S880:步驟 S810-S850, S861-S862, S871-S873, S880: Steps

9:間歇曝氣控制系統 9: Intermittent aeration control system

945:推流器 945: Flow Booster

S1010-S1060,S1071-S1072,S1081-S1082:步驟 S1010-S1060, S1071-S1072, S1081-S1082: Steps

110:分段進流控制系統 110: Segmented inflow control system

11111-11113,11121-11123,1611-1612,1911-1913:感測裝置 11111-11113, 11121-11123, 1611-1612, 1911-1913: Sensing devices

11461-11463:閘閥門 11461-11463: Gate valve

S1210-S1250,S1310-S1340,S1510-S1540,S1710-S1750:步驟 S1210-S1250, S1310-S1340, S1510-S1540, S1710-S1750: Steps

160:污泥沉降性監測系統 160: Sludge Settling Monitoring System

1605:測試池 1605: Test Pool

1653:採樣泵 1653: Sampling Pump

1654:迴流閥門 1654: Return valve

1810:阻滯沉降期間 1810: During the retardation of subsidence

1820:轉換沉降期間 1820: Conversion during settlement

1830:壓密沉降期間 1830: During compaction settling

1960:生物活性指標監測裝置 1960: Bioactivity indicator monitoring device

圖1為本發明的示例實施方式的水資源監控與處理系統的示意圖。 FIG. 1 is a schematic diagram of a water resource monitoring and treatment system of an example embodiment of the present invention.

圖2為本發明的示例實施方式中,具有參數監控暨水資源處理模組的第一控制裝置的示意圖。 FIG. 2 is a schematic diagram of a first control device having a parameter monitoring and water resource treatment module in an exemplary embodiment of the present invention.

圖3為本發明的示例實施方式的參數監控暨水資源處理方法的流程圖。 FIG. 3 is a flowchart of a parameter monitoring and water resource treatment method according to an exemplary embodiment of the present invention.

圖4為本發明的示例實施方式的水資源監控與處理系統中的即時曝氣控制系統的示意圖。 4 is a schematic diagram of an instant aeration control system in a water resource monitoring and treatment system according to an example embodiment of the present invention.

圖5為本發明的示例實施方法的參數監控暨水資源處理方法中的即時曝氣控制流程的流程圖。 FIG. 5 is a flow chart of the instant aeration control process in the parameter monitoring and water resource treatment method of the exemplary implementation method of the present invention.

圖6為本發明的示例實施方式的水資源監控與處理系統中的硝化液內迴流控制系統的示意圖。 FIG. 6 is a schematic diagram of a nitrification liquid internal reflux control system in a water resource monitoring and treatment system according to an exemplary embodiment of the present invention.

圖7為本發明的示例實施方式的水資源監控與處理系統中的汙泥迴流控制系統的示意圖。 7 is a schematic diagram of a sludge return control system in a water resource monitoring and treatment system according to an exemplary embodiment of the present invention.

圖8為本發明的示例實施方法的參數監控暨水資源處理方法中的迴流控制流程的流程圖。 FIG. 8 is a flow chart of a backflow control process in a parameter monitoring and water resource treatment method of an exemplary implementation method of the present invention.

圖9為本發明的示例實施方式的水資源監控與處理系統中的間歇曝氣控制系統的示意圖。 9 is a schematic diagram of an intermittent aeration control system in a water resource monitoring and treatment system of an exemplary embodiment of the present invention.

圖10為本發明的示例實施方法的參數監控暨水資源處理方法中的間歇曝氣控制流程的流程圖。 10 is a flow chart of the intermittent aeration control process in the parameter monitoring and water resources treatment method of the exemplary implementation method of the present invention.

圖11為本發明的示例實施方式的水資源監控與處理系統中的分段進流控制系統的示意圖。 11 is a schematic diagram of a segmented inflow control system in a water resource monitoring and treatment system according to an example embodiment of the present invention.

圖12為本發明的示例實施方法的參數監控暨水資源處理方法中的分段進流控制流程的流程圖。 FIG. 12 is a flow chart of the segmented inflow control process in the parameter monitoring and water resources processing method of the exemplary implementation method of the present invention.

圖13為本發明的示例實施方法的參數監控暨水資源處理方法中的生物硝化/脫硝程序控制流程的流程圖。 13 is a flow chart of the biological nitrification/denitrification program control process in the parameter monitoring and water resources treatment method of the exemplary implementation method of the present invention.

圖14示出了待測水體進行水資源處理過程中,該待測水體在生物硝化/脫硝反應下ORP變數與pH變數的變化。 Figure 14 shows the changes of ORP variables and pH variables under the biological nitrification/denitrification reaction of the water body to be tested during the water resource treatment process of the water body to be tested.

圖15為本發明的示例實施方法的參數監控暨水資源處理方法中的生物活性指標監測流程的流程圖。 FIG. 15 is a flow chart of the biological activity index monitoring process in the parameter monitoring and water resource treatment method of the exemplary implementation method of the present invention.

圖16為本發明的示例實施方式的水資源監控與處理系統中的污泥沉降性監測系統的示意圖。 16 is a schematic diagram of a sludge settling monitoring system in a water resource monitoring and treatment system according to an exemplary embodiment of the present invention.

圖17為本發明的示例實施方法的參數監控暨水資源處理方法中的污泥沉降性監測流程的流程圖。 FIG. 17 is a flow chart of the process of monitoring the sludge settleability in the parameter monitoring and water resources treatment method of the exemplary implementation method of the present invention.

圖18示出了待測水體進行水資源處理過程中,該待測水體在污泥沉降性監測流程下於不同深度的MLSS的沉降變化。 Fig. 18 shows the sedimentation changes of the MLSS at different depths of the water to be measured under the process of monitoring the sludge settleability in the process of water resource treatment for the water to be measured.

圖19為本發明的示例實施方式的水資源監控與處理系統的示意圖。 19 is a schematic diagram of a water resource monitoring and treatment system of an example embodiment of the present invention.

以下敘述含有與本發明中的示例性實施例相關的特定資訊。本發明中的附圖和其隨附的詳細敘述僅為示例性實施例。然而,本發明並不局限於此些示例性實施例。本領域技術人員將會想到本發明的其他變化與實施例。除非另有說明,否則附圖中的相同或對應的元件可由相同或對應 的附圖標號指示。此外,本發明中的附圖與例示通常不是按比例繪製的,且非旨在與實際的相對尺寸相對應。 The following description contains specific information related to exemplary embodiments of the present invention. The drawings of this disclosure and the detailed description that accompany it are merely exemplary embodiments. However, the present invention is not limited to these exemplary embodiments. Other variations and embodiments of the invention will occur to those skilled in the art. Identical or corresponding elements in the figures may be identical or corresponding unless otherwise indicated indicated by the reference number. Furthermore, the drawings and illustrations in this disclosure are generally not to scale and are not intended to correspond to actual relative dimensions.

出於一致性和易於理解的目的,在示例性附圖中藉由標號以標示相同特徵(雖在一些示例中並未如此標示)。然而,不同實施方式中的特徵在其他方面可能不同,因此不應狹義地局限於附圖所示的特徵。 For purposes of consistency and ease of understanding, like features are designated by reference numerals in the exemplary drawings (although in some instances they are not so designated). However, the features in different embodiments may differ in other respects and therefore should not be narrowly limited to the features shown in the drawings.

針對「至少一個示例實施方式」、「一示例實施方式」、「多個示例實施方式」、「不同的示例實施方式」、「一些示例實施方式」、「本發明的示例實施方式」等用語,可指示如此描述的本發明實施方式可包括特定的特徵、結構或特性,但並不是本發明的每個可能的實施方式都必須包括特定的特徵、結構或特性。此外,重複地使用短語「在至少一個示例實施方式中」、「在一示例實施方式中」、「該示例實施方式」並不一定是指相同的實施方式,儘管它們可能相同。此外,諸如「實施方式」之類的短語與「本發明」關聯使用,並不意味本發明的所有實施方式必須包括特定特徵、結構或特性,並且應該理解為「本發明的至少一些實施方式」包括所述的特定特徵、結構或特性。術語「耦接」被定義為連接,無論是直接還是間接地透過中間元件作連接,且不一定限於實體連接。當使用術語「包括」時,意思是「包括但不限於」,其明確地指出所述的組合、群組、系列和均等物的開放式包含或關係。 For terms such as "at least one example embodiment," "an example embodiment," "example embodiments," "different example embodiments," "some example embodiments," "example embodiments of this invention," and the like, It may be indicated that embodiments of the invention so described may include a particular feature, structure, or characteristic, but not every possible embodiment of the invention necessarily includes a particular feature, structure, or characteristic. Furthermore, repeated use of the phrases "in at least one example embodiment," "in an example embodiment," "the example embodiment" does not necessarily refer to the same embodiment, although they may. Furthermore, the use of phrases such as "embodiments" in connection with "the present invention" does not imply that all embodiments of the present invention necessarily include a particular feature, structure or characteristic, and should be understood as "at least some embodiments of the present invention" ” includes the particular feature, structure or characteristic described. The term "coupled" is defined as connected, whether directly or indirectly through intervening elements, and is not necessarily limited to physical connections. When the term "including" is used, it means "including but not limited to," which expressly indicates the open inclusion or relationship of the stated combinations, groups, series, and equivalents.

另外,基於解釋和非限制的目的,闡述了諸如功能實體、技術、協定、標準等的具體細節以提供對所描述的技術的理解。在其他示例中,省略了眾所周知的方法、技術、系統、架構等的詳細描述,以避免說明敘述被不必要的細節混淆。 Furthermore, for purposes of explanation and not limitation, specific details are set forth such as functional entities, techniques, protocols, standards, etc. to provide an understanding of the described technology. In other instances, detailed descriptions of well-known methods, techniques, systems, architectures, etc. are omitted so as not to obscure the description with unnecessary detail.

本發明的說明書及上述附圖中的術語「第一」、「第二」和「第三」等是用於區別不同物件,而非用於描述特定順序。此外,術語 「包括」以及它們任何變形,意圖在於覆蓋不排他的包含。例如包含了一系列步驟或模組的過程、方法、系統、產品或設備沒有限定於已列出的步驟或模組,而是可選地還包括沒有列出的步驟或模組,或可選地還包括對於這些過程、方法、產品或設備固有的其它步驟或模組。 The terms "first", "second" and "third" in the description of the present invention and the above-mentioned drawings are used to distinguish different items, rather than to describe a specific order. Furthermore, the term "Includes" and any variations thereof are intended to cover non-exclusive inclusion. For example, a process, method, system, product or device comprising a series of steps or modules is not limited to the listed steps or modules, but may optionally also include unlisted steps or modules, or alternatively It also includes other steps or modules inherent to these processes, methods, products or devices.

本領域技術人員將立即認識到本發明中敘述的任何運算功能或演算法可由硬體、軟體或軟體和硬體的組合實施方式。所敘述的功能可對應的模組可為軟體、硬體、韌體或其任何組合。軟體實施方式可包含儲存在諸如記憶體或其他類型的儲存器的電腦可讀媒體上的電腦可執行指令。例如,具有通信處理能力的一個或多個微處理器或通用電腦可用對應的可執行指令程式設計和執行所敘述的網路功能或演算法。處理器、微處理器或通用電腦可由專用積體電路ASIC(Applications Specific Integrated Circuitry)、可程式設計化邏輯陣列和/或使用一個或多個數位訊號處理器DSP(Digital Signal Processor)形成。儘管在本說明書中敘述的若干示例性實施方式傾向在電腦硬體上安裝和執行的軟體,但是,實施方式以韌體或硬體或硬體和軟體的組合的替代示例性實施方式亦在本發明的範圍內。 Those skilled in the art will immediately recognize that any computing function or algorithm described in this disclosure may be implemented in hardware, software, or a combination of software and hardware. The modules corresponding to the described functions may be software, hardware, firmware or any combination thereof. A software implementation may include computer-executable instructions stored on a computer-readable medium, such as a memory or other type of storage. For example, one or more microprocessors or general-purpose computers with communications processing capabilities may use corresponding executable instructions to program and execute the network functions or algorithms described. The processor, microprocessor or general-purpose computer can be formed by ASIC (Applications Specific Integrated Circuitry), programmable logic array and/or using one or more digital signal processors (DSP). Although several of the exemplary embodiments described in this specification are directed towards software installed and executed on computer hardware, alternative exemplary embodiments in which embodiments are implemented in firmware or hardware or a combination of hardware and software are also contemplated herein. within the scope of the invention.

電腦可讀媒體包括但不限於隨機存取記憶體RAM(Random Access Memory)、唯讀記憶體ROM(Read Only Memory)、可擦可程式設計唯讀記憶體EPROM(Erasable Programmable Read-Only Memory)、電可擦可程式設計唯讀記憶體EEPROM(Electrically Erasable Programmable Read-Only Memory)、快閃記憶體、光碟唯讀記憶體CD ROM(Compact Disc Read-Only Memory)、磁盒、磁帶、磁碟記憶體或任何其他能夠儲存電腦可讀指令的等效介質。 Computer readable media include but are not limited to random access memory RAM (Random Access Memory), read only memory ROM (Read Only Memory), erasable programmable read only memory EPROM (Erasable Programmable Read-Only Memory), Electrically Erasable Programmable Read-Only Memory EEPROM (Electrically Erasable Programmable Read-Only Memory), Flash Memory, Compact Disc Read-Only Memory CD ROM (Compact Disc Read-Only Memory), Magnetic Box, Tape, Disk Memory body or any other equivalent medium capable of storing computer readable instructions.

本發明各裝置之間的耦接可採用定制的協議或遵循現有標準或事實標準,包括但不限於乙太網、IEEE 802.11或IEEE 802.15系列、無線USB或電信標準(包括但不限於GSM(Global System for Mobile Communications,全球移動通信系統)、CDMA2000(Code Division Multiple Access,碼分多址技術)、TD-SCDMA(Time Division-Synchronization Code Division Multiple Access,時分同步的碼分多址技術)、WiMAX(World Interoperability for Microwave Access,全球微波接入互通性)、3GPP-LTE(Long Term Evolution,長期演進技術)或TD-LTE(Time Division Long Term Evolution,時分長期演進技術))。此外,本發明各裝置亦可各自包括被配置為將數據傳輸和/或存儲到電腦可讀介質並且從電腦可讀介質接收數據的任何設備。再者,本發明各裝置可包括電腦系統介面,該電腦系統介面可以使數據能夠存儲在存放裝置上或從存放裝置接收數據。例如:本發明各裝置可包括支援周邊元件連接(Peripheral Component Interconnec,PCI)和高速周邊元件連接(Peripheral Component Interconnect Express,PCIe)匯流排協定的晶片集、專用匯流排協定、通用序列匯流排(Universal Serial Bus,USB)協議、I2C、或任何其他可用于互連對等設備的邏輯和物理結構。 The coupling between the devices of the present invention can adopt customized protocols or follow existing standards or de facto standards, including but not limited to Ethernet, IEEE 802.11 or IEEE 802.15 series, wireless USB or telecommunication standards (including but not limited to GSM (Global System for Mobile Communications, Global System for Mobile Communications), CDMA2000 (Code Division Multiple Access, Code Division Multiple Access technology), TD-SCDMA (Time Division-Synchronization Code Division Multiple Access, Time Division Synchronization Code Division Multiple Access technology), WiMAX (World Interoperability for Microwave Access, World Interoperability for Microwave Access), 3GPP-LTE (Long Term Evolution, long term evolution technology) or TD-LTE (Time Division Long Term Evolution, time division long term evolution technology)). In addition, the apparatuses of the present invention may each include any device configured to transmit and/or store data to and receive data from a computer-readable medium. Furthermore, each device of the present invention may include a computer system interface that may enable data to be stored on or received from the storage device. For example, each device of the present invention may include a chip set supporting Peripheral Component Interconnect (PCI) and Peripheral Component Interconnect Express (PCIe) bus protocols, a dedicated bus protocol, a Universal Serial Bus (Universal) Serial Bus, USB) protocol, I2C, or any other logical and physical structure that can be used to interconnect peer devices.

下面結合附圖對本發明的水資源監控與處理方法及系統的具體實施方式進行說明。 The specific embodiments of the method and system for monitoring and treating water resources of the present invention will be described below with reference to the accompanying drawings.

請參照圖1,圖1繪示根據本發明的示例實施方式的水資源監控與處理系統1的示意圖。該水資源監控與處理系統1包含多個感測裝置11、一第一控制裝置12、一第二控制裝置13以及多個受控裝置14。在該示例實施方式中,該水資源監控與處理系統1透過該多個感測裝置11量測一待測水體10,以取得多個感測參數。在該示例實施方式中,該第一控制裝置12 利用所取得的該多個感測參數,經由一第一運算模式來產生多個第一控制參數,並依據該多個第一控制參數來調控該多個受控裝置14。在該示例實施方式中,該第二控制裝置13亦利用所取得的該多個感測參數,經由一第二運算模式來產生多個第二控制參數,該多個第二控制參數可用於取代該多個第一控制參數,以調控該多個受控裝置14。在該示例實施方式中,該多個受控裝置14對該待測水體10進行水資源處理。在該示例實施方式中,該水資源處理可為包括生物活性污泥程序以及生物脫氮除磷程序等程序的水質處理。 Please refer to FIG. 1 , which is a schematic diagram of a water resource monitoring and treatment system 1 according to an exemplary embodiment of the present invention. The water resource monitoring and processing system 1 includes a plurality of sensing devices 11 , a first control device 12 , a second control device 13 and a plurality of controlled devices 14 . In this exemplary embodiment, the water resource monitoring and processing system 1 measures a water body 10 to be measured through the plurality of sensing devices 11 to obtain a plurality of sensing parameters. In this example embodiment, the first control device 12 Using the plurality of acquired sensing parameters, a plurality of first control parameters are generated through a first operation mode, and the plurality of controlled devices 14 are regulated according to the plurality of first control parameters. In this exemplary embodiment, the second control device 13 also uses the acquired sensing parameters to generate a plurality of second control parameters through a second operation mode, and the plurality of second control parameters can be used to replace The plurality of first control parameters are used to regulate the plurality of controlled devices 14 . In this example embodiment, the plurality of controlled devices 14 perform water resource treatment on the water body 10 to be tested. In this exemplary embodiment, the water treatment can be water treatment including biological activated sludge procedures and biological denitrification and phosphorus removal procedures.

在至少一示例實施方式中,該多個感測裝置11可各自針對該待測水體10進行感測,以各自取得該多個感測參數中的一個。在至少一示例實施方式中,該多個感測裝置11可包括混合液懸浮固體物(Mixed liquor suspended solids,MLSS)感測裝置、溶氧(Dissolved Oxygen,DO)感測裝置、酸鹼值(pH)感測裝置及氧化還原電位(Oxidation-Reduction Potential,ORP)感測裝置中的至少一個。在該示例實施方式中,該MLSS感測裝置用於對該待測水體10進行量測,以取得一MLSS參數。在該示例實施方式中,該DO感測裝置用於對該待測水體10進行量測,以取得一DO參數。在該示例實施方式中,該pH感測裝置用於對該待測水體10進行量測,以取得一pH參數。在該示例實施方式中,該ORP感測裝置用於對該待測水體10進行量測,以取得一ORP參數。在該示例實施方式中,該多個感測參數可包括該MLSS參數、該DO參數、該pH參數及該ORP參數中的至少一個。 In at least one example embodiment, the plurality of sensing devices 11 can each sense the water body 10 to be measured, so as to obtain one of the plurality of sensing parameters. In at least one example embodiment, the plurality of sensing devices 11 may include a mixed liquor suspended solids (MLSS) sensing device, a dissolved oxygen (Dissolved Oxygen, DO) sensing device, a pH value ( at least one of a pH) sensing device and an oxidation-reduction potential (Oxidation-Reduction Potential, ORP) sensing device. In this exemplary embodiment, the MLSS sensing device is used to measure the water body 10 to be measured to obtain an MLSS parameter. In this exemplary embodiment, the DO sensing device is used to measure the water body 10 to be measured to obtain a DO parameter. In this exemplary embodiment, the pH sensing device is used to measure the water body 10 to be measured to obtain a pH parameter. In this exemplary embodiment, the ORP sensing device is used to measure the water body 10 to be measured to obtain an ORP parameter. In the example embodiment, the plurality of sensed parameters may include at least one of the MLSS parameter, the DO parameter, the pH parameter, and the ORP parameter.

在至少一示例實施方式中,該第一控制裝置12利用所取得的該多個感測參數來產生該多個第一控制參數。在該示例實施方式中,該多個第一控制參數是該第一控制裝置12針對多個控制變量所運算出的多個數 值。在該示例實施方式中,該多個控制變量可包括汙泥迴流量、生物硝化/脫硝反應終點、曝氣量、分段進流量、硝化液內部迴流量及DO值。 In at least one example embodiment, the first control device 12 uses the acquired sensing parameters to generate the first control parameters. In this example embodiment, the plurality of first control parameters are a plurality of numbers calculated by the first control device 12 for a plurality of control variables value. In this example embodiment, the plurality of control variables may include sludge return flow, biological nitrification/denitrification reaction endpoint, aeration amount, staged inflow flow, nitrification liquid internal return flow, and DO value.

在至少一示例實施方式中,該第一控制裝置12可與該多個感測裝置11中的至少一個耦接,以取得該多個感測參數中的至少一個,並通過所取得的該至少一個感測參數,利用該第一運算模式來取得該多個第一控制參數中的一個。舉例來說,該第一控制裝置12可與該pH感測裝置與該ORP感測裝置耦接,以取得該待測水體10的該pH參數與該ORP參數,並通過該第一運算模式取得該分段進流量。 In at least one example embodiment, the first control device 12 can be coupled with at least one of the plurality of sensing devices 11 to obtain at least one of the plurality of sensing parameters, and obtain at least one of the plurality of sensing parameters through the obtained at least one A sensing parameter, and one of the plurality of first control parameters is obtained by using the first operation mode. For example, the first control device 12 can be coupled with the pH sensing device and the ORP sensing device to obtain the pH parameter and the ORP parameter of the water body 10 to be measured, and obtain through the first operation mode The segment inflow.

在至少一示例實施方式中,該第一控制裝置12可與該多個感測裝置11透過有線的方式直接連接。在至少一示例實施方式中,若該多個感測裝置11具有無線傳輸的功能,則該第一控制裝置12可與該多個感測裝置11透過無線的方式進行連接。在至少一示例實施方式中,該第一控制裝置12可與部分的該多個感測裝置11透過有線的方式直接連接,並與其他的該多個感測裝置11透過無線的方式進行連接。 In at least one example embodiment, the first control device 12 can be directly connected to the plurality of sensing devices 11 through a wire. In at least one example embodiment, if the plurality of sensing devices 11 have the function of wireless transmission, the first control device 12 can be connected with the plurality of sensing devices 11 in a wireless manner. In at least one example embodiment, the first control device 12 can be directly connected to a part of the plurality of sensing devices 11 through a wired way, and can be connected to the other plurality of sensing devices 11 through a wireless way.

在至少一示例實施方式中,該第一控制裝置12可為一電子裝置。該電子裝置可為一單一運算裝置、一邊緣運算系統或是單一運算裝置與邊緣運算系統的一組合。在該示例實施方式中,該單一運算裝置可取得所有的該多個感測參數,並利用該第一運算模式來取得所有的該多個第一控制參數。在該示例實施方式中,若該單一運算裝置僅調控部分的該多個控制變量,而不調控其他的該多個控制變量時,該單一運算裝置可僅取得對應該部分控制變量的該多個感測參數的一部分,並利用該第一運算模式來取得部分的該多個第一控制參數。 In at least one example embodiment, the first control device 12 can be an electronic device. The electronic device can be a single computing device, an edge computing system, or a combination of a single computing device and an edge computing system. In this example embodiment, the single computing device can obtain all the sensing parameters, and use the first computing mode to obtain all the first control parameters. In the exemplary embodiment, if the single computing device only regulates a part of the plurality of control variables and does not regulate the other plurality of control variables, the single computing device may only obtain the plurality of control variables corresponding to the part of the control variables A part of the parameters is sensed, and the first operation mode is used to obtain part of the plurality of first control parameters.

在至少一示例實施方式中,該邊緣運算系統可包括多個邊緣運算單元。在該示例實施方式中,該多個邊緣運算單元可各自用於運算該第 一控制參數中的至少一個。因此,該多個邊緣運算單元可各自取得對應於自身所運算的該至少一個第一控制參數的該多個感測參數的一部分,並利用該第一運算模式來各自取得自身運算的第一控制參數。舉例來說,若特定的一個邊緣運算單元可用於運算該分段進流量以及該汙泥迴流量時,該特定邊緣運算單元可與該pH感測裝置、該ORP感測裝置及該MLSS感測裝置耦接,以取得該待測水體10的該pH參數、該ORP參數及該MLSS參數,並通過該第一運算模式取得該分段進流量以及該汙泥迴流量,並藉由該分段進流量以及該汙泥迴流量調控對應的該多個受控裝置14中的至少一個。 In at least one example embodiment, the edge computing system may include a plurality of edge computing units. In this example embodiment, the plurality of edge operation units may each be used to operate the first at least one of a control parameter. Therefore, the plurality of edge operation units can each obtain a part of the plurality of sensing parameters corresponding to the at least one first control parameter calculated by themselves, and use the first operation mode to obtain the first control calculated by themselves. parameter. For example, if a specific edge computing unit can be used to calculate the segment inflow and the sludge return flow, the specific edge computing unit can be used with the pH sensing device, the ORP sensing device and the MLSS sensing device. The device is coupled to obtain the pH parameter, the ORP parameter and the MLSS parameter of the water body 10 to be tested, and obtain the segment inflow and the sludge return volume through the first operation mode, and use the segment At least one of the plurality of controlled devices 14 corresponding to the regulation of the inflow volume and the sludge return volume.

在至少一示例實施方式中,該第一控制裝置12可為該運算裝置與該邊緣運算系統的該組合。該單一運算裝置可取得所有的該多個感測參數,並提供給該邊緣運算系統進行後續運算。 In at least one example embodiment, the first control device 12 may be the combination of the computing device and the edge computing system. The single computing device can obtain all the plurality of sensing parameters and provide the edge computing system for subsequent computing.

在至少一示例實施方式中,該第一控制裝置12所使用的該第一運算模式可為模糊邏輯控制模式。在該示例實施方式中,當該第一控制裝置12使用該模糊邏輯控制模式運算不同的該多個第一控制參數時,該第一控制裝置12會在該模糊邏輯控制模式下使用不同的第一運算流程。因此,每一個該多個第一控制參數會各自對應於該多個第一運算流程中的一個。 In at least one example embodiment, the first operation mode used by the first control device 12 may be a fuzzy logic control mode. In this example embodiment, when the first control device 12 uses the fuzzy logic control mode to calculate the different first control parameters, the first control device 12 uses different first control parameters in the fuzzy logic control mode an operation process. Therefore, each of the plurality of first control parameters corresponds to one of the plurality of first operation processes.

在至少一示例實施方式中,該第一控制裝置12提供一視覺化介面。該視覺化介面用於向使用者提供人機交互介面,該使用者可以在藉由手機或電腦等其他電子裝置連接到該第一控制裝置12,以取得該視覺化介面。 In at least one example embodiment, the first control device 12 provides a visual interface. The visual interface is used to provide a human-computer interaction interface to the user, and the user can obtain the visual interface by connecting to the first control device 12 through other electronic devices such as a mobile phone or a computer.

在至少一示例實施方式中,該第二控制裝置13可與該第一控制裝置12透過無線的方式進行連接,以藉由該第一控制裝置12取得所需的該多個感測參數。在至少一示例實施方式中,若該多個感測裝置11具有無線傳輸的功能,則該第二控制裝置13可與該多個感測裝置11透過無線的方式 進行連接,以直接取得該多個感測參數。在至少一示例實施方式中,該第二控制裝置13可與部分的該多個感測裝置11透過無線的方式進行連接,以直接取得該多個感測參數中的一部分,並從該第一控制裝置12取得其他的該多個感測參數。在至少一示例實施方式中,該第一控制裝置12與該第二控制裝置13可根據預設協議進行資料傳輸。在該示例實施方式中,該預設協議包括,但不限於以下任意一種:HTTP協定(Hyper Text Transfer Protocol,超文字傳輸協定)、HTTPS協議(Hyper Text Transfer Protocol over Secure Socket Layer,以安全為目標的HTTP協定)等。 In at least one example embodiment, the second control device 13 can be wirelessly connected with the first control device 12 to obtain the required sensing parameters through the first control device 12 . In at least one example embodiment, if the plurality of sensing devices 11 have the function of wireless transmission, the second control device 13 can communicate with the plurality of sensing devices 11 in a wireless manner A connection is made to directly obtain the plurality of sensing parameters. In at least one example embodiment, the second control device 13 can be wirelessly connected with a part of the plurality of sensing devices 11 to directly obtain a part of the plurality of sensing parameters, and obtain a part of the plurality of sensing parameters from the first The control device 12 obtains the other plurality of sensing parameters. In at least one example embodiment, the first control device 12 and the second control device 13 can perform data transmission according to a preset protocol. In this example implementation, the preset protocol includes, but is not limited to, any one of the following: HTTP protocol (Hyper Text Transfer Protocol, hypertext transfer protocol), HTTPS protocol (Hyper Text Transfer Protocol over Secure Socket Layer, with security as the goal) HTTP protocol), etc.

在至少一示例實施方式中,該第二控制裝置13可為一雲端運算系統。在該示例實施方式中,該雲端運算系統可取得所有的該多個感測參數,並利用該第二運算模式來取得所有的該多個第二控制參數。在該示例實施方式中,若該第二控制裝置13僅調控部分的該多個控制變數,而不調控其他的該多個控制變數時,該第二控制裝置13可僅取得對應該部分控制變數的該多個感測參數的一部分,並利用該第二運算模式來取得部分的該多個第二控制參數。該示例實施方式中,該多個第二控制參數是該第二控制裝置13針對該多個控制變量所運算出的多個數值。 In at least one example embodiment, the second control device 13 can be a cloud computing system. In this example embodiment, the cloud computing system can obtain all the plurality of sensing parameters, and use the second computing mode to obtain all the plurality of second control parameters. In this exemplary embodiment, if the second control device 13 only regulates a part of the plurality of control variables and does not regulate the other plurality of control variables, the second control device 13 can only obtain the corresponding part of the control variables part of the plurality of sensing parameters, and using the second operation mode to obtain part of the plurality of second control parameters. In this exemplary embodiment, the plurality of second control parameters are a plurality of values calculated by the second control device 13 for the plurality of control variables.

在至少一示例實施方式中,該雲端運算系統可包括多個雲端運算單元。在該示例實施方式中,該多個雲端運算單元可各自用於運算該第二控制參數中的至少一個。因此,該多個雲端運算單元可各自取得對應於自身所運算的該至少一個第二控制參數的該多個感測參數的一部分,並利用該第二運算模式來各自取得自身運算的第二控制參數。 In at least one example embodiment, the cloud computing system may include a plurality of cloud computing units. In this example embodiment, each of the plurality of cloud computing units may be used for computing at least one of the second control parameters. Therefore, the plurality of cloud computing units can each obtain a part of the plurality of sensing parameters corresponding to the at least one second control parameter calculated by themselves, and use the second operation mode to obtain the second control calculated by themselves. parameter.

