TWI777209B - Fingerprint sensing apparatus - Google Patents

Fingerprint sensing apparatus Download PDF

Info

Publication number
TWI777209B
TWI777209B TW109126233A TW109126233A TWI777209B TW I777209 B TWI777209 B TW I777209B TW 109126233 A TW109126233 A TW 109126233A TW 109126233 A TW109126233 A TW 109126233A TW I777209 B TWI777209 B TW I777209B
Authority
TW
Taiwan
Prior art keywords
fingerprint
capacitance
identification device
fingerprint sensing
line
Prior art date
Application number
TW109126233A
Other languages
Chinese (zh)
Other versions
TW202207073A (en
Inventor
李祥宇
金上
杜佳勳
林丙村
Original Assignee
速博思股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 速博思股份有限公司 filed Critical 速博思股份有限公司
Priority to TW109126233A priority Critical patent/TWI777209B/en
Publication of TW202207073A publication Critical patent/TW202207073A/en
Application granted granted Critical
Publication of TWI777209B publication Critical patent/TWI777209B/en

Links

Images

Landscapes

  • Image Input (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

A fingerprint sensing apparatus includes a plurality of fingerprint sensing electrodes, a plurality of data lines respectively sandwiched by a first capacitance-shielding wire and a second capacitance-shielding wire, a fingerprint sensing circuit including a driver circuit with a gain larger than zero or equal to zero. During fingerprint sensing, the fingerprint sensing circuit sends a capacitance-exciting signal to a selected fingerprint sensing electrode, receiving a fingerprint sensing signal from the selected fingerprint sensing electrode, processing fingerprint sensing signal with the driver circuit into a capacitance-eliminating signal and applying the capacitance-eliminating signal to the first capacitance-shielding wire and the second capacitance-shielding wire respectively. The capacitance between the first/second capacitance-shielding wire and the corresponding data line can be greatly reduced because the voltages at the first/second capacitance-shielding wire same phase as that of corresponding data line, thus greatly enhance the accuracy of the fingerprint sensing apparatus.

Description

指紋辨識裝置 Fingerprint Identification Device

本發明係有關於一種指紋辨識裝置,特別是一種具有消容遮蔽線之指紋辨識裝置。 The present invention relates to a fingerprint identification device, in particular to a fingerprint identification device with a capacity-removing shielding wire.

由於電子商務興起,遠端支付的發展一日千里,故生物辨識之商業需求急速膨脹,尤以指紋辨識為首選技術。當無邊框行動顯示裝置已成潮流時,顯示屏內的指紋辨識便成熱門的標的。超音波或屏下光學偵測等解決方案都有昂貴與對位困難等種種問題限制難以普及;唯有應用TFT技術將感應電極與選擇開關設置在保護玻璃上的電容式指紋辨識技術既經濟又實惠。然而保護玻璃厚達數百μm以至於感應信號極微小,加之資料線(data line)長達數公分,其面積遠大於單一感應電極,且資料線與資料線間的距離僅數μm,彼此的串音干擾嚴重。傳統以隔離導電電極接地阻絕雜訊的方法又會產生巨大自電容,致使微小的感應信號消彌於無形,無異雪上加霜。因此如何解決資料線上感應到的各方雜訊便成為迫切待解的難題。 Due to the rise of e-commerce and the rapid development of remote payment, the commercial demand for biometric identification is rapidly expanding, especially fingerprint identification as the preferred technology. When the bezel-less mobile display device has become a trend, the fingerprint recognition in the display screen has become a popular target. Solutions such as ultrasonic or under-screen optical detection have various problems such as high cost and difficulty in alignment, which are difficult to popularize. Only the capacitive fingerprint recognition technology that uses TFT technology to set the sensing electrodes and selection switches on the protective glass is economical and economical. Affordable. However, the thickness of the protective glass is hundreds of μm , so that the sensing signal is extremely small. In addition, the data line is several centimeters long, and its area is much larger than that of a single sensing electrode, and the distance between the data line and the data line is only a few μm. The crosstalk interference is serious. The traditional method of isolating conductive electrodes to ground to block noise will generate a huge self-capacitance, causing the tiny induction signal to disappear into the invisible, which is nothing but worse. Therefore, how to solve the various noises sensed on the data line has become an urgent problem to be solved.

本發明之一目的為改善上述習知技術中,資料線感應到的各方雜訊的缺點。 One objective of the present invention is to improve the above-mentioned disadvantages of various noises induced by data lines in the prior art.

為了達成上述目的,本發明提供一種指紋辨識裝置,包含:一基板;一指紋電極層,包含多個指紋感應電極;一電晶體開關層包含:多個電晶體 開關組,該多個電晶體開關組與該多個指紋感應電極為一對一對應;多條資料線,該多條資料線各自對應一第一消容遮蔽線及一第二消容遮蔽線,以使該第一消容遮蔽線及該第二消容遮蔽線夾置一對應資料線;該第一消容遮蔽線位於該對應資料線與一待測手指之間俾排除該待測手指對該對應資料線的影響;一指紋偵測電路,包含一電容激勵信號源及一驅動電路,其中該驅動電路之增益大於或等於零;其中該指紋偵測電路經由該多個電晶體開關組其中之一者將一電容激勵信號傳送至一選定指紋感應電極,又自該選定指紋感應電極經該對應資料線輸入一指紋感應信號,又將該指紋感應信號經該驅動電路處理以輸出與該指紋感應信號同相位的一電容消除遮蔽信號,並傳送該電容消除遮蔽信號至該對應資料線所對應的該第一消容遮蔽線及該第二消容遮蔽線作指紋偵測操作。 In order to achieve the above object, the present invention provides a fingerprint identification device, comprising: a substrate; a fingerprint electrode layer including a plurality of fingerprint sensing electrodes; a transistor switch layer including: a plurality of transistors A switch group, the transistor switch groups are in a one-to-one correspondence with the fingerprint sensing electrodes; a plurality of data lines, each of which corresponds to a first capacitance elimination shielding line and a second capacitance elimination shielding line , so that the first anti-capacity shielding wire and the second anti-capacity shielding wire sandwich a corresponding data line; the first anti-capacity shielding wire is located between the corresponding data line and a finger to be tested to exclude the finger to be tested Influence on the corresponding data line; a fingerprint detection circuit, comprising a capacitive excitation signal source and a driving circuit, wherein the gain of the driving circuit is greater than or equal to zero; wherein the fingerprint detection circuit passes through the plurality of transistor switch groups. One of them transmits a capacitive excitation signal to a selected fingerprint sensing electrode, and then inputs a fingerprint sensing signal from the selected fingerprint sensing electrode through the corresponding data line, and processes the fingerprint sensing signal through the driving circuit to output the same fingerprint as the fingerprint. A capacitance canceling shielding signal in the same phase of the sensing signal is transmitted, and the capacitance canceling shielding signal is transmitted to the first and second capacitance canceling shielding lines corresponding to the corresponding data lines for fingerprint detection operation.

在本發明的指紋辨識裝置中,由於第一消容遮蔽線及該第二消容遮蔽線與其對應資料線具有同相電壓,所以可以降低其間電容值,增進指紋辨識裝置量測正確率。 In the fingerprint identification device of the present invention, since the first capacitance elimination shielding line and the second capacitance elimination shielding line and their corresponding data lines have the same phase voltage, the capacitance value between them can be reduced, and the measurement accuracy of the fingerprint identification device is improved.

10:指紋辨識裝置 10: Fingerprint identification device

100:基板 100: Substrate

110:指紋電極層 110: Fingerprint electrode layer

112:指紋感應電極 112: Fingerprint sensing electrode

150A:第一絕緣層 150A: first insulating layer

150B:第二絕緣層 150B: Second insulating layer

150C:第三絕緣層 150C: Third insulating layer

140A:第一消容遮蔽線 140A: The first capacitance elimination shielding wire

140B:第二消容遮蔽線 140B: The second capacitance elimination shielding wire

A1、A2、A3:驅動電路 A1, A2, A3: drive circuit

130、21L1、21L2、21L3:資料線 130, 21L1, 21L2, 21L3: Data line

132:虛資料線 132: virtual data line

11L1、21L1~21L3、22L1~22L3、23L1~23L3、1mL1、2mL1~2mL3、2nL1~2nL3:資料線 11L1, 21L1~21L3, 22L1~22L3, 23L1~23L3, 1mL1, 2mL1~2mL3, 2nL1~2nL3: Data line

1Y1~1Y3~8Y1~8Y3:閘極線 1Y1~1Y3~8Y1~8Y3: Gate line

C1:第一電容 C1: first capacitor

C2:第二電容 C2: second capacitor

Cfse:指紋感應電容 Cfse: Fingerprint Sensing Capacitor

Cfdl、Csedl1、Csedl2...Csedln、Cfse1~Cfsen、Cfsem、Cdl:電容 Cfdl, Csedl1, Csedl2...Csedln, Cfse1~Cfsen, Cfsem, Cdl: Capacitor

Cself:自電容 Cself: Self Capacitance

SE:指紋感應電極 SE: Fingerprint Sensing Electrode

SEm,SEm1,SEm2:選定指紋感應電極 SEm, SEm1, SEm2: Selected fingerprint sensing electrodes

SE1~SEn:非選定指紋感應電極 SE1~SEn: Unselected fingerprint sensing electrodes

W1,W2,W3:寬度 W1,W2,W3: width

200:指紋/觸控偵測電路 200: Fingerprint/touch detection circuit

210:第一電源 210: First Power

212:第一接地 212: First Ground

230:電容激勵信號源 230: Capacitive excitation signal source

220A:第一放大器 220A: First Amplifier

220B:第二放大器 220B: Second amplifier

220C:第三放大器 220C: Third Amplifier

SW1:第一開關 SW1: The first switch

SW2:第二開關 SW2: Second switch

VS:指紋感應信號 VS: Fingerprint sensor signal

VE:電容消除遮蔽信號 VE: Capacitor eliminates shading signal

300:顯示控制電路 300: Display control circuit

310:第二電源 310: Second Power

312:第二接地 312: Second ground

400:顯示螢幕 400: display screen

400A:觸控顯示區 400A: touch display area

400B:指紋偵測暨觸控顯示區 400B: Fingerprint detection and touch display area

A11..A1n...Am1..Amn:指紋感應電極 A11..A1n...Am1..Amn: Fingerprint sensing electrodes

A,B,C:指紋偵測暨觸控顯示單元 A, B, C: Fingerprint detection and touch display unit

D,E,F,G,H,I,J,K,L:觸控感應電極 D,E,F,G,H,I,J,K,L: touch sensing electrodes

圖1A~1C為分別說明本發明具有消容遮蔽線之指紋辨識裝置之理論示意圖。 FIGS. 1A to 1C are theoretical schematic diagrams respectively illustrating the fingerprint identification device with the capacity-reducing shielding line of the present invention.

圖2為說明在習知指紋辨識裝置中資料線對於觸控電容偵測的影響的示意圖。 FIG. 2 is a schematic diagram illustrating the influence of data lines on touch capacitance detection in a conventional fingerprint identification device.

圖3為說明在習知指紋辨識裝置中資料線對於觸控電容偵測的影響的另一示意圖。 FIG. 3 is another schematic diagram illustrating the influence of data lines on touch capacitance detection in a conventional fingerprint identification device.

圖4為說明本發明使用消容遮蔽線而改善觸控電容偵測的示意圖。 FIG. 4 is a schematic diagram illustrating the improvement of touch capacitance detection by using a capacitance-removing shield line according to the present invention.

圖5為說明在顯示螢幕中觸控顯示區及指紋偵測暨觸控顯示區分布之示意圖。 FIG. 5 is a schematic diagram illustrating the distribution of the touch display area and the fingerprint detection and touch display area in the display screen.

圖6為說明在顯示螢幕中觸控顯示區及指紋偵測暨觸控顯示區分布之另一示意圖。 FIG. 6 is another schematic diagram illustrating the distribution of the touch display area and the fingerprint detection and touch display area in the display screen.

圖7A及圖7B為說明依據本發明之具有消容遮蔽線之指紋辨識裝置之電路方塊圖。 FIGS. 7A and 7B are circuit block diagrams illustrating a fingerprint identification device with de-capacitance shielding lines according to the present invention.

圖8A及圖8B為說明依據本發明之具有消容遮蔽線之指紋辨識裝置之電路方塊圖。 FIG. 8A and FIG. 8B are circuit block diagrams illustrating a fingerprint identification device with de-capacitance shielding lines according to the present invention.

圖9為說明在顯示螢幕中觸控顯示區及指紋偵測暨觸控顯示區分布之示意圖。 FIG. 9 is a schematic diagram illustrating the distribution of the touch display area and the fingerprint detection and touch display area in the display screen.

圖10為說明依據本發明之具有消容遮蔽線之指紋辨識裝置之電路方塊圖。 FIG. 10 is a circuit block diagram illustrating a fingerprint identification device with an anti-capacity shielding line according to the present invention.

圖11A為說明相鄰資料線互電容的示意圖。 FIG. 11A is a schematic diagram illustrating the mutual capacitance of adjacent data lines.

圖11B為說明資料線自電容的示意圖。 FIG. 11B is a schematic diagram illustrating the self-capacitance of the data line.

圖11C為說明依據本發明一實施例之具有消容遮蔽線之指紋辨識裝置之消容遮蔽線結構剖視圖。 FIG. 11C is a cross-sectional view illustrating the structure of the anti-capacity mask line of the fingerprint identification device with the anti-capacity mask line according to an embodiment of the present invention.

圖11D為說明依據本發明另一實施例之具有消容遮蔽線之指紋辨識裝置之消容遮蔽線結構剖視圖。 11D is a cross-sectional view illustrating the structure of the anti-capacity masking line of the fingerprint identification device with the anti-capacity masking line according to another embodiment of the present invention.

圖11E為說明依據本發明另一實施例之具有消容遮蔽線之指紋辨識裝置之消容遮蔽線結構剖視圖。 FIG. 11E is a cross-sectional view illustrating the structure of the anti-capacity mask line of the fingerprint identification device with the anti-capacity mask line according to another embodiment of the present invention.

有關本發明的詳細說明及技術內容,請參閱以下的詳細說明和附圖說明如下,而附圖與詳細說明僅作為說明之用,並非用於限制本發明。 For the detailed description and technical content of the present invention, please refer to the following detailed description and accompanying drawings. The accompanying drawings and detailed descriptions are only used for illustration and are not used to limit the present invention.

參見圖1A~1C,為分別說明本發明具有消容遮蔽線之指紋辨識裝置之理論示意圖。參見圖1A,在資料線130之鄰近位置分別設立第一消容遮蔽線 140A及第二消容遮蔽線140B,例如分別在資料線130之上方及下方設立第一消容遮蔽線140A及第二消容遮蔽線140B。上述所謂之上方及下方例如可為此指紋辨識裝置使用時,操作者慣用的方向;但是須知依據本發明,第一消容遮蔽線140A及第二消容遮蔽線140B之設立位置只要能將資料線130夾置於其中即可例如第一消容遮蔽線140A及第二消容遮蔽線140B也可以位在資料線130之左右兩側。此外,若資料線130的雜訊主要來自一側(例如下側),則本發明也可僅具有單一消容遮蔽線,例如圖4所示者,也可以達成本發明之功效,本發明專利範圍並不以此圖示實施例為限。如圖1A所示,第一消容遮蔽線140A具有寬度W1、第二消容遮蔽線140B具有寬度W2、而資料線130具有寬度W3。以上述消容遮蔽線將資料線130在上下方向夾起來的方式,雖然可以藉由消容遮蔽線遮蔽來自於上下方的雜訊干擾,但是若第一消容遮蔽線140A及第二消容遮蔽線140B未適度加上偏壓,則會有嚴重的串音干擾問題。換言之,若第一消容遮蔽線140A及第二消容遮蔽線140B一端接地,且資料線130一端經由驅動電路(例如一放大器)A1輸出指紋感應信號,則在第一消容遮蔽線140A及資料線130之間會產生第一電容C1,而在第二消容遮蔽線140B及資料線130之間會產生第二電容C2。此時第一電容C1及第二電容C2會造成指紋感應信號的串音,影響指紋偵測正確性。 Referring to FIGS. 1A to 1C , which are theoretical schematic diagrams respectively illustrating the fingerprint identification device with the capacity-removing shielding line of the present invention. Referring to FIG. 1A , first anti-capacity shielding lines are respectively set up at positions adjacent to the data lines 130 For the 140A and the second anti-capacitance shielding line 140B, for example, a first anti-capacity shielding line 140A and a second anti-capacity shielding line 140B are respectively formed above and below the data line 130 . The above-mentioned so-called top and bottom can be, for example, the directions that the operator is used to when using the fingerprint identification device; however, it should be noted that according to the present invention, the first and second anti-capacity shielding lines 140A and 140B are set up as long as the data can be stored. When the lines 130 are sandwiched therein, for example, the first capacitance elimination shielding line 140A and the second capacitance elimination shielding line 140B may be located on the left and right sides of the data line 130 . In addition, if the noise of the data line 130 mainly comes from one side (for example, the lower side), the present invention can also only have a single anti-capacity shielding line, such as the one shown in FIG. 4, which can also achieve the effect of the present invention. The scope is not limited by this illustrated embodiment. As shown in FIG. 1A , the first anti-capacity shielding line 140A has a width W1 , the second anti-capacitive shielding line 140B has a width W2 , and the data line 130 has a width W3 . In the way that the data lines 130 are clamped in the upper and lower directions by the above-mentioned capacitance elimination shielding line, although the noise interference from the upper and lower sides can be shielded by the capacitance elimination shielding line, if the first capacitance elimination shielding line 140A and the second capacitance elimination shielding line 140A and the second capacitance elimination shielding line 140A and the second capacitance elimination shielding line If the shielding wire 140B is not properly biased, there will be a serious crosstalk problem. In other words, if one end of the first anti-capacitance shielding line 140A and the second anti-capacitance shielding line 140B is grounded, and one end of the data line 130 outputs the fingerprint sensing signal through the driving circuit (eg, an amplifier) A1, then the first anti-capacitance shielding line 140A and the A first capacitor C1 is generated between the data lines 130 , and a second capacitor C2 is generated between the second capacitance elimination shielding line 140B and the data line 130 . At this time, the first capacitor C1 and the second capacitor C2 will cause crosstalk of the fingerprint sensing signal, which affects the accuracy of fingerprint detection.