在至少一示例實施方式中,該第二控制裝置13所使用的該第二運算模式可為透過人工智慧的模式所進行建模與預測。在該示例實施方式中,該第二運算模式可透過類神經網路(Artificial Neural Network,ANN) 架構等各種人工智慧的架構建模。在該示例實施方式中,該第二控制裝置13透過該ANN架構可建立一控制決策模型與一成效評估模型。 In at least one example embodiment, the second operation mode used by the second control device 13 can be modeled and predicted through a mode of artificial intelligence. In this example embodiment, the second operation mode can be implemented through an Artificial Neural Network (ANN) Architecture and other artificial intelligence architecture modeling. In the exemplary embodiment, the second control device 13 can establish a control decision model and an effect evaluation model through the ANN architecture.

在至少一示例實施方式中,該人工智慧建模架構可包括ANN、單層神經網路(Single-Layer Neural Network)、前饋神經網路(Feedforward Neural Network,FNN)、反饋神經網路(Feedback Neural Network)、自組織神經網路(Self-organizing Neural Network)、結構自適應神經網路(Structural Self-adaptive Neural Network)、對抗神經網路(Generative Adversarial Neural Network)以及隨機神經網路(Stochastic Neural Network)。在該示例實施方式中,該FNN可包括單層FNN、多層FNN以及線性神經網路。在該示例實施方式中,該單層FNN可包括單層感知器。在該示例實施方式中,該多層FNN可包括徑向基函數(Radial Basis Function,RBF)神經網路、反向傳播(Back Propagation,BP)神經網路、全連接神經網路(Fully-Connected Neural Network)以及卷積神經網路(Convolutional Neural Network,CNN)。在該示例實施方式中,該RBF神經網路可包括廣義回歸神經網路(General Regression Neural Network,GRNN)以及概率神經網路(Probabilistic Neural Network,PNN)。在該示例實施方式中,該線性神經網路可包括Madline神經網路。在該示例實施方式中,該反饋神經網路可包括遞歸神經網路(Recurrent Neural Network,RNN)、盒中腦模型(Brain-State-in-a-Box,BSB)以及霍普菲爾德神經網路(Hopfield Neural Network)。在該示例實施方式中,該RNN可包括Elman神經網路。在該示例實施方式中,該霍普菲爾德神經網路可包括離散Hopfield神經網路以及連續Hopfield神經網路。在該示例實施方式中,該自組織神經網路可包括競爭神經網路(Competitive Neural Network)、自適應諧振理論(Adaptive Resonance Theory,ART)神經網路以及自組織映射(Self-Organizing Map,SOM)神經網路。在該示例實 施方式中,該結構自適應神經網路可包括級聯相關網路(Cascade-Correlation Network)。在該示例實施方式中,該隨機神經網路可包括玻爾茲曼機(Boltzmann Machine)。 In at least one example embodiment, the artificial intelligence modeling architecture may include an ANN, a single-layer neural network (Single-Layer Neural Network), a feedforward neural network (FNN), a feedback neural network (Feedback) Neural Network), Self-organizing Neural Network, Structural Self-adaptive Neural Network, Generative Adversarial Neural Network and Stochastic Neural Network Network). In this example embodiment, the FNN may include a single-layer FNN, a multi-layer FNN, and a linear neural network. In this example embodiment, the single-layer FNN may comprise a single-layer perceptron. In this example embodiment, the multi-layer FNN may include a Radial Basis Function (RBF) neural network, a Back Propagation (BP) neural network, a fully-connected neural network (Fully-Connected Neural Network) Network) and Convolutional Neural Network (CNN). In this example embodiment, the RBF neural network may include a General Regression Neural Network (GRNN) and a Probabilistic Neural Network (PNN). In this example embodiment, the linear neural network may comprise a Madline neural network. In this example embodiment, the feedback neural network may include Recurrent Neural Network (RNN), Brain-State-in-a-Box (BSB), and Hopfield Neural Network (Hopfield Neural Network). In this example embodiment, the RNN may comprise an Elman neural network. In this example embodiment, the Hopfield neural network may include a discrete Hopfield neural network as well as a continuous Hopfield neural network. In this example embodiment, the self-organizing neural network may include a Competitive Neural Network (Competitive Neural Network), an Adaptive Resonance Theory (ART) neural network, and a Self-Organizing Map (SOM) ) neural network. In this example In an embodiment, the structure adaptive neural network may include a Cascade-Correlation Network. In this example embodiment, the stochastic neural network may comprise a Boltzmann Machine.

在至少一示例實施方式中,該第二控制裝置13可藉由該ANN架構所建立的該控制決策模型,以使用所取得該多個感測參數來預測應該被該多個控制變量使用的該多個第二控制參數。在該示例實施方式中,該多個第一控制參數中的一個以及該多個第二控制參數中的一個會共同對應到該多個控制變量中的一個,因此該多個第二控制參數可用於取代該多個第一控制參數,來調控該多個受控裝置14。 In at least one example embodiment, the second control device 13 can use the acquired sensing parameters to predict the control variables that should be used by the control variables through the control decision model established by the ANN architecture. a plurality of second control parameters. In this example embodiment, one of the plurality of first control parameters and one of the plurality of second control parameters may collectively correspond to one of the plurality of control variables, so the plurality of second control parameters are available To replace the plurality of first control parameters, the plurality of controlled devices 14 are regulated.

在至少一示例實施方式中,該第二控制裝置13可藉由該ANN架構所建立的該成效評估模型,以使用所預測的該多個第二控制參數,來預測該待測水體10經該多個第二控制參數調控後的一水質預測參數。在該示例實施方式中,該第二控制裝置13可透過該水質預測參數,判斷是否需要重新調整該多個第二受控參數。舉例來說,若該水質預測參數不在一參數範圍內,即代表該受控裝置14經該多個第二受控參數調控一預定時間後,該待測水體10的一實際水質參數可能超出該參數範圍內,因此該第二控制裝置13可重新透過該第二運算模式來取得新的該多個第二受控參數,以避免該預定時間後,該待測水體10的該實際水質參數超過該參數範圍。另外,若該水質預測參數被涵蓋在該參數範圍內,即代表該受控裝置14經該多個第二受控參數調控該預定時間後,該待測水體10的該實際水質參數仍維持在該參數範圍內。 In at least one example embodiment, the second control device 13 can use the predicted second control parameters to predict the water body 10 to be tested through the performance evaluation model established by the ANN framework. A water quality prediction parameter adjusted by a plurality of second control parameters. In this exemplary embodiment, the second control device 13 can determine whether the plurality of second controlled parameters need to be re-adjusted through the water quality prediction parameter. For example, if the predicted water quality parameter is not within a parameter range, it means that an actual water quality parameter of the water body 10 to be measured may exceed the predetermined time after the controlled device 14 is adjusted by the plurality of second controlled parameters for a predetermined period of time. Therefore, the second control device 13 can obtain the new plurality of second controlled parameters through the second operation mode again, so as to prevent the actual water quality parameter of the water body 10 to be measured from exceeding the predetermined time after the predetermined time. The parameter range. In addition, if the water quality prediction parameter is included in the parameter range, it means that the actual water quality parameter of the water body 10 to be measured is still maintained at the predetermined time after the controlled device 14 is adjusted by the plurality of second controlled parameters for the predetermined time. within this parameter range.

在至少一示例實施方式中,該多個受控裝置14可各自針對該待測水體10提供不同的水資源處理。在至少一示例實施方式中,該多個受控 裝置14可包括變頻器、鼓風機、電動閥、內部迴流泵、汙泥迴流泵、推流器及進流水的閘閥門等不同的水資源處理裝置。 In at least one example embodiment, the plurality of controlled devices 14 can each provide different water resources treatment for the water body 10 to be tested. In at least one example embodiment, the plurality of controlled The device 14 may include various water treatment devices such as frequency converters, blowers, electric valves, internal return pumps, sludge return pumps, flow propellers, and gate valves for inflow water.

在至少一示例實施方式中,該多個受控裝置14會依據各自的操作參數進行運作。在該示例實施方式中,該多個操作參數是各自基於該多個第一控制參數中的至少一個所計算出來。在該示例實施方式中,該多個操作參數是各自基於該多個第二控制參數中的至少一個所計算出來。在該示例實施方式中,該多個受控裝置14的該多個操作參數可包括該變頻器的運作頻率、該鼓風機的運轉流量、該內部迴流泵的運轉流量、該汙泥迴流泵的運轉流量、該推流器的運作頻率以及該閘閥門的運轉流量及孔口開度。在該示例實施方式中,當該變頻器與該鼓風機連接時,依據該多個第一控制參數或該多個第二控制參數可藉由調控該變頻器來調控該鼓風機的運作頻率。在該示例實施方式中,當該變頻器與該內部迴流泵連接時,依據該多個第一控制參數或該多個第二控制參數可藉由調控該變頻器來調控該內部迴流泵的運作頻率。在該示例實施方式中,當該變頻器與該汙泥迴流泵連接時,依據該多個第一控制參數或該多個第二控制參數可藉由調控該變頻器來調控該汙泥迴流泵的運作頻率。 In at least one example embodiment, the plurality of controlled devices 14 operate according to respective operating parameters. In the example embodiment, the plurality of operating parameters are each calculated based on at least one of the plurality of first control parameters. In the example embodiment, the plurality of operating parameters are each calculated based on at least one of the plurality of second control parameters. In the example embodiment, the plurality of operating parameters of the plurality of controlled devices 14 may include the operating frequency of the frequency converter, the operating flow rate of the blower, the operating flow rate of the internal return pump, the operation of the sludge return pump flow rate, the operating frequency of the flow propeller, and the operating flow rate and orifice opening of the gate valve. In the exemplary embodiment, when the frequency converter is connected to the blower, the operation frequency of the blower can be regulated by regulating the frequency converter according to the plurality of first control parameters or the plurality of second control parameters. In the exemplary embodiment, when the frequency converter is connected to the internal return pump, the operation of the internal return pump can be regulated by regulating the frequency converter according to the plurality of first control parameters or the plurality of second control parameters frequency. In this example embodiment, when the frequency converter is connected to the sludge return pump, the sludge return pump can be regulated by regulating the frequency converter according to the plurality of first control parameters or the plurality of second control parameters operating frequency.

在至少一示例實施方式中,該多個受控裝置14可與該第一控制裝置12耦接,以接收該第一控制裝置12依據該多個第一控制參數所產生的該多個操作參數進行運作。在至少一示例實施方式中,該多個受控裝置14可與該第一控制裝置12耦接,以接收該第一控制裝置12的該多個第一控制參數,並進一步由該多個受控裝置14自行產生該多個操作參數來進行運作。在至少一示例實施方式中,該多個受控裝置14與該第一控制裝置12之間的耦接,可透過有線或無線的方式進行。 In at least one example embodiment, the plurality of controlled devices 14 can be coupled to the first control device 12 to receive the plurality of operating parameters generated by the first control device 12 according to the plurality of first control parameters to operate. In at least one example embodiment, the plurality of controlled devices 14 may be coupled with the first control device 12 to receive the plurality of first control parameters of the first control device 12 and further be controlled by the plurality of received The control device 14 generates the plurality of operation parameters by itself to operate. In at least one example embodiment, the coupling between the plurality of controlled devices 14 and the first control device 12 can be performed in a wired or wireless manner.

在至少一示例實施方式中,該多個受控裝置14可與該第二控制裝置13耦接,以接收該第二控制裝置13依據該多個第二控制參數所產生的該多個操作參數來運作。在至少一示例實施方式中,該多個受控裝置14可與該第二控制裝置13耦接,以接收該第二控制裝置13的該多個第二控制參數,並進一步由該多個受控裝置14自行產生該多個操作參數來運作。在至少一示例實施方式中,該多個受控裝置14與該第二控制裝置13之間的耦接是無線的方式進行。 In at least one example embodiment, the plurality of controlled devices 14 can be coupled with the second control device 13 to receive the plurality of operating parameters generated by the second control device 13 according to the plurality of second control parameters to operate. In at least one example embodiment, the plurality of controlled devices 14 may be coupled with the second control device 13 to receive the plurality of second control parameters of the second control device 13, and further be controlled by the plurality of received The control device 14 generates the plurality of operating parameters by itself to operate. In at least one example embodiment, the coupling between the plurality of controlled devices 14 and the second control device 13 is performed wirelessly.

在至少一示例實施方式中,該多個受控裝置14可藉由該第一控制裝置12來與該第二控制裝置13耦接。在一示例實施方式中,該第二控制裝置13依據該多個第二控制參數來產生該多個操作參數,並將該多個操作參數提供給該第一控制裝置12,再由該第一控制裝置12提供給該多個受控裝置14對應的操作參數。在另一示例實施方式中,該第二控制裝置13提供該多個第二控制參數給該第一控制裝置12,並由該第一控制裝置12依據該多個第二控制參數來產生該多個操作參數,再提供給該多個受控裝置14對應的操作參數。在又一示例實施方式中,該第二控制裝置13提供該多個第二控制參數給該第一控制裝置12,並由該第一控制裝置12對應該多個受控裝置14提供所需要的該多個第二控制參數中的至少一個,再由該多個受控裝置14依據所取得的該多個第二控制參數中的至少一個來產生該多個操作參數。 In at least one example embodiment, the plurality of controlled devices 14 may be coupled to the second control device 13 via the first control device 12 . In an exemplary embodiment, the second control device 13 generates the plurality of operating parameters according to the plurality of second control parameters, provides the plurality of operating parameters to the first control device 12, and then uses the first control device 12 to generate the plurality of operating parameters. The control device 12 provides the plurality of controlled devices 14 with corresponding operating parameters. In another exemplary embodiment, the second control device 13 provides the plurality of second control parameters to the first control device 12, and the first control device 12 generates the plurality of second control parameters according to the plurality of second control parameters operating parameters, and then provide the operating parameters corresponding to the plurality of controlled devices 14 . In yet another exemplary embodiment, the second control device 13 provides the plurality of second control parameters to the first control device 12 , and the first control device 12 provides the required control parameters corresponding to the plurality of controlled devices 14 At least one of the plurality of second control parameters is then generated by the plurality of controlled devices 14 according to at least one of the obtained plurality of second control parameters.

請參照圖2,圖2繪示根據本發明的示例實施方式,具有參數監控暨水資源處理模組的該第一控制裝置12之示意圖。該第一控制裝置12具有至少一個處理器221、至少一個儲存器222、至少一個訊號接收器223以及至少一個訊號傳送器224。在該示例實施方式中,該至少一個訊號接收器223可與該多個感測裝置11耦接,以接收該多個感測參數。在該示例實 施方式中,該至少一個訊號傳送器224可與該第二控制裝置13耦接,以傳送該多個感測參數。在該示例實施方式中,該至少一個訊號接收器223可與該第二控制裝置13耦接,以接收該多個第二控制參數或該多個操作參數。在該示例實施方式中,該至少一個訊號傳送器224可與該多個受控裝置14耦接,以傳送該多個第一控制參數、該多個第二控制參數或該多個操作參數。 Please refer to FIG. 2 . FIG. 2 shows a schematic diagram of the first control device 12 having a parameter monitoring and water resource processing module according to an exemplary embodiment of the present invention. The first control device 12 has at least one processor 221 , at least one storage 222 , at least one signal receiver 223 and at least one signal transmitter 224 . In this example embodiment, the at least one signal receiver 223 may be coupled with the plurality of sensing devices 11 to receive the plurality of sensing parameters. In this example In an embodiment, the at least one signal transmitter 224 can be coupled with the second control device 13 to transmit the plurality of sensing parameters. In this example embodiment, the at least one signal receiver 223 may be coupled to the second control device 13 to receive the plurality of second control parameters or the plurality of operating parameters. In this example embodiment, the at least one signal transmitter 224 may be coupled with the plurality of controlled devices 14 to transmit the plurality of first control parameters, the plurality of second control parameters or the plurality of operating parameters.

在該示例實施方式中,該至少一個處理器221可調用該至少一個儲存器222中存儲的程式碼以執行相關的功能。例如,圖2中的參數監控暨水資源處理模組2222是存儲在該至少一個記憶體222中的程式碼,並由該至少一個處理器221所執行。 In this example embodiment, the at least one processor 221 may invoke the program code stored in the at least one memory 222 to perform related functions. For example, the parameter monitoring and water resource processing module 2222 in FIG. 2 is a program code stored in the at least one memory 222 and executed by the at least one processor 221 .

在該示例實施方式中,該至少一個儲存器102可為儲存裝置,該儲存裝置用於儲存程式碼。該至少一個儲存器102中可以包括該第一控制裝置12的操作系統2221以及該參數監控暨水資源處理模組2222。在該示例實施方式中,該操作系統2221是管理和控制該第一控制裝置12的硬體和軟體資源的程式,並支援該參數監控暨水資源處理模組2222以及其它軟體和/或程式的運行。 In the example embodiment, the at least one storage 102 may be a storage device for storing code. The at least one storage 102 may include the operating system 2221 of the first control device 12 and the parameter monitoring and water resource processing module 2222 . In this example embodiment, the operating system 2221 is a program that manages and controls the hardware and software resources of the first control device 12 and supports the parameter monitoring and water treatment module 2222 and other software and/or programs. run.

圖3示出了本發明示例具體實施方法的參數監控暨水資源處理方法的流程圖。因為執行示例性方法的方式多種多樣,所以僅以舉例的方式提供該方法。可使用例如:圖1和圖2所示的系統以及裝置來執行如下所述的方法,並且參考這些附圖的各種元件來解釋示例性方法。圖3示出的每個框表示在示例性方法中執行的一個或多個程式、方法或子程式。此外,框的順序僅為示例性的並且可改變。在不脫離本發明的情況下,可添加附加框或可使用更少的框。圖3所示之參數以ORP參數為例,因此圖3亦可視為本發明示例具體實施方法的ORP參數監控暨水資源處理方法的流程圖。 FIG. 3 shows a flow chart of the parameter monitoring and water resource processing method of the exemplary specific implementation method of the present invention. Because of the variety of ways in which the exemplary method can be performed, the method is provided by way of example only. The methods described below may be performed using, for example, the systems and apparatus shown in FIGS. 1 and 2, and exemplary methods are explained with reference to various elements of these figures. Each block shown in FIG. 3 represents one or more routines, methods, or subroutines performed in the exemplary method. Furthermore, the order of the blocks is exemplary only and may vary. Additional blocks may be added or fewer blocks may be used without departing from the invention. The parameters shown in FIG. 3 are taken as an example of ORP parameters, so FIG. 3 can also be regarded as a flowchart of the ORP parameter monitoring and water resource processing method of the exemplary embodiment of the present invention.

在框S310處,該第一控制裝置12取得至少一個ORP目標值。 At block S310, the first control device 12 obtains at least one ORP target value.

在至少一示例實施方式中,該第一控制裝置12通過一預設方式取得該至少一個ORP目標值。在該示例實施方式中,該預設方式可透過該第一控制裝置12直接從內部的該儲存器222中讀取該至少一個ORP目標值。在另一示例實施方式中,該預設方式可透過該第一控制裝置12藉由一ORP目標值判斷方法來產生該ORP目標值。 In at least one example embodiment, the first control device 12 obtains the at least one ORP target value in a predetermined manner. In the exemplary embodiment, the preset mode can directly read the at least one ORP target value from the internal storage 222 through the first control device 12 . In another exemplary embodiment, the predetermined manner may generate the ORP target value through the first control device 12 through an ORP target value determination method.

在至少一示例實施方式中,該至少一個ORP目標值可僅包含單一ORP目標值。在至少一示例實施方式中,該至少一個ORP目標值可包含兩個以上的ORP目標值。在該示例實施方式中,該至少一個ORP目標值的數量為1時,可將ORP變數的數值劃分成大於或等於該ORP目標值的一第一ORP數值區域以及小於該ORP目標值的一第二ORP數值區域。在該示例實施方式中,該至少一個ORP目標值的數量為2時,可將該ORP變數的數值劃分成大於或等於一第一ORP目標值的一第一數值區域、小於該第一ORP目標值且大於一第二ORP目標值的一第二數值區域以及小於或等於該第二ORP目標值的的一第三數值區域。在該示例實施方式中,該第一ORP目標值大於該第二ORP目標值。 In at least one example embodiment, the at least one ORP target value may include only a single ORP target value. In at least one example embodiment, the at least one ORP target value may include more than two ORP target values. In this example embodiment, when the number of the at least one ORP target value is 1, the value of the ORP variable may be divided into a first ORP value region greater than or equal to the ORP target value and a first ORP value region less than the ORP target value Two ORP numerical fields. In this example embodiment, when the number of the at least one ORP target value is 2, the value of the ORP variable can be divided into a first value region greater than or equal to a first ORP target value, less than the first ORP target value A second value region with a value greater than a second ORP target value and a third value region less than or equal to the second ORP target value. In the example embodiment, the first ORP target value is greater than the second ORP target value.

在框S320處,該第一控制裝置12接收來自一ORP感測裝置在一第一感測時刻所感測到的一第一ORP參數。 At block S320, the first control device 12 receives a first ORP parameter sensed from an ORP sensing device at a first sensing moment.

在至少一示例實施方式中,該多個感測裝置11包括該ORP感測裝置。該ORP感測裝置會置於該待測水體10中,以持續感測該待測水體10的ORP參數。在該示例實施方式中,該ORP感測裝置可定期感測該待測水體10的該ORP參數,亦可連續性的感測該待測水體10的該ORP參數。在該示例實施方式中,若該ORP感測裝置為定期感測該待測水體10的該ORP參數,則該ORP感測裝置具有一感測週期。在該示例實施方式中,若該ORP 感測裝置為定期上傳該待測水體10的該ORP參數給該第一控制裝置12,則該第一控制裝置12具有一接收週期。在該示例實施方式中,該第一控制裝置12以該ORP變數的數值進行後續處理時,可具有一處理週期。在至少一示例實施方式中,該第一控制裝置12可依據該感測週期、該接收週期以及該處理週期中的至少一個,產生該ORP變數的一控制週期△t。 In at least one example embodiment, the plurality of sensing devices 11 comprise the ORP sensing device. The ORP sensing device is placed in the water body 10 to be tested to continuously sense the ORP parameters of the water body 10 to be tested. In this exemplary embodiment, the ORP sensing device can periodically sense the ORP parameter of the water body 10 to be tested, and can also continuously sense the ORP parameter of the water body 10 to be tested. In this exemplary embodiment, if the ORP sensing device periodically senses the ORP parameter of the water body 10 to be tested, the ORP sensing device has a sensing period. In this example embodiment, if the ORP The sensing device regularly uploads the ORP parameters of the water body 10 to be measured to the first control device 12, and the first control device 12 has a receiving cycle. In this exemplary embodiment, when the first control device 12 performs subsequent processing with the value of the ORP variable, it may have a processing cycle. In at least one example embodiment, the first control device 12 may generate a control period Δt of the ORP variable according to at least one of the sensing period, the receiving period and the processing period.

在框S330處,該第一控制裝置12將該第一ORP參數與該至少一個ORP目標值進行比較,以產生一第一比較結果。 At block S330, the first control device 12 compares the first ORP parameter with the at least one ORP target value to generate a first comparison result.

在至少一示例實施方式中,當該至少一個ORP目標值的數量為1時,該第一比較結果代表該第一ORP參數是位在該第一數值區域和該第二數值區域中的其中一個。在該示例實施方式中,該第一比較結果為該第一ORP參數是否大於或等於該至少一個ORP目標值。在至少一示例實施方式中,當該至少一個ORP目標值的數量為2時,該第一比較結果代表該第一ORP參數是位在該第一數值區域、該第二數值區域和該第三數值區域中的其中一個。在該示例實施方式中,該第一比較結果為該第一ORP參數大於或等於該第一ORP目標值、該第一ORP參數小於該第一ORP目標值且大於或等於該第二ORP目標值或該第一ORP參數小於該第二ORP目標值。 In at least one example embodiment, when the number of the at least one ORP target value is 1, the first comparison result represents that the first ORP parameter is located in one of the first value field and the second value field . In this example embodiment, the first comparison result is whether the first ORP parameter is greater than or equal to the at least one ORP target value. In at least one example embodiment, when the number of the at least one ORP target value is 2, the first comparison result represents that the first ORP parameter is located in the first value field, the second value field and the third value field one of the numeric fields. In this example embodiment, the first comparison result is that the first ORP parameter is greater than or equal to the first ORP target value, the first ORP parameter is less than the first ORP target value and greater than or equal to the second ORP target value Or the first ORP parameter is less than the second ORP target value.

在框S340處,該第一控制裝置12依據該第一比較結果產生一控制參數。 At block S340, the first control device 12 generates a control parameter according to the first comparison result.

在至少一示例實施方式中,該第一控制裝置12可運算多個控制變量,不同控制變量在不同時間點會有不同的數值。在一示例實施方式中,該第一控制裝置12可依據該多個受控裝置14的運作狀況,來計算該多個受控裝置14在該第一感測時刻的一初始參數,並依據該初始參數以及該第一比較結果來確定該控制參數。 In at least one example embodiment, the first control device 12 can operate a plurality of control variables, and different control variables have different values at different time points. In an exemplary embodiment, the first control device 12 can calculate an initial parameter of the plurality of controlled devices 14 at the first sensing time according to the operating conditions of the plurality of controlled devices 14, and according to the The initial parameters and the first comparison result determine the control parameters.

在一示例實施方式中,該第一控制裝置12可直接依據該第一比較結果產生該控制參數。在另一示例實施方式中,該第一控制裝置12可另外接收來自該ORP感測裝置在一第二感測時刻對該待測水體所感測的一第二ORP參數。在該示例實施方式中,該第二感測時刻早於或晚於該一感測時刻,且該第二感測時刻與該第一感測時刻的時間差可等於n×△t。在該示例實施方式中,n為正整數。在該示例實施方式中,該第一控制裝置12可將該第一ORP參數與該第二ORP參數進行比較產生第二比較結果,並依據該第一比較結果與該第二比較結果中的至少一個,來產生該控制參數。 In an exemplary embodiment, the first control device 12 may directly generate the control parameter according to the first comparison result. In another exemplary embodiment, the first control device 12 may additionally receive a second ORP parameter sensed by the ORP sensing device on the water body to be measured at a second sensing time. In this example embodiment, the second sensing time is earlier or later than the first sensing time, and the time difference between the second sensing time and the first sensing time may be equal to n×Δt. In this example embodiment, n is a positive integer. In this example embodiment, the first control device 12 may compare the first ORP parameter with the second ORP parameter to generate a second comparison result, and according to at least one of the first comparison result and the second comparison result A, to generate the control parameter.

在一示例實施方式中,該第一控制裝置12可先依據該第一比較結果,來決定如何比較該第一ORP參數與該第二ORP參數。在該示例實施方式中,該第二感測時刻晚於該第一感測時刻。在該示例實施方式中,當該第一ORP參數位於大於或等於該ORP目標值的該第一ORP數值區域時,該第一控制裝置12可確認該第二ORP參數是否大於或等於該第一ORP參數。若該第二ORP參數大於或等於該第一ORP參數時,該第一控制裝置12可依據該至少一個ORP目標值來產生一調控係數Kp,以依據該初始參數與該調控係數Kp產生該控制參數。在該示例實施方式中,該控制參數可等於該初始參數與該調控係數Kp的乘積。若該第二ORP參數小於該第一ORP參數時,該第一控制裝置12可設置該調控係數Kp等於1,則該控制參數可等於該初始參數。在該示例實施方式中,當該第一ORP參數位於小於該ORP目標值的該第二ORP數值區域時,該第一控制裝置12可確認該第二ORP參數是否小於該第一ORP參數。若該第二ORP參數小於該第一ORP參數時,該第一控制裝置12可依據該至少一個ORP目標值來產生該調控係數Kp,以依據該初始參數與該調控係數Kp產生該控制參數。若該第二ORP 參數大於或等於該第一ORP參數時,該第一控制裝置12可設置該調控係數Kp等於1,則該控制參數可等於該初始參數。 In an exemplary embodiment, the first control device 12 may first determine how to compare the first ORP parameter and the second ORP parameter according to the first comparison result. In this example embodiment, the second sensing time is later than the first sensing time. In the example embodiment, when the first ORP parameter is located in the first ORP value region greater than or equal to the ORP target value, the first control device 12 can confirm whether the second ORP parameter is greater than or equal to the first ORP value ORP parameters. If the second ORP parameter is greater than or equal to the first ORP parameter, the first control device 12 may generate a control coefficient Kp according to the at least one ORP target value, so as to generate the control according to the initial parameter and the control coefficient Kp parameter. In this example embodiment, the control parameter may be equal to the product of the initial parameter and the control coefficient Kp. If the second ORP parameter is smaller than the first ORP parameter, the first control device 12 may set the control coefficient Kp equal to 1, and the control parameter may be equal to the initial parameter. In this example embodiment, when the first ORP parameter is located in the second ORP value region smaller than the ORP target value, the first control device 12 may confirm whether the second ORP parameter is smaller than the first ORP parameter. If the second ORP parameter is smaller than the first ORP parameter, the first control device 12 may generate the control coefficient Kp according to the at least one ORP target value, so as to generate the control parameter according to the initial parameter and the control coefficient Kp. If the second ORP When the parameter is greater than or equal to the first ORP parameter, the first control device 12 can set the control coefficient Kp equal to 1, and the control parameter can be equal to the initial parameter.

在一示例實施方式中,該第一控制裝置12可先依據該第一比較結果,來決定是否需要取得該第二ORP參數。在一示例實施方式中,當該第一ORP參數位於大於或等於該第一ORP目標值的該第一ORP數值區域或位於小於或等於該第二ORP目標值的該第三ORP數值區域時,該第一控制裝置12可不須取得該第二ORP參數,直接依據該第一比較結果,來產生該控制參數。在該示例實施方式中,該第一控制裝置12可直接依據該受控裝置14的一參數極值來產生該控制參數。在一示例實施方式中,當該第一ORP參數位於小於該第一ORP目標值且大於該第二ORP目標值的該第二ORP數值區域時,該第一控制裝置12可接收來自該ORP感測裝置在該第二ORP參數,並比較該第一ORP參數與該第二ORP參數來取得該第二比較結果。在該示例實施方式中,該第二感測時刻早於該第一感測時刻。若該第二ORP參數大於該第一ORP參數時,該第一控制裝置12可依據該第一ORP目標值來產生該調控係數Kp,以依據該初始參數與該調控係數Kp產生該控制參數。若該第二ORP參數小於或等於該第一ORP參數時,該第一控制裝置12可設置該調控係數Kp等於1,則該控制參數可等於該初始參數。 In an exemplary embodiment, the first control device 12 may first determine whether to obtain the second ORP parameter according to the first comparison result. In an exemplary embodiment, when the first ORP parameter is located in the first ORP numerical region greater than or equal to the first ORP target value or in the third ORP numerical region less than or equal to the second ORP target value, The first control device 12 may generate the control parameter directly according to the first comparison result without obtaining the second ORP parameter. In this example embodiment, the first control device 12 can directly generate the control parameter according to a parameter extreme value of the controlled device 14 . In an example embodiment, when the first ORP parameter is located in the second ORP value region that is less than the first ORP target value and greater than the second ORP target value, the first control device 12 may receive the ORP sense from the ORP sensor. measuring the second ORP parameter, and comparing the first ORP parameter with the second ORP parameter to obtain the second comparison result. In this example embodiment, the second sensing moment is earlier than the first sensing moment. If the second ORP parameter is greater than the first ORP parameter, the first control device 12 may generate the control coefficient Kp according to the first ORP target value, so as to generate the control parameter according to the initial parameter and the control coefficient Kp. If the second ORP parameter is less than or equal to the first ORP parameter, the first control device 12 may set the control coefficient Kp equal to 1, and the control parameter may be equal to the initial parameter.

在框S350處,該第一控制裝置12依據該控制參數調控一受控裝置14的一操作參數。 At block S350, the first control device 12 regulates an operating parameter of a controlled device 14 according to the control parameter.

在至少一示例實施方式中,不同的受控裝置14會有不同的操作參數。在至少一示例實施方式中,不同的控制參數可調控不同的操作參數。 In at least one example embodiment, different controlled devices 14 will have different operating parameters. In at least one example embodiment, different control parameters may regulate different operating parameters.

在一示例實施方式中,若該控制參數為該曝氣量時,該操作參數可包括該變頻器的該運作頻率、及該鼓風機的該運轉流量及該推流器的 運作頻率中的至少一個。在一示例實施方式中,若該控制參數為該內部迴流量時,該操作參數可包括該變頻器的該運作頻率及該內部迴流泵的該運轉流量中的至少一個。在一示例實施方式中,若該控制參數為該汙泥迴流量時,該操作參數可包括該變頻器的該運作頻率及該汙泥迴流泵的該運轉流量中的至少一個。在一示例實施方式中,若該控制參數為該分段進流量時,該操作參數可包括該閘閥門的該運轉流量及該孔口開度中的至少一個。 In an exemplary embodiment, if the control parameter is the aeration amount, the operating parameter may include the operating frequency of the frequency converter, the operating flow of the blower and the flow rate of the flow propeller. at least one of the operating frequencies. In an example embodiment, if the control parameter is the internal return flow, the operating parameter may include at least one of the operating frequency of the frequency converter and the operating flow of the internal return pump. In an exemplary embodiment, if the control parameter is the sludge return flow rate, the operation parameter may include at least one of the operation frequency of the frequency converter and the operation flow rate of the sludge return pump. In an example embodiment, if the control parameter is the segment inflow volume, the operating parameter may include at least one of the operating flow and the orifice opening of the gate valve.

在至少一示例實施方式中,該操作參數可由該第一控制裝置12直接計算出來,並提供給該多個受控裝置14。在另一實施方式中,該第一控制裝置12可提供該控制參數給該多個受控裝置14,再由各該多個受控裝置14依據該控制參數來產生各自的該操作參數,並依據該操作參數對該待測水體進行水資源處理。 In at least one example embodiment, the operating parameter may be directly calculated by the first control device 12 and provided to the plurality of controlled devices 14 . In another embodiment, the first control device 12 can provide the control parameter to the plurality of controlled devices 14, and then each of the plurality of controlled devices 14 generates the respective operation parameter according to the control parameter, and According to the operating parameters, water resource treatment is performed on the water body to be measured.

請參照圖4,圖4繪示根據本發明的示例實施方式的水資源監控與處理系統1的即時曝氣控制系統4的示意圖。該即時曝氣控制系統4包含一第一控制裝置12、多個感測裝置411、412及413、多個鼓風機4411及4412、多個變頻器4421及4422、多個電動閥4431及4432、多個壓力感測裝置4511-4516以及一空氣流量計452。在該示例實施方式中,該即時曝氣控制系統4透過該多個感測裝置411、412及413量測該待測水體10,以取得多個感測參數。在該示例實施方式中,該第一控制裝置12利用所取得的該多個感測參數,經由該第一運算模式來產生該多個第一控制參數,並依據該多個第一控制參數來調控該多個鼓風機4411及4412、該多個變頻器4421及4422及該多個電動閥4431及4432。 Please refer to FIG. 4 . FIG. 4 is a schematic diagram of the instant aeration control system 4 of the water resource monitoring and treatment system 1 according to an exemplary embodiment of the present invention. The real-time aeration control system 4 includes a first control device 12, a plurality of sensing devices 411, 412 and 413, a plurality of blowers 4411 and 4412, a plurality of frequency converters 4421 and 4422, a plurality of electric valves 4431 and 4432, a plurality of pressure sensing devices 4511-4516 and an air flow meter 452. In this exemplary embodiment, the real-time aeration control system 4 measures the water body 10 to be measured through the plurality of sensing devices 411 , 412 and 413 to obtain a plurality of sensing parameters. In the exemplary embodiment, the first control device 12 uses the acquired sensing parameters to generate the first control parameters through the first operation mode, and generates the first control parameters according to the first control parameters. The plurality of blowers 4411 and 4412, the plurality of frequency converters 4421 and 4422, and the plurality of electric valves 4431 and 4432 are regulated and controlled.

在至少一示例實施方式中,該即時曝氣控制系統4另具有圖一所示的該第二控制裝置13,該第二控制裝置13亦利用所取得的該多個感測參 數,經由該第二運算模式來產生多個第二控制參數,該多個第二控制參數可用於取代該多個第一控制參數,以調控該多個鼓風機4411及4412、該多個變頻器4421及4422及該多個電動閥4431及4432。 In at least one example embodiment, the real-time aeration control system 4 further has the second control device 13 shown in FIG. 1 , and the second control device 13 also utilizes the acquired sensing parameters. A plurality of second control parameters are generated through the second operation mode, and the plurality of second control parameters can be used to replace the plurality of first control parameters to regulate the plurality of blowers 4411 and 4412, the plurality of frequency converters 4421 and 4422 and the plurality of electric valves 4431 and 4432.

在至少一示例實施方式中,該多個感測裝置411、412及413可分別為該ORP感測裝置、該DO感測裝置以及該pH感測裝置。在該示例實施方式中,該多個鼓風機4411及4412、該多個變頻器4421及4422及該多個電動閥4431及4432皆為圖1所述之該多個受控裝置中的一個。 In at least one example embodiment, the plurality of sensing devices 411 , 412 and 413 may be the ORP sensing device, the DO sensing device and the pH sensing device, respectively. In this exemplary embodiment, the blowers 4411 and 4412 , the frequency converters 4421 and 4422 and the electric valves 4431 and 4432 are all one of the controlled devices described in FIG. 1 .

在至少一示例實施方式中,該多個壓力感測裝置4511-4516以及該空氣流量計452為多個偵測裝置,該多個偵測裝置的偵測結果可作為該即時曝氣控制系統4中額外資訊的監控。在至少一示例實施方式中,該多個偵測結果可不影響該控制參數的確認結果。 In at least one example embodiment, the plurality of pressure sensing devices 4511-4516 and the air flow meter 452 are a plurality of detection devices, and the detection results of the plurality of detection devices can be used as the real-time aeration control system 4 Monitoring of additional information in . In at least one example embodiment, the plurality of detection results may not affect the confirmation result of the control parameter.

圖5示出了本發明示例具體實施方法的參數監控暨水資源處理方法中的即時曝氣控制流程的流程圖。因為執行示例性方法的方式多種多樣,所以僅以舉例的方式提供該方法。可使用例如:圖1、圖2和圖4所示的系統以及裝置來執行如下所述的方法,並且參考這些附圖的各種元件來解釋示例性方法。圖5示出的每個框表示在示例性方法中執行的一個或多個程式、方法或子程式。此外,框的順序僅為例示性的並且可改變。在不脫離本發明的情況下,可添加附加框或可使用更少的框。另外,圖5可為圖3所示之參數監控暨水資源處理方法的一具體實施方法的流程。 FIG. 5 shows a flow chart of the instant aeration control process in the parameter monitoring and water resources treatment method of the exemplary specific implementation method of the present invention. Because of the variety of ways in which the exemplary method can be performed, the method is provided by way of example only. The methods described below may be performed using, for example, the systems and apparatus shown in FIGS. 1, 2, and 4, and exemplary methods are explained with reference to various elements of these figures. Each block shown in FIG. 5 represents one or more routines, methods, or subroutines performed in the exemplary method. Furthermore, the order of the blocks is exemplary only and may vary. Additional blocks may be added or fewer blocks may be used without departing from the invention. In addition, FIG. 5 is a flowchart of a specific implementation method of the parameter monitoring and water resource treatment method shown in FIG. 3 .

在框S510處,該第一控制裝置12取得一ORP目標值與一DO目標範圍。 At block S510, the first control device 12 obtains an ORP target value and a DO target range.

在至少一示例實施方式中,該第一控制裝置12通過一預設方式取得該ORP目標值。在該示例實施方式中,該預設方式可透過該第一控制裝置12直接從內部的該儲存器222中讀取該ORP目標值。在另一示例實施 方式中,該預設方式可透過該第一控制裝置12藉由一ORP目標值判斷方法來產生該ORP目標值。 In at least one example embodiment, the first control device 12 obtains the ORP target value in a predetermined manner. In the exemplary embodiment, the preset mode can directly read the ORP target value from the internal storage 222 through the first control device 12 . Implemented in another example In the default mode, the ORP target value can be generated by the first control device 12 through an ORP target value determination method.

在至少一示例實施方式中,該第一控制裝置12通過該預設方式取得該DO目標範圍。在該示例實施方式中,該預設方式可透過該第一控制裝置12直接從內部的該儲存器222中讀取該DO目標範圍。在該示例實施方式中,該DO目標範圍包括一DO下限閾值以及一DO上限閾值。 In at least one example embodiment, the first control device 12 obtains the DO target range through the preset method. In the exemplary embodiment, the preset mode can directly read the DO target range from the internal storage 222 through the first control device 12 . In the example embodiment, the DO target range includes a lower DO threshold and an upper DO threshold.

在至少一示例實施方式中,該第一控制裝置12取得該多個鼓風機4411及4412的編號、運作關係式、最小頻率、最大頻率與初始頻率。 In at least one example embodiment, the first control device 12 obtains the numbers, operation relational expressions, minimum frequency, maximum frequency and initial frequency of the plurality of blowers 4411 and 4412 .

在框S520處,該第一控制裝置12接收來自ORP感測裝置411在一第一感測時刻所感測到的一第一ORP參數以及該DO感測裝置412在該第一感測時刻所感測到的一DO參數。 At block S520, the first control device 12 receives a first ORP parameter sensed by the ORP sensing device 411 at a first sensing moment and the DO sensing device 412 sensed at the first sensing moment to a DO parameter.

在至少一示例實施方式中,該ORP感測裝置411與該DO感測裝置412可定期感測該待測水體10的該ORP參數與該DO參數,亦可連續性的感測該待測水體10的該ORP參數與該DO參數。在該示例實施方式中,該第一控制裝置12在每次取得該ORP變數以及該DO變數的數值之間的時間區間可具有一控制週期△t。 In at least one example embodiment, the ORP sensing device 411 and the DO sensing device 412 can periodically sense the ORP parameter and the DO parameter of the water body 10 to be measured, and can also continuously sense the water body to be measured 10 of the ORP parameter and the DO parameter. In this exemplary embodiment, the first control device 12 may have a control period Δt in the time interval between each time obtaining the values of the ORP variable and the DO variable.

在框S530處,該第一控制裝置12確認該DO參數是否位於該DO目標範圍內。當該DO參數未在該DO目標範圍內時,該方法將進入到框S540中。當該DO參數位於該DO目標範圍內時,該方法將進入到框S550中。 At block S530, the first control device 12 confirms whether the DO parameter is within the DO target range. When the DO parameter is not within the DO target range, the method will proceed to block S540. When the DO parameter is within the DO target range, the method will proceed to block S550.

在至少一示例實施方式中,當該DO參數未在該DO目標範圍內時,該第一控制裝置12需調整該控制參數,以將該DO參數調整到該DO目標範圍內。 In at least one example embodiment, when the DO parameter is not within the DO target range, the first control device 12 needs to adjust the control parameter to adjust the DO parameter within the DO target range.

在框S540處,該第一控制裝置12調整該控制參數以調整該多個操作參數。 At block S540, the first control device 12 adjusts the control parameter to adjust the plurality of operating parameters.

在至少一示例實施方式中,當該DO參數小於或等於該DO下限閾值時,該第一控制裝置12可調高該控制參數,以提高該多個操作參數。換言之,透過該多個變頻器4421及4422提高該多個鼓風機4411及4412的運作頻率與風量。在該示例實施方式中,該第一控制裝置12可將該控制參數設置到最大曝氣量,以最大化該多個操作參數。換言之,透過該多個變頻器4421及4422將該多個鼓風機4411及4412的運作頻率與風量提升到該最大頻率與最大風量。在該示例實施方式中,該最大頻率與該最大風量可為該多個變頻器4421及4422與該多個鼓風機4411及4412在圖3所示之參數監控暨水資源處理方法中的參數極值。 In at least one example embodiment, when the DO parameter is less than or equal to the DO lower threshold, the first control device 12 may increase the control parameter to increase the plurality of operating parameters. In other words, the operating frequencies and air volumes of the blowers 4411 and 4412 are increased through the frequency converters 4421 and 4422 . In the example embodiment, the first control device 12 may set the control parameter to a maximum aeration amount to maximize the plurality of operating parameters. In other words, the operating frequencies and air volumes of the plurality of blowers 4411 and 4412 are increased to the maximum frequency and the maximum air volume through the plurality of frequency converters 4421 and 4422 . In this exemplary embodiment, the maximum frequency and the maximum air volume may be the extreme values of the parameters of the frequency converters 4421 and 4422 and the blowers 4411 and 4412 in the parameter monitoring and water resource treatment method shown in FIG. 3 . .

在至少一示例實施方式中,當該DO參數大於或等於該DO上限閾值時,該第一控制裝置12可降低該控制參數,以降低該多個操作參數。換言之,透過該多個變頻器4421及4422降低該多個鼓風機4411及4412的運作頻率與風量。在該示例實施方式中,該第一控制裝置12可將該控制參數設置到最小曝氣量,以最小化該多個操作參數。換言之,透過該多個變頻器4421及4422將該多個鼓風機4411及4412的運作頻率與風量提升到該最小頻率與最小風量。在該示例實施方式中,該最小頻率與最小風量可為該多個變頻器4421及4422與該多個鼓風機4411及4412在圖3所示之參數監控暨水資源處理方法中的參數極值。 In at least one example embodiment, when the DO parameter is greater than or equal to the DO upper threshold, the first control device 12 may decrease the control parameter to decrease the plurality of operating parameters. In other words, the operating frequencies and air volumes of the blowers 4411 and 4412 are reduced through the frequency converters 4421 and 4422 . In the example embodiment, the first control device 12 may set the control parameter to a minimum aeration amount to minimize the plurality of operating parameters. In other words, the operating frequencies and air volumes of the plurality of blowers 4411 and 4412 are increased to the minimum frequency and the minimum air volume through the plurality of frequency converters 4421 and 4422 . In this exemplary embodiment, the minimum frequency and the minimum air volume can be the extreme values of the parameters of the frequency converters 4421 and 4422 and the blowers 4411 and 4412 in the parameter monitoring and water resource treatment method shown in FIG. 3 .

在框S550處,該第一控制裝置12確認該第一ORP參數是否大於或等於該ORP目標值。當該第一ORP參數小於該ORP目標值時,該方法將進入到框S561中。當該第一ORP參數大於或等於該ORP目標值時,該方法將進入到框S562中。 At block S550, the first control device 12 confirms whether the first ORP parameter is greater than or equal to the ORP target value. When the first ORP parameter is less than the ORP target value, the method will proceed to block S561. When the first ORP parameter is greater than or equal to the ORP target value, the method will proceed to block S562.

在至少一示例實施方式中,該第一控制裝置12確認該第一ORP參數與該ORP目標值之間的大小關係,以確認該第一ORP參數是位於大於或等於該ORP目標值的一第一ORP數值區域還是小於該ORP目標值的一第二ORP數值區域。當該第一ORP參數小於該ORP目標值時,該第一ORP參數位於該第二ORP數值區域。當該第一ORP參數大於或等於該ORP目標值時,該第一ORP參數位於該第一ORP數值區域。 In at least one example embodiment, the first control device 12 confirms the magnitude relationship between the first ORP parameter and the ORP target value, so as to confirm that the first ORP parameter is located at a first value greater than or equal to the ORP target value An ORP value area is also a second ORP value area that is less than the ORP target value. When the first ORP parameter is less than the ORP target value, the first ORP parameter is located in the second ORP value area. When the first ORP parameter is greater than or equal to the ORP target value, the first ORP parameter is located in the first ORP value area.

在框S561處,該第一控制裝置12確認一第二感測時刻的一第二ORP參數是否小於該第一ORP參數。當該第二ORP參數小於該第一ORP參數時,該方法將進入到框S571中。當該第二ORP參數大於或等於該第一ORP參數時,該方法將進入到框S572中。 At block S561, the first control device 12 confirms whether a second ORP parameter at a second sensing time is smaller than the first ORP parameter. When the second ORP parameter is less than the first ORP parameter, the method will enter block S571. When the second ORP parameter is greater than or equal to the first ORP parameter, the method will proceed to block S572.

在至少一示例實施方式中,該第一控制裝置12可進一步接收來自該ORP感測裝置在該第二感測時刻所感測的該第二ORP參數。在該示例實施方式中,該第二感測時刻晚於該第一感測時刻,且該第二感測時刻與該第一感測時刻的時間差可等於n×△t。在該示例實施方式中,n為正整數。 In at least one example embodiment, the first control device 12 may further receive the second ORP parameter sensed by the ORP sensing device at the second sensing moment. In this example embodiment, the second sensing time is later than the first sensing time, and the time difference between the second sensing time and the first sensing time may be equal to n×Δt. In this example embodiment, n is a positive integer.

在至少一示例實施方式中,該第一控制裝置12確認該第一ORP參數與該第二ORP參數之間的大小關係,以確認在該第一感測時刻與該第二感測時刻之間,該ORP變數的數值是增加還是減少。當該第二ORP參數小於該第一ORP參數時,該第一ORP參數位於該第二ORP數值區域且該ORP變數的數值是減少的。當該第二ORP參數大於或等於該第一ORP參數時,該第一ORP參數位於該第二ORP數值區域且該ORP變數的數值是增加的。 In at least one example embodiment, the first control device 12 confirms the magnitude relationship between the first ORP parameter and the second ORP parameter to confirm that between the first sensing time and the second sensing time , the value of the ORP variable is increasing or decreasing. When the second ORP parameter is smaller than the first ORP parameter, the first ORP parameter is located in the second ORP value area and the value of the ORP variable is decreased. When the second ORP parameter is greater than or equal to the first ORP parameter, the first ORP parameter is located in the second ORP value area and the value of the ORP variable is increased.

在框S562處,該第一控制裝置12確認該第二ORP參數是否大於或等於該第一ORP參數。當該第二ORP參數小於該第一ORP參數時,該方 法將進入到框S572中。當該第二ORP參數大於或等於該第一ORP參數時,該方法將進入到框S573中。 At block S562, the first control device 12 confirms whether the second ORP parameter is greater than or equal to the first ORP parameter. When the second ORP parameter is smaller than the first ORP parameter, the party The method will proceed to block S572. When the second ORP parameter is greater than or equal to the first ORP parameter, the method will proceed to block S573.

在至少一示例實施方式中,該第一控制裝置12確認該第一ORP參數與該第二ORP參數之間的大小關係,以確認在該第一感測時刻與該第二感測時刻之間,該ORP變數的數值是增加還是減少。當該第二ORP參數小於該第一ORP參數時,該第一ORP參數位於該第一ORP數值區域且該ORP變數的數值是減少的。當該第二ORP參數大於或等於該第一ORP參數時,該第一ORP參數位於該第一ORP數值區域且該ORP變數的數值是增加的。 In at least one example embodiment, the first control device 12 confirms the magnitude relationship between the first ORP parameter and the second ORP parameter to confirm that between the first sensing time and the second sensing time , the value of the ORP variable is increasing or decreasing. When the second ORP parameter is smaller than the first ORP parameter, the first ORP parameter is located in the first ORP value area and the value of the ORP variable is decreased. When the second ORP parameter is greater than or equal to the first ORP parameter, the first ORP parameter is located in the first ORP value area and the value of the ORP variable is increased.

在框S571處,該第一控制裝置12產生大於1的一調控係數Kp,以調控該控制參數。 At block S571, the first control device 12 generates a control coefficient Kp greater than 1 to control the control parameter.

在至少一示例實施方式中,由於該第一ORP參數低於該ORP目標值,且該第二ORP參數又進一步低於該第一ORP參數,因此該第一控制裝置12應試圖調高該控制參數,以調高對應的該多個操作參數,藉此把該ORP變數的數值往該ORP目標值提升。因此,該調控係數Kp可以如下之方式進行運算。 In at least one example embodiment, since the first ORP parameter is lower than the ORP target value and the second ORP parameter is further lower than the first ORP parameter, the first control device 12 should attempt to turn up the control parameter to increase the corresponding plurality of operation parameters, thereby increasing the value of the ORP variable to the ORP target value. Therefore, the control coefficient Kp can be calculated as follows.

Kp=1+|[(ORPtarget-ORP2)]/ORPtarget| 公式一其中,該ORPtarget為該ORP目標值且該ORP2為該第二ORP參數。 Kp=1+|[(ORP target -ORP 2 )]/ORP target | Formula 1 wherein, the ORP target is the ORP target value and the ORP 2 is the second ORP parameter.

在框S572處,該第一控制裝置12設置該調控係數Kp等於1,以維持該控制參數。 At block S572, the first control device 12 sets the control coefficient Kp equal to 1 to maintain the control parameter.

在至少一示例實施方式中,由於該第一ORP參數低於該ORP目標值,但該第二ORP參數大於或等於該第一ORP參數,因此該ORP變數的數值雖低於該ORP目標值,但仍有逐漸接近該ORP目標值的狀況,所以該調控係數Kp可等於1,以維持該控制參數。 In at least one example embodiment, since the first ORP parameter is lower than the ORP target value, but the second ORP parameter is greater than or equal to the first ORP parameter, although the value of the ORP variable is lower than the ORP target value, However, there is still a situation in which the ORP target value is gradually approached, so the control coefficient Kp can be equal to 1 to maintain the control parameter.

在至少一示例實施方式中,由於該第一ORP參數大於或等於該ORP目標值,但該第二ORP參數小於該第一ORP參數,因此該ORP變數的數值雖高於該ORP目標值,但仍有逐漸接近該ORP目標值的狀況,所以該調控係數Kp可等於1,以維持該控制參數。 In at least one example embodiment, since the first ORP parameter is greater than or equal to the ORP target value, but the second ORP parameter is less than the first ORP parameter, the ORP variable is higher than the ORP target value, but There is still a situation of gradually approaching the ORP target value, so the control coefficient Kp can be equal to 1 to maintain the control parameter.

在框S573處,該第一控制裝置12產生小於或等於1的該調控係數Kp,以調控該控制參數。 At block S573, the first control device 12 generates the control coefficient Kp less than or equal to 1 to control the control parameter.

在至少一示例實施方式中,由於該第一ORP參數大於或等於該ORP目標值,且該第二ORP參數又進一步大於或等於該第一ORP參數,因此該第一控制裝置12應試圖調低該控制參數,以調低對應的該多個操作參數,藉此把該ORP變數的數值往該ORP目標值下降。因此,該調控係數Kp可以如下之方式進行運算。 In at least one example embodiment, since the first ORP parameter is greater than or equal to the ORP target value, and the second ORP parameter is further greater than or equal to the first ORP parameter, the first control device 12 should attempt to turn down The control parameter is adjusted to lower the corresponding plurality of operation parameters, thereby reducing the value of the ORP variable to the ORP target value. Therefore, the control coefficient Kp can be calculated as follows.

Kp=1-|[(ORPtarget-ORP2)]/ORPtarget| 公式二在該示例實施方式中,若該第一ORP參數等於該ORP目標值且該第二ORP參數又進一步等於該第一ORP參數,所以該第二ORP參數也等於該ORP目標值,則該調控係數Kp經由該公式二的運算後仍等於1。 Kp=1-|[(ORP target -ORP 2 )]/ORP target | Formula 2 In this example embodiment, if the first ORP parameter is equal to the ORP target value and the second ORP parameter is further equal to the first ORP parameter ORP parameter, so the second ORP parameter is also equal to the ORP target value, then the control coefficient Kp is still equal to 1 after the operation of the formula 2.

在框S580處,該第一控制裝置12依據該控制參數調整該多個操作參數。 At block S580, the first control device 12 adjusts the plurality of operating parameters according to the control parameter.

至少一示例實施方式中,該第一控制裝置12經由該多個鼓風機4411及4412的該多個運作關係式以及該多個初始頻率,可取得各個該多個鼓風機4411及4412的初始風量。該多個初始風量可利用該多個初始頻率以及該多個運作關係式,並通過如下所述之公式三來產生。 In at least one example embodiment, the first control device 12 can obtain the initial air volume of each of the plurality of blowers 4411 and 4412 through the plurality of operation relationships and the plurality of initial frequencies of the plurality of blowers 4411 and 4412 . The plurality of initial air volumes can be generated by using the plurality of initial frequencies and the plurality of operation relational expressions, and by formula 3 described below.

QBR,n=aBR,n×FBR,n+bBR,n 公式三其中,QBR,n為第n個鼓風機之風量,FBR,n為第n個鼓風機之頻率以及aBR,n與bBR,n為第n個鼓風機之該運作關係式的固定參數。 Q BR,n =a BR,n ×F BR,n +b BR,n Formula 3 Among them, Q BR,n is the air volume of the nth blower, F BR,n is the frequency of the nth blower and a BR, n and b BR,n are fixed parameters of the operational relationship of the nth blower.

在至少一示例實施方式中,該第一控制裝置12依據該多個鼓風機4411及4412的該多個初始頻率與該多個固定參數各自計算出多個初始風量,並經由該多個初始風量的加總產生一初始總風量。在該示例實施方式中,該第一控制裝置12將該初始總風量與該調控係數Kp相乘,以產生一調整總風量,即可知調整後的曝氣量。在該示例實施方式中,該第一控制裝置12再將該調整總風量分配給該多個鼓風機4411及4412。舉例來說:該第一控制裝置12將該調整總風量平均分配給該多個鼓風機4411及4412。至少一示例實施方式中,該第一控制裝置12藉由該多個分配風量與該多個固定參數,各自算出多個調整頻率,以作為該多個鼓風機4411及4412的操作參數,並透過該多個變頻器4421及4422將該多個鼓風機4411及4412的運作頻率調整到該多個操作參數。 In at least one example embodiment, the first control device 12 calculates a plurality of initial air volumes according to the plurality of initial frequencies of the plurality of blowers 4411 and 4412 and the plurality of fixed parameters, and calculates a plurality of initial air volumes through the plurality of initial air volumes. The summation yields an initial total air volume. In this exemplary embodiment, the first control device 12 multiplies the initial total air volume by the control coefficient Kp to generate an adjusted total air volume, that is, the adjusted aeration volume. In this exemplary embodiment, the first control device 12 further distributes the adjusted total air volume to the plurality of blowers 4411 and 4412 . For example, the first control device 12 evenly distributes the adjusted total air volume to the plurality of blowers 4411 and 4412 . In at least one example embodiment, the first control device 12 calculates a plurality of adjustment frequencies respectively according to the plurality of distributed air volumes and the plurality of fixed parameters, as the operation parameters of the plurality of blowers 4411 and 4412, and through the plurality of blowers 4411 and 4412 The frequency converters 4421 and 4422 adjust the operating frequencies of the blowers 4411 and 4412 to the operating parameters.

請參照圖6,圖6繪示根據本發明的示例實施方式的水資源監控與處理系統1的硝化液內迴流控制系統6的示意圖。該硝化液內迴流控制系統6包含一第一控制裝置12、多個感測裝置611、612及613、一變頻器642以及一內部迴流泵643。在該示例實施方式中,該硝化液內迴流控制系統6透過該多個感測裝置611、612及613量測該待測水體10,以取得多個感測參數。在該示例實施方式中,該第一控制裝置12利用所取得的該多個感測參數,經由該第一運算模式來產生該多個第一控制參數,並依據該多個第一控制參數來調控該內部迴流泵643及該變頻器642。 Please refer to FIG. 6 . FIG. 6 is a schematic diagram of the nitrifying liquid internal reflux control system 6 of the water resource monitoring and treatment system 1 according to an exemplary embodiment of the present invention. The nitrifying liquid internal reflux control system 6 includes a first control device 12 , a plurality of sensing devices 611 , 612 and 613 , a frequency converter 642 and an internal reflux pump 643 . In this exemplary embodiment, the nitrifying solution internal reflux control system 6 measures the water body 10 to be measured through the plurality of sensing devices 611 , 612 and 613 to obtain a plurality of sensing parameters. In the exemplary embodiment, the first control device 12 uses the acquired sensing parameters to generate the first control parameters through the first operation mode, and generates the first control parameters according to the first control parameters. The internal return pump 643 and the frequency converter 642 are regulated.

在至少一示例實施方式中,該硝化液內迴流控制系統6另具有圖一所示的該第二控制裝置13,該第二控制裝置13亦利用所取得的該多個感測參數,經由該第二運算模式來產生多個第二控制參數,該多個第二控制參數可用於取代該多個第一控制參數,以調控該內部迴流泵643及該變頻器642。 In at least one example embodiment, the nitrification solution internal reflux control system 6 further has the second control device 13 shown in FIG. 1 , and the second control device 13 also uses the acquired sensing parameters to The second operation mode generates a plurality of second control parameters, and the plurality of second control parameters can be used to replace the plurality of first control parameters to regulate the internal return pump 643 and the frequency converter 642 .

在至少一示例實施方式中,該多個感測裝置611、612及613可分別為該ORP感測裝置、該MLSS感測裝置以及該pH感測裝置。在該示例實施方式中,該內部迴流泵643及該變頻器642皆為圖1所述之該多個受控裝置中的一個。 In at least one example embodiment, the plurality of sensing devices 611, 612, and 613 may be the ORP sensing device, the MLSS sensing device, and the pH sensing device, respectively. In this example embodiment, both the internal return pump 643 and the frequency converter 642 are one of the plurality of controlled devices described in FIG. 1 .

在至少一示例實施方式中,該待測水體10可分布於一厭氧池601、一缺氧池602及一好氧池603中。在該示例實施方式中,該厭氧池601、該缺氧池602及該好氧池603可用於對該待測水體10進行生物脫氮除磷的作業。在該示例實施方式中,該多個感測裝置611、612及613可設置在該缺氧池602中。 In at least one example embodiment, the water body 10 to be tested can be distributed in an anaerobic tank 601 , an anoxic tank 602 and an aerobic tank 603 . In this exemplary embodiment, the anaerobic tank 601 , the anoxic tank 602 and the aerobic tank 603 can be used for biological denitrification and phosphorus removal of the water body 10 to be tested. In this example embodiment, the plurality of sensing devices 611 , 612 and 613 may be disposed in the hypoxia tank 602 .