參見圖1B,若資料線130的指紋感應信號(來自於選定指紋感應電極的電容偵測結果)經由一增益大於或等於零之驅動電路(例如一放大器)A2放大成一電容消除遮蔽信號後再施加到第一消容遮蔽線140A及第二消容遮蔽線140B,則在第一消容遮蔽線140A及資料線130之間產生的第一電容C1為零,且在第二消容遮蔽線140B及資料線130之間產生的第二電容C2也為零,因此設立第一消容遮蔽線140A及第二消容遮蔽線140B不會造成輸出指紋感應信號的串音,也不會影響偵測正確性。此第一消容遮蔽線140A及第二消容遮蔽線140B更可以提供資料線130之遮蔽效果,亦即可以使本發明之具有消容遮蔽線之指紋辨識裝置 可正確的偵測到指紋感應電容Cfs(手指按壓在選定指紋感應電極上所產生,且經由資料線130輸出的偵測結果)。在上述說明中,驅動電路A2之增益係為大於或等於零;且在做指紋偵測時,驅動電路A2之增益係為大於零(例如為1),以對於指紋感應信號做同相放大。 Referring to FIG. 1B , if the fingerprint sensing signal of the data line 130 (from the capacitance detection result of the selected fingerprint sensing electrode) is amplified by a driving circuit (such as an amplifier) A2 with a gain greater than or equal to zero into a capacitance-eliminating shading signal and then applied to the The first capacitance elimination shielding line 140A and the second capacitance elimination shielding line 140B, the first capacitance C1 generated between the first capacitance elimination shielding line 140A and the data line 130 is zero, and the second capacitance elimination shielding line 140B and The second capacitance C2 generated between the data lines 130 is also zero, so the establishment of the first capacitance elimination shielding line 140A and the second capacitance elimination shielding line 140B will not cause crosstalk of the output fingerprint sensing signal, nor will it affect the correct detection sex. The first anti-capacity shielding wire 140A and the second anti-capacity shielding wire 140B can further provide the shielding effect of the data line 130, that is, the fingerprint identification device with the anti-capacity shielding wire of the present invention can be used The fingerprint sensing capacitance Cfs (the detection result generated by the finger pressing on the selected fingerprint sensing electrode and outputted through the data line 130 ) can be correctly detected. In the above description, the gain of the driving circuit A2 is greater than or equal to zero; and when performing fingerprint detection, the gain of the driving circuit A2 is greater than zero (eg, 1) to amplify the fingerprint sensing signal in-phase.

參見圖1C,若資料線130的指紋感應信號經由一增益大於或等於零之驅動電路(例如一放大器)A2放大成一電容消除遮蔽信號後再施加到第一消容遮蔽線140A,且經由另一增益大於或等於零之驅動電路(例如一放大器)A3放大成一電容消除遮蔽信號後再施加到第二消容遮蔽線140B,則同樣的,第一消容遮蔽線140A及資料線130之間產生的第一電容C1為零,且在第二消容遮蔽線140B及資料線130之間產生的第二電容C2也為零,因此不會造成輸出指紋感應信號的串音,也不會影響偵測正確性,亦即可以使本發明之具有消容遮蔽線之指紋辨識裝置可正確的偵測到指紋感應電容Cfs。同樣的,在上述說明中,驅動電路A2及A3之增益係為大於或等於零;且在做指紋偵測時,驅動電路A2及A3之增益係為大於零(例如為1),以對於指紋感應信號做同相放大。 Referring to FIG. 1C , if the fingerprint sensing signal of the data line 130 is amplified by a driving circuit (eg, an amplifier) A2 with a gain greater than or equal to zero into a capacitance-eliminating shielding signal, it is then applied to the first capacitance-eliminating shielding line 140A, and through another gain The drive circuit (such as an amplifier) A3 that is greater than or equal to zero amplifies a capacitance cancellation shielding signal and then applies it to the second capacitance cancellation shielding line 140B. Similarly, the first capacitance cancellation shielding line 140A and the data line 130 generate A capacitor C1 is zero, and the second capacitor C2 generated between the second capacitance elimination shielding line 140B and the data line 130 is also zero, so it will not cause crosstalk of the output fingerprint sensing signal, and will not affect the correct detection In other words, the fingerprint identification device with the capacitance-removing shielding line of the present invention can correctly detect the fingerprint sensing capacitance Cfs. Similarly, in the above description, the gains of the driving circuits A2 and A3 are greater than or equal to zero; and when performing fingerprint detection, the gains of the driving circuits A2 and A3 are greater than zero (for example, 1), so as to sense the fingerprint The signal is in-phase amplified.

參見圖2,為說明在習知指紋辨識裝置中資料線對於觸控電容偵測的影響。如此圖所示,因為資料線130一般而言具有極長的延伸長度(相對於指紋感應電極SE而言),例如資料線130的長度若為20,000um,則即使其寬度僅為5um(小於指紋感應電極SE的寬度),則面積仍高達100,000um2。相對於指紋感應電極SE的面積50x50=2,500um2而言,多了40倍。換言之,若資料線130鄰近於指紋感應電極SE,則使用者手指與資料線130之間的電容Cfdl會是指紋感應電容Cfse的40倍,影響到偵測正確性。 Referring to FIG. 2 , the influence of the data lines on the touch capacitance detection in the conventional fingerprint identification device is illustrated. As shown in this figure, because the data line 130 generally has a very long extension length (relative to the fingerprint sensing electrode SE), for example, if the length of the data line 130 is 20,000um, even if its width is only 5um (less than the fingerprint sensing electrode SE) width of the sensing electrode SE), the area is still as high as 100,000um 2 . Compared with the area of 50x50=2,500um 2 of the fingerprint sensing electrode SE, it is 40 times more. In other words, if the data line 130 is adjacent to the fingerprint sensing electrode SE, the capacitance Cfdl between the user's finger and the data line 130 will be 40 times larger than the fingerprint sensing capacitance Cfse, which affects the detection accuracy.

參見圖3,為說明在習知指紋辨識裝置中資料線對於觸控電容偵測的影響。如此圖所示,除了資料線130的影響外,在資料線130附近的非選定指紋感應電極SE1-SEn與手指之間也分別會有電容Cfse1-Cfsen;非選定指紋感應電極 SE1-SEn與資料線130之間也會有電容Csed11-Csed1n,這些電容Csed11-Csed1n也會影響對於選定指紋感應電極SEm的指紋感應電容Cfse的感應精確度。尤有甚者,非選定指紋感應電極SE1-SEn之數量會遠大於選定指紋感應電極SEm的數量,造成指紋感應電容Cfse更嚴重的干擾。 Referring to FIG. 3 , the influence of the data lines on the touch capacitance detection in the conventional fingerprint identification device is illustrated. As shown in this figure, in addition to the influence of the data line 130, there are also capacitances Cfse1-Cfsen between the unselected fingerprint sensing electrodes SE1-SEn near the data line 130 and the finger, respectively; the unselected fingerprint sensing electrodes There are also capacitors Csed11-Csed1n between SE1-SEn and the data line 130. These capacitors Csed11-Csed1n also affect the sensing accuracy of the fingerprint sensing capacitor Cfse for the selected fingerprint sensing electrode SEm. What's more, the number of unselected fingerprint sensing electrodes SE1-SEn will be much larger than the number of selected fingerprint sensing electrodes SEm, resulting in more serious interference of the fingerprint sensing capacitor Cfse.