在至少一示例實施方式中,該硝化液內迴流控制系統6可另具有一汙泥回流泵644。該示例實施方式中,該汙泥回流泵644用於一沉降池604,該沉降池604位於該好氧池603之後。 In at least one example embodiment, the nitrifying liquid internal return control system 6 may additionally have a sludge return pump 644 . In this example embodiment, the sludge return pump 644 is used in a settling tank 604 located after the aerobic tank 603 .

請參照圖7,圖7繪示根據本發明的示例實施方式的水資源監控與處理系統1的汙泥迴流控制系統7的示意圖。該汙泥迴流控制系統7包含一第一控制裝置12、多個感測裝置711、712及713、一變頻器742以及一汙泥迴流泵744。在該示例實施方式中,該汙泥迴流控制系統7透過該多個感測裝置711、712及713量測該待測水體10,以取得多個感測參數。在該示例實施方式中,該第一控制裝置12利用所取得的該多個感測參數,經由該第一運算模式來產生該多個第一控制參數,並依據該多個第一控制參數來調控該汙泥迴流泵744及該變頻器742。 Please refer to FIG. 7 , which is a schematic diagram of a sludge return control system 7 of the water resource monitoring and treatment system 1 according to an exemplary embodiment of the present invention. The sludge return control system 7 includes a first control device 12 , a plurality of sensing devices 711 , 712 and 713 , a frequency converter 742 and a sludge return pump 744 . In this exemplary embodiment, the sludge return control system 7 measures the water body 10 to be measured through the plurality of sensing devices 711 , 712 and 713 to obtain a plurality of sensing parameters. In the exemplary embodiment, the first control device 12 uses the acquired sensing parameters to generate the first control parameters through the first operation mode, and generates the first control parameters according to the first control parameters. The sludge return pump 744 and the frequency converter 742 are regulated.

在至少一示例實施方式中,該汙泥迴流控制系統7另具有圖一所示的該第二控制裝置13,該第二控制裝置13亦利用所取得的該多個感測參數,經由該第二運算模式來產生多個第二控制參數,該多個第二控制參數 可用於取代該多個第一控制參數,以調控該汙泥迴流泵744及該變頻器742。 In at least one example embodiment, the sludge return control system 7 further has the second control device 13 shown in FIG. Two operation modes to generate a plurality of second control parameters, the plurality of second control parameters It can be used to replace the plurality of first control parameters to regulate the sludge return pump 744 and the frequency converter 742 .

在至少一示例實施方式中,該多個感測裝置711、712及713可分別為該ORP感測裝置、該MLSS感測裝置以及該pH感測裝置。在該示例實施方式中,該汙泥迴流泵744及該變頻器742皆為圖1所述之該多個受控裝置中的一個。 In at least one example embodiment, the plurality of sensing devices 711, 712, and 713 may be the ORP sensing device, the MLSS sensing device, and the pH sensing device, respectively. In this example embodiment, both the sludge return pump 744 and the frequency converter 742 are one of the plurality of controlled devices described in FIG. 1 .

在至少一示例實施方式中,該待測水體10可分布於一厭氧池701、一缺氧池702及一好氧池703中。在該示例實施方式中,該厭氧池701、該缺氧池702及該好氧池703可用於對該待測水體10進行生物脫氮除磷的作業。在該示例實施方式中,該多個感測裝置711、712及713可設置在該厭氧池701中。 In at least one example embodiment, the water body 10 to be tested can be distributed in an anaerobic tank 701 , an anoxic tank 702 and an aerobic tank 703 . In this exemplary embodiment, the anaerobic tank 701 , the anoxic tank 702 and the aerobic tank 703 can be used for biological denitrification and phosphorus removal of the water body 10 to be tested. In this example embodiment, the plurality of sensing devices 711 , 712 and 713 may be disposed in the anaerobic tank 701 .

在至少一示例實施方式中,該汙泥回流泵744用於一沉降池704,該沉降池704位於該好氧池703之後。 In at least one example embodiment, the sludge return pump 744 is used in a settling tank 704 located after the aerobic tank 703 .

圖8示出了本發明示例具體實施方法的參數監控暨水資源處理方法中的迴流控制流程的流程圖。因為執行示例性方法的方式多種多樣,所以僅以舉例的方式提供該方法。可使用例如:圖1、圖2和圖6或圖7所示的系統以及裝置來執行如下所述的方法,並且參考這些附圖的各種元件來解釋示例性方法。圖8示出的每個框表示在示例性方法中執行的一個或多個程式、方法或子程式。此外,框的順序僅為例示性的並且可改變。在不脫離本發明的情況下,可添加附加框或可使用更少的框。另外,圖8可為圖3所示之參數監控暨水資源處理方法的一具體實施方法的流程。 FIG. 8 shows a flow chart of the backflow control process in the parameter monitoring and water resource treatment method of the exemplary embodiment of the present invention. Because of the variety of ways in which the exemplary method can be performed, the method is provided by way of example only. The methods described below may be performed using, for example, the systems and apparatus shown in FIGS. 1, 2, and 6 or 7, and exemplary methods are explained with reference to various elements of these figures. Each block shown in FIG. 8 represents one or more routines, methods, or subroutines performed in the exemplary method. Furthermore, the order of the blocks is exemplary only and may vary. Additional blocks may be added or fewer blocks may be used without departing from the invention. In addition, FIG. 8 is a flowchart of a specific implementation method of the parameter monitoring and water resource treatment method shown in FIG. 3 .

在至少一示例實施方式中,該迴流控制流程可為透過圖6的硝化液內迴流控制系統6所進行的硝化液內迴流控制流程。在至少一示例實施 方式中,該迴流控制流程可為透過圖7的汙泥迴流控制系統7所進行的汙泥迴流控制流程。 In at least one example embodiment, the backflow control process may be an internal backflow control process of the nitrification solution performed by the backflow control system 6 in the nitrification solution shown in FIG. 6 . implemented in at least one example In the manner, the backflow control process may be a sludge backflow control process performed by the sludge backflow control system 7 of FIG. 7 .

在框S810處,該第一控制裝置12取得一ORP目標值與一MLSS目標範圍。 At block S810, the first control device 12 obtains an ORP target value and an MLSS target range.

在至少一示例實施方式中,該第一控制裝置12通過一預設方式取得該ORP目標值。在該示例實施方式中,該預設方式可透過該第一控制裝置12直接從內部的該儲存器222中讀取該ORP目標值。在另一示例實施方式中,該預設方式可透過該第一控制裝置12藉由一ORP目標值判斷方法來產生該ORP目標值。 In at least one example embodiment, the first control device 12 obtains the ORP target value in a predetermined manner. In the exemplary embodiment, the preset mode can directly read the ORP target value from the internal storage 222 through the first control device 12 . In another exemplary embodiment, the predetermined manner may generate the ORP target value through the first control device 12 through an ORP target value determination method.

在至少一示例實施方式中,該第一控制裝置12通過該預設方式取得該MLSS目標範圍。在該示例實施方式中,該預設方式可透過該第一控制裝置12直接從內部的該儲存器222中讀取該MLSS目標範圍。在該示例實施方式中,該MLSS目標範圍包括一MLSS下限閾值以及一MLSS上限閾值。 In at least one example embodiment, the first control device 12 obtains the MLSS target range through the preset method. In the exemplary embodiment, the preset mode can directly read the MLSS target range from the internal storage 222 through the first control device 12 . In this example embodiment, the MLSS target range includes a lower MLSS threshold and an upper MLSS threshold.

在至少一示例實施方式中,該第一控制裝置12取得該內部迴流泵643的編號、運作關係式、最小頻率、最大頻率與初始頻率。在至少一示例實施方式中,當該內部迴流泵643的數量超過1個時,則該第一控制裝置12取得該多個內部迴流泵643各自的編號、運作關係式、最小頻率、最大頻率與初始頻率。 In at least one example embodiment, the first control device 12 obtains the serial number, operation relationship, minimum frequency, maximum frequency and initial frequency of the internal return pump 643 . In at least one example embodiment, when the number of the internal return pumps 643 exceeds one, the first control device 12 obtains the respective numbers, operation relational expressions, minimum frequency, maximum frequency and initial frequency.

在至少一示例實施方式中,該第一控制裝置12取得該汙泥迴流泵744的編號、運作關係式、最小頻率、最大頻率與初始頻率。在至少一示例實施方式中,當該汙泥迴流泵744的數量超過1個時,則該第一控制裝置12取得該多個汙泥迴流泵744各自的編號、運作關係式、最小頻率、最大頻率與初始頻率。 In at least one example embodiment, the first control device 12 obtains the serial number, operation relationship, minimum frequency, maximum frequency and initial frequency of the sludge return pump 744 . In at least one example embodiment, when the number of the sludge return pumps 744 exceeds one, the first control device 12 obtains the respective numbers, operation relational expressions, minimum frequency, maximum frequency of the multiple sludge return pumps 744 frequency and initial frequency.

在框S820處,該第一控制裝置12接收來自ORP感測裝置在一第一感測時刻所感測到的一第一ORP參數以及該MLSS感測裝置在該第一感測時刻所感測到的一DO參數。 At block S820, the first control device 12 receives a first ORP parameter sensed by the ORP sensing device at a first sensing moment and a first ORP parameter sensed by the MLSS sensing device at the first sensing moment A DO parameter.

在至少一示例實施方式中,該ORP感測裝置與該MLSS感測裝置可定期感測該待測水體10的該ORP參數與該MLSS參數,亦可連續性的感測該待測水體10的該ORP參數與該MLSS參數。在該示例實施方式中,該第一控制裝置12在每次取得該ORP變數以及該MLSS變數的數值之間的時間區間可具有一控制週期△t。 In at least one example embodiment, the ORP sensing device and the MLSS sensing device can periodically sense the ORP parameter and the MLSS parameter of the water body 10 to be tested, and can also continuously sense the water body 10 to be tested. The ORP parameter and the MLSS parameter. In the exemplary embodiment, the first control device 12 may have a control period Δt in the time interval between each time obtaining the ORP variable and the value of the MLSS variable.

在框S830處,該第一控制裝置12確認該MLSS參數是否位於該MLSS目標範圍內。當該MLSS參數未在該MLSS目標範圍內時,該方法將進入到框S840中。當該MLSS參數位於該MLSS目標範圍內時,該方法將進入到框S850中。 At block S830, the first control device 12 confirms whether the MLSS parameter is within the MLSS target range. When the MLSS parameter is not within the MLSS target range, the method will proceed to block S840. When the MLSS parameter is within the MLSS target range, the method will proceed to block S850.

在至少一示例實施方式中,當該MLSS參數未在該MLSS目標範圍內時,該第一控制裝置12需調整該控制參數,以將該MLSS參數調整到該MLSS目標範圍內。 In at least one example embodiment, when the MLSS parameter is not within the MLSS target range, the first control device 12 needs to adjust the control parameter to adjust the MLSS parameter within the MLSS target range.

在框S840處,該第一控制裝置12調整該控制參數以調整該多個操作參數。 At block S840, the first control device 12 adjusts the control parameter to adjust the plurality of operating parameters.

在至少一示例實施方式中,當該MLSS參數小於或等於該MLSS下限閾值時,該第一控制裝置12可調高該控制參數,以提高該多個操作參數。換言之,透過該變頻器642提高該內部迴流泵643的運作頻率與流量或透過該變頻器742提高該汙泥迴流泵744的運作頻率與流量。在該示例實施方式中,該第一控制裝置12可將該控制參數設置到最大內部迴流量,以最大化該多個操作參數。換言之,透過該變頻器642將該內部迴流泵643的運作頻率與迴流量提升到該最大頻率與最大迴流量。在另一示例實施方式 中,該第一控制裝置12可將該控制參數設置到最大汙泥迴流量,以最大化該多個操作參數。換言之,透過該變頻器742將該汙泥迴流泵744的運作頻率與迴流量提升到該最大頻率與最大迴流量。在該示例實施方式中,該最大頻率與該最大迴流量可為該變頻器642與742、該內部迴流泵643及該汙泥迴流泵744在圖3所示之參數監控暨水資源處理方法中的參數極值。 In at least one example embodiment, when the MLSS parameter is less than or equal to the MLSS lower threshold, the first control device 12 may increase the control parameter to increase the plurality of operating parameters. In other words, the operation frequency and flow rate of the internal return pump 643 are increased through the frequency converter 642 or the operation frequency and flow rate of the sludge return pump 744 are increased through the frequency converter 742 . In the example embodiment, the first control device 12 may set the control parameter to a maximum internal return flow to maximize the plurality of operating parameters. In other words, through the frequency converter 642, the operating frequency and the return flow of the internal return pump 643 are increased to the maximum frequency and maximum return flow. In another example implementation , the first control device 12 may set the control parameter to the maximum sludge return flow to maximize the plurality of operating parameters. In other words, the operating frequency and the return flow of the sludge return pump 744 are increased to the maximum frequency and maximum return flow through the frequency converter 742 . In this exemplary embodiment, the maximum frequency and the maximum return flow can be the frequency converters 642 and 742 , the internal return pump 643 and the sludge return pump 744 in the parameter monitoring and water resource treatment method shown in FIG. 3 . parameter extremes.

在至少一示例實施方式中,當該MLSS參數大於或等於該MLSS上限閾值時,該第一控制裝置12可降低該控制參數,以降低該多個操作參數。換言之,透過該變頻器642降低該內部迴流泵643的運作頻率與流量或透過該變頻器742降低該汙泥迴流泵744的運作頻率與流量。在該示例實施方式中,該第一控制裝置12可將該控制參數設置到最小內部迴流量,以最小化該多個操作參數。換言之,透過該變頻器642將該內部迴流泵643的運作頻率與迴流量下降到該最小頻率與最小迴流量。在另一示例實施方式中,該第一控制裝置12可將該控制參數設置到最小汙泥迴流量,以最小化該多個操作參數。換言之,透過該變頻器742將該汙泥迴流泵744的運作頻率與迴流量下降到該最小頻率與最小迴流量。在該示例實施方式中,該最小頻率與該最小迴流量可為該變頻器642與742、該內部迴流泵643及該汙泥迴流泵744在圖3所示之參數監控暨水資源處理方法中的參數極值。 In at least one example embodiment, when the MLSS parameter is greater than or equal to the MLSS upper threshold, the first control device 12 may decrease the control parameter to decrease the plurality of operating parameters. In other words, the operation frequency and flow rate of the internal return pump 643 are reduced through the frequency converter 642 or the operation frequency and flow rate of the sludge return pump 744 are reduced through the frequency converter 742 . In the example embodiment, the first control device 12 may set the control parameter to a minimum internal return flow to minimize the plurality of operating parameters. In other words, through the frequency converter 642, the operating frequency and the return flow of the internal return pump 643 are reduced to the minimum frequency and the minimum return flow. In another example embodiment, the first control device 12 may set the control parameter to a minimum sludge return to minimize the plurality of operating parameters. In other words, the operating frequency and the return flow of the sludge return pump 744 are reduced to the minimum frequency and minimum return flow through the frequency converter 742 . In this exemplary embodiment, the minimum frequency and the minimum return flow can be the frequency converters 642 and 742 , the internal return pump 643 and the sludge return pump 744 in the parameter monitoring and water resources treatment method shown in FIG. 3 parameter extremes.

在框S850處,該第一控制裝置12確認該第一ORP參數是否大於或等於該ORP目標值。當該第一ORP參數小於該ORP目標值時,該方法將進入到框S861中。當該第一ORP參數大於或等於該ORP目標值時,該方法將進入到框S862中。 At block S850, the first control device 12 confirms whether the first ORP parameter is greater than or equal to the ORP target value. When the first ORP parameter is less than the ORP target value, the method will proceed to block S861. When the first ORP parameter is greater than or equal to the ORP target value, the method will proceed to block S862.

在至少一示例實施方式中,該第一控制裝置12確認該第一ORP參數與該ORP目標值之間的大小關係,以確認該第一ORP參數是位於大於或等於該ORP目標值的一第一ORP數值區域還是小於該ORP目標值的一第 二ORP數值區域。當該第一ORP參數小於該ORP目標值時,該第一ORP參數位於該第二ORP數值區域。當該第一ORP參數大於或等於該ORP目標值時,該第一ORP參數位於該第一ORP數值區域。 In at least one example embodiment, the first control device 12 confirms the magnitude relationship between the first ORP parameter and the ORP target value, so as to confirm that the first ORP parameter is located at a first value greater than or equal to the ORP target value An ORP value range is also a first value less than the ORP target value Two ORP numerical fields. When the first ORP parameter is less than the ORP target value, the first ORP parameter is located in the second ORP value area. When the first ORP parameter is greater than or equal to the ORP target value, the first ORP parameter is located in the first ORP value area.

在框S861處,該第一控制裝置12確認一第二感測時刻的一第二ORP參數是否小於該第一ORP參數。當該第二ORP參數小於該第一ORP參數時,該方法將進入到框S871中。當該第二ORP參數大於或等於該第一ORP參數時,該方法將進入到框S872中。 At block S861, the first control device 12 confirms whether a second ORP parameter at a second sensing time is smaller than the first ORP parameter. When the second ORP parameter is less than the first ORP parameter, the method will proceed to block S871. When the second ORP parameter is greater than or equal to the first ORP parameter, the method will proceed to block S872.

在至少一示例實施方式中,該第一控制裝置12可進一步接收來自該ORP感測裝置在該第二感測時刻所感測的該第二ORP參數。在該示例實施方式中,該第二感測時刻晚於該第一感測時刻,且該第二感測時刻與該第一感測時刻的時間差可等於n×△t。在該示例實施方式中,n為正整數。 In at least one example embodiment, the first control device 12 may further receive the second ORP parameter sensed by the ORP sensing device at the second sensing moment. In this example embodiment, the second sensing time is later than the first sensing time, and the time difference between the second sensing time and the first sensing time may be equal to n×Δt. In this example embodiment, n is a positive integer.

在至少一示例實施方式中,該第一控制裝置12確認該第一ORP參數與該第二ORP參數之間的大小關係,以確認在該第一感測時刻與該第二感測時刻之間,該ORP變數的數值是增加還是減少。當該第二ORP參數小於該第一ORP參數時,該第一ORP參數位於該第二ORP數值區域且該ORP變數的數值是減少的。當該第二ORP參數大於或等於該第一ORP參數時,該第一ORP參數位於該第二ORP數值區域且該ORP變數的數值是增加的。 In at least one example embodiment, the first control device 12 confirms the magnitude relationship between the first ORP parameter and the second ORP parameter to confirm that between the first sensing time and the second sensing time , the value of the ORP variable is increasing or decreasing. When the second ORP parameter is smaller than the first ORP parameter, the first ORP parameter is located in the second ORP value area and the value of the ORP variable is decreased. When the second ORP parameter is greater than or equal to the first ORP parameter, the first ORP parameter is located in the second ORP value area and the value of the ORP variable is increased.

在框S862處,該第一控制裝置12確認該第二ORP參數是否大於或等於該第一ORP參數。當該第二ORP參數小於該第一ORP參數時,該方法將進入到框S872中。當該第二ORP參數大於或等於該第一ORP參數時,該方法將進入到框S873中。 At block S862, the first control device 12 confirms whether the second ORP parameter is greater than or equal to the first ORP parameter. When the second ORP parameter is less than the first ORP parameter, the method will proceed to block S872. When the second ORP parameter is greater than or equal to the first ORP parameter, the method will proceed to block S873.

在至少一示例實施方式中,該第一控制裝置12確認該第一ORP參數與該第二ORP參數之間的大小關係,以確認在該第一感測時刻與該第二感測時刻之間,該ORP變數的數值是增加還是減少。當該第二ORP參數小於該第一ORP參數時,該第一ORP參數位於該第一ORP數值區域且該ORP變數的數值是減少的。當該第二ORP參數大於或等於該第一ORP參數時,該第一ORP參數位於該第一ORP數值區域且該ORP變數的數值是增加的。 In at least one example embodiment, the first control device 12 confirms the magnitude relationship between the first ORP parameter and the second ORP parameter to confirm that between the first sensing time and the second sensing time , the value of the ORP variable is increasing or decreasing. When the second ORP parameter is smaller than the first ORP parameter, the first ORP parameter is located in the first ORP value area and the value of the ORP variable is decreased. When the second ORP parameter is greater than or equal to the first ORP parameter, the first ORP parameter is located in the first ORP value area and the value of the ORP variable is increased.

在框S871處,該第一控制裝置12產生大於1的一調控係數Kp,以調控該控制參數。 At block S871, the first control device 12 generates a control coefficient Kp greater than 1 to control the control parameter.

在至少一示例實施方式中,由於該第一ORP參數低於該ORP目標值,且該第二ORP參數又進一步低於該第一ORP參數,因此該第一控制裝置12應試圖調高該控制參數,以調高對應的該多個操作參數,藉此把該ORP變數的數值往該ORP目標值提升。因此,該調控係數Kp可以前述之公式一進行運算。 In at least one example embodiment, since the first ORP parameter is lower than the ORP target value and the second ORP parameter is further lower than the first ORP parameter, the first control device 12 should attempt to turn up the control parameter to increase the corresponding plurality of operation parameters, thereby increasing the value of the ORP variable to the ORP target value. Therefore, the control coefficient Kp can be calculated by the aforementioned formula 1.

在框S872處,該第一控制裝置12設置該調控係數Kp等於1,以維持該控制參數。 At block S872, the first control device 12 sets the control coefficient Kp equal to 1 to maintain the control parameter.

在至少一示例實施方式中,由於該第一ORP參數低於該ORP目標值,但該第二ORP參數大於或等於該第一ORP參數,因此該ORP變數的數值雖低於該ORP目標值,但仍有逐漸接近該ORP目標值的狀況,所以該調控係數Kp可等於1,以維持該控制參數。 In at least one example embodiment, since the first ORP parameter is lower than the ORP target value, but the second ORP parameter is greater than or equal to the first ORP parameter, although the value of the ORP variable is lower than the ORP target value, However, there is still a situation in which the ORP target value is gradually approached, so the control coefficient Kp can be equal to 1 to maintain the control parameter.

在至少一示例實施方式中,由於該第一ORP參數大於或等於該ORP目標值,但該第二ORP參數小於該第一ORP參數,因此該ORP變數的數值雖高於該ORP目標值,但仍有逐漸接近該ORP目標值的狀況,所以該調控係數Kp可等於1,以維持該控制參數。 In at least one example embodiment, since the first ORP parameter is greater than or equal to the ORP target value, but the second ORP parameter is less than the first ORP parameter, the ORP variable is higher than the ORP target value, but There is still a situation of gradually approaching the ORP target value, so the control coefficient Kp can be equal to 1 to maintain the control parameter.

在框S873處,該第一控制裝置12產生小於或等於1的該調控係數Kp,以調控該控制參數。 At block S873, the first control device 12 generates the control coefficient Kp less than or equal to 1 to control the control parameter.

在至少一示例實施方式中,由於該第一ORP參數大於或等於該ORP目標值,且該第二ORP參數又進一步大於或等於該第一ORP參數,因此該第一控制裝置12應試圖調低該控制參數,以調低對應的該多個操作參數,藉此把該ORP變數的數值往該ORP目標值下降。因此,該調控係數Kp可以前述之公式二進行運算。在該示例實施方式中,若該第一ORP參數等於該ORP目標值且該第二ORP參數又進一步等於該第一ORP參數,所以該第二ORP參數也等於該ORP目標值,則該調控係數Kp經由該公式二的運算後仍等於1。 In at least one example embodiment, since the first ORP parameter is greater than or equal to the ORP target value, and the second ORP parameter is further greater than or equal to the first ORP parameter, the first control device 12 should attempt to turn down The control parameter is adjusted to lower the corresponding plurality of operation parameters, thereby reducing the value of the ORP variable to the ORP target value. Therefore, the control coefficient Kp can be calculated by the aforementioned formula 2. In this example embodiment, if the first ORP parameter is equal to the ORP target value and the second ORP parameter is further equal to the first ORP parameter, so the second ORP parameter is also equal to the ORP target value, then the regulation coefficient Kp is still equal to 1 after the operation of the formula 2.

在框S880處,該第一控制裝置12依據該控制參數調整該多個操作參數。 At block S880, the first control device 12 adjusts the plurality of operating parameters according to the control parameter.

至少一示例實施方式中,該第一控制裝置12經由該內部迴流泵643的該運作關係式以及該初始頻率,可取得該內部迴流泵643的初始流量。該初始流量可利用該初始頻率以及該運作關係式,並通過如下所述之公式四來產生。。 In at least one example embodiment, the first control device 12 can obtain the initial flow rate of the internal return pump 643 through the operation relationship and the initial frequency of the internal return pump 643 . The initial flow can be generated by using the initial frequency and the operating relationship, and by formula 4 described below. .

QINRP=aINRP,n×FINRP,n+bINRP,n 公式四其中,QINRP,n為第n個內部迴流泵之流量,FINRP,n為第n個內部迴流泵之頻率以及aINRP,n與bINRP,n為第n個內部迴流泵之該運作關係式的固定參數。 Q INRP =a INRP,n ×F INRP,n +b INRP,n Formula 4 Where, Q INRP,n is the flow rate of the nth internal return pump, F INRP,n is the frequency of the nth internal return pump and a INRP,n and b INRP,n are fixed parameters of the operational relationship of the nth internal return pump.

至少一示例實施方式中,該第一控制裝置12依據該內部迴流泵643的該初始頻率與該多個固定參數計算出該初始流量,並經由該初始流量與該調控係數Kp的乘積,來產生調整流量,即可知調整後的內部迴流量。至少一示例實施方式中,該第一控制裝置12藉由該內部迴流量與該多 個固定參數,算出調整頻率,以作為該內部迴流泵643的操作參數,並透過該變頻器642將該內部迴流泵643的運作頻率調整到該操作參數。 In at least one example embodiment, the first control device 12 calculates the initial flow according to the initial frequency of the internal return pump 643 and the plurality of fixed parameters, and generates the initial flow through the product of the initial flow and the control coefficient Kp. By adjusting the flow, the adjusted internal return flow can be known. In at least one example embodiment, the first control device 12 uses the internal return flow and the multiple A fixed parameter is calculated, and the adjustment frequency is calculated as the operating parameter of the internal return pump 643 , and the operating frequency of the internal return pump 643 is adjusted to the operating parameter through the frequency converter 642 .

在至少一示例實施方式中,該內部迴流泵643的數量超過1個時,該第一控制裝置12依據該多個內部迴流泵的該多個初始頻率與該多個固定參數各自計算出多個初始流量,並經由該多個初始流量的加總產生一初始總流量。在該示例實施方式中,該第一控制裝置12將該初始總流量與該調控係數Kp相乘,以產生一調整總流量,即可知調整後的內部迴流量。在該示例實施方式中,該第一控制裝置12再將該調整內部迴流量分配給該多個內部迴流泵。舉例來說:該第一控制裝置12將該調整總流量平均分配給該多個內部迴流泵。至少一示例實施方式中,該第一控制裝置12藉由該多個分配流量與該多個固定參數,各自算出多個調整頻率,以作為該多個內部迴流泵的操作參數。 In at least one example embodiment, when the number of the internal return pumps 643 exceeds one, the first control device 12 calculates a plurality of initial frequencies and a plurality of fixed parameters of the plurality of internal return pumps respectively. initial flow, and an initial total flow is generated by summing the plurality of initial flows. In this example embodiment, the first control device 12 multiplies the initial total flow rate by the regulation coefficient Kp to generate an adjusted total flow rate, that is, the adjusted internal return flow rate. In the example embodiment, the first control device 12 then distributes the adjusted internal return flow to the plurality of internal return pumps. For example: the first control device 12 equally distributes the adjusted total flow to the plurality of internal return pumps. In at least one example embodiment, the first control device 12 calculates a plurality of adjustment frequencies according to the plurality of distributed flow rates and the plurality of fixed parameters, respectively, as the operation parameters of the plurality of internal return pumps.

至少一示例實施方式中,該第一控制裝置12經由該汙泥迴流泵744的該運作關係式以及該初始頻率,可取得該汙泥迴流泵744的初始流量。該初始流量可利用該初始頻率以及該運作關係式,並通過如下所述之公式五來產生。 In at least one example embodiment, the first control device 12 can obtain the initial flow rate of the sludge return pump 744 through the operation relationship and the initial frequency of the sludge return pump 744 . The initial flow rate can be generated by using the initial frequency and the operating relationship, and by formula 5 described below.

QSP=aSP,n×FSP,n+bSP,n 公式五其中,QSP,n為第n個汙泥迴流泵之流量,FSP,n為第n個汙泥迴流泵之頻率以及aSP,n與bSP,n為第n個汙泥迴流泵之該運作關係式的固定參數。 Q SP =a SP,n ×F SP,n +b SP, nFormula 5 Among them, Q SP,n is the flow rate of the nth sludge return pump, and F SP,n is the frequency of the nth sludge return pump And a SP,n and b SP,n are the fixed parameters of the operation relationship of the nth sludge return pump.

至少一示例實施方式中,該第一控制裝置12依據該汙泥迴流泵744的該初始頻率與該多個固定參數計算出該初始流量,並經由該初始流量與該調控係數Kp的乘積,來產生調整流量,即可知調整後的汙泥迴流量。至少一示例實施方式中,該第一控制裝置12藉由該汙泥迴流量與該多 個固定參數,算出調整頻率,以作為該汙泥迴流泵744的操作參數,並透過該變頻器742將該汙泥迴流泵744的運作頻率調整到該操作參數。 In at least one example embodiment, the first control device 12 calculates the initial flow rate according to the initial frequency of the sludge return pump 744 and the plurality of fixed parameters, and calculates the initial flow rate through the product of the initial flow rate and the control coefficient Kp. The adjusted flow rate is generated, that is, the adjusted sludge return flow rate can be known. In at least one example embodiment, the first control device 12 uses the sludge return amount and the multiple A fixed parameter is calculated, and the adjustment frequency is calculated as the operation parameter of the sludge return pump 744 , and the operation frequency of the sludge return pump 744 is adjusted to the operation parameter through the frequency converter 742 .

在至少一示例實施方式中,該汙泥迴流泵744的數量超過1個時,該第一控制裝置12依據該多個汙泥迴流泵的該多個初始頻率與該多個固定參數各自計算出多個初始流量,並經由該多個初始流量的加總產生一初始總流量。在該示例實施方式中,該第一控制裝置12將該初始總流量與該調控係數Kp相乘,以產生一調整總流量,即可知調整後的汙泥迴流量。在該示例實施方式中,該第一控制裝置12再將該調整汙泥迴流量分配給該多個汙泥迴流泵。舉例來說:該第一控制裝置12將該調整總流量平均分配給該多個汙泥迴流泵。至少一示例實施方式中,該第一控制裝置12藉由該多個分配流量與該多個固定參數,各自算出多個調整頻率,以作為該多個汙泥迴流泵的操作參數。 In at least one example embodiment, when the number of the sludge return pumps 744 exceeds one, the first control device 12 calculates the respective initial frequencies of the sludge return pumps and the fixed parameters according to the multiple initial frequencies and the multiple fixed parameters. A plurality of initial flows, and an initial total flow is generated by summing the plurality of initial flows. In this exemplary embodiment, the first control device 12 multiplies the initial total flow by the control coefficient Kp to generate an adjusted total flow, that is, the adjusted sludge return flow. In the example embodiment, the first control device 12 then distributes the adjusted sludge return flow rate to the plurality of sludge return pumps. For example, the first control device 12 evenly distributes the adjusted total flow to the plurality of sludge return pumps. In at least one example embodiment, the first control device 12 calculates a plurality of adjustment frequencies according to the plurality of distribution flow rates and the plurality of fixed parameters, respectively, as the operation parameters of the plurality of sludge return pumps.

請參照圖9,圖9繪示根據本發明的示例實施方式的水資源監控與處理系統1的間歇曝氣控制系統9的示意圖。該間歇曝氣控制系統9包含一第一控制裝置12、多個感測裝置911、912、913及914、一鼓風機941、一變頻器942以及一推流器945。在該示例實施方式中,該間歇曝氣控制系統9透過該多個感測裝置911、912、913及914量測該待測水體10,以取得多個感測參數。在該示例實施方式中,該第一控制裝置12利用所取得的該多個感測參數,經由該第一運算模式來產生該多個第一控制參數,並依據該多個第一控制參數來調控該鼓風機941、該變頻器942及該推流器945。 Please refer to FIG. 9 , which is a schematic diagram of the intermittent aeration control system 9 of the water resource monitoring and treatment system 1 according to an exemplary embodiment of the present invention. The intermittent aeration control system 9 includes a first control device 12 , a plurality of sensing devices 911 , 912 , 913 and 914 , a blower 941 , a frequency converter 942 and a flow propeller 945 . In this exemplary embodiment, the intermittent aeration control system 9 measures the water body 10 to be measured through the plurality of sensing devices 911 , 912 , 913 and 914 to obtain a plurality of sensing parameters. In the exemplary embodiment, the first control device 12 uses the acquired sensing parameters to generate the first control parameters through the first operation mode, and generates the first control parameters according to the first control parameters. The blower 941 , the frequency converter 942 and the flow propeller 945 are regulated and controlled.

在至少一示例實施方式中,該間歇曝氣控制系統9另具有圖一所示的該第二控制裝置13,該第二控制裝置13亦利用所取得的該多個感測參數,經由該第二運算模式來產生多個第二控制參數,該多個第二控制參數 可用於取代該多個第一控制參數,以調控該鼓風機941、該變頻器942及該推流器945。 In at least one example embodiment, the intermittent aeration control system 9 further has the second control device 13 shown in FIG. 1 , and the second control device 13 also uses the acquired sensing parameters to Two operation modes to generate a plurality of second control parameters, the plurality of second control parameters It can be used to replace the plurality of first control parameters to regulate the blower 941 , the frequency converter 942 and the flow pusher 945 .

在至少一示例實施方式中,該多個感測裝置911、912、913及914可分別為該ORP感測裝置、該MLSS感測裝置、該DO感測裝置以及該pH感測裝置。在該示例實施方式中,該鼓風機941、該變頻器942及該推流器945皆為圖1所述之該多個受控裝置14中的一個。 In at least one example embodiment, the plurality of sensing devices 911, 912, 913, and 914 may be the ORP sensing device, the MLSS sensing device, the DO sensing device, and the pH sensing device, respectively. In this exemplary embodiment, the blower 941 , the frequency converter 942 and the flow pusher 945 are all one of the plurality of controlled devices 14 described in FIG. 1 .

在至少一示例實施方式中,該待測水體10可分布於一好氧池903中。在該示例實施方式中,該好氧池903可用於對該待測水體10進行生物脫氮除磷的作業。在該示例實施方式中,該多個感測裝置911、912、913及914可設置在該好氧池901中。 In at least one example embodiment, the water body 10 to be tested may be distributed in an aerobic tank 903 . In this exemplary embodiment, the aerobic tank 903 can be used for the biological denitrification and dephosphorization of the water body 10 to be tested. In this example embodiment, the plurality of sensing devices 911 , 912 , 913 and 914 may be disposed in the aerobic tank 901 .

圖10示出了本發明示例具體實施方法的參數監控暨水資源處理方法中的間歇曝氣控制流程的流程圖。因為執行示例性方法的方式多種多樣,所以僅以舉例的方式提供該方法。可使用例如:圖1、圖2和圖9所示的系統以及裝置來執行如下所述的方法,並且參考這些附圖的各種元件來解釋示例性方法。圖10示出的每個框表示在示例性方法中執行的一個或多個程式、方法或子程式。此外,框的順序僅為例示性的並且可改變。在不脫離本發明的情況下,可添加附加框或可使用更少的框。另外,圖10可為圖3所示之參數監控暨水資源處理方法的一具體實施方法的流程。 FIG. 10 shows a flow chart of the intermittent aeration control process in the parameter monitoring and water resource treatment method of the exemplary embodiment of the present invention. Because of the variety of ways in which the exemplary method can be performed, the method is provided by way of example only. The methods described below may be performed using, for example, the systems and apparatus shown in FIGS. 1, 2, and 9, and exemplary methods are explained with reference to various elements of these figures. Each block shown in FIG. 10 represents one or more routines, methods, or subroutines performed in the exemplary method. Furthermore, the order of the blocks is exemplary only and may vary. Additional blocks may be added or fewer blocks may be used without departing from the invention. In addition, FIG. 10 is a flowchart of a specific implementation method of the parameter monitoring and water resource treatment method shown in FIG. 3 .

在框S1010處,該第一控制裝置12取得一ORP目標範圍與一MLSS目標範圍。 At block S1010, the first control device 12 obtains an ORP target range and an MLSS target range.

在至少一示例實施方式中,該第一控制裝置12通過一預設方式取得該ORP目標範圍。在該示例實施方式中,該預設方式可透過該第一控制裝置12直接從內部的該儲存器222中讀取該ORP目標範圍。在另一示例實施方式中,該預設方式可透過該第一控制裝置12藉由一ORP目標值判斷 方法來產生該ORP目標範圍。在該示例實施方式中,該ORP目標範圍包括一ORP下限閾值以及一ORP上限閾值。在該示例實施方式中,該ORP下限閾值為非曝氣階段ORP控制目標值,而該ORP上限閾值為曝氣階段ORP控制目標值。 In at least one example embodiment, the first control device 12 obtains the ORP target range in a predetermined manner. In the exemplary embodiment, the preset mode can directly read the ORP target range from the internal storage 222 through the first control device 12 . In another exemplary embodiment, the preset mode can be determined by an ORP target value through the first control device 12 method to generate the ORP target range. In the example embodiment, the ORP target range includes a lower ORP threshold and an upper ORP threshold. In this example embodiment, the ORP lower threshold is the non-aeration phase ORP control target value, and the ORP upper threshold is the aeration phase ORP control target value.

在至少一示例實施方式中,該第一控制裝置12通過該預設方式取得該MLSS目標範圍。在該示例實施方式中,該預設方式可透過該第一控制裝置12直接從內部的該儲存器222中讀取該MLSS目標範圍。在該示例實施方式中,該MLSS目標範圍包括一MLSS下限閾值以及一MLSS上限閾值。 In at least one example embodiment, the first control device 12 obtains the MLSS target range through the preset method. In the exemplary embodiment, the preset mode can directly read the MLSS target range from the internal storage 222 through the first control device 12 . In this example embodiment, the MLSS target range includes a lower MLSS threshold and an upper MLSS threshold.

在至少一示例實施方式中,該第一控制裝置12取得該鼓風機941的編號、運作關係式、最小頻率、最大頻率與初始頻率。在至少一示例實施方式中,當該鼓風機941的數量超過1個時,則該第一控制裝置12取得該多個鼓風機941各自的編號、運作關係式、最小頻率、最大頻率與初始頻率。 In at least one example embodiment, the first control device 12 obtains the number, operation relationship, minimum frequency, maximum frequency and initial frequency of the blower 941 . In at least one example embodiment, when the number of the blowers 941 exceeds one, the first control device 12 obtains the respective numbers, operation relational expressions, minimum frequency, maximum frequency and initial frequency of the plurality of blowers 941 .

在框S1020處,該第一控制裝置12接收來自ORP感測裝置911在一第一感測時刻所感測到的一第一ORP參數以及該MLSS感測裝置912在該第一感測時刻所感測到的一MLSS參數。 At block S1020, the first control device 12 receives a first ORP parameter sensed by the ORP sensing device 911 at a first sensing moment and the MLSS sensing device 912 sensed at the first sensing moment to an MLSS parameter.

在至少一示例實施方式中,該ORP感測裝置911與該MLSS感測裝置912可定期感測該待測水體10的該ORP參數與該MLSS參數,亦可連續性的感測該待測水體10的該ORP參數與該MLSS參數。在該示例實施方式中,該第一控制裝置12在每次取得該ORP變數以及該MLSS變數的數值之間的時間區間可具有一控制週期△t。 In at least one example embodiment, the ORP sensing device 911 and the MLSS sensing device 912 can periodically sense the ORP parameter and the MLSS parameter of the water body 10 to be measured, and can also continuously sense the water body to be measured 10 of the ORP parameter and the MLSS parameter. In the exemplary embodiment, the first control device 12 may have a control period Δt in the time interval between each time obtaining the ORP variable and the value of the MLSS variable.

在框S1030處,該第一控制裝置12確認該MLSS參數是否位於該MLSS目標範圍內。當該MLSS參數未在該MLSS目標範圍內時,該方法將 進入到框S1040中。當該MLSS參數位於該MLSS目標範圍內時,該方法將進入到框S1050中。 At block S1030, the first control device 12 confirms whether the MLSS parameter is within the MLSS target range. When the MLSS parameter is not within the MLSS target range, the method will Go to block S1040. When the MLSS parameter is within the MLSS target range, the method will proceed to block S1050.

在至少一示例實施方式中,當該MLSS參數未在該MLSS目標範圍內時,該第一控制裝置12需調整該控制參數,以將該MLSS參數調整到該MLSS目標範圍內。 In at least one example embodiment, when the MLSS parameter is not within the MLSS target range, the first control device 12 needs to adjust the control parameter to adjust the MLSS parameter within the MLSS target range.

在框S1040處,該第一控制裝置12調整該控制參數以調整該多個操作參數。 At block S1040, the first control device 12 adjusts the control parameter to adjust the plurality of operating parameters.

在至少一示例實施方式中,當該MLSS參數小於或等於該MLSS下限閾值時,該第一控制裝置12可調低該控制參數,以調低該多個操作參數。換言之,透過該變頻器942降低該鼓風機941的運作頻率與風量。在該示例實施方式中,該第一控制裝置12可將該控制參數設置到最低曝氣量,以最小化該多個操作參數。換言之,透過該變頻器942將該鼓風機941的運作頻率與風量降低到該最小頻率與最小風量,以藉此提高該MLSS變量的數值。在該示例實施方式中,該最小頻率與該最小風量可為該變頻器942提高該鼓風機941在圖3所示之參數監控暨水資源處理方法中的參數極值。 In at least one example embodiment, when the MLSS parameter is less than or equal to the MLSS lower threshold, the first control device 12 may lower the control parameter to lower the plurality of operating parameters. In other words, the operating frequency and air volume of the blower 941 are reduced through the frequency converter 942 . In the example embodiment, the first control device 12 may set the control parameter to a minimum aeration amount to minimize the plurality of operating parameters. In other words, through the inverter 942, the operating frequency and air volume of the blower 941 are reduced to the minimum frequency and the minimum air volume, thereby increasing the value of the MLSS variable. In this exemplary embodiment, the minimum frequency and the minimum air volume can be used by the inverter 942 to increase the parameter extreme values of the blower 941 in the parameter monitoring and water resource treatment method shown in FIG. 3 .

在至少一示例實施方式中,當該MLSS參數大於或等於該MLSS上限閾值時,該第一控制裝置12可提高該控制參數,以提高該多個操作參數。換言之,透過該變頻器942提高該鼓風機941的運作頻率與風量。在該示例實施方式中,該第一控制裝置12可將該控制參數設置到最大曝氣量,以最大化該多個操作參數。換言之,透過該變頻器942將該鼓風機941的運作頻率與風量提高到該最大頻率與最大風量,以藉此降低該MLSS變量的數值。在該示例實施方式中,該最大頻率與該最大風量可為該變頻器942提高該鼓風機941在圖3所示之參數監控暨水資源處理方法中的參數極值。 In at least one example embodiment, when the MLSS parameter is greater than or equal to the MLSS upper threshold, the first control device 12 may increase the control parameter to increase the plurality of operating parameters. In other words, the operating frequency and air volume of the blower 941 are increased through the frequency converter 942 . In the example embodiment, the first control device 12 may set the control parameter to a maximum aeration amount to maximize the plurality of operating parameters. In other words, the operating frequency and air volume of the blower 941 are increased to the maximum frequency and the maximum air volume through the inverter 942, thereby reducing the value of the MLSS variable. In this exemplary embodiment, the maximum frequency and the maximum air volume can increase the parameter extreme values of the blower 941 for the inverter 942 in the parameter monitoring and water resource treatment method shown in FIG. 3 .

在框S1050處,該第一控制裝置12確認該第一ORP參數是否位於該ORP目標範圍內。當該第一ORP參數位於該ORP目標範圍內時,該方法將進入到框S1060中。當該第一ORP參數未在該ORP目標範圍內時,該方法將進入到框S1082中。 At block S1050, the first control device 12 confirms whether the first ORP parameter is within the ORP target range. When the first ORP parameter is within the ORP target range, the method will proceed to block S1060. When the first ORP parameter is not within the ORP target range, the method will proceed to block S1082.

在至少一示例實施方式中,該第一控制裝置12確認該第一ORP參數與該ORP目標範圍之間的大小關係,以確認該第一ORP參數是位於大於或等於該ORP上限閾值的一第一ORP數值區域,或位於小於該ORP上限閾值且大於該ORP下限閾值的一第二ORP數值區域,還是小於或等於該ORP下限閾值的一第三ORP數值區域。 In at least one example embodiment, the first control device 12 confirms the magnitude relationship between the first ORP parameter and the ORP target range, so as to confirm that the first ORP parameter is located at a first value greater than or equal to the ORP upper limit threshold An ORP value area, or a second ORP value area that is less than the ORP upper threshold and greater than the ORP lower threshold, or a third ORP value area that is less than or equal to the ORP lower threshold.

在框S1060處,該第一控制裝置12確認一第二感測時刻的一第二ORP參數是否小於或等於該第一ORP參數。當該第二ORP參數大於該第一ORP參數時,該方法將進入到框S1071中。當該第二ORP參數小於或等於該第一ORP參數時,該方法將進入到框S1072中。 At block S1060, the first control device 12 confirms whether a second ORP parameter at a second sensing time is less than or equal to the first ORP parameter. When the second ORP parameter is greater than the first ORP parameter, the method will enter block S1071. When the second ORP parameter is less than or equal to the first ORP parameter, the method will proceed to block S1072.

在至少一示例實施方式中,該第一控制裝置12可進一步取得來自該ORP感測裝置在該第二感測時刻所感測的該第二ORP參數。在該示例實施方式中,該第二感測時刻早於該第一感測時刻,因此該第二ORP參數可為該第一控制裝置12在接收到該第一ORP參數之前就已經接收。在該示例實施方式中,該第二感測時刻與該第一感測時刻的時間差可等於n×△t。在該示例實施方式中,n為正整數。 In at least one example embodiment, the first control device 12 may further obtain the second ORP parameter sensed by the ORP sensing device at the second sensing moment. In this example embodiment, the second sensing moment is earlier than the first sensing moment, so the second ORP parameter may be received by the first control device 12 before the first ORP parameter is received. In this example embodiment, the time difference between the second sensing instant and the first sensing instant may be equal to n×Δt. In this example embodiment, n is a positive integer.

在至少一示例實施方式中,該第一控制裝置12確認該第一ORP參數與該第二ORP參數之間的大小關係,以確認在該第一感測時刻與該第二感測時刻之間,該ORP變數的數值是增加還是減少。當該第二ORP參數小於或等於該第一ORP參數時,該第一ORP參數位於該第二ORP數值區域且該ORP變數的數值是增加的。當該第二ORP參數大於該第一ORP參數 時,該第一ORP參數位於該第二ORP數值區域且該ORP變數的數值是降低的。 In at least one example embodiment, the first control device 12 confirms the magnitude relationship between the first ORP parameter and the second ORP parameter to confirm that between the first sensing time and the second sensing time , the value of the ORP variable is increasing or decreasing. When the second ORP parameter is less than or equal to the first ORP parameter, the first ORP parameter is located in the second ORP value area and the value of the ORP variable is increased. When the second ORP parameter is greater than the first ORP parameter , the first ORP parameter is located in the second ORP value area and the value of the ORP variable is decreased.

在框S1071處,該第一控制裝置12產生大於1的一調控係數Kp,以調控該控制參數。 At block S1071, the first control device 12 generates a control coefficient Kp greater than 1 to control the control parameter.

在至少一示例實施方式中,由於該第二ORP參數大於該第一ORP參數,因此該第一控制裝置12應試圖調高該控制參數,以調高對應的該多個操作參數,藉此避免該ORP變數的數值持續下降。因此,該調控係數Kp可以如下之方式進行運算。 In at least one example embodiment, since the second ORP parameter is greater than the first ORP parameter, the first control device 12 should attempt to increase the control parameter to increase the corresponding operating parameters, thereby avoiding The value of the ORP variable continued to decrease. Therefore, the control coefficient Kp can be calculated as follows.

Kp=1+|[(ORPtarget-ORP1)]/ORPtarget| 公式六其中,該ORPtarget為該ORP上限閾值且該ORP1為該第一ORP參數。 Kp=1+|[(ORP target -ORP 1 )]/ORP target | Formula 6 wherein, the ORP target is the ORP upper limit threshold and the ORP 1 is the first ORP parameter.

在框S1072處,該第一控制裝置12設置該調控係數Kp等於1,以維持該控制參數。 At block S1072, the first control device 12 sets the control coefficient Kp equal to 1 to maintain the control parameter.

在至少一示例實施方式中,由於該第二ORP參數小於或等於該第一ORP參數,代表該ORP變數的數值持續上升,以維持硝化反應的運作,因此該第一控制裝置12可維持該控制參數,所以該調控係數Kp可等於1,以維持該控制參數。 In at least one example embodiment, since the second ORP parameter is less than or equal to the first ORP parameter, it represents that the value of the ORP variable continues to increase to maintain the operation of the nitrification reaction, so the first control device 12 can maintain the control parameter, so the control coefficient Kp can be equal to 1 to maintain the control parameter.

在框S1081處,該第一控制裝置12依據該控制參數調整該多個操作參數。 At block S1081, the first control device 12 adjusts the plurality of operating parameters according to the control parameters.

至少一示例實施方式中,該第一控制裝置12經由該鼓風機941的該運作關係式以及該初始頻率,可取得該鼓風機941的初始風量。該初始風量可利用該初始頻率以及該運作關係式,並通過前述公式三來產生。 In at least one example embodiment, the first control device 12 can obtain the initial air volume of the blower 941 through the operation relationship and the initial frequency of the blower 941 . The initial air volume can be generated by using the initial frequency and the operating relationship, and by the aforementioned formula 3.

至少一示例實施方式中,該第一控制裝置12依據該鼓風機941的該初始頻率與該多個固定參數計算出該初始風量,並經由該初始風量與該調控係數Kp的乘積,來產生調整流量,即可知調整後的風量。至少一示 例實施方式中,該第一控制裝置12藉由該調整風量與該多個固定參數,算出調整頻率,以作為該鼓風機941的操作參數,並透過該變頻器942將該鼓風機941的運作頻率調整到該操作參數。 In at least one example embodiment, the first control device 12 calculates the initial air volume according to the initial frequency of the blower 941 and the plurality of fixed parameters, and generates the adjusted flow through the product of the initial air volume and the control coefficient Kp. , you can know the adjusted air volume. at least one In the exemplary embodiment, the first control device 12 calculates the adjustment frequency by using the adjusted air volume and the plurality of fixed parameters as the operation parameter of the blower 941, and adjusts the operation frequency of the blower 941 through the frequency converter 942. to the operating parameter.

在至少一示例實施方式中,該鼓風機941的數量超過1個時,該第一控制裝置12依據該多個鼓風機的該多個初始頻率與該多個固定參數各自計算出多個初始風量,並經由該多個初始風量的加總產生一初始總風量。在該示例實施方式中,該第一控制裝置12將該初始總風量與該調控係數Kp相乘,以產生一調整總風量,即可知調整後的曝氣量。在該示例實施方式中,該第一控制裝置12再將該調整總風量分配給該多個鼓風機。舉例來說:該第一控制裝置12將該調整總風量平均分配給該多個鼓風機。至少一示例實施方式中,該第一控制裝置12藉由該多個分配風量與該多個固定參數,各自算出多個調整頻率,以作為該多個鼓風機的操作參數。 In at least one example embodiment, when the number of the blowers 941 exceeds one, the first control device 12 calculates a plurality of initial air volumes according to the plurality of initial frequencies and the plurality of fixed parameters of the plurality of blowers, and An initial total air volume is generated through the summation of the plurality of initial air volumes. In this exemplary embodiment, the first control device 12 multiplies the initial total air volume by the control coefficient Kp to generate an adjusted total air volume, that is, the adjusted aeration volume. In the example embodiment, the first control device 12 then distributes the adjusted total air volume to the plurality of blowers. For example, the first control device 12 evenly distributes the adjusted total air volume to the plurality of blowers. In at least one example embodiment, the first control device 12 calculates a plurality of adjustment frequencies respectively by using the plurality of distributed air volumes and the plurality of fixed parameters as the operation parameters of the plurality of blowers.

至少一示例實施方式中,該第一控制裝置12可不額外啟動該推流器945,以維持該推流器945的運作頻率可維持為0,避免該推流器945的運作而散失曝氣量。 In at least one example embodiment, the first control device 12 may not activate the flow propeller 945 additionally, so as to maintain the operating frequency of the flow propeller 945 at 0, so as to avoid the loss of aeration amount due to the operation of the flow propeller 945 .

在框S1082處,該第一控制裝置12設置該控制參數以調整該多個操作參數。 At block S1082, the first control device 12 sets the control parameter to adjust the plurality of operating parameters.

至少一示例實施方式中,當該第一ORP參數小於或等於該ORP下限閾值,代表當前該ORP變量的數值過低,因此該第一控制裝置12應試圖調高該控制參數,以調高對應的該多個操作參數,藉此提高該ORP變數的數值來回到該ORP目標範圍內。換言之,透過該變頻器942可提高該鼓風機941的運作頻率與風量。在該示例實施方式中,該第一控制裝置12可將該控制參數設置到最大曝氣量,以最大化該多個操作參數。換言之,透過該變頻器942可將該鼓風機941的運作頻率與風量提升到該最大頻率與最 大風量。在該示例實施方式中,該第一控制裝置12可不額外啟動該推流器945,以維持該推流器945的運作頻率可維持為0,避免該推流器945的運作而散失曝氣量。 In at least one example embodiment, when the first ORP parameter is less than or equal to the ORP lower threshold, it means that the current value of the ORP variable is too low, so the first control device 12 should try to increase the control parameter to increase the corresponding the plurality of operating parameters, thereby increasing the value of the ORP variable to return to the ORP target range. In other words, the operating frequency and air volume of the blower 941 can be increased through the frequency converter 942 . In the example embodiment, the first control device 12 may set the control parameter to a maximum aeration amount to maximize the plurality of operating parameters. In other words, through the inverter 942, the operating frequency and air volume of the blower 941 can be increased to the maximum frequency and maximum air volume. High air volume. In this exemplary embodiment, the first control device 12 may not activate the flow propeller 945 additionally, so as to maintain the operating frequency of the flow propeller 945 at 0, so as to avoid the loss of aeration volume due to the operation of the flow propeller 945 .

至少一示例實施方式中,當該第一ORP參數大於或等於該ORP上限閾值,代表當前該ORP變量的數值過高,因此該第一控制裝置12應試圖降低該控制參數,以降低對應的該多個操作參數,藉此降低該ORP變數的數值來回到該ORP目標範圍內。換言之,透過該變頻器942可降低該鼓風機941的運作頻率與風量。在該示例實施方式中,該第一控制裝置12可將該控制參數設置到最小曝氣量,以最小化該多個操作參數。換言之,透過該變頻器942可將該鼓風機941的運作頻率與風量降低到該最小頻率與最小風量。在該示例實施方式中,該第一控制裝置12可額外啟動該推流器945,並提高該推流器945的運作頻率,加入該推流器945的運作來降低曝氣量。在該示例實施方式中,該推流器945的運作頻率可設置在一預設區間中的一預設頻率。該預設頻率可為60赫茲(Hz)。 In at least one example embodiment, when the first ORP parameter is greater than or equal to the ORP upper limit threshold, it means that the current value of the ORP variable is too high, so the first control device 12 should try to reduce the control parameter to reduce the corresponding operating parameters, thereby reducing the value of the ORP variable to return within the ORP target range. In other words, the operating frequency and air volume of the blower 941 can be reduced through the frequency converter 942 . In the example embodiment, the first control device 12 may set the control parameter to a minimum aeration amount to minimize the plurality of operating parameters. In other words, the operating frequency and air volume of the blower 941 can be reduced to the minimum frequency and the minimum air volume through the frequency converter 942 . In this exemplary embodiment, the first control device 12 can additionally activate the flow propeller 945, increase the operating frequency of the flow propeller 945, and add the operation of the flow propeller 945 to reduce the aeration volume. In this exemplary embodiment, the operating frequency of the flow pusher 945 can be set to a predetermined frequency within a predetermined interval. The preset frequency may be 60 hertz (Hz).

請參照圖11,圖11繪示根據本發明的示例實施方式的水資源監控與處理系統1的分段進流控制系統110的示意圖。該分段進流控制系統110包含一第一控制裝置12、多個感測裝置11111-11113及11121-11123以及多個閘閥門11461-11463。在該示例實施方式中,該分段進流控制系統110透過該多個感測裝置11111-11113及11121-11123量測該待測水體10,以取得多個感測參數。在該示例實施方式中,該第一控制裝置12利用所取得的該多個感測參數,經由該第一運算模式來產生該多個第一控制參數,並依據該多個第一控制參數來調控該多個閘閥門11461-11463。 Please refer to FIG. 11 . FIG. 11 is a schematic diagram of a segmented inflow control system 110 of the water resource monitoring and treatment system 1 according to an exemplary embodiment of the present invention. The segmented inflow control system 110 includes a first control device 12, a plurality of sensing devices 11111-11113 and 11121-11123, and a plurality of gate valves 11461-11463. In this exemplary embodiment, the segmented inflow control system 110 measures the water body 10 to be measured through the plurality of sensing devices 11111-11113 and 11121-11123 to obtain a plurality of sensing parameters. In the exemplary embodiment, the first control device 12 uses the acquired sensing parameters to generate the first control parameters through the first operation mode, and generates the first control parameters according to the first control parameters. The plurality of gate valves 11461-11463 are regulated.

在至少一示例實施方式中,該分段進流控制系統110另具有圖一所示的該第二控制裝置13,該第二控制裝置13亦利用所取得的該多個感測 參數,經由該第二運算模式來產生多個第二控制參數,該多個第二控制參數可用於取代該多個第一控制參數,以調控該多個閘閥門11461-11463。 In at least one example embodiment, the segmented inflow control system 110 further includes the second control device 13 shown in FIG. 1 , and the second control device 13 also utilizes the acquired senses A plurality of second control parameters are generated through the second operation mode, and the plurality of second control parameters can be used to replace the plurality of first control parameters to regulate the plurality of gate valves 11461-11463.

在至少一示例實施方式中,該多個感測裝置11111-11113可為該多個ORP感測裝置,而該多個感測裝置11121-11123可為該多個pH感測裝置。在該示例實施方式中,該多個閘閥門11461-11463皆為圖1所述之該多個受控裝置中的一個。 In at least one example embodiment, the plurality of sensing devices 11111-11113 can be the plurality of ORP sensing devices, and the plurality of sensing devices 11121-11123 can be the plurality of pH sensing devices. In this example embodiment, the plurality of gate valves 11461-11463 are all one of the plurality of controlled devices described in FIG. 1 .

在至少一示例實施方式中,該待測水體10可分布於多個缺氧池11021-11023及多個好氧池11031-11033中。在該示例實施方式中,該多個缺氧池11021-11023及該多個好氧池11031-11033可用於對該待測水體10進行生物脫氮除磷的作業。在該示例實施方式中,該多個感測裝置11111-11113及11121-11123可設置在該多個缺氧池11021-11023中。 In at least one example embodiment, the water body 10 to be tested can be distributed in a plurality of anoxic tanks 11021-11023 and a plurality of aerobic tanks 11031-11033. In this exemplary embodiment, the multiple anoxic tanks 11021-11023 and the multiple aerobic tanks 11031-11033 can be used to perform biological nitrogen and phosphorus removal operations on the water body 10 to be tested. In this example embodiment, the plurality of sensing devices 11111-11113 and 11121-11123 may be disposed in the plurality of anoxic cells 11021-11023.

在至少一示例實施方式中,該閘閥門11461、該ORP感測裝置11111及該pH感測裝置11121可設置於該缺氧池11021,該閘閥門11462、該ORP感測裝置11112及該pH感測裝置11122可設置於該缺氧池11022,以及該閘閥門11461、該ORP感測裝置11113及該pH感測裝置11123可設置於該缺氧池11023。 In at least one example embodiment, the gate valve 11461, the ORP sensing device 11111 and the pH sensing device 11121 can be disposed in the anoxic tank 11021, the gate valve 11462, the ORP sensing device 11112 and the pH sensing device 11021 The measuring device 11122 can be disposed in the anoxic tank 11022 , and the gate valve 11461 , the ORP sensing device 11113 and the pH sensing device 11123 can be disposed in the anoxic tank 11023 .

圖12示出了本發明示例具體實施方法的參數監控暨水資源處理方法中的分段進流控制流程的流程圖。因為執行示例性方法的方式多種多樣,所以僅以舉例的方式提供該方法。可使用例如:圖1、圖2和圖11所示的系統以及裝置來執行如下所述的方法,並且參考這些附圖的各種元件來解釋示例性方法。圖12示出的每個框表示在示例性方法中執行的一個或多個程式、方法或子程式。此外,框的順序僅為例示性的並且可改變。在不脫離本發明的情況下,可添加附加框或可使用更少的框。另外,圖12可為圖3所示之參數監控暨水資源處理方法的一具體實施方法的流程。 FIG. 12 shows a flow chart of the segmented inflow control process in the parameter monitoring and water resources processing method of the exemplary embodiment of the present invention. Because of the variety of ways in which the exemplary method can be performed, the method is provided by way of example only. The methods described below may be performed using, for example, the systems and apparatus shown in FIGS. 1, 2, and 11, and exemplary methods are explained with reference to various elements of these figures. Each block shown in FIG. 12 represents one or more routines, methods, or subroutines performed in the exemplary method. Furthermore, the order of the blocks is exemplary only and may vary. Additional blocks may be added or fewer blocks may be used without departing from the invention. In addition, FIG. 12 is a flowchart of a specific implementation method of the parameter monitoring and water resource treatment method shown in FIG. 3 .