參見圖4,為說明依據本發明,使用消容遮蔽線而改善指紋辨識裝置中資料線對於觸控電容偵測的影響。參見此圖,並配合參見圖1B,1C,若對於每一資料線130至少設立一消容遮蔽線(例如圖示之第一消容遮蔽線140A),且將資料線130的指紋感應信號經由一增益大於或等於零之驅動電路(例如一放大器)A1放大後產生與該指紋感應信號同相位的電容消除遮蔽信號。此電容消除遮蔽信號再施加到第一消容遮蔽線140A,則可以使資料線130與第一消容遮蔽線140A之間沒有電容(沒有電位差)。同樣的,此電容消除遮蔽信號也可以施加到非選定指紋感應電極SE1-SEn,使得非選定指紋感應電極SE1-SEn與資料線130之間也沒有電容,因此可以更精確的偵測對於選定指紋感應電極SEm的指紋感應電容Cfse。在圖4的實施例中,雖然僅繪示出一條消容遮蔽線(亦即第一消容遮蔽線140A),且對於非選定指紋感應電極SE1-SEn也施加電容消除遮蔽信號;但是依據本發明的另一實施方式,也可以類似於圖1B,1C的方式,在資料線130的上下各設立第一消容遮蔽線140A及第二消容遮蔽線140B,並將電容消除遮蔽信號分別施加到第一消容遮蔽線140A及第二消容遮蔽線140B,以降低干擾。在上述說明中,驅動電路A1之增益係為大於或等於零;且在做指紋偵測時,驅動電路A1之增益係為大於零(例如為1),以對於指紋感應信號做同相放大,產生電容消除遮蔽信號。 Referring to FIG. 4 , in order to illustrate, according to the present invention, using the capacitance-removing shielding line to improve the influence of the data line on the touch capacitance detection in the fingerprint identification device. Referring to this figure and referring to FIGS. 1B and 1C, if at least one anti-capacitance shielding line (such as the first anti-capacity shielding line 140A shown in the figure) is established for each data line 130, and the fingerprint sensing signal of the data line 130 is passed through A drive circuit (eg, an amplifier) A1 with a gain greater than or equal to zero generates a capacitance-eliminating shading signal with the same phase as the fingerprint sensing signal after amplification. The capacitance elimination shielding signal is then applied to the first capacitance elimination shielding line 140A, so that there is no capacitance (no potential difference) between the data line 130 and the first capacitance elimination shielding line 140A. Similarly, the capacitance cancellation masking signal can also be applied to the unselected fingerprint sensing electrodes SE1-SEn, so that there is no capacitance between the unselected fingerprint sensing electrodes SE1-SEn and the data line 130, so that the selected fingerprint can be detected more accurately. The fingerprint sensing capacitance Cfse of the sensing electrode SEm. In the embodiment of FIG. 4 , although only one capacitance elimination shielding line (ie, the first capacitance elimination shielding line 140A) is shown, and the capacitance elimination shielding signal is also applied to the unselected fingerprint sensing electrodes SE1-SEn; but according to this In another embodiment of the invention, a first capacitance elimination shielding line 140A and a second capacitance elimination shielding line 140B can be set up on the upper and lower sides of the data line 130, respectively, and the capacitance elimination shielding signal can be applied respectively in the manner similar to FIGS. 1B and 1C. to the first anti-capacitance shielding line 140A and the second anti-capacity shielding line 140B to reduce interference. In the above description, the gain of the driving circuit A1 is greater than or equal to zero; and when performing fingerprint detection, the gain of the driving circuit A1 is greater than zero (for example, 1) to amplify the fingerprint sensing signal in-phase to generate capacitance Eliminate obscured signals.

參見圖9,為說明在一顯示螢幕400中,觸控顯示區400A及指紋偵測暨觸控顯示區400B之示意圖。在一可攜式電子產品之顯示螢幕400中,通常具有觸控顯示區400A以供使用者做觸控輸入及顯示訊息用;及具有指紋偵測區以 作為使用者身分辨識之用。由於指紋偵測之解析度大於觸控解析度,所以依據本發明之一實施例,多數個指紋感應電極A11..A1n...Am1..Amn可以組成一個指紋偵測暨觸控顯示單元A(亦即作為觸控電極),而多個指紋偵測暨觸控顯示單元A,B,C可以組成一個指紋偵測暨觸控顯示區400B。此顯示螢幕400包含觸控顯示區400A(包含多個觸控感應電極D,E....K,L)及指紋偵測暨觸控顯示區400B。在上述說明中,每一該觸控感應電極的面積為該指紋感應電極面積的50倍以上,例如可為50-100倍,或是可為1000倍。再者,因為指紋感應電極A11..A1n...Am1..Amn的密度遠大於觸控感應電極D,E....K,L的密度,所以指紋偵測暨觸控顯示區400B的資料線密度較高。為了使該觸控顯示區400A與包含該多個指紋感應電極的指紋偵測暨觸控顯示區域400B具有一樣或是相近的透光度,該觸控顯示區400A可設置多個虛資料線(dummy data line)132。該些虛資料線132之排列密度例如可與資料線130排列密度相近,且不需連接任何控制電路,以使該觸控顯示區400A及指紋偵測暨觸控顯示區域400B具有一樣或是相近的透光度,增加使用者在操作時之視覺舒適度。 Referring to FIG. 9 , it is a schematic diagram illustrating a touch display area 400A and a fingerprint detection and touch display area 400B in a display screen 400 . In the display screen 400 of a portable electronic product, there is usually a touch display area 400A for the user to perform touch input and display information; and a fingerprint detection area to Used for user identification. Since the resolution of fingerprint detection is greater than the touch resolution, according to an embodiment of the present invention, a plurality of fingerprint sensing electrodes A11..A1n...Am1..Amn can form a fingerprint detection and touch display unit A (ie as touch electrodes), and a plurality of fingerprint detection and touch display units A, B, C can form a fingerprint detection and touch display area 400B. The display screen 400 includes a touch display area 400A (including a plurality of touch sensing electrodes D, E . . . K, L) and a fingerprint detection and touch display area 400B. In the above description, the area of each touch sensing electrode is more than 50 times the area of the fingerprint sensing electrode, for example, 50-100 times, or 1000 times. Furthermore, because the density of the fingerprint sensing electrodes A11..A1n...Am1..Amn is much greater than the density of the touch sensing electrodes D, E....K, L, the fingerprint detection and touch display area 400B has a higher density. The linear density of data is high. In order to make the touch display area 400A and the fingerprint detection and touch display area 400B including the plurality of fingerprint sensing electrodes have the same or similar light transmittance, the touch display area 400A can be provided with a plurality of dummy data lines ( dummy data line) 132. The arrangement density of the imaginary data lines 132 can be, for example, similar to the arrangement density of the data lines 130 , and there is no need to connect any control circuit, so that the touch display area 400A and the fingerprint detection and touch display area 400B have the same or similar arrangement density The light transmittance increases the user's visual comfort during operation.

參見圖5,此顯示螢幕400的觸控區域例如可分為上下兩個部份,亦即在上方之觸控顯示區400A及在下方之指紋偵測暨觸控顯示區400B。配合參見圖9,在指紋偵測暨觸控顯示區400B的指紋偵測暨觸控顯示單元A係由多個指紋感應電極A11...A1n...Am1..Amn組成。復參見圖1B及1C,指紋感應電極的資料線130的上下各設立第一消容遮蔽線140A及第二消容遮蔽線140B,並將與該指紋感應信號同相位的電容消除遮蔽信號分別施加到第一消容遮蔽線140A及第二消容遮蔽線140B,以降低干擾。因此圖5的顯示螢幕400的指紋偵測暨觸控顯示區400B具有更精確的偵測結果,及具有消弭資料線串音的功效。 Referring to FIG. 5 , the touch area of the display screen 400 can be divided into upper and lower parts, for example, the upper touch display area 400A and the lower fingerprint detection and touch display area 400B. Referring to FIG. 9, the fingerprint detection and touch display unit A in the fingerprint detection and touch display area 400B is composed of a plurality of fingerprint sensing electrodes A11...A1n...Am1..Amn. Referring to FIGS. 1B and 1C again, a first capacitance elimination shielding line 140A and a second capacitance elimination shielding line 140B are respectively set up and down the data line 130 of the fingerprint sensing electrode, and the capacitance elimination shielding signal with the same phase as the fingerprint sensing signal is respectively applied to the first anti-capacitance shielding line 140A and the second anti-capacity shielding line 140B to reduce interference. Therefore, the fingerprint detection and touch display area 400B of the display screen 400 of FIG. 5 has a more accurate detection result and has the effect of eliminating data line crosstalk.