在框S1210處,該第一控制裝置12取得多個ORP目標值。 At block S1210, the first control device 12 obtains a plurality of ORP target values.

在至少一示例實施方式中,該第一控制裝置12通過一預設方式取得該多個ORP目標值。在該示例實施方式中,該預設方式可透過該第一控制裝置12直接從內部的該儲存器222中讀取該多個ORP目標值。在另一示例實施方式中,該預設方式可透過該第一控制裝置12藉由一ORP目標值判斷方法來產生該多個ORP目標值。在至少一示例實施方式中,該多個ORP目標值係一對一對應於不同的該多個缺氧池11021-11023。 In at least one example embodiment, the first control device 12 obtains the ORP target values in a predetermined manner. In the exemplary embodiment, the preset mode can directly read the ORP target values from the internal storage 222 through the first control device 12 . In another exemplary embodiment, the predetermined manner may generate the plurality of ORP target values through the first control device 12 through an ORP target value determination method. In at least one example embodiment, the ORP target values correspond to different hypoxia pools 11021-11023 on a one-to-one basis.

在至少一示例實施方式中,該第一控制裝置12取得該多個閘閥門11461-11463各自的編號、運作關係式、最小孔口開度、最大孔口開度與初始孔口開度。 In at least one example embodiment, the first control device 12 obtains the respective numbers, operating relationship, minimum orifice opening, maximum orifice opening, and initial orifice opening of the plurality of gate valves 11461-11463.

在框S1220處,該第一控制裝置12接收來自該多個ORP感測裝置在一第一感測時刻所感測到的多個第一ORP參數。 At block S1220, the first control device 12 receives a plurality of first ORP parameters sensed by the plurality of ORP sensing devices at a first sensing moment.

在至少一示例實施方式中,該ORP感測裝置11111-11113可定期感測該待測水體10的該多個ORP參數,亦可連續性的感測該待測水體10的該ORP變數的數值。在該示例實施方式中,該第一控制裝置12在每次取得該ORP變數的數值之間的時間區間可具有一控制週期△t。 In at least one example embodiment, the ORP sensing devices 11111-11113 can periodically sense the ORP parameters of the water body 10 to be measured, and can also continuously sense the value of the ORP variables of the water body 10 to be measured. . In this exemplary embodiment, the first control device 12 may have a control period Δt in the time interval between each acquisition of the value of the ORP variable.

在框S1230處,該第一控制裝置12將該多個第一ORP參數與該多個ORP目標值進行比較,以產生多個第一比較結果。 At block S1230, the first control device 12 compares the plurality of first ORP parameters with the plurality of ORP target values to generate a plurality of first comparison results.

在至少一示例實施方式中,該多個第一ORP參數中的每一個會與該多個ORP目標值中對應的一個進行比較,以產生該多個第一比較結果中對應的一個。在該示例實施方式中,該缺氧池11021中的該ORP感測裝置11111所產生的該第一ORP參數會與該缺氧池11021所對應的該第一ORP目標值進行比較,以產生第一個第一比較結果。此外,該缺氧池11022中的該ORP感測裝置11112所產生的該第一ORP參數會與該缺氧池11022所對 應的該第一ORP目標值進行比較,以產生第二個第一比較結果。再者,該缺氧池11023中的該ORP感測裝置11113所產生的該第一ORP參數會與該缺氧池11023所對應的該第一ORP目標值進行比較,以產生第三個第一比較結果。 In at least one example embodiment, each of the plurality of first ORP parameters is compared with a corresponding one of the plurality of ORP target values to generate a corresponding one of the plurality of first comparison results. In this example embodiment, the first ORP parameter generated by the ORP sensing device 11111 in the hypoxia pool 11021 is compared with the first ORP target value corresponding to the hypoxia pool 11021 to generate the first ORP parameter. A first comparison result. In addition, the first ORP parameter generated by the ORP sensing device 11112 in the hypoxia pool 11022 will be matched with the hypoxia pool 11022 The first ORP target value should be compared to produce a second first comparison result. Furthermore, the first ORP parameter generated by the ORP sensing device 11113 in the hypoxia pool 11023 is compared with the first ORP target value corresponding to the hypoxia pool 11023 to generate a third first ORP value. Comparing results.

在框S1240處,該第一控制裝置12將來自該多個ORP感測裝置在一第二感測時刻所感測到的多個第二ORP參數與該多個第一ORP參數進行比較,以產生多個第二比較結果,並依據該多個第一比較結果與該多個第二比較結果產生多個調控參數。 At block S1240, the first control device 12 compares the plurality of second ORP parameters sensed from the plurality of ORP sensing devices at a second sensing moment with the plurality of first ORP parameters to generate A plurality of second comparison results are generated, and a plurality of control parameters are generated according to the plurality of first comparison results and the plurality of second comparison results.

在至少一示例實施方式中,該第一控制裝置12可進一步取得來自該多個ORP感測裝置11111-11113在該第二感測時刻所感測的該多個第二ORP參數。在該示例實施方式中,該第二感測時刻早於該第一感測時刻,因此該多個第二ORP參數可為該第一控制裝置12在接收到該多個第一ORP參數之前就已經接收。在該示例實施方式中,該第二感測時刻與該第一感測時刻的時間差可等於n×△t。在該示例實施方式中,n為正整數。 In at least one example embodiment, the first control device 12 may further obtain the plurality of second ORP parameters sensed by the plurality of ORP sensing devices 11111-11113 at the second sensing time. In this example embodiment, the second sensing time is earlier than the first sensing time, so the plurality of second ORP parameters may be obtained before the first control device 12 receives the plurality of first ORP parameters received. In this example embodiment, the time difference between the second sensing instant and the first sensing instant may be equal to n×Δt. In this example embodiment, n is a positive integer.

在至少一示例實施方式中,該第一控制裝置12確認該多個第一ORP參數與該多個第二ORP參數之間的大小關係,以確認在該第一感測時刻與該第二感測時刻之間,該多個ORP變數的數值是增加還是減少,並對應產生該多個第二比較結果。當該多個第二ORP參數中的一個大於該多個第一ORP參數中對應的一個時,該多個缺氧池11021-11023中對應的一個的該ORP變數的數值是增加的。當該多個第二ORP參數中的一個小於或等於該多個第一ORP參數中對應的一個時,該多個缺氧池11021-11023中對應的一個的該ORP變數的數值是減少的。 In at least one example embodiment, the first control device 12 confirms the magnitude relationship between the plurality of first ORP parameters and the plurality of second ORP parameters, so as to confirm the relationship between the first sensing moment and the second sensing time. Between the measurement times, the values of the ORP variables are increased or decreased, and the plurality of second comparison results are correspondingly generated. When one of the plurality of second ORP parameters is greater than the corresponding one of the plurality of first ORP parameters, the value of the ORP variable of the corresponding one of the plurality of anoxic pools 11021-11023 is increased. When one of the plurality of second ORP parameters is less than or equal to a corresponding one of the plurality of first ORP parameters, the value of the ORP variable of the corresponding one of the plurality of anoxic pools 11021-11023 is decreased.

在至少一示例實施方式中,當其中一個該多個第一比較結果顯示該多個第一ORP參數中對應的一個大於或等於該多個ORP目標值中對應 的一個,且該多個第二比較結果中對應的一個顯示該多個第二ORP參數中對應的一個小於或等於該對應的第一ORP參數時,該第一控制裝置12可透過如下之方式進行運算,以取得多個調控係數Kp中對應的一個。 In at least one example embodiment, when one of the plurality of first comparison results shows that a corresponding one of the plurality of first ORP parameters is greater than or equal to a corresponding one of the plurality of ORP target values When the corresponding one of the plurality of second comparison results shows that the corresponding one of the plurality of second ORP parameters is less than or equal to the corresponding first ORP parameter, the first control device 12 may use the following methods An operation is performed to obtain a corresponding one of the plurality of control coefficients Kp.

Kpn=1+|[(ORPtarget,n-ORP1,n)]/ORPtarget,n| 公式七其中,該ORPtarget,n為該多個ORP目標值中的第n個且該ORP1,n為該多個第一ORP參數中的第n個。在該示例實施方式中,以公式七所取得的該對應的調控參數Kp會大於或等於1。 Kp n =1+|[(ORP target,n -ORP 1,n )]/ORP target,n | Formula 7 Wherein, the ORP target,n is the nth of the multiple ORP target values and the ORP 1 , n is the nth of the plurality of first ORP parameters. In this exemplary embodiment, the corresponding control parameter Kp obtained by formula 7 will be greater than or equal to 1.

在至少一示例實施方式中,當其中一個該多個第一比較結果顯示該多個第一ORP參數中對應的一個大於或等於該多個ORP目標值中對應的一個,且該多個第二比較結果中對應的一個顯示該多個第二ORP參數中對應的一個大於該對應的第一ORP參數時,該第一控制裝置12設置該多個調控係數Kp中對應的一個等於1。 In at least one example embodiment, when one of the plurality of first comparison results shows that a corresponding one of the plurality of first ORP parameters is greater than or equal to a corresponding one of the plurality of ORP target values, and the plurality of second ORP parameters When the corresponding one of the comparison results shows that the corresponding one of the plurality of second ORP parameters is greater than the corresponding first ORP parameter, the first control device 12 sets the corresponding one of the plurality of control coefficients Kp equal to 1.

在至少一示例實施方式中,當其中一個該多個第一比較結果顯示該多個第一ORP參數中對應的一個小於該多個ORP目標值中對應的一個,且該多個第二比較結果中對應的一個顯示該多個第二ORP參數中對應的一個小於或等於該對應的第一ORP參數時,該第一控制裝置12設置該多個調控係數Kp中對應的一個等於1。 In at least one example embodiment, when one of the plurality of first comparison results shows that a corresponding one of the plurality of first ORP parameters is smaller than a corresponding one of the plurality of ORP target values, and the plurality of second comparison results When the corresponding one of the plurality of second ORP parameters shows that the corresponding one of the plurality of second ORP parameters is less than or equal to the corresponding first ORP parameter, the first control device 12 sets the corresponding one of the plurality of control coefficients Kp equal to 1.

在至少一示例實施方式中,當其中一個該多個第一比較結果顯示該多個第一ORP參數中對應的一個小於該多個ORP目標值中對應的一個,且該多個第二比較結果中對應的一個顯示該多個第二ORP參數中對應的一個大於該對應的第一ORP參數時,該第一控制裝置12可透過如下之方式進行運算,以取得多個調控係數Kp中對應的一個。 In at least one example embodiment, when one of the plurality of first comparison results shows that a corresponding one of the plurality of first ORP parameters is smaller than a corresponding one of the plurality of ORP target values, and the plurality of second comparison results When the corresponding one of the plurality of second ORP parameters shows that the corresponding one of the plurality of second ORP parameters is greater than the corresponding first ORP parameter, the first control device 12 may perform the operation in the following manner to obtain the corresponding one of the plurality of control coefficients Kp One.

Kpn=1-|[ORPtarget,n-ORP1,n)]/ORPtarget,n| 公式八 其中,該ORPtarget,n為該多個ORP目標值中的第n個且該ORP1,n為該多個第一ORP參數中的第n個。在該示例實施方式中,以公式八所取得的該對應的調控參數Kp會小於1。 Kp n =1-|[ORP target,n -ORP 1,n )]/ORP target,n | Formula 8 Wherein, the ORP target,n is the nth of the multiple ORP target values and the ORP 1, n is the nth of the plurality of first ORP parameters. In this exemplary embodiment, the corresponding control parameter Kp obtained by formula 8 will be less than 1.

舉例來說,當該缺氧池11022中的該ORP感測裝置11112所產生的該第一ORP參數大於或等於該缺氧池11022所對應的該第一ORP目標值,且該ORP感測裝置11112所產生的該第二ORP參數大於該ORP感測裝置11112所產生的該第一ORP參數時,該第一控制裝置12設置該缺氧池11022的該調控係數Kp中等於1。 For example, when the first ORP parameter generated by the ORP sensing device 11112 in the hypoxia pool 11022 is greater than or equal to the first ORP target value corresponding to the hypoxia pool 11022, and the ORP sensing device When the second ORP parameter generated by 11112 is greater than the first ORP parameter generated by the ORP sensing device 11112, the first control device 12 sets the control coefficient Kp of the hypoxia pool 11022 to be equal to 1.

在框S1250處,該第一控制裝置12依據該多個調控參數產生多個控制參數,並依據該多個控制參數產生該多個操作參數。 At block S1250, the first control device 12 generates a plurality of control parameters according to the plurality of control parameters, and generates the plurality of operation parameters according to the plurality of control parameters.

在至少一示例實施方式中,該第一控制裝置12可透過該多個調控係數Kp來產生一調控基數Kb,以藉此來調整該多個調控係數,以產生多個調整後之調控係數Kp’。舉例來說,該多個調整後調控係數Kp’可以如下公式產生。 In at least one example embodiment, the first control device 12 can generate a control base Kb through the plurality of control coefficients Kp, so as to adjust the plurality of control coefficients to generate a plurality of adjusted control coefficients Kp '. For example, the plurality of adjusted control coefficients Kp' can be generated by the following formula.

Kp’n=Kpn/Kb 公式九其中,該多個調控係數的數量等於k,該Kp’n為該多個調整後調控係數Kp’中的第n個。在該示例實施方式中,該調控基數Kb可為該多個調控係數Kp的總和或是平均數。 Kp' n =Kp n /Kb Formula 9 wherein, the number of the plurality of regulation coefficients is equal to k, and the Kp' n is the nth of the plurality of adjusted regulation coefficients Kp'. In this exemplary embodiment, the regulation base Kb may be the sum or the average of the plurality of regulation coefficients Kp.

至少一示例實施方式中,該第一控制裝置12經由該多個閘閥門11461-11463的該多個運作關係式以及該初始頻率,可取得該多個閘閥門11461-11463的各自的多個初始流量。該多個初始流量可利用該多個初始頻率以及該運作關係式,並通過如下所述之公式十來產生。 In at least one example embodiment, the first control device 12 can obtain the respective initial values of the plurality of gate valves 11461-11463 through the plurality of operating relationships and the initial frequency of the plurality of gate valves 11461-11463 flow. The plurality of initial flows can be generated by using the plurality of initial frequencies and the operating relationship, and by formula 10 described below.

QSF,n=aSF,n×[(OPSF,n)^bSF,n] 公式十 其中,QSF,n為第n個閘閥門之流量,OPSF,n為第n個閘閥門的孔口開度及aSF,n與bSF,n為第n個閘閥門之該運作關係式的固定參數。 Q SF,n =a SF,n ×[(OP SF,n )^b SF,n ] Formula 10 Among them, Q SF,n is the flow rate of the nth gate valve, and OP SF,n is the nth gate valve The opening of the orifice and a SF,n and b SF,n are the fixed parameters of the operating relationship of the nth gate valve.

至少一示例實施方式中,該第一控制裝置12依據該多個閘閥門11461-11463各自的該初始流量以及各自的該調整後調控係數Kp’的乘積,來產生各自的調整流量,即可知調整後的分段迴流量。至少一示例實施方式中,該第一控制裝置12藉由該多個分段迴流量與該多個固定參數,算出調整多個孔口開度,以作為該多個閘閥門11461-11463的操作參數。 In at least one example embodiment, the first control device 12 generates the respective adjusted flow rates according to the product of the respective initial flow rates of the plurality of gate valves 11461-11463 and the respective adjusted control coefficients Kp', that is, the adjustment is known. Subsequent return flow. In at least one example embodiment, the first control device 12 calculates and adjusts a plurality of orifice openings according to the plurality of segmented return flows and the plurality of fixed parameters, as the operation of the plurality of gate valves 11461-11463 parameter.

圖13示出了本發明示例具體實施方法的參數監控暨水資源處理方法中的生物硝化/脫硝程序控制流程的流程圖。因為執行示例性方法的方式多種多樣,所以僅以舉例的方式提供該方法。可使用例如:圖1和圖2所示的系統以及裝置來執行如下所述的方法,並且參考這些附圖的各種元件來解釋示例性方法。圖13示出的每個框表示在示例性方法中執行的一個或多個程式、方法或子程式。此外,框的順序僅為例示性的並且可改變。在不脫離本發明的情況下,可添加附加框或可使用更少的框。 FIG. 13 shows a flow chart of the biological nitrification/denitrification program control process in the parameter monitoring and water resources treatment method of the exemplary implementation method of the present invention. Because of the variety of ways in which the exemplary method can be performed, the method is provided by way of example only. The methods described below may be performed using, for example, the systems and apparatus shown in FIGS. 1 and 2, and exemplary methods are explained with reference to various elements of these figures. Each block shown in FIG. 13 represents one or more routines, methods, or subroutines performed in the exemplary method. Furthermore, the order of the blocks is exemplary only and may vary. Additional blocks may be added or fewer blocks may be used without departing from the invention.

在框S1310處,接收來自一感測裝置11在多個感測時刻所感測到的多個感測參數。 At block S1310, a plurality of sensing parameters sensed at a plurality of sensing moments from a sensing device 11 are received.

在至少一示例實施方式中,該感測裝置11可定期感測該待測水體10的一感測變數的數值,亦可連續性的感測該待測水體10的該感測變數的數值。 In at least one example embodiment, the sensing device 11 can periodically sense the value of a sensing variable of the water body 10 to be tested, and can also continuously sense the value of the sensing variable of the water body 10 to be tested.

在至少一示例實施方式中,該感測裝置11可為一ORP感測裝置,則該感測變數為ORP變數,且該多個感測參數為該ORP感測裝置在該多個感測時刻所感測到的多個ORP參數。在至少一示例實施方式中,該感測裝置11可為一pH感測裝置,則該感測變數為pH變數,且該多個感測參數為該pH感測裝置在該多個感測時刻所感測到的多個pH參數。 In at least one example embodiment, the sensing device 11 may be an ORP sensing device, the sensing variable is an ORP variable, and the sensing parameters are the ORP sensing device at the sensing moments Sensed multiple ORP parameters. In at least one example embodiment, the sensing device 11 can be a pH sensing device, the sensing variable is a pH variable, and the sensing parameters are the pH sensing device at the sensing moments Multiple pH parameters sensed.

在至少一示例實施方式中,該第一控制裝置12在接收來自該感測裝置11在該多個感測時刻所感測到的該多個感測參數。在該示例實施方式中,該第二控制裝置13亦在接收由該第一控制裝置12間接提供或由該感測裝置11直接提供的該多個感測參數。在該示例實施方式中,該多個感測時刻可為連續多個感測時刻,亦可為非連續的多個感測時刻。在該示例實施方式中,該感測裝置11在每次取得該感測變數的數值之間的時間區間可具有一控制週期△t。因此,該多個感測時刻間的間隔可為m×△t。在該示例實施方式中,m可為正整數。 In at least one example embodiment, the first control device 12 receives the plurality of sensing parameters sensed by the sensing device 11 at the plurality of sensing moments. In this example embodiment, the second control device 13 is also receiving the sensing parameters indirectly provided by the first control device 12 or directly provided by the sensing device 11 . In this exemplary embodiment, the plurality of sensing moments may be consecutive or discontinuous. In this exemplary embodiment, the sensing device 11 may have a control period Δt in the time interval between each acquisition of the value of the sensing variable. Therefore, the interval between the plurality of sensing times may be m×Δt. In this example embodiment, m may be a positive integer.

在至少一示例實施方式中,該多個感測時刻可以是間隔為1的連續五個感測時刻t0+(n-4)×△t,t0+(n-3)×△t,t0+(n-2)×△t,t0+(n-1)×△t及t0+n×△t,亦可以是間隔為2的連續四個感測時刻。在另一示例實施方式中,該多個感測時刻可以是不連續四個感測時刻t0+(n-5)×△t,t0+(n-4)×△t,t0+(n-2)×△t以及t0+n×△t。 In at least one example embodiment, the plurality of sensing instants may be five consecutive sensing instants t 0 +(n-4)×Δt, t 0 +(n-3)×Δt, with an interval of 1. t 0 +(n-2)×Δt, t 0 +(n-1)×Δt and t 0 +n×Δt may also be four consecutive sensing times with an interval of 2. In another example embodiment, the plurality of sensing instants may be discontinuous four sensing instants t 0 +(n-5)×Δt,t 0 +(n-4)×Δt,t 0 + (n-2)×Δt and t 0 +n×Δt.

在框S1320處,依據該多個感測參數,在一預測模型下,產生一預測參數。 At block S1320, a prediction parameter is generated under a prediction model according to the plurality of sensed parameters.

在至少一示例實施方式中,該第二控制裝置12可依據該多個感測參數以及該多個感測時刻,在該預測模型下產生一接續時刻的該預測參數。在該示例實施方式下,當該多個感測時刻的最後一個時間為t0+n×△t時,該接續時刻可為t0+(n+1)×△t。 In at least one example embodiment, the second control device 12 may generate the predicted parameter of a subsequent time under the prediction model according to the plurality of sensing parameters and the plurality of sensing times. In this example embodiment, when the last time of the plurality of sensing moments is t 0 +n×Δt, the subsequent moment may be t 0 +(n+1)×Δt.

在至少一示例實施方式中,該第二控制裝置12具有預先設置的一訓練模組,該第二控制裝置12可事先接收包括大量感測時刻與感測數據的一歷史資料,並透過該些歷史資料事先建立該預測模型。在一示例實施方式中,該預測模型可為類神經網路(Artificial Neural Network,ANN)架構等各種人工智慧的架構建模,並在該ANN架構下經曲線優化ANN模式 來進行該預測參數的預測。在至少一示例實施方式中,該第二控制裝置12不限於ANN架構的方式建模,可透過其他機器學習的方式產生不同的預測模型。在該示例實施方式中,該預測模型可為本發明之控制決策模型的一具體實施方式。 In at least one example embodiment, the second control device 12 has a preset training module, the second control device 12 can receive a historical data including a large number of sensing time and sensing data in advance, and through the Historical data establishes the forecasting model in advance. In an exemplary embodiment, the prediction model can be modeled for various artificial intelligence architectures such as Artificial Neural Network (ANN) architecture, and the ANN mode is optimized by curves under the ANN architecture. to predict the prediction parameters. In at least one example embodiment, the second control device 12 is not limited to modeling in an ANN architecture, and can generate different prediction models through other machine learning methods. In this example embodiment, the prediction model may be an embodiment of the control decision model of the present invention.

在框S1330處,依據該多個感測參數計算至少一個第一運算值,並依據該多個感測參數及該預測參數計算至少一個第二運算值。 At block S1330, at least one first operation value is calculated according to the plurality of sensing parameters, and at least one second operation value is calculated according to the plurality of sensing parameters and the prediction parameter.

在至少一示例實施方式中,該至少一個第一運算值可包括該感測變數在該感測時刻t0+n×△t的一個或兩個第一微分值。該一個或兩個第一微分值可為一階微分值dPt0+n×△t以及二階微分值d2Pt0+n×△t。因此,該第二控制裝置12依據該多個感測參數來取得該至少一個第一運算值。 In at least one example embodiment, the at least one first operation value may include one or two first differential values of the sensing variable at the sensing time t 0 +n×Δt. The one or two first differential values may be a first-order differential value dP t0+n×Δt and a second-order differential value d 2 P t0+n×Δt . Therefore, the second control device 12 obtains the at least one first operation value according to the plurality of sensing parameters.

在至少一示例實施方式中,該至少一個第二運算值可包括該感測變數在該預測時刻t0+(n+1)×△t的一個或兩個第二微分值。該一個或兩個第二微分值可為的一階微分值dPt0+(n+1)×△t以及二階微分值d2Pt0+(n+1)×△t。因此,該第二控制裝置12依據該預測參數以及該多個感測參數來取得該至少一個第二運算值。 In at least one example embodiment, the at least one second operation value may include one or two second differential values of the sensed variable at the predicted time instant t 0 +(n+1)×Δt. The one or two second differential values may be the first-order differential value dP t0+(n+1)×Δt and the second-order differential value d 2 P t0+(n+1)×Δt . Therefore, the second control device 12 obtains the at least one second operation value according to the predicted parameter and the plurality of sensing parameters.

在框S1340處,依據該至少一個第一運算值及該至少一個第二運算值中的至少一個來判斷一控制參數。 At block S1340, a control parameter is determined according to at least one of the at least one first operation value and the at least one second operation value.

在至少一示例實施方式中,該控制參數為生物硝化/脫硝反應終點。圖14示出了待測水體10進行水資源處理過程中,在生物硝化/脫硝反應下,該待測水體10的該ORP變數與該pH變數的變化。由圖14可知,在生物硝化/脫硝反應的終點,該ORP變數與該pH變數都存在有明確的轉折點ORP(B)、pH(B)、ORP(C)以及pH(C),因此可透過所產生的預測參數,來預測該ORP變數與該pH變數的數值是否遇到作為生物硝化/脫硝反應終點的該轉折點。 In at least one example embodiment, the control parameter is a biological nitrification/denitrification reaction endpoint. FIG. 14 shows the changes of the ORP variable and the pH variable of the water body 10 to be measured under the biological nitrification/denitrification reaction during the water resource treatment process of the water body 10 to be measured. It can be seen from Figure 14 that at the end of the biological nitrification/denitrification reaction, both the ORP variable and the pH variable have clear turning points ORP(B), pH(B), ORP(C) and pH(C), so it can be Through the generated prediction parameters, it is predicted whether the values of the ORP variable and the pH variable meet the turning point as the end point of the biological nitrification/denitrification reaction.

在至少一示例實施方式中,該第二控制裝置12可透過該一階微分值dPt0+n×△t、該二階微分值d2Pt0+n×△t、該一階微分值dPt0+(n+1)×△t以及該二階微分值d2Pt0+(n+1)×△t中的至少一個,來評估該ORP變數與該pH變數是否遇到作為生物硝化/脫硝反應終點的該轉折點。在該示例實施方式中,圖14中的多個轉折點ORP(B)、ORP(C)、pH(B)以及pH(C)處之斜率皆從趨近於0的狀況,大幅度的增加或減少。因此,該第二控制裝置12可透過該一階微分值dPt0+n×△t與dPt0+(n+1)×△t之間的比較來進行判斷。在該示例實施方式中,該第二控制裝置12亦可透過該二階微分值d2Pt0+n×△t與d2Pt0+(n+1)×△t之間的比較來進行判斷。舉例來說,該第二控制裝置12可透過該一階微分值dPt0+n×△t與dPt0+(n+1)×△t之間相除的比值,若該比值的一絕對值大於一預設閾值時,則可認定該ORP變數與該pH變數已遇到作為生物硝化/脫硝反應終點的該轉折點,因此可設定該轉折點的該ORP變數與該pH變數的數值為該生物硝化/脫硝反應終點的參考點。另外,生物硝化/脫硝程序控制流程亦可作為圖3所示之參數監控暨水資源處理方法中的ORP目標值判斷法。因此,該轉折點的ORP參數可作為該ORP目標值。 In at least one example embodiment, the second control device 12 can pass the first-order differential value dP t0+n×Δt , the second-order differential value d 2 P t0+n×Δt , the first-order differential value dP t0+ (n+1)×Δt and at least one of the second-order differential value d 2 P t0+(n+1)×Δt to evaluate whether the ORP variable and the pH variable meet as the end point of the biological nitrification/denitrification reaction the turning point. In this example embodiment, the slopes at multiple turning points ORP(B), ORP(C), pH(B), and pH(C) in FIG. reduce. Therefore, the second control device 12 can make a judgment through the comparison between the first-order differential value dP t0+n×Δt and dP t0+(n+1)×Δt . In this exemplary embodiment, the second control device 12 can also make a judgment through the comparison between the second-order differential value d 2 P t0+n×Δt and d 2 P t0+(n+1)×Δt . For example, the second control device 12 can pass the ratio of the division between the first-order differential value dP t0+n×Δt and dP t0+(n+1)×Δt , if an absolute value of the ratio is greater than When a preset threshold is set, it can be determined that the ORP variable and the pH variable have reached the turning point, which is the end point of the biological nitrification/denitrification reaction. Therefore, the ORP variable and the pH variable at the turning point can be set as the biological nitrification. / The reference point for the end point of the denitration reaction. In addition, the biological nitrification/denitrification program control process can also be used as the ORP target value judgment method in the parameter monitoring and water resources treatment method shown in Figure 3. Therefore, the ORP parameter of this turning point can be used as the ORP target value.

圖15示出了本發明示例具體實施方法的參數監控暨水資源處理方法中的生物活性指標監測流程的流程圖。因為執行示例性方法的方式多種多樣,所以僅以舉例的方式提供該方法。可使用例如:圖1和圖2所示的系統以及裝置來執行如下所述的方法,並且參考這些附圖的各種元件來解釋示例性方法。圖15示出的每個框表示在示例性方法中執行的一個或多個程式、方法或子程式。此外,框的順序僅為例示性的並且可改變。在不脫離本發明的情況下,可添加附加框或可使用更少的框。 FIG. 15 is a flow chart showing the process of monitoring the biological activity index in the parameter monitoring and water resources treatment method of the exemplary implementation method of the present invention. Because of the variety of ways in which the exemplary method can be performed, the method is provided by way of example only. The methods described below may be performed using, for example, the systems and apparatus shown in FIGS. 1 and 2, and exemplary methods are explained with reference to various elements of these figures. Each block shown in FIG. 15 represents one or more routines, methods, or subroutines performed in the exemplary method. Furthermore, the order of the blocks is exemplary only and may vary. Additional blocks may be added or fewer blocks may be used without departing from the invention.

在框S1510處,該第一控制裝置12接收一待測水體在一第一感測時刻的一第一監測參數,以及接收來自一感測裝置在該第一感測時刻針對該待測水體所感測到的一第一感測參數。 At block S1510, the first control device 12 receives a first monitoring parameter of a water body to be measured at a first sensing moment, and receives a sensing device for the water body to be detected at the first sensing moment from a sensing device A measured first sensing parameter.

在至少一示例實施方式中,該感測裝置11可定期感測該待測水體10的一感測變數的數值,亦可連續性的感測該待測水體10的該感測變數的數值。在該示例實施方式中,該感測裝置11可為一DO感測裝置,則該感測變數為DO變數,且該第一感測參數為該DO感測裝置在該第一感測時刻所感測到的第一DO參數。 In at least one example embodiment, the sensing device 11 can periodically sense the value of a sensing variable of the water body 10 to be tested, and can also continuously sense the value of the sensing variable of the water body 10 to be tested. In this exemplary embodiment, the sensing device 11 may be a DO sensing device, the sensing variable is a DO variable, and the first sensing parameter is sensed by the DO sensing device at the first sensing moment The first DO parameter measured.

在至少一示例實施方式中,該第二控制裝置13亦在接收由該第一控制裝置12間接提供或由該感測裝置11直接提供的該第一感測參數。在該示例實施方式中,該感測裝置11在每次取得感測變數的數值之間的時間區間可具有一控制週期△t。因此,該多個感測時刻間的間隔可為m×△t。在該示例實施方式中,m可為正整數。 In at least one example embodiment, the second control device 13 is also receiving the first sensing parameter indirectly provided by the first control device 12 or directly provided by the sensing device 11 . In this exemplary embodiment, the sensing device 11 may have a control period Δt in the time interval between each acquisition of the value of the sensing variable. Therefore, the interval between the plurality of sensing times may be m×Δt. In this example embodiment, m may be a positive integer.

在至少一示例實施方式中,該第一監測參數為該第一感測時刻下該待測水體10的曝氣量變數的數值(即:第一曝氣量參數)。在該示例實施方式中,該第一監測參數可透過其他的方式運算出來,亦可透過先前已儲存的計算值來取得。舉例來說,可從從該儲存器222讀取而來。 In at least one example embodiment, the first monitoring parameter is the value of the aeration volume variable of the water body 10 to be measured at the first sensing time (ie, the first aeration volume parameter). In this exemplary embodiment, the first monitoring parameter can be calculated by other methods, and can also be obtained by a previously stored calculated value. For example, it can be read from the storage 222 .

在至少一示例實施方式中,該第一控制裝置12取得一DO轉換率參數以及一好氣池的有效容積等其他參數。 In at least one example embodiment, the first control device 12 obtains a DO conversion rate parameter and other parameters such as the effective volume of an aerobic cell.

在框S1520處,該第一控制裝置12接收來自該感測裝置在一第二感測時刻針對該待測水體所感測到的一第二感測參數。 At block S1520, the first control device 12 receives a second sensing parameter sensed by the sensing device for the water body to be measured at a second sensing moment.

在至少一示例實施方式中,該第一控制裝置12可接收來自該DO感測裝置在該第二感測時刻針對該待測水體所感測到的該第二DO參數。在該示例實施方式中,該第二感測時刻晚於該第一感測時刻。 In at least one example embodiment, the first control device 12 may receive the second DO parameter sensed by the DO sensing device for the water body to be measured at the second sensing moment. In this example embodiment, the second sensing time is later than the first sensing time.

在框S1530處,依據該監測參數、該第一感測參數以及該第二感測參數計算該待測水體的一生物活性指標(Bio-Activity Indicator,BAI)。 At block S1530, a Bio-Activity Indicator (BAI) of the water body to be measured is calculated according to the monitoring parameter, the first sensing parameter and the second sensing parameter.

在至少一示例實施方式中,該第一控制裝置12可依據第一曝氣量參數、該第一DO參數以及該第二DO參數,來計算該待測水體的該生物活性指標。在該示例實施方式中,該生物活性指標BAI可以如下之方式進行運算。 In at least one example embodiment, the first control device 12 can calculate the biological activity index of the water body to be measured according to the first aeration amount parameter, the first DO parameter and the second DO parameter. In this example embodiment, the biological activity indicator BAI can be calculated as follows.

BAIr0+(n+1)×△t=a×Qt0+n×△t+[(DOt0+n×△t-DOt0+(n+1)×△t)]/△t| 公式十一其中,BAIt0+(n+1)×△t以及DOt0+(n+1)×△t該分別為第二感測時刻的該BAI參數以及該DO變數的數值,Qt0+n×△t以及DOt0+n×△t分別為該第一感測時刻的該曝氣量參數以及該DO變數的數值,以及a為DO轉換率。 BAI r0+(n+1)×△t =a×Q t0+n×△t +[(DO t0+n×△t -DO t0+(n+1)×△t )]/△t| Equation 11 Wherein, BAI t0+(n+1)×Δt and DO t0+(n+1)×Δt are the values of the BAI parameter and the DO variable at the second sensing time, respectively, Q t0+n×Δt and DO t0+n×Δt are the value of the aeration quantity parameter and the DO variable at the first sensing time, respectively, and a is the DO conversion rate.

在框S1540處,該第一控制裝置12依據該生物活性指標,計算該待測水體在該第二感測時刻的一第二監測參數。 At block S1540, the first control device 12 calculates a second monitoring parameter of the water body to be measured at the second sensing time according to the biological activity index.

在至少一示例實施方式中,該第一控制裝置12可依據該生物活性指標以及該DO轉換率,來計算該待測水體的一調整後曝氣量。在該示例實施方式中,該調整後曝氣量為該第二感測時刻的該第二監測參數,該第二監測參數可以如下之方式進行運算。 In at least one example embodiment, the first control device 12 can calculate an adjusted aeration amount of the water body to be measured according to the biological activity index and the DO conversion rate. In this example embodiment, the adjusted aeration amount is the second monitoring parameter at the second sensing time, and the second monitoring parameter can be calculated in the following manner.

Qt0+(n+1)×△t=BAIt0+(n+1)×△t/a 公式十二 Q t0+(n+1)×△t =BAI t0+(n+1)×△t /a Formula 12

請參照圖16,圖16繪示根據本發明的示例實施方式的水資源監控與處理系統1的污泥沉降性監測系統160的示意圖。該污泥沉降性監測系統160包含一第一控制裝置12、多個感測裝置1611-1612、一採樣泵1653以及一迴流閥門1654。在該示例實施方式中,該污泥沉降性監測系統160透過該採樣泵1653自一好氣池採樣,並將所取得的待測水體加入一測試池1605,以進行自動化沉降測試。該多個感測裝置1611-1612可分別為第一MLSS感測裝置1611與第二MLSS感測裝置1612,並分別量測該待測水體 以取得多個第一MLSS參數以及多個第二MLSS參數。在該示例實施方式中,該第一控制裝置12利用所取得的該多個第一MLSS參數以及該多個第二MLSS參數,經由該第一運算模式來產生該多個第一控制參數。在該示例實施方式中,該第一MLSS感測裝置1611與該第二MLSS感測裝置1612在該測試池1605內的高度不同,以感測該測試池1605中不同水位的該MLSS變數的數值。 Please refer to FIG. 16 . FIG. 16 is a schematic diagram of a sludge settling monitoring system 160 of the water resource monitoring and treatment system 1 according to an exemplary embodiment of the present invention. The sludge settling monitoring system 160 includes a first control device 12 , a plurality of sensing devices 1611 - 1612 , a sampling pump 1653 and a return valve 1654 . In this exemplary embodiment, the sludge settling monitoring system 160 samples from an aerobic pool through the sampling pump 1653, and adds the obtained water body to be tested into a test pool 1605 for automatic settling test. The plurality of sensing devices 1611-1612 can be the first MLSS sensing device 1611 and the second MLSS sensing device 1612, respectively, and measure the water body to be measured, respectively to obtain a plurality of first MLSS parameters and a plurality of second MLSS parameters. In the example embodiment, the first control device 12 generates the plurality of first control parameters through the first operation mode using the plurality of obtained first MLSS parameters and the plurality of second MLSS parameters. In this example embodiment, the heights of the first MLSS sensing device 1611 and the second MLSS sensing device 1612 are different in the test pool 1605 to sense the value of the MLSS variable at different water levels in the test pool 1605 .

在至少一示例實施方式中,該污泥沉降性監測系統160另具有圖一所示的該第二控制裝置13,該第二控制裝置13亦利用所取得的該多個感測參數,經由該第二運算模式來產生多個第二控制參數,該多個第二控制參數可用於取代該多個第一控制參數。 In at least one example embodiment, the sludge settling monitoring system 160 further has the second control device 13 shown in FIG. 1 , and the second control device 13 also uses the acquired sensing parameters to The second operation mode generates a plurality of second control parameters, and the plurality of second control parameters can be used to replace the plurality of first control parameters.

在至少一示例實施方式中,當該待測水體於該測試池1605中完成測試或結束沉降後,可透過該迴流閥門1654將該待測水體回放到該好氣池中。 In at least one example embodiment, after the water body to be tested is tested or settled in the test pool 1605 , the water body to be tested can be played back into the aerobic pool through the return valve 1654 .

圖17示出了本發明示例具體實施方法的參數監控暨水資源處理方法中的污泥沉降性監測流程的流程圖。因為執行示例性方法的方式多種多樣,所以僅以舉例的方式提供該方法。可使用例如:圖1、圖2和圖16所示的系統以及裝置來執行如下所述的方法,並且參考這些附圖的各種元件來解釋示例性方法。圖17示出的每個框表示在示例性方法中執行的一個或多個程式、方法或子程式。此外,框的順序僅為例示性的並且可改變。在不脫離本發明的情況下,可添加附加框或可使用更少的框。 Fig. 17 shows a flow chart of the process of monitoring the sludge settleability in the parameter monitoring and water resources treatment method of the exemplary implementation method of the present invention. Because of the variety of ways in which the exemplary method can be performed, the method is provided by way of example only. The methods described below may be performed using, for example, the systems and apparatus shown in FIGS. 1, 2, and 16, and exemplary methods are explained with reference to various elements of these figures. Each block shown in FIG. 17 represents one or more routines, methods, or subroutines performed in the exemplary method. Furthermore, the order of the blocks is exemplary only and may vary. Additional blocks may be added or fewer blocks may be used without departing from the invention.

在框S1710處,該第一控制裝置12接收來自一第一MLSS感測裝置在多個感測時刻針對一待測水體所感測到的多個MLSS參數。 At block S1710, the first control device 12 receives a plurality of MLSS parameters sensed by a first MLSS sensing device for a water body to be measured at a plurality of sensing times.

在至少一示例實施方式中,該第一MLSS感測裝置1611與該第二MLSS感測裝置1612可定期感測該待測水體的該多個第一MLSS參數與 該多個第二MLSS參數,亦可連續性的感測該待測水體的該MLSS變數的數值。在該示例實施方式中,該第一控制裝置12在每次取得該MLSS變數的數值之間的時間區間可具有一控制週期△t。 In at least one example embodiment, the first MLSS sensing device 1611 and the second MLSS sensing device 1612 can periodically sense the plurality of first MLSS parameters and the The plurality of second MLSS parameters can also continuously sense the value of the MLSS variable of the water body to be measured. In this exemplary embodiment, the first control device 12 may have a control period Δt in the time interval between each time obtaining the value of the MLSS variable.

在框S1720處,該第一控制裝置12取得在該多個感測時刻中的第一感測時刻的該多個第一MLSS參數之微分值。 At block S1720, the first control device 12 obtains the differential value of the plurality of first MLSS parameters at the first sensing moment among the plurality of sensing moments.

在至少一示例實施方式中,該第一控制裝置12可在該多個感測時刻中選擇該第一感測時刻,以透過該多個第一MLSS參數來計算該第一感測時刻的該微分值。在至少一示例實施方式中,該第一控制裝置12可直接從其他裝置接收到該微分值的計算結果。 In at least one example embodiment, the first control device 12 may select the first sensing time among the plurality of sensing times to calculate the first sensing time of the first sensing time through the plurality of first MLSS parameters Differential value. In at least one example embodiment, the first control device 12 can directly receive the calculation result of the differential value from other devices.

在至少一示例實施方式中,該第一感測時刻可為該多個感測時刻中的最後一個感測時刻。在另一示例實施方式中,該第一感測時刻可從該多個感測時刻中擷取任何一個中間的感測時刻。 In at least one example embodiment, the first sensing moment may be the last sensing moment among the plurality of sensing moments. In another example embodiment, the first sensing moment may retrieve any intermediate sensing moment from the plurality of sensing moments.

在框S1730處,該第一控制裝置12確認該微分值是否小於0。當該微分值小於0時,該方法將進入到框S1740中。當該微分值大於或等於0時,該方法將進入到框S1750中。 At block S1730, the first control device 12 confirms whether the differential value is less than zero. When the differential value is less than 0, the method will proceed to block S1740. When the differential value is greater than or equal to 0, the method will proceed to block S1750.

圖18示出了待測水體進行水資源處理過程中,在污泥沉降性監測流程下,該待測水體在不同深度的MLSS之沉降變化。在污泥沉降過程中,在t0到tf的時間區段屬於阻滯沉降期間1810,在tf到tu的時間區段屬於轉換沉降期間1820,以及在tu之後的時間區段屬於壓密沉降期間1830。由圖18來看,不同沉降期間的汙泥高度之斜率值並不相同,尤其在該阻滯沉降期間1810與該轉換沉降期間1820之斜率差異尤其明顯。在至少一示例實施方式中,該第一MLSS感測裝置1611可預先設置於該阻滯沉降期間1810的汙泥高度,以期準確計算一汙泥沉降速度。在至少一示例實施方式 中,該第一MLSS感測裝置1611可設於從該阻滯沉降期間1810轉換到該轉換沉降期間1820時的汙泥高度。 Fig. 18 shows the sedimentation changes of the MLSS of the water to be measured at different depths under the process of monitoring sludge sedimentation during the water treatment process of the water to be measured. In the sludge settling process, the time period from t 0 to t f belongs to the retardation settling period 1810 , the time period from t f to t u belongs to the transition settling period 1820 , and the time period after t u belongs to 1830 during compaction settling. It can be seen from FIG. 18 that the slope values of sludge heights in different sedimentation periods are not the same, and the difference in slope between the retardation sedimentation period 1810 and the transition sedimentation period 1820 is particularly obvious. In at least one example embodiment, the first MLSS sensing device 1611 can be preset at the sludge height during the blocking sedimentation period 1810, in order to accurately calculate a sludge sedimentation velocity. In at least one example embodiment, the first MLSS sensing device 1611 can be set at a sludge height when switching from the retarded settling period 1810 to the switching settling period 1820 .

在至少一示例實施方式中,該第一控制裝置12確認該微分值是否小於0。若該微分值大於0,則代表該第一MLSS感測裝置1611在該一感測時刻的該第一MLSS參數仍屬於該阻滯沉降期間1810,而可以計算該汙泥沉降速度。若該微分值小於0,則代表該第一MLSS感測裝置1611在該一感測時刻的該第一MLSS參數已不屬於該阻滯沉降期間1810,而無法計算該汙泥沉降速度。另外,若該微分值小於0,則也可能代表該第一MLSS感測裝置1611的位置太高,雖然該一感測時刻仍屬於該阻滯沉降期間1810,但該汙泥高度已低於該第一感測裝置1611的位置,而無法計算該汙泥沉降速度。 In at least one example embodiment, the first control device 12 confirms whether the differential value is less than zero. If the differential value is greater than 0, it means that the first MLSS parameter of the first MLSS sensing device 1611 at the sensing moment still belongs to the settling retardation period 1810, and the sludge settling velocity can be calculated. If the differential value is less than 0, it means that the first MLSS parameter of the first MLSS sensing device 1611 at the sensing moment does not belong to the settling block period 1810, and the sludge settling velocity cannot be calculated. In addition, if the differential value is less than 0, it may also mean that the position of the first MLSS sensing device 1611 is too high. Although the sensing moment still belongs to the settling block period 1810, the sludge height is already lower than the The position of the first sensing device 1611 cannot be used to calculate the sludge settling velocity.

在框S1740處,該第一控制裝置12調整該第一感測時刻。 At block S1740, the first control device 12 adjusts the first sensing moment.

在至少一示例實施方式中,該第一控制裝置12可重新選擇該第一感測時刻,以期找出一特定的感測時刻。在該示例實施方式中,在該特定感測時刻仍屬與該阻滯沉降期間1810,且該第一MLSS感測裝置1611的位置仍低於該特定感測時刻下的該汙泥高度。 In at least one example embodiment, the first control device 12 may reselect the first sensing time in order to find a specific sensing time. In this example embodiment, the specific sensing time still belongs to the blocking sedimentation period 1810, and the position of the first MLSS sensing device 1611 is still lower than the sludge height at the specific sensing time.

在框S1750處,該第一控制裝置12依據該多個MLSS參數中的至少兩個MLSS參數計算該待測水體之一監測參數。 At block S1750, the first control device 12 calculates one monitoring parameter of the water body to be measured according to at least two MLSS parameters of the plurality of MLSS parameters.

在至少一示例實施方式中,該監測參數為該汙泥沉降速度。在該示例實施方式中,該第一控制裝置12可從該多個第一MLSS參數中取得至少兩個第一MLSS參數,來計算該汙泥沉降速度。在該示例實施方式中,該至少兩個第一MLSS參數所對應的至少兩個感測時刻皆早於該第一感測時刻,以確保在該至少兩個感測時刻仍屬與該阻滯沉降期間1810,且該第一MLSS感測裝置1611的位置仍低於該至少兩個感測時刻下的該汙泥 高度。在該示例實施方式中,該至少兩個感測時刻可為一初始感測時刻ti以及該第一感測時刻ti+n×△t,則該汙泥沉降速度(Zone settling velocity,ZSV)可透過如下公式來取得。 In at least one example embodiment, the monitored parameter is the sludge settling velocity. In this example embodiment, the first control device 12 may obtain at least two first MLSS parameters from the plurality of first MLSS parameters to calculate the sludge settling velocity. In this example embodiment, at least two sensing times corresponding to the at least two first MLSS parameters are earlier than the first sensing time, so as to ensure that the block still belongs to the at least two sensing times. During the settling period 1810, the position of the first MLSS sensing device 1611 is still lower than the sludge height at the at least two sensing moments. In this exemplary embodiment, the at least two sensing moments can be an initial sensing time t i and the first sensing time t i +n×Δt, then the sludge settling velocity (Zone settling velocity, ZSV ) can be obtained by the following formula.

ZSV=(Hti-Hti+n×△t)/[ti-(ti+n×△t)] 公式十三其中,Hti為該初始感測時刻ti的初始汙泥高度,以及Hti+n×△t為該第一感測時刻ti+n×△t的一第一汙泥高度。 ZSV=(H ti -H ti+n×Δt )/[t i -(t i +n×Δt)] Formula 13 Wherein, H ti is the initial sludge height at the initial sensing time t i , And H ti+n×Δt is a first sludge height at the first sensing time t i +n×Δt.

在至少一示例實施方式中,該第一控制裝置12可另外計算一汙泥終端濃度以及一汙泥回流率。依據圖18來看,當該待測水體進入該轉換沉降期間1820之後,該第二MLSS感測裝置所感測到的多個第二MLSS參數之上升的幅度已明顯趨緩,若進入到該壓密沉降期間1830後,該第二MLSS感測裝置所感測到的該多個第二MLSS參數甚至可能會趨於定值。因此,若該多個感測時刻最終已進入該轉換沉降期間1820,該第一控制裝置12可從該多個感測時刻中找出該汙泥沉降高度的一第一轉折點,以取得一第一轉折時刻tf。在該示例實施方式中,該第一控制裝置12可進一步依據第一轉折時刻tf到該多個感測時刻中的一最後感測時刻Tf之間的該多個第二MLSS參數,來計算該汙泥終端濃度Xu。在一示例實施方式中,該第一控制裝置12可以將該第一轉折時刻tf到該最後感測時刻Tf之間的該多個第二MLSS參數全部進行平均,來計算該汙泥終端濃度Xu。 In at least one example embodiment, the first control device 12 may additionally calculate a sludge terminal concentration and a sludge return rate. According to FIG. 18 , after the water body to be tested enters the transition and settlement period 1820 , the rising amplitudes of the plurality of second MLSS parameters sensed by the second MLSS sensing device have slowed down significantly. After the dense settling period 1830, the plurality of second MLSS parameters sensed by the second MLSS sensing device may even tend to be constant. Therefore, if the plurality of sensing moments have finally entered the transition sedimentation period 1820, the first control device 12 can find a first turning point of the sludge sedimentation height from the plurality of sensing moments to obtain a first turning point of the sludge sedimentation height. a turning point time t f . In this example embodiment, the first control device 12 may further calculate the plurality of second MLSS parameters according to the plurality of second MLSS parameters between the first turning time tf and a last sensing time Tf among the plurality of sensing times The sludge terminal concentration Xu. In an exemplary embodiment, the first control device 12 may average all the second MLSS parameters between the first turning time tf and the last sensing time Tf to calculate the sludge terminal concentration Xu.

在至少一示例實施方式中,該第一控制裝置12可事先取得被採樣的該好氣池中的該待測水體所具有的一MLSS濃度值Xa,並藉由經計算所取得的該汙泥終端濃度Xu,來計算該汙泥迴流率r。該汙泥迴流率r可透過如下公式來取得。 In at least one example embodiment, the first control device 12 can obtain in advance an MLSS concentration value Xa of the water body to be measured in the aerobic pool to be sampled, and use the calculated sludge terminal concentration Xu, to calculate the sludge return rate r. The sludge return rate r can be obtained by the following formula.

r=Xa/(Xu-Xa) 公式十四 r=Xa/(Xu-Xa) Formula Fourteen

由於影響生物活性污泥程序以及生物脫氮除磷程序的成效因子包括微生物的保有量、生化反應的時間、微生物活性、碳源的供應以及電子接受者的多少,這些因子反應在程序控制上分別對應的參數為MLSS、SRT、HRT、OUR或SOUR、ZSV、C/N以及C/P與DO,另外這些參數除了MLSS與DO可透過儀器直接量測外,其他參數皆須花大量的時間來實驗取得,而失去了即時性。因此,透過本發明之參數監控水資源處理方法與模組,該水資源監控與處理系統1可依據MLSS、DO、pH、ORP等可以直接透過儀器所量測的參數以及通過MLSS以及DO進一步推算取得的ZSV以及BAI等參數,來取得汙泥迴流量、生物硝化/脫硝反應終點、曝氣量、分段進流量、硝化液內部迴流量以及DO,並藉由這些即時取得的控制參數來調控各個受控裝置。 Since the effectiveness factors affecting the biological activated sludge process and the biological nitrogen and phosphorus removal process include the amount of microorganisms, the time of biochemical reaction, the activity of microorganisms, the supply of carbon sources and the number of electron acceptors, these factors are different in program control. The corresponding parameters are MLSS, SRT, HRT, OUR or SOUR, ZSV, C/N, C/P and DO. Besides MLSS and DO can be measured directly by the instrument, other parameters require a lot of time to measure. Experimentation is gained and immediacy is lost. Therefore, through the parameter monitoring water resource processing method and module of the present invention, the water resource monitoring and processing system 1 can be based on parameters such as MLSS, DO, pH, ORP, etc. that can be directly measured by the instrument, and can be further estimated by MLSS and DO The obtained ZSV and BAI parameters are used to obtain sludge return flow, biological nitrification/denitrification reaction end point, aeration volume, segmented inflow flow, internal return flow of nitrification solution and DO, and use these instantly obtained control parameters to Regulates each controlled device.

圖19示出了本發明示例實施方式的水資源監控與處理系統的示意圖。待測水體自汙水進流的方向逐一進入一厭氧池1901、一缺氧池1902、一好氧池1903及沉降池1904。在該示例實施方式中,一鼓風機1941用於以一風量維持該好氧池1903的曝氣量。在該示例實施方式中,一內部迴流泵1943用於以該好氧池1903中,以控制該好氧池1903與該缺氧池1902之間的一硝化液內部迴流量。在該示例實施方式中,一汙泥迴流泵1944設置於該沉降池1904中,以控制該沉降池1904與該厭氧池1901之間的一汙泥內部迴流量。 Figure 19 shows a schematic diagram of a water resource monitoring and treatment system according to an example embodiment of the present invention. The water to be tested enters an anaerobic tank 1901 , an anoxic tank 1902 , an aerobic tank 1903 and a sedimentation tank 1904 one by one from the direction of sewage inflow. In this example embodiment, a blower 1941 is used to maintain the aeration of the aerobic tank 1903 at an air volume. In this example embodiment, an internal return pump 1943 is used in the aerobic tank 1903 to control the internal return flow of a nitrifying solution between the aerobic tank 1903 and the anoxic tank 1902. In this example embodiment, a sludge return pump 1944 is provided in the settling tank 1904 to control an internal return flow of sludge between the settling tank 1904 and the anaerobic tank 1901 .

在至少一示例實施方式中,該待測水體在該厭氧池1901中被多個感測裝置1911進行偵測,該多個感測裝置1911可分為一第一MLSS感測裝置、一第一ORP感測裝置以及一第一pH感測裝置。該待測水體在該缺氧池1902中被多個感測裝置1912進行偵測,該多個感測裝置1912可分為一第二MLSS感測裝置、一第二ORP感測裝置以及一第二pH感測裝置。該待測 水體在該好氧池1903中被多個感測裝置1913進行偵測,該多個感測裝置1913可分為一第三MLSS感測裝置、一第三ORP感測裝置、一第三pH感測裝置以及一DO感測裝置。 In at least one example embodiment, the water body to be tested is detected by a plurality of sensing devices 1911 in the anaerobic tank 1901, and the plurality of sensing devices 1911 can be divided into a first MLSS sensing device, a first an ORP sensing device and a first pH sensing device. The water body to be tested is detected by a plurality of sensing devices 1912 in the anoxic tank 1902, and the plurality of sensing devices 1912 can be divided into a second MLSS sensing device, a second ORP sensing device and a first Two pH sensing devices. the test The water body is detected by a plurality of sensing devices 1913 in the aerobic pool 1903, and the plurality of sensing devices 1913 can be divided into a third MLSS sensing device, a third ORP sensing device, and a third pH sensing device measuring device and a DO sensing device.

在至少一示例實施方式中,本發明之硝化液內迴流控制系統6可用於該缺氧池1902,並取得該多個感測裝置1912的多個第二感測數據,並藉此計算出該硝化液內部迴流量,並提供給該內部迴流泵1943。 In at least one example embodiment, the nitrifying solution internal reflux control system 6 of the present invention can be used in the anoxic tank 1902 to obtain a plurality of second sensing data of the plurality of sensing devices 1912, and thereby calculate the The internal reflux volume of the nitrification solution is supplied to the internal reflux pump 1943.

在至少一示例實施方式中,一生物活性指標監測裝置1960可透過本發明之生物活性指標監測流程,藉由該多個感測裝置1913的多個第三感測數據,運算該好氧池1903中該待測水體的一BAI與一調整曝氣量,再透過本發明之即時曝氣控制系統4,同樣藉由該多個感測裝置1913的該多個第三感測數據,針對該調整後曝氣量進一步進行調節,以控制該鼓風機1941的打入該好氧池1903的該風量。 In at least one example embodiment, a biological activity index monitoring device 1960 can calculate the aerobic pool 1903 through the plurality of third sensing data of the plurality of sensing devices 1913 through the biological activity index monitoring process of the present invention A BAI and an adjusted aeration amount of the water body to be measured are then used for the adjustment through the real-time aeration control system 4 of the present invention, and also through the plurality of third sensing data of the plurality of sensing devices 1913 The post-aeration volume is further adjusted to control the air volume of the blower 1941 driven into the aerobic tank 1903 .

在至少一示例實施方式中,一污泥沉降性監測系統160可藉由該多個感測裝置1913的該多個第三感測數據,運算該好氧池1903中該待測水體的一汙泥終端濃度,再透過本發明之汙泥迴流控制系統7,同樣藉由該多個感測裝置1913的該多個第三感測數據,針對該汙泥終端濃度進一步確認出該汙泥迴流量,以控制該汙泥迴流泵1944的一汙泥迴流之流量。 In at least one example embodiment, a sludge settling monitoring system 160 can calculate a sludge of the water body to be measured in the aerobic tank 1903 by using the third sensing data of the sensing devices 1913 Sludge terminal concentration, through the sludge return control system 7 of the present invention, and also through the plurality of third sensing data of the plurality of sensing devices 1913, the sludge return flow rate is further confirmed for the sludge terminal concentration , to control the flow rate of a sludge return of the sludge return pump 1944.

在至少一示例實施方式中,圖1所示之該第一控制裝置12會接收來自該多個感測裝置1911、1912以及1913的該多個第一感測參數、該多個第二感測參數以及該多個第三感測參數,並透過該硝化液內迴流控制系統6、該生物活性指標監測裝置1960、該即時曝氣控制系統4、該污泥沉降性監測系統160以及該汙泥迴流控制系統7,來調節該待測水體在該厭氧池1901、該缺氧池1902、該好氧池1903及該沉降池1904之間的該曝氣量、該硝化液內部迴流量以及該汙泥迴流量。 In at least one example embodiment, the first control device 12 shown in FIG. 1 receives the plurality of first sensing parameters, the plurality of second sensing parameters from the plurality of sensing devices 1911 , 1912 and 1913 parameters and the plurality of third sensing parameters, and pass through the nitrifying liquid internal reflux control system 6, the biological activity index monitoring device 1960, the real-time aeration control system 4, the sludge sedimentation monitoring system 160 and the sludge A backflow control system 7 is used to adjust the amount of aeration, the internal return flow of the nitrifying solution and the Sludge return flow.

在至少一示例實施方式中,圖1所示之該第一控制裝置12會進一步把該多個第一感測參數、該多個第二感測參數以及該多個第三感測參數提供給該第二控制裝置13。該第二控制裝置13可針對該厭氧池1901、該缺氧池1902及該好氧池1903各自建立不同的預測模型。 In at least one example embodiment, the first control device 12 shown in FIG. 1 further provides the plurality of first sensing parameters, the plurality of second sensing parameters and the plurality of third sensing parameters to The second control device 13 . The second control device 13 can establish different prediction models for each of the anaerobic tank 1901 , the anoxic tank 1902 and the aerobic tank 1903 .

在至少一示例實施方式中,該第二控制裝置13可針對該厭氧池1901,依據該多個感測裝置1911過去所提供的歷史數據建立一厭氧預測模型。該第二控制裝置13透過在該厭氧池1901所感測到的多個第一MLSS參數、多個第一ORP參數以及多個第一pH參數,利用該厭氧預測模型來產生一預測汙泥迴流量。該第二控制裝置13可將該預測汙泥迴流量提供給該第一控制裝置12,以使該第一控制裝置12依據該預測汙泥迴流量來調節該汙泥迴流泵1944。在該示例實施方式中,該厭氧預測模型用於預測該汙泥迴流量,因此該厭氧預測模型可為一汙泥迴流量推論模型。在該示例實施方式中,該汙泥迴流量推論模型可為本發明之控制決策模型的一具體實施方式。 In at least one example embodiment, the second control device 13 may establish an anaerobic prediction model for the anaerobic tank 1901 according to historical data provided by the plurality of sensing devices 1911 in the past. The second control device 13 uses the anaerobic prediction model to generate a predicted sludge through the first MLSS parameters, the first ORP parameters and the first pH parameters sensed in the anaerobic tank 1901 return flow. The second control device 13 can provide the predicted sludge return flow to the first control device 12, so that the first control device 12 can adjust the sludge return pump 1944 according to the predicted sludge return flow. In this example embodiment, the anaerobic prediction model is used to predict the sludge return rate, so the anaerobic prediction model may be a sludge return rate inference model. In this example embodiment, the sludge return rate inference model can be a specific embodiment of the control decision model of the present invention.

在至少一示例實施方式中,該第二控制裝置13可針對該缺氧池1902,依據該多個感測裝置1912過去所提供的歷史數據建立一缺氧預測模型。該第二控制裝置13透過在該缺氧池1902所感測到的多個第二MLSS參數、多個第二ORP參數以及多個第二pH參數,利用該缺氧預測模型來產生一預測硝化液內部迴流量。該第二控制裝置13可將該預測硝化液內部迴流量提供給該第一控制裝置12,以使該第一控制裝置12依據該預測硝化液內部迴流量來調節該內部迴流泵1943。在該示例實施方式中,該缺氧預測模型用於預測該硝化液內部迴流量,因此該缺氧預測模型可為一硝化液內部迴流量推論模型。在該示例實施方式中,該硝化液內部迴流量推論模型可為本發明之控制決策模型的一具體實施方式。 In at least one example embodiment, the second control device 13 can establish a hypoxia prediction model for the hypoxia pool 1902 according to historical data provided by the plurality of sensing devices 1912 in the past. The second control device 13 uses the hypoxia prediction model to generate a predicted nitrification solution through the second MLSS parameters, the second ORP parameters and the second pH parameters sensed in the anoxic tank 1902 Internal return flow. The second control device 13 can provide the predicted nitrification solution internal return flow to the first control device 12, so that the first control device 12 can adjust the internal reflux pump 1943 according to the predicted nitrification solution internal return flow. In this example embodiment, the hypoxia prediction model is used to predict the internal return flow of the nitrifying solution, so the hypoxia prediction model may be an inference model for the internal return flow of the nitrification solution. In this exemplary embodiment, the inference model of the internal reflux amount of the nitrification solution can be a specific embodiment of the control decision model of the present invention.