參見圖6,此顯示螢幕400的觸控區域也具有觸控顯示區400A及指紋偵測暨觸控顯示區400B。但是相較於圖5之實施例,指紋偵測暨觸控顯示區 400B的面積較小。同樣的,配合參見圖9,在指紋偵測暨觸控顯示區400B的指紋偵測暨觸控顯示單元A係由多個指紋感應電極A11...A1n...Am1..Amn組成。復參見圖1B及1C,指紋感應電極的資料線130的上下各設立第一消容遮蔽線140A及第二消容遮蔽線140B,並將與該指紋感應信號同相位的電容消除遮蔽信號分別施加到第一消容遮蔽線140A及第二消容遮蔽線140B,以降低干擾。因此圖6的顯示螢幕400的指紋偵測暨觸控顯示區400B也具有更精確的偵測結果,及具有消弭資料線串音的功效。 Referring to FIG. 6 , the touch area of the display screen 400 also has a touch display area 400A and a fingerprint detection and touch display area 400B. However, compared with the embodiment of FIG. 5, the fingerprint detection and touch display area is The 400B has a smaller area. Similarly, referring to FIG. 9, the fingerprint detection and touch display unit A in the fingerprint detection and touch display area 400B is composed of a plurality of fingerprint sensing electrodes A11...A1n...Am1...Amn. Referring to FIGS. 1B and 1C again, a first capacitance elimination shielding line 140A and a second capacitance elimination shielding line 140B are respectively set up and down the data line 130 of the fingerprint sensing electrode, and the capacitance elimination shielding signal with the same phase as the fingerprint sensing signal is respectively applied to the first anti-capacitance shielding line 140A and the second anti-capacity shielding line 140B to reduce interference. Therefore, the fingerprint detection and touch display area 400B of the display screen 400 in FIG. 6 also has a more accurate detection result and has the effect of eliminating data line crosstalk.

參見圖7A,為說明依據本發明之具有消容遮蔽線之指紋辨識裝置之電路方塊圖。此指紋辨識裝置10係用於自電容架構且具有一指紋/觸控偵測電路200及一顯示控制電路300,其中指紋/觸控偵測電路200具有一第一電源210及一第一接地212;而顯示控制電路300具有一第二電源310及一第二接地312,其中第一接地212為與第二接地312不同的接地。此外,此指紋/觸控偵測電路200更具有一電容激勵信號源230、一第一放大器220A及一第二放大器220B。此指紋辨識裝置更具有一第一開關SW1及一第二開關SW2。參見圖7A,於指紋偵測階段(或是觸控偵測階段,配合參見圖9,多數個指紋感應電極A11..A1n...Am1..Amn可以組成一個指紋偵測暨觸控顯示單元A,以進行觸控偵測),第一開關SW1及第二開關SW2係導通(閉合),以使電容激勵信號源230的電容激勵信號可藉由第一開關SW1傳送到選定感應電極SEm,且使感應電極SEm上的電容感應信號(反應指紋偵測結果)可以經由第二開關SW2而傳送到第一放大器220A,並經由第一放大器220A處理成一指紋感應信號VS。再者,此指紋感應信號VS也經由第二放大器220B(為一增益大於或等於零之驅動電路)而形成與該指紋感應信號VS同相位的電容消除遮蔽信號VE。復參見圖1B及1C,指紋感應電極的資料線130的上下各設立第一消容遮蔽線140A及第二消容遮蔽線140B,且指紋/觸控偵測電路200將電容消除遮蔽信號VE分別施加到第一消容遮蔽線140A及第二消容遮蔽線 140B,以降低干擾。因此圖7A的具有消容遮蔽線之指紋辨識裝置可有更精確的偵測結果,及具有消弭資料線串音的功效。在上述說明中,第二放大器(驅動電路)220B之增益係為大於或等於零;且在做指紋偵測時,第二放大器220B之增益係為大於零(例如為1),以對於指紋感應信號VS做同相放大,產生電容消除遮蔽信號VE。此外,在指紋偵測階段或是觸控偵測階段,指紋/觸控偵測電路200及顯示控制電路300之間僅藉由單一實體導線連接,且第一接地212為與第二接地312不同的接地,該第一電源210與該第二電源310之間無共同的電流迴路,更增進指紋偵測或是觸控偵測精確度。 Referring to FIG. 7A , it is a circuit block diagram illustrating a fingerprint identification device with a capacitance-removing shielding line according to the present invention. The fingerprint identification device 10 is used in a self-capacitance structure and has a fingerprint/touch detection circuit 200 and a display control circuit 300, wherein the fingerprint/touch detection circuit 200 has a first power supply 210 and a first ground 212 ; And the display control circuit 300 has a second power supply 310 and a second ground 312, wherein the first ground 212 is a different ground from the second ground 312. In addition, the fingerprint/touch detection circuit 200 further includes a capacitive excitation signal source 230, a first amplifier 220A and a second amplifier 220B. The fingerprint identification device further has a first switch SW1 and a second switch SW2. Referring to FIG. 7A , in the fingerprint detection stage (or the touch detection stage, referring to FIG. 9 ), a plurality of fingerprint sensing electrodes A11..A1n...Am1..Amn can form a fingerprint detection and touch display unit A, for touch detection), the first switch SW1 and the second switch SW2 are turned on (closed), so that the capacitive excitation signal of the capacitive excitation signal source 230 can be transmitted to the selected sensing electrode SEm through the first switch SW1, In addition, the capacitive sensing signal on the sensing electrode SEm (reflecting the fingerprint detection result) can be transmitted to the first amplifier 220A through the second switch SW2, and processed into a fingerprint sensing signal VS through the first amplifier 220A. Furthermore, the fingerprint sensing signal VS is also passed through the second amplifier 220B (which is a driving circuit with a gain greater than or equal to zero) to form a capacitance canceling shading signal VE having the same phase as the fingerprint sensing signal VS. Referring to FIGS. 1B and 1C again, the upper and lower parts of the data lines 130 of the fingerprint sensing electrodes are respectively provided with a first capacitance elimination shielding line 140A and a second capacitance elimination shielding line 140B, and the fingerprint/touch detection circuit 200 respectively detects the capacitance elimination shielding signal VE Applied to the first anti-capacitance shield line 140A and the second anti-capacitance shield line 140B to reduce interference. Therefore, the fingerprint identification device with the anti-capacity shielding line of FIG. 7A can have a more accurate detection result, and has the effect of eliminating the crosstalk of the data line. In the above description, the gain of the second amplifier (driving circuit) 220B is greater than or equal to zero; and during fingerprint detection, the gain of the second amplifier 220B is greater than zero (for example, 1), so as to detect the fingerprint sensor signal. VS does non-inverting amplification to generate a capacitance-eliminating shading signal VE. In addition, in the fingerprint detection stage or the touch detection stage, the fingerprint/touch detection circuit 200 and the display control circuit 300 are only connected by a single physical wire, and the first ground 212 is different from the second ground 312 There is no common current loop between the first power supply 210 and the second power supply 310, which further improves the accuracy of fingerprint detection or touch detection.

參見圖7B,為說明依據本發明之具有消容遮蔽線之指紋辨識裝置之電路方塊圖,其中紋辨識裝置係在非指紋偵測階段(例如顯示階段或是信號溝通階段)。於此階段,第一開關SW1及第二開關SW2係斷開(打開),以使電容激勵信號源230的電容激勵信號不會傳送到選定感應電極SEm。再者,於此階段,指紋/觸控偵測電路200及顯示控制電路300之間可經由兩條導線電連接,以使顯示控制電路300可對於指紋/觸控偵測電路200充電、或是顯示控制電路300可與指紋/觸控偵測電路200彼此溝通信號。 Referring to FIG. 7B , it is a circuit block diagram illustrating the fingerprint identification device with the anti-capacity shielding line according to the present invention, wherein the fingerprint identification device is in a non-fingerprint detection stage (eg, display stage or signal communication stage). At this stage, the first switch SW1 and the second switch SW2 are turned off (opened), so that the capacitive excitation signal of the capacitive excitation signal source 230 is not transmitted to the selected sensing electrode SEm. Furthermore, at this stage, the fingerprint/touch detection circuit 200 and the display control circuit 300 can be electrically connected through two wires, so that the display control circuit 300 can charge the fingerprint/touch detection circuit 200, or The display control circuit 300 and the fingerprint/touch detection circuit 200 can communicate with each other.

參見圖8A,為說明依據本發明之具有消容遮蔽線之指紋辨識裝置之電路方塊圖。此指紋辨識裝置10係用於互電容架構且具有一指紋/觸控偵測電路200及一顯示控制電路300,其中指紋/觸控偵測電路200具有一第一電源210及一第一接地212;而顯示控制電路300具有一第二電源310及一第二接地312,其中第一接地212為與第二接地312不同的接地。此外,此指紋/觸控偵測電路200更具有一電容激勵信號源230、一第一放大器220A及一第二放大器220B。此指紋辨識裝置更具有一第一開關SW1及一第二開關SW2。參見圖8A,於指紋偵測階段或是觸控偵測階段,第一開關SW1及第二開關SW2係導通(閉合),以使電容激勵信號源230的電容激勵信號可藉由第一開關SW1傳送到選定感應電極SEm1。再 者,指紋/觸控偵測電路200更經由第二開關SW2而接收來自另一選定感應電極SEm2的電容感應信號(反應指紋偵測結果),並經由第一放大器220A將此電容感應信號處理成一指紋感應信號VS。再者,此指紋感應信號VS也經由第二放大器220B(為一增益大於或等於零之驅動電路)而形成與該指紋感應信號同相位的電容消除遮蔽信號VE。復參見圖1B及1C,指紋感應電極的資料線130的上下各設立第一消容遮蔽線140A及第二消容遮蔽線140B,且指紋/觸控偵測電路200將電容消除遮蔽信號VE分別施加到第一消容遮蔽線140A及第二消容遮蔽線140B,以降低干擾。因此圖8A的具有消容遮蔽線之指紋辨識裝置可有更精確的偵測結果,及具有消弭資料線串音的功效。在上述說明中,第二放大器(驅動電路)220B之增益係為大於或等於零;且在做指紋偵測時,第二放大器220B之增益係為大於零(例如為1),以對於指紋感應信號做同相放大,產生電容消除遮蔽信號VE。此外,在指紋偵測階段或是觸控偵測階段,指紋/觸控偵測電路200及顯示控制電路300之間僅藉由單一實體導線連接,且第一接地212為與第二接地312不同的接地,因此該第一電源210與該第二電源310之間無共同的電流迴路,更增進指紋偵測或是觸控偵測精確度。 Referring to FIG. 8A , it is a circuit block diagram illustrating a fingerprint identification device with a capacitance-removing shielding line according to the present invention. The fingerprint identification device 10 uses a mutual capacitance structure and has a fingerprint/touch detection circuit 200 and a display control circuit 300 , wherein the fingerprint/touch detection circuit 200 has a first power source 210 and a first ground 212 ; And the display control circuit 300 has a second power supply 310 and a second ground 312, wherein the first ground 212 is a different ground from the second ground 312. In addition, the fingerprint/touch detection circuit 200 further includes a capacitive excitation signal source 230, a first amplifier 220A and a second amplifier 220B. The fingerprint identification device further has a first switch SW1 and a second switch SW2. Referring to FIG. 8A , in the fingerprint detection stage or the touch detection stage, the first switch SW1 and the second switch SW2 are turned on (closed), so that the capacitive excitation signal of the capacitive excitation signal source 230 can pass through the first switch SW1 transmitted to the selected sensing electrode SEm1. Again Alternatively, the fingerprint/touch detection circuit 200 further receives the capacitive sensing signal (reacting the fingerprint detection result) from another selected sensing electrode SEm2 via the second switch SW2, and processes the capacitive sensing signal into a Fingerprint sensing signal VS. Furthermore, the fingerprint sensing signal VS is also passed through the second amplifier 220B (which is a driving circuit with a gain greater than or equal to zero) to form a capacitance cancellation shading signal VE having the same phase as the fingerprint sensing signal. Referring to FIGS. 1B and 1C again, the upper and lower parts of the data lines 130 of the fingerprint sensing electrodes are respectively provided with a first capacitance elimination shielding line 140A and a second capacitance elimination shielding line 140B, and the fingerprint/touch detection circuit 200 respectively detects the capacitance elimination shielding signal VE Applied to the first anti-capacitance shielding line 140A and the second anti-capacity shielding line 140B to reduce interference. Therefore, the fingerprint identification device with the anti-capacity shielding line of FIG. 8A can have a more accurate detection result, and has the effect of eliminating the crosstalk of the data line. In the above description, the gain of the second amplifier (driving circuit) 220B is greater than or equal to zero; and during fingerprint detection, the gain of the second amplifier 220B is greater than zero (for example, 1), so as to detect the fingerprint sensor signal. Do the non-inverting amplification to generate the capacitance to eliminate the shading signal VE. In addition, in the fingerprint detection stage or the touch detection stage, the fingerprint/touch detection circuit 200 and the display control circuit 300 are only connected by a single physical wire, and the first ground 212 is different from the second ground 312 Therefore, there is no common current loop between the first power supply 210 and the second power supply 310, which further improves the accuracy of fingerprint detection or touch detection.

參見圖8B,為說明依據本發明之具有消容遮蔽線之指紋辨識裝置之電路方塊圖。此指紋辨識裝置10係用於自電容/互電容架構且具有一指紋/觸控偵測電路200及一顯示控制電路300,其中指紋/觸控偵測電路200具有一第一電源210及一第一接地212;而顯示控制電路300具有一第二電源310及一第二接地312,其中第一接地212為與第二接地312不同的接地。此外,此指紋/觸控偵測電路200更具有一電容激勵信號源230、一第一放大器220A及一第二放大器220B。此指紋辨識裝置更具有一第一開關SW1及一第二開關SW2。參見圖8B,於指紋偵測階段,第一開關SW1及第二開關SW2係導通(閉合),以使電容激勵信號源230的電容激勵信號可藉由第一開關SW1傳送到選定感應電極SEm1及另一選 定的感應電極SEm2(電容激勵信號經由第三放大器220C的放大再施加到另一選定感應電極SEm2)。再者,指紋/觸控偵測電路200更經由第二開關SW2而接收來自另一選定感應電極SEm2的電容感應信號(反應指紋偵測結果),並經由第一放大器220A將此電容感應信號處理成一指紋感應信號VS。再者,此指紋感應信號VS也經由第二放大器220B(為一增益大於或等於零之驅動電路)而形成與該指紋感應信號同相位的電容消除遮蔽信號VE。復參見圖1B及1C,指紋感應電極的資料線130的上下各設立第一消容遮蔽線140A及第二消容遮蔽線140B,且指紋/觸控偵測電路200將電容消除遮蔽信號VE分別施加到第一消容遮蔽線140A及第二消容遮蔽線140B,以降低干擾。因此圖8B的具有消容遮蔽線之指紋辨識裝置可有更精確的偵測結果,及具有消弭資料線串音的功效。在上述說明中,第二放大器(驅動電路)220B之增益係為大於或等於零;且在做指紋偵測時,第二放大器220B之增益係為大於零(例如為1),以對於指紋感應信號做同相放大,產生電容消除遮蔽信號VE。此外,在指紋偵測階段或是觸控偵測階段,指紋/觸控偵測電路200及顯示控制電路300之間僅藉由單一實體導線連接,且第一接地212為與第二接地312不同的接地,因此該第一電源210與該第二電源310之間無共同的電流迴路,更增進指紋偵測或是觸控偵測精確度。 Referring to FIG. 8B , it is a circuit block diagram illustrating a fingerprint identification device with a capacitance-removing shielding line according to the present invention. The fingerprint identification device 10 is used in a self-capacitance/mutual-capacitance structure and has a fingerprint/touch detection circuit 200 and a display control circuit 300, wherein the fingerprint/touch detection circuit 200 has a first power supply 210 and a first A ground 212 ; and the display control circuit 300 has a second power source 310 and a second ground 312 , wherein the first ground 212 is a different ground from the second ground 312 . In addition, the fingerprint/touch detection circuit 200 further includes a capacitive excitation signal source 230, a first amplifier 220A and a second amplifier 220B. The fingerprint identification device further has a first switch SW1 and a second switch SW2. Referring to FIG. 8B , in the fingerprint detection stage, the first switch SW1 and the second switch SW2 are turned on (closed), so that the capacitive excitation signal of the capacitive excitation signal source 230 can be transmitted to the selected sensing electrodes SEm1 and SEm1 through the first switch SW1 another option The selected sensing electrode SEm2 (the capacitive excitation signal is amplified by the third amplifier 220C and then applied to another selected sensing electrode SEm2). Furthermore, the fingerprint/touch detection circuit 200 further receives the capacitance sensing signal (reflecting the fingerprint detection result) from another selected sensing electrode SEm2 through the second switch SW2, and processes the capacitance sensing signal through the first amplifier 220A. into a fingerprint sensing signal VS. Furthermore, the fingerprint sensing signal VS is also passed through the second amplifier 220B (which is a driving circuit with a gain greater than or equal to zero) to form a capacitance cancellation shading signal VE having the same phase as the fingerprint sensing signal. Referring to FIGS. 1B and 1C again, the upper and lower parts of the data lines 130 of the fingerprint sensing electrodes are respectively provided with a first capacitance elimination shielding line 140A and a second capacitance elimination shielding line 140B, and the fingerprint/touch detection circuit 200 respectively detects the capacitance elimination shielding signal VE Applied to the first anti-capacitance shielding line 140A and the second anti-capacity shielding line 140B to reduce interference. Therefore, the fingerprint identification device with the anti-capacity shielding line shown in FIG. 8B can have a more accurate detection result, and has the effect of eliminating data line crosstalk. In the above description, the gain of the second amplifier (driving circuit) 220B is greater than or equal to zero; and during fingerprint detection, the gain of the second amplifier 220B is greater than zero (for example, 1), so as to detect the fingerprint sensor signal. Do the non-inverting amplification to generate the capacitance to eliminate the shading signal VE. In addition, in the fingerprint detection stage or the touch detection stage, the fingerprint/touch detection circuit 200 and the display control circuit 300 are only connected by a single physical wire, and the first ground 212 is different from the second ground 312 Therefore, there is no common current loop between the first power supply 210 and the second power supply 310, which further improves the accuracy of fingerprint detection or touch detection.

參見圖10,為說明依據本發明之具有消容遮蔽線之指紋辨識裝置之電路方塊圖,其中顯示多個指紋感應電極及對應的多個電晶體開關組,亦即該多個電晶體開關組與該多個指紋感應電極為一對一對應。雖然圖10顯示對於每一指紋感應電極所對應電晶體開關組具有三個電晶體開關(例如薄膜電晶體開關),但是須知依據本發明,每一電晶體開關組也可僅有一個電晶體開關,即可達成所需的指紋感應電極選擇功能。 Referring to FIG. 10 , it is a circuit block diagram illustrating a fingerprint identification device with a capacitance elimination shielding line according to the present invention, wherein a plurality of fingerprint sensing electrodes and a plurality of corresponding transistor switch groups are displayed, that is, the plurality of transistor switch groups There is a one-to-one correspondence with the plurality of fingerprint sensing electrodes. Although FIG. 10 shows that the transistor switch group corresponding to each fingerprint sensing electrode has three transistor switches (such as thin film transistor switches), it should be noted that according to the present invention, each transistor switch group may also have only one transistor switch , the desired fingerprint sensing electrode selection function can be achieved.

參見圖11A,為說明相鄰資料線互電容的示意圖,在相鄰資料線21L1及21L2之間會有互電容Cdl,而在相鄰資料線21L2及21L3之間也會有互電容 Cdl。由於資料線之間的距離非常短,造成互電容Cdl數值遠大於指紋感應電容Cfs,影響指紋感應正確性。參見圖11B,為說明資料線自電容的示意圖,如此圖所示,若第一消容遮蔽線140A或是資料線130的鄰近導體接地,且第一消容遮蔽線140A(或是資料線130的鄰近導體)未作適當偏壓,則在資料線130及接地之間也會有極大自電容Cself。 Referring to FIG. 11A, in order to illustrate the schematic diagram of the mutual capacitance between adjacent data lines, there is a mutual capacitance Cdl between the adjacent data lines 21L1 and 21L2, and there is also a mutual capacitance between the adjacent data lines 21L2 and 21L3 Cdl. Because the distance between the data lines is very short, the mutual capacitance Cdl is much larger than the fingerprint sensing capacitance Cfs, which affects the accuracy of fingerprint sensing. Referring to FIG. 11B , which is a schematic diagram illustrating the self-capacitance of the data line, as shown in this figure, if the first anti-capacitance shielding line 140A or the adjacent conductor of the data line 130 is grounded, and the first anti-capacitance shielding line 140A (or the data line 130 is grounded) If the adjacent conductor is not properly biased, there will also be a large self-capacitance Cself between the data line 130 and the ground.

參見圖11C,為說明依據本發明一實施例之具有消容遮蔽線之指紋辨識裝置之消容遮蔽線結構剖視圖。如此圖所示,指紋辨識裝置可包含由上至下之第一消容遮蔽線140A、第一絕緣層150A、資料線130(21L1、21L2、21L3)、第二絕緣層150B、及第二消容遮蔽線140B。依據本發明的一種實施方式,第一消容遮蔽線140A及第二消容遮蔽線140B的寬度可以大於或是等於資料線130寬度。此外,因為資料線130(21L1、21L2、21L3)一般是由蝕刻製程對於金屬層進行蝕刻而在其間形成間隔而製作,在資料線21L1、資料線21L2、及資料線21L3之間會有空隙。若第一絕緣層150A及第二絕緣層150B厚度極薄(例如小於1um),則資料線21L1、資料線21L2、及資料線21L3的周邊幾乎被第一消容遮蔽線140A及第二消容遮蔽線140B所遮蔽,且在第一消容遮蔽線140A及第二消容遮蔽線140B適度施加偏壓後,可以消弭資料線的串音、自電容與互電容。 Referring to FIG. 11C , it is a cross-sectional view illustrating the structure of the anti-capacity mask line of the fingerprint identification device with the anti-capacity mask line according to an embodiment of the present invention. As shown in this figure, the fingerprint identification device may include a first anti-capacitance shielding line 140A, a first insulating layer 150A, a data line 130 ( 21L1 , 21L2 , 21L3 ), a second insulating layer 150B, and a second anti-capacitance layer from top to bottom. The shielding line 140B is accommodated. According to an embodiment of the present invention, the width of the first anti-capacitance shielding line 140A and the second anti-capacity shielding line 140B may be greater than or equal to the width of the data line 130 . In addition, because the data lines 130 ( 21L1 , 21L2 , 21L3 ) are generally fabricated by etching the metal layers in an etching process to form spaces therebetween, there are gaps between the data lines 21L1 , 21L2 , and 21L3 . If the thicknesses of the first insulating layer 150A and the second insulating layer 150B are extremely thin (for example, less than 1 μm), the periphery of the data line 21L1 , the data line 21L2 , and the data line 21L3 are almost covered by the first capacitance elimination shielding line 140A and the second capacitance elimination The shielding line 140B is shielded, and after the first anti-capacitance shielding line 140A and the second anti-capacitance shielding line 140B are properly biased, the crosstalk, self-capacitance and mutual capacitance of the data lines can be eliminated.

參見圖11D,為說明依據本發明另一實施例之具有消容遮蔽線之指紋辨識裝置之消容遮蔽線結構剖視圖。如此圖所示,指紋辨識裝置也包含由上至下之指紋電極層110(包含多數指紋感應電極112)、第三絕緣層150C、第一消容遮蔽線140A、第一絕緣層150A、資料線130(21L1、21L2、21L3)、第二絕緣層150B、第二消容遮蔽線140B及基板100。但是在此實施例中,第一消容遮蔽線140A及第二消容遮蔽線140B的寬度略大於資料線130寬度。因此第一消容遮蔽線140A之兩端可以略微下陷,與第二消容遮蔽線140B共同包住資料線130。在此情 況下,第一絕緣層150A及第二絕緣層150B之厚度可以做得較厚,這樣可以更進一步減少資料線之自電容與互電容。 Referring to FIG. 11D , it is a cross-sectional view illustrating the structure of the anti-capacity mask line of the fingerprint identification device with the anti-capacity mask line according to another embodiment of the present invention. As shown in this figure, the fingerprint identification device also includes a fingerprint electrode layer 110 (including a plurality of fingerprint sensing electrodes 112 ), a third insulating layer 150C, a first anti-capacity shielding wire 140A, a first insulating layer 150A, and a data wire from top to bottom. 130 ( 21L1 , 21L2 , 21L3 ), the second insulating layer 150B, the second anti-capacity shielding line 140B and the substrate 100 . However, in this embodiment, the width of the first anti-capacitance shielding line 140A and the second anti-capacity shielding line 140B is slightly larger than the width of the data line 130 . Therefore, both ends of the first capacitance elimination shielding wire 140A can be slightly sag, and together with the second capacitance elimination shielding wire 140B, cover the data line 130 . in this case In this case, the thicknesses of the first insulating layer 150A and the second insulating layer 150B can be made thicker, which can further reduce the self-capacitance and mutual capacitance of the data lines.

參見圖11E,為說明依據本發明另一實施例之具有消容遮蔽線之指紋辨識裝置之消容遮蔽線結構剖視圖。此圖示之實施例類似於圖11D之實施例,但是指紋電極層110係直接製作於基板100上面。同樣的,第一消容遮蔽線140A及第二消容遮蔽線140B略大於資料線130寬度。因此第一消容遮蔽線140A之兩端可以略微下陷,與第二消容遮蔽線140B共同包住資料線130。在此情況下,第一絕緣層150A及第二絕緣層150B之厚度可以做得較厚,這樣可以更進一步減少資料線之自電容與互電容。在上述圖11D及11E之中,基板100可為一顯示螢幕的保護玻璃、一積體電路的矽基板或一高分子薄膜。於上述說明的實施例中,該些資料線為金屬導電線或透明導電體,例如為氧化銦錫(ITO);該些指紋感應電極是透明導電材料製作。 Referring to FIG. 11E , it is a cross-sectional view illustrating the structure of the anti-capacity masking line of the fingerprint identification device with the anti-capacity masking line according to another embodiment of the present invention. The illustrated embodiment is similar to the embodiment of FIG. 11D , but the fingerprint electrode layer 110 is formed directly on the substrate 100 . Similarly, the width of the first anti-capacity shielding line 140A and the second anti-capacity shielding line 140B is slightly larger than the width of the data line 130 . Therefore, both ends of the first capacitance elimination shielding wire 140A can be slightly sag, and together with the second capacitance elimination shielding wire 140B, cover the data line 130 . In this case, the thicknesses of the first insulating layer 150A and the second insulating layer 150B can be made thicker, which can further reduce the self-capacitance and mutual capacitance of the data lines. In the above-mentioned FIGS. 11D and 11E, the substrate 100 may be a protective glass for a display screen, a silicon substrate for an integrated circuit, or a polymer film. In the above-described embodiments, the data lines are metal conductive lines or transparent conductors, such as indium tin oxide (ITO); the fingerprint sensing electrodes are made of transparent conductive materials.

綜上所述,本發明所提出的具有消容遮蔽線之指紋辨識裝置,可藉由將電容消除遮蔽信號分別施加到第一消容遮蔽線及第二消容遮蔽線,且以第一消容遮蔽線及第二消容遮蔽線夾住資料線,以降低干擾及有更精確的偵測結果。 To sum up, the fingerprint identification device with the capacitance elimination shielding line proposed by the present invention can apply the capacitance elimination shielding signal to the first capacitance elimination shielding line and the second capacitance elimination shielding line respectively, and the first capacitance elimination shielding line can be used for the fingerprint identification device. The shielding wire and the second shielding wire clamp the data wire to reduce interference and have more accurate detection results.

惟,以上所述,僅為本發明較佳具體實施例之詳細說明與圖式,惟本發明之特徵並不侷限於此,並非用以限制本發明,本發明之所有範圍應以下述之申請專利範圍為準,凡合於本發明申請專利範圍之精神與其類似變化之實施例,皆應包括於本發明之範疇中,任何熟悉該項技藝者在本發明之領域內,可輕易思及之變化或修飾皆可涵蓋在以下本案之專利範圍。 However, the above descriptions are only the detailed descriptions and drawings of the preferred embodiments of the present invention, but the features of the present invention are not limited thereto, and are not intended to limit the present invention. The scope of the patent shall prevail, and all embodiments that are consistent with the spirit of the scope of the patent application of the present invention and similar variations thereof shall be included in the scope of the present invention. Anyone who is familiar with the art in the field of the present invention can easily think Changes or modifications can be covered by the following patent scope of the present case.

130:資料線 130: Data line

SEm:選定指紋感應電極 SEm: Selected fingerprint sensing electrode

SE1~SEn:非選定指紋感應電極 SE1~SEn: Unselected fingerprint sensing electrodes

140A:第一消容遮蔽線 140A: The first capacitance elimination shielding wire

A1:驅動電路 A1: drive circuit

Cfse:指紋感應電容 Cfse: Fingerprint Sensing Capacitor

Cfdl、Csedl1、Csedl2...Csedln:電容 Cfdl, Csedl1, Csedl2...Csedln: Capacitance

Claims (14)

一種指紋辨識裝置,包含:一基板;一指紋電極層,包含多個指紋感應電極;一電晶體開關層包含:多個電晶體開關組,該多個電晶體開關組與該多個指紋感應電極為一對一對應;多條資料線,該多條資料線各自對應一第一消容遮蔽線及一第二消容遮蔽線,以使該第一消容遮蔽線及該第二消容遮蔽線夾置一對應資料線;該第一消容遮蔽線位於該對應資料線與一待測手指之間;一指紋偵測電路,包含一電容激勵信號源及一放大器電路,其中該放大器電路之增益大於或等於零;其中該指紋偵測電路經由該多個電晶體開關組其中之一者將一電容激勵信號傳送至一選定指紋感應電極,又自該選定指紋感應電極經該對應資料線輸入一指紋感應信號,又將該指紋感應信號經該放大器電路處理以輸出與該指紋感應信號同相位的一電容消除遮蔽信號,並傳送該電容消除遮蔽信號至該對應資料線所對應的該第一消容遮蔽線及該第二消容遮蔽線作指紋偵測操作。 A fingerprint identification device, comprising: a substrate; a fingerprint electrode layer including a plurality of fingerprint sensing electrodes; a transistor switch layer including: a plurality of transistor switch groups, the plurality of transistor switch groups and the plurality of fingerprint sensing electrodes There is a one-to-one correspondence; a plurality of data lines, the plurality of data lines correspond to a first capacitance elimination shielding line and a second capacitance elimination shielding line, so that the first capacitance elimination shielding line and the second capacitance elimination shielding line A corresponding data line is sandwiched by the line; the first capacitance elimination shielding line is located between the corresponding data line and a finger to be tested; a fingerprint detection circuit includes a capacitive excitation signal source and an amplifier circuit, wherein the amplifier circuit is The gain is greater than or equal to zero; wherein the fingerprint detection circuit transmits a capacitive excitation signal to a selected fingerprint sensing electrode through one of the plurality of transistor switch groups, and inputs a signal from the selected fingerprint sensing electrode through the corresponding data line The fingerprint sensing signal is processed by the amplifier circuit to output a capacitance eliminating shading signal in the same phase as the fingerprint sensing signal, and the capacitance eliminating shading signal is sent to the first cancellation signal corresponding to the corresponding data line The shielding wire and the second shielding wire are used for fingerprint detection. 如請求項1所述之指紋辨識裝置,其中該第二消容遮蔽線位於該對應資料線背向該待測手指的一側。 The fingerprint identification device according to claim 1, wherein the second anti-capacity shielding line is located on a side of the corresponding data line facing away from the finger to be tested. 如請求項1所述之指紋辨識裝置,其中該第一消容遮蔽線及該第二消容遮蔽線的線寬不小於其所對應的該對應資料線線寬。 The fingerprint identification device according to claim 1, wherein the line width of the first anti-capacity shielding line and the second anti-capacity shielding line is not less than the corresponding data line width. 如請求項1所述之指紋辨識裝置,其中每一個該電晶體開關組包含至少一個薄膜電晶體。 The fingerprint identification device of claim 1, wherein each transistor switch group includes at least one thin film transistor. 如請求項1所述之指紋辨識裝置,其中於指紋偵測操作時該指紋偵測電路又將該電容消除遮蔽信號施加於該對應資料線週遭的指紋感應電極,俾阻止經由週遭的指紋感應電極交連到該對應資料線的其他感應信號與雜訊。 The fingerprint identification device as claimed in claim 1, wherein the fingerprint detection circuit applies the capacitance cancellation masking signal to the fingerprint sensing electrodes around the corresponding data line during the fingerprint detection operation, so as to prevent the fingerprint sensing electrodes from passing through the surrounding fingerprint sensing electrodes. Other induction signals and noises connected to the corresponding data line. 如請求項1所述之指紋辨識裝置,其中該指紋偵測電路係由一第一電源供電,該指紋辨識裝置更包含一顯示螢幕,由一第二電源供電,且該多個指紋感應電極位於該顯示螢幕的一指紋偵測暨觸控顯示區內。 The fingerprint identification device of claim 1, wherein the fingerprint detection circuit is powered by a first power source, the fingerprint identification device further comprises a display screen powered by a second power source, and the plurality of fingerprint sensing electrodes are located at A fingerprint detection and touch display area of the display screen. 如請求項6所述之指紋辨識裝置,其中該多個指紋感應電極係組合為一觸控電極。 The fingerprint identification device according to claim 6, wherein the plurality of fingerprint sensing electrodes are combined into a touch electrode. 如請求項7所述之指紋辨識裝置,其中於指紋偵測操作或觸控偵測操作時,該第一電源與該第二電源之間無共同的電流迴路。 The fingerprint identification device of claim 7, wherein during a fingerprint detection operation or a touch detection operation, there is no common current loop between the first power source and the second power source. 如請求項7所述之指紋辨識裝置,其中於該顯示螢幕之一觸控顯示區域設置多個觸控電極作觸控偵測,每一該觸控電極的面積為該指紋感應電極面積的50倍以上。 The fingerprint identification device according to claim 7, wherein a plurality of touch electrodes are arranged in a touch display area of the display screen for touch detection, and the area of each touch electrode is 50% of the area of the fingerprint sensing electrode times more. 如請求項9所述之指紋辨識裝置,更包含於該觸控顯示區域設置之多個虛資料線,俾使該觸控顯示區域與包含該多個指紋感應電極的該指紋偵測暨觸控顯示區域具有一樣的透光度。 The fingerprint identification device according to claim 9, further comprising a plurality of imaginary data lines disposed in the touch display area, so that the touch display area and the fingerprint detection and touch control including the plurality of fingerprint sensing electrodes The display area has the same transmittance. 如請求項1所述之指紋