在至少一示例實施方式中,該第二控制裝置13可針對該好氧池1903,依據該多個感測裝置1913過去所提供的歷史數據建立一好氧預測模型。該第二控制裝置13透過在該好氧池1903所感測到的多個第三MLSS參數、多個第三ORP參數以及多個第三pH參數,利用該好氧預測模型來產生一預測曝氣量。該第二控制裝置13可將該預測曝氣量提供給該第一控制裝置12,以使該第一控制裝置12依據該預測曝氣量來調節該鼓風機1941。在該示例實施方式中,該好氧預測模型用於預測該曝氣量,因此該好氧預測模型可為一曝氣量推論模型。在該示例實施方式中,該曝氣量推論模型可為本發明之控制決策模型的一具體實施方式。 In at least one example embodiment, the second control device 13 can establish an aerobic prediction model for the aerobic pool 1903 according to historical data provided by the plurality of sensing devices 1913 in the past. The second control device 13 uses the aerobic prediction model to generate a predicted aeration through the third MLSS parameters, the third ORP parameters and the third pH parameters sensed in the aerobic tank 1903 quantity. The second control device 13 can provide the predicted aeration amount to the first control device 12, so that the first control device 12 adjusts the blower 1941 according to the predicted aeration amount. In this example embodiment, the aerobic prediction model is used to predict the aeration rate, so the aerobic prediction model may be an aeration rate inference model. In this exemplary embodiment, the aeration rate inference model may be a specific embodiment of the control decision model of the present invention.

在至少一示例實施方式中,該第二控制裝置13可依據該多個感測裝置1911-1913過去所提供的歷史數據建立一第一水資源預測模型。該第二控制裝置13透過在該多個第一感測參數以及該多個第三感測參數,利用該第一水資源預測模型一次性的產生該預測汙泥迴流量以及該預測曝氣量。該第二控制裝置13可將該預測汙泥迴流量以及該預測曝氣量提供給該第一控制裝置12,以使該第一控制裝置12可同時依據該預測曝氣量來調節該鼓風機1941,並依據該預測汙泥迴流量來調節該汙泥迴流泵1944。在該示例實施方式中,該第一水資源預測模型用於同時預測該汙泥迴流量及該曝氣量,因此該第一水資源預測模型可為一厭氧好氧(Anaerobic Oxide,AO)程序控制推論模型。在該示例實施方式中,該AO程序控制推論模型可為本發明之成效評估模型的一具體實施方式。 In at least one example embodiment, the second control device 13 may establish a first water resource prediction model according to historical data provided by the plurality of sensing devices 1911-1913 in the past. The second control device 13 uses the first water resource prediction model to generate the predicted sludge return flow and the predicted aeration amount at one time through the first sensing parameters and the third sensing parameters. . The second control device 13 can provide the predicted sludge return flow and the predicted aeration amount to the first control device 12, so that the first control device 12 can simultaneously adjust the blower 1941 according to the predicted aeration amount , and adjust the sludge return pump 1944 according to the predicted sludge return flow. In this exemplary embodiment, the first water resource prediction model is used to predict the sludge return flow and the aeration amount at the same time, so the first water resource prediction model may be an anaerobic aerobic (AO) Program-controlled inference models. In this example embodiment, the AO program control inference model may be an embodiment of the effectiveness evaluation model of the present invention.

在至少一示例實施方式中,該第二控制裝置13可依據該多個感測裝置1911-1913過去所提供的歷史數據建立一第二水資源預測模型。該第二控制裝置13透過在該多個第一感測參數、該多個第二感測參數以及該多個第三感測參數,利用該第二水資源預測模型一次性的產生該預測汙泥 迴流量、該預測硝化液內部迴流量以及該預測曝氣量。該第二控制裝置13可將該預測汙泥迴流量、該預測硝化液內部迴流量以及該預測曝氣量提供給該第一控制裝置12,以使該第一控制裝置12可同時依據該預測曝氣量來調節該鼓風機1941,依據該預測硝化液內部迴流量來調節該內部迴流泵1943,並依據該預測汙泥迴流量來調節該汙泥迴流泵1944。在該示例實施方式中,該第二水資源預測模型用於同時預測該汙泥迴流量、該硝化液內部迴流量及該曝氣量,因此該第二水資源預測模型可為一厭氧缺氧好氧(Anaerobic Anoxic Oxide,A2O)程序控制推論模型。在該示例實施方式中,該A2O程序控制推論模型可為本發明之成效評估模型的一具體實施方式。 In at least one example embodiment, the second control device 13 may establish a second water resource prediction model according to historical data provided by the plurality of sensing devices 1911-1913 in the past. The second control device 13 uses the second water resource prediction model to generate the predicted pollution at one time by using the plurality of first sensing parameters, the plurality of second sensing parameters and the plurality of third sensing parameters mud The return flow, the predicted internal return flow of the nitrification solution, and the predicted aeration amount. The second control device 13 can provide the predicted sludge return flow, the predicted internal nitrification liquid return flow, and the predicted aeration amount to the first control device 12, so that the first control device 12 can simultaneously rely on the prediction The blower 1941 is adjusted according to the aeration amount, the internal return pump 1943 is adjusted according to the predicted nitrification liquid return flow, and the sludge return pump 1944 is adjusted according to the predicted sludge return flow. In this example embodiment, the second water resource prediction model is used to simultaneously predict the sludge return flow, the internal return flow of the nitrification solution and the aeration amount, so the second water resource prediction model may be an anaerobic deficiency Anaerobic Anoxic Oxide (A2O) program-controlled inference model. In this example embodiment, the A2O process control inference model can be an embodiment of the effectiveness evaluation model of the present invention.

在至少一示例實施方式中,該第二控制裝置13可依據該多個感測裝置1911-1913過去所提供的歷史數據建立一水質預測模型。該第二控制裝置13透過在該多個第一感測參數、該多個第二感測參數以及該多個第三感測參數,利用該水質預測模型產生多個水質預測參數。在該示例實施方式中,該多個水質預測參數可包括一預測化學需氧量(Chemical Oxygen Demand,COD)、一預測總氮(Total Nitrogen,TN)及一預測氨氮(NH3-N)等水質指標之參數。該第二控制裝置13可透過該多個水質預測參數以了解現有各個受控裝置14的多個操作參數的運作下,該待測水體最終的水質是否可符合各個水池的需求。若該水質預測參數已出現超標的狀況,該第二控制裝置13本身可重新調節各個受控裝置14的該多個操作參數,或該第二控制裝置13通知該第一控制裝置11重新調節各個受控裝置14的該多個操作參數。若該水質預測參數未出現超標的狀況,則可維持各個受控裝置14的該多個操作參數。在該示例實施方式中,該水質預測模型可為本發明之成效評估模型的一具體實施方式。 In at least one example embodiment, the second control device 13 may establish a water quality prediction model according to historical data provided by the plurality of sensing devices 1911-1913 in the past. The second control device 13 uses the water quality prediction model to generate a plurality of water quality prediction parameters by using the plurality of first sensing parameters, the plurality of second sensing parameters and the plurality of third sensing parameters. In this exemplary embodiment, the plurality of water quality prediction parameters may include a predicted chemical oxygen demand (Chemical Oxygen Demand, COD), a predicted total nitrogen (Total Nitrogen, TN), a predicted ammonia nitrogen (NH 3 -N), etc. Parameters of water quality indicators. The second control device 13 can use the plurality of water quality prediction parameters to know whether the final water quality of the water body to be measured can meet the requirements of each pool under the operation of the plurality of operating parameters of the existing controlled devices 14 . If the predicted water quality parameter has exceeded the standard, the second control device 13 itself can re-adjust the plurality of operating parameters of each controlled device 14, or the second control device 13 can notify the first control device 11 to re-adjust the various operating parameters. The plurality of operating parameters of the controlled device 14 . If the predicted water quality parameter does not exceed the standard, the plurality of operating parameters of each controlled device 14 can be maintained. In this exemplary embodiment, the water quality prediction model may be an embodiment of the effectiveness evaluation model of the present invention.

在至少一示例實施方式中,該第二控制裝置13可依據該預測汙泥迴流量、該預測硝化液內部迴流量以及該預測曝氣量等過去所提供的歷史預測數據建立一控制成效預測模型。該第二控制裝置13透過在該預測汙泥迴流量、該預測硝化液內部迴流量以及該預測曝氣量,利用該控制成效預測模型針對各個水質參數進行成效評估,以評估各個水質參數的達標機率以及超標機率。若該超標機率已出現明顯偏高的狀況,就算該多個水質預測參數仍未超標,該第二控制裝置13本身仍可重新調節各個受控裝置14的該多個操作參數,或該第二控制裝置13通知該第一控制裝置11重新調節各個受控裝置14的該多個操作參數。在該示例實施方式中,該控制成效預測模型可為本發明之成效評估模型的一具體實施方式。 In at least one example embodiment, the second control device 13 can establish a control effect prediction model according to historical prediction data provided in the past, such as the predicted sludge return flow, the predicted nitrification liquid internal return flow, and the predicted aeration amount in the past. . The second control device 13 uses the control effect prediction model to evaluate the performance of each water quality parameter through the predicted sludge return flow, the predicted nitrification liquid internal return flow and the predicted aeration amount, so as to evaluate the compliance of each water quality parameter probability and the probability of exceeding the standard. If the probability of exceeding the standard is significantly high, even if the plurality of water quality prediction parameters have not exceeded the standard, the second control device 13 can still readjust the plurality of operating parameters of each controlled device 14, or the second control device 13 itself The control device 13 notifies the first control device 11 to readjust the plurality of operating parameters of the respective controlled devices 14 . In this exemplary embodiment, the control effectiveness prediction model may be a specific implementation of the effectiveness evaluation model of the present invention.

在至少一示例實施方式中,該第二控制裝置12具有預先設置的一訓練模組,該第二控制裝置12可事先接收包括大量感測時刻與感測數據的該些歷史數據,並透過該些歷史數據事先建立該厭氧預測模型、該缺氧預測模型、該好氧預測模型、該第一水資源預測模型、該第二水資源預測模型該控制成效預測模型及該水質預測模型中的至少一個。在一示例實施方式中,該厭氧預測模型、該缺氧預測模型、該好氧預測模型、該第一水資源預測模型、該第二水資源預測模型、該控制成效預測模型及該水質預測模型可透過類神經網路(Artificial Neural Network,ANN)架構等各種人工智慧的架構建模,並在該ANN架構下經曲線優化ANN模式來進行該預測參數的預測。在至少一示例實施方式中,該第二控制裝置12不限於ANN架構的方式建模,可透過其他機器學習的方式產生不同的預測模型。 In at least one example embodiment, the second control device 12 has a preset training module, the second control device 12 can receive in advance the historical data including a large number of sensing times and sensing data, and through the These historical data are established in advance in the anaerobic prediction model, the anoxic prediction model, the aerobic prediction model, the first water resource prediction model, the second water resource prediction model, the control effect prediction model and the water quality prediction model. at least one. In an example embodiment, the anaerobic prediction model, the anoxic prediction model, the aerobic prediction model, the first water resource prediction model, the second water resource prediction model, the control effectiveness prediction model and the water quality prediction The model can be modeled by various artificial intelligence architectures such as an Artificial Neural Network (ANN) architecture, and the prediction parameters can be predicted through a curve-optimized ANN mode under the ANN architecture. In at least one example embodiment, the second control device 12 is not limited to modeling in an ANN architecture, and can generate different prediction models through other machine learning methods.

在至少一示例實施方式中,該人工智慧建模架構可包括ANN、單層神經網路、FNN、反饋神經網路、自組織神經網路、結構自適應神經網路、對抗神經網路以及隨機神經網路。在該示例實施方式中,該FNN可 包括單層FNN、多層FNN以及線性神經網路。在該示例實施方式中,該單層FNN可包括單層感知器。在該示例實施方式中,該多層FNN可包括RBF神經網路、BP神經網路、全連接神經網路以及CNN。在該示例實施方式中,該RBF神經網路可包括GRNN以及PNN。在該示例實施方式中,該線性神經網路可包括Madline神經網路。在該示例實施方式中,該反饋神經網路可包括RNN、BSB以及霍普菲爾德神經網路。在該示例實施方式中,該RNN可包括Elman神經網路。在該示例實施方式中,該霍普菲爾德神經網路可包括離散Hopfield神經網路以及連續Hopfield神經網路。在該示例實施方式中,該自組織神經網路可包括競爭神經網路、ART神經網路以及SOM神經網路。在該示例實施方式中,該結構自適應神經網路可包括級聯相關網路(Cascade-Correlation Network)。在該示例實施方式中,該隨機神經網路可包括玻爾茲曼機(Boltzmann Machine)。 In at least one example embodiment, the artificial intelligence modeling architecture may include ANNs, single-layer neural networks, FNNs, feedback neural networks, self-organizing neural networks, structural adaptive neural networks, adversarial neural networks, and random neural network. In this example embodiment, the FNN can Including single-layer FNN, multi-layer FNN and linear neural network. In this example embodiment, the single-layer FNN may comprise a single-layer perceptron. In this example embodiment, the multi-layer FNN may include an RBF neural network, a BP neural network, a fully connected neural network, and a CNN. In this example embodiment, the RBF neural network may include a GRNN as well as a PNN. In this example embodiment, the linear neural network may comprise a Madline neural network. In this example embodiment, the feedback neural network may include RNN, BSB, and Hopfield neural network. In this example embodiment, the RNN may comprise an Elman neural network. In this example embodiment, the Hopfield neural network may include a discrete Hopfield neural network as well as a continuous Hopfield neural network. In this example embodiment, the self-organizing neural network may include a competitive neural network, an ART neural network, and a SOM neural network. In this example embodiment, the structure-adaptive neural network may comprise a Cascade-Correlation Network. In this example embodiment, the stochastic neural network may comprise a Boltzmann Machine.

通過本案所述之第一控制裝置12與第二控制裝置13,在水資源監控與處理方法的流程中,通過建立不同的AI推論模型將不同生物活性參數與控制參數進行關聯,可優化了水資源監控與處理系統1的自適應性。同時,所述水資源監控與處理系統1可在參數變化時對受控裝置的操作參數進行快速調整,以確保最佳水資源處理效率。 Through the first control device 12 and the second control device 13 described in this case, in the process of the water resource monitoring and treatment method, by establishing different AI inference models to associate different biological activity parameters with control parameters, the water resources can be optimized. Adaptability of the resource monitoring and processing system 1 . At the same time, the water resource monitoring and treatment system 1 can quickly adjust the operating parameters of the controlled device when the parameters change, so as to ensure the best water resource treatment efficiency.

以上所述,以上實施例僅用以說明本發明的技術方案,而非對其限制;儘管參照前述實施例對本發明進行了詳細的說明,本領域的普通技術人員應當理解:其依然可以對前述各實施例所記載的技術方案進行修改,或者對其中部分技術特徵進行等同替換;而這些修改或者替換,並不使相應技術方案的本質脫離本發明各實施例技術方案的範圍。 As mentioned above, the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand: The technical solutions described in the embodiments are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions depart from the scope of the technical solutions of the embodiments of the present invention.

綜上所述,本發明符合發明專利要件,爰依法提出專利申請。惟,以上所述者僅為本發明之較佳實施方式,舉凡熟悉本案技藝之人士, 在爰依本案創作精神所作之等效修飾或變化,皆應包含於以下之申請專利範圍內。 To sum up, the present invention complies with the requirements of an invention patent, and a patent application can be filed in accordance with the law. However, the above descriptions are only the preferred embodiments of the present invention, for those who are familiar with the art of the present case, Equivalent modifications or changes made in accordance with the creative spirit of this case shall be included within the scope of the following patent applications.

S310-S350:步驟 S310-S350: Steps

Claims (12)

一種用於水資源處理的電子裝置,所述電子裝置包括:至少一個處理器;以及儲存裝置,該儲存裝置耦接到該至少一個處理器並且儲存多個指令,該多個指令在由該至少一個處理器執行時,使得該至少一個處理器:取得至少一個氧化還原電位(ORP)目標值;接收來自ORP感測裝置在一第一感測時刻對一待測水體所感測到的一第一ORP參數;將該第一ORP參數與該至少一個ORP目標值進行比較產生第一比較結果;依據該第一比較結果產生一控制參數;以及依據該控制參數調控對該待測水體進行處理的一受控裝置的一操作參數,其中:該至少一個ORP目標值包括一第一ORP目標值與一第二ORP目標值,以及該第一比較結果為該第一ORP參數大於或等於該第一ORP目標值、該第一ORP參數小於該第一ORP目標值且大於或等於該第二ORP目標值或該第一ORP參數小於該第二ORP目標值。 An electronic device for water treatment, the electronic device comprising: at least one processor; and a storage device coupled to the at least one processor and storing a plurality of instructions, the plurality of instructions being processed by the at least one processor When executed by one processor, the at least one processor: obtains at least one target value of oxidation-reduction potential (ORP); receives a first sensed value of a water body to be measured from the ORP sensing device at a first sensing moment ORP parameter; comparing the first ORP parameter with the at least one ORP target value to generate a first comparison result; generating a control parameter according to the first comparison result; and regulating a process for processing the water body to be measured according to the control parameter An operating parameter of a controlled device, wherein: the at least one ORP target value includes a first ORP target value and a second ORP target value, and the first comparison result is that the first ORP parameter is greater than or equal to the first ORP The target value, the first ORP parameter is less than the first ORP target value and greater than or equal to the second ORP target value or the first ORP parameter is less than the second ORP target value. 如請求項1所述的電子裝置,其中該多個指令在由該至少一個處理器執行時,進一步使得該至少一個處理器:當該第一ORP參數小於該第一ORP目標值且大於或等於該第二ORP目標值時,確認來自該ORP感測裝置在一第二感測時刻對該待測水體所感測到的一第二ORP參數是否小於或等於該第一ORP參數;當該第二ORP參數大於該第一ORP參數時,依據該第一ORP目標值產生大於1的一調控係數; 當該第二ORP參數小於或等於該第一ORP參數時,設置該調控係數等於1;以及依據該受控裝置的一初始參數與該調控係數來產生該控制參數。 The electronic device of claim 1, wherein the plurality of instructions, when executed by the at least one processor, further cause the at least one processor to: when the first ORP parameter is less than the first ORP target value and greater than or equal to When the second ORP target value is used, confirm whether a second ORP parameter sensed by the ORP sensing device on the water body to be measured is less than or equal to the first ORP parameter at a second sensing time; When the ORP parameter is greater than the first ORP parameter, a regulation coefficient greater than 1 is generated according to the first ORP target value; When the second ORP parameter is less than or equal to the first ORP parameter, the control coefficient is set equal to 1; and the control parameter is generated according to an initial parameter of the controlled device and the control coefficient. 如請求項1所述的電子裝置,其中該多個指令在由該至少一個處理器執行時,進一步使得該至少一個處理器:當該第一ORP參數大於或等於該第一ORP目標值或該第一ORP參數小於該第二ORP目標值時,依據該受控裝置的一參數極值來產生該控制參數。 The electronic device of claim 1, wherein the plurality of instructions, when executed by the at least one processor, further cause the at least one processor to: when the first ORP parameter is greater than or equal to the first ORP target value or the When the first ORP parameter is smaller than the second ORP target value, the control parameter is generated according to a parameter extreme value of the controlled device. 如請求項1所述的電子裝置,其中,該受控裝置是設置在該待測水體的一推流器,且當第一ORP參數大於或等於該第一ORP目標值,該推流器被啟動且該推流器的一運作頻率被設置為一預設頻率。 The electronic device according to claim 1, wherein the controlled device is a flow pusher disposed in the water body to be tested, and when the first ORP parameter is greater than or equal to the first ORP target value, the flow pusher is is activated and an operating frequency of the streamer is set to a preset frequency. 如請求項1所述的電子裝置,其中該多個指令在由該至少一個處理器執行時,進一步使得該至少一個處理器:取得至少一個參數目標範圍;接收來自參數感測裝置在該第一感測時刻對該待測水體所感測到的一感測參數;當該感測參數超出該參數目標範圍內,依據該受控裝置的一參數極值來調整該受控裝置的該操作參數;以及當該感測參數位於該參數目標範圍內,將該第一ORP參數與該至少一個ORP目標值進行比較產生第一比較結果。 The electronic device of claim 1, wherein the plurality of instructions, when executed by the at least one processor, further cause the at least one processor to: obtain at least one parameter target range; A sensing parameter sensed on the water body to be measured at the sensing time; when the sensing parameter exceeds the target range of the parameter, the operation parameter of the controlled device is adjusted according to a parameter extreme value of the controlled device; and when the sensing parameter is within the parameter target range, comparing the first ORP parameter with the at least one ORP target value to generate a first comparison result. 如請求項5所述的電子裝置,其中:當該參數感測裝置為溶氧(DO)感測裝置時,該至少一個參數目標範圍以及該第一感測參數分別為至少一個DO目標範圍以及DO參數,以及 當該參數感測裝置為混合液懸浮固體物(MLSS)感測裝置時,該至少一個參數目標範圍以及該第一感測參數分別為至少一個MLSS目標範圍以及MLSS參數。 The electronic device of claim 5, wherein: when the parameter sensing device is a dissolved oxygen (DO) sensing device, the at least one parameter target range and the first sensing parameter are at least one DO target range and DO parameters, and When the parameter sensing device is a mixed liquid suspended solids (MLSS) sensing device, the at least one parameter target range and the first sensing parameter are at least one MLSS target range and an MLSS parameter, respectively. 一種用於一電子裝置的水資源處理的方法,包括:取得至少一個氧化還原電位(ORP)目標值;接收來自ORP感測裝置在一第一感測時刻對一待測水體所感測到的一第一ORP參數;將該第一ORP參數與該至少一個ORP目標值進行比較產生第一比較結果;依據該第一比較結果產生一控制參數;以及依據該控制參數調控對該待測水體進行處理的一受控裝置的一操作參數,其中:該至少一個ORP目標值包括一第一ORP目標值與一第二ORP目標值,以及該第一比較結果為該第一ORP參數大於或等於該第一ORP目標值、該第一ORP參數小於該第一ORP目標值且大於或等於該第二ORP目標值或該第一ORP參數小於該第二ORP目標值。 A method for water resource treatment of an electronic device, comprising: obtaining at least one oxidation-reduction potential (ORP) target value; a first ORP parameter; comparing the first ORP parameter with the at least one ORP target value to generate a first comparison result; generating a control parameter according to the first comparison result; and regulating and processing the water body to be measured according to the control parameter An operating parameter of a controlled device, wherein: the at least one ORP target value includes a first ORP target value and a second ORP target value, and the first comparison result is that the first ORP parameter is greater than or equal to the first ORP target value An ORP target value, the first ORP parameter is less than the first ORP target value and greater than or equal to the second ORP target value or the first ORP parameter is less than the second ORP target value. 如請求項7所述的方法,其中,還包括:當該第一ORP參數小於該第一ORP目標值且大於或等於該第二ORP目標值時,確認來自該ORP感測裝置在一第二感測時刻對該待測水體所感測到的一第二ORP參數是否小於或等於該第一ORP參數;當該第二ORP參數大於該第一ORP參數時,依據該第一ORP目標值產生大於1的一調控係數;當該第二ORP參數小於或等於該第一ORP參數時,設置該調控係數等於1;以及 依據該受控裝置的一初始參數與該調控係數來產生該控制參數。 The method of claim 7, further comprising: when the first ORP parameter is less than the first ORP target value and greater than or equal to the second ORP target value, confirming that the ORP sensing device has a second ORP parameter. Whether a second ORP parameter sensed by the water body to be measured at the sensing time is less than or equal to the first ORP parameter; when the second ORP parameter is greater than the first ORP parameter, the first ORP target value is generated according to the first ORP target value greater than or equal to the first ORP parameter A control coefficient of 1; when the second ORP parameter is less than or equal to the first ORP parameter, set the control coefficient equal to 1; and The control parameter is generated according to an initial parameter of the controlled device and the control coefficient. 如請求項7所述的方法,其中,還包括:當該第一ORP參數大於或等於該第一ORP目標值或該第一ORP參數小於該第二ORP目標值時,依據該受控裝置的一參數極值來產生該控制參數。 The method of claim 7, further comprising: when the first ORP parameter is greater than or equal to the first ORP target value or the first ORP parameter is less than the second ORP target value, according to the controlled device's a parameter extrema to generate the control parameter. 如請求項7所述的方法,其中,該受控裝置是設置在該待測水體的一推流器,且當第一ORP參數大於或等於該第一ORP目標值,該推流器被啟動且該推流器的一運作頻率被設置為一預設頻率。 The method of claim 7, wherein the controlled device is a flow pusher disposed in the water body to be tested, and when the first ORP parameter is greater than or equal to the first ORP target value, the flow pusher is activated And an operating frequency of the flow pusher is set as a preset frequency. 如請求項7所述的方法,其中,還包括:取得至少一個參數目標範圍;接收來自參數感測裝置在該第一感測時刻對該待測水體所感測到的一感測參數;當該感測參數超出該參數目標範圍內,依據該受控裝置的一參數極值來調整該受控裝置的該操作參數;以及當該感測參數位於該參數目標範圍內,將該第一ORP參數與該至少一個ORP目標值進行比較產生第一比較結果。 The method according to claim 7, further comprising: obtaining at least one parameter target range; receiving a sensing parameter sensed by the parameter sensing device on the water body to be measured at the first sensing moment; The sensing parameter is out of the parameter target range, adjusting the operating parameter of the controlled device according to a parameter extreme value of the controlled device; and when the sensing parameter is within the parameter target range, the first ORP parameter A comparison with the at least one ORP target value produces a first comparison result. 如請求項11所述的方法,其中,當該參數感測裝置為溶氧(DO)感測裝置時,該至少一個參數目標範圍以及該第一感測參數分別為至少一個DO目標範圍以及DO參數,以及當該參數感測裝置為混合液懸浮固體物(MLSS)感測裝置時,該至少一個參數目標範圍以及該第一感測參數分別為至少一個MLSS目標範圍以及MLSS參數。 The method of claim 11, wherein when the parameter sensing device is a dissolved oxygen (DO) sensing device, the at least one parameter target range and the first sensing parameter are at least one DO target range and DO, respectively parameter, and when the parameter sensing device is a mixed liquid suspended solids (MLSS) sensing device, the at least one parameter target range and the first sensing parameter are at least one MLSS target range and an MLSS parameter, respectively.
TW110119309A 2020-09-23 2021-05-27 Water resources treatment method and apparatus thereof TWI777583B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063082447P 2020-09-23 2020-09-23
US63/082447 2020-09-23

Publications (2)

Publication Number Publication Date
TW202212273A TW202212273A (en) 2022-04-01
TWI777583B true TWI777583B (en) 2022-09-11

Family

ID=78961407

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110119309A TWI777583B (en) 2020-09-23 2021-05-27 Water resources treatment method and apparatus thereof

Country Status (2)

Country Link
CN (1) CN113830878B (en)
TW (1) TWI777583B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005717A1 (en) * 2022-06-30 2024-01-04 Hydroleap Private Limited Method and system for automated responsive electrocoagulation wastewater processing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508585A (en) * 2012-06-29 2014-01-15 上海轻工业研究所有限公司 Technology and equipment for treating and recovering chromium-containing waste water
CN203630652U (en) * 2013-12-23 2014-06-04 北京伊普国际水务有限公司 Control system for reflux quantity of AAO sewage dephosphorization and denitrification process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7413654B2 (en) * 2003-12-23 2008-08-19 Siemens Water Technologies Holding Corp. Wastewater treatment control
CN103391015B (en) * 2013-07-02 2015-10-28 中国西电电气股份有限公司 A kind of variable parameter PI regulator parameter method of adjustment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508585A (en) * 2012-06-29 2014-01-15 上海轻工业研究所有限公司 Technology and equipment for treating and recovering chromium-containing waste water
CN203630652U (en) * 2013-12-23 2014-06-04 北京伊普国际水务有限公司 Control system for reflux quantity of AAO sewage dephosphorization and denitrification process

Also Published As

Publication number Publication date
TW202212273A (en) 2022-04-01
CN113830878A (en) 2021-12-24
CN113830878B (en) 2023-07-11

Similar Documents

Publication Publication Date Title
US9747544B2 (en) Method and system for wastewater treatment based on dissolved oxygen control by fuzzy neural network
CN109879410B (en) Sewage treatment aeration control system
KR101729932B1 (en) Realtime water treatment control system using ORP and pH
TWI777583B (en) Water resources treatment method and apparatus thereof
CN107540069A (en) A kind of full-automatic coagulant dosage system
CN103197539A (en) Wastewater disposal intelligent optimization control aeration quantity method
CN104182794A (en) Method for soft measurement of effluent total phosphorus in sewage disposal process based on neural network
CN103064290A (en) Dissolved oxygen model prediction control method based on self-organization radial basis function neural network
Kusiak et al. Optimization of the activated sludge process
Piotrowski et al. Nonlinear fuzzy control system for dissolved oxygen with aeration system in sequencing batch reactor
CN103810309A (en) Soft measurement modeling method of A2O municipal sewage treatment process based on constraint theory
CN102778884B (en) Intelligent control method and intelligent control system for sewage treatment plant
CN114956360A (en) Sewage treatment aeration oxygenation control method based on hill climbing algorithm
CN214693460U (en) Ozone dosing control system in advance
Puig et al. An on-line optimisation of a SBR cycle for carbon and nitrogen removal based on on-line pH and OUR: the role of dissolved oxygen control
KR20060092660A (en) Automatic control device and method for wastewater treatment using fuzzy control
CN104345636A (en) Dissolved-oxygen control method based on improved differential algorithm
CN112759063A (en) Pre-ozone adding control method and control system thereof
CN102503062B (en) Method and device for online optimized control of operation of two-sludge denitrifying dephosphatation process
CN104609533A (en) Control system and method for degradation-resistant organic wastewater ozone heterogeneous catalysis oxidation treatment process
Lin et al. Employing artificial neural networks to predict the performance of domestic sewage treatment terminals in the rural region
Barbusiński et al. Simulation of the influence of wastewater quality indicators and operating parameters of a bioreactor on the variability of nitrogen in outflow and bulking of sludge: Data mining approach
de la Vega et al. Obtaining key parameters and working conditions of wastewater biological nutrient removal by means of artificial intelligence tools
CN115124097B (en) Balanced water inlet control method, device, water inlet device, system and medium
CN117251000B (en) Liquid level control method, system, equipment and medium

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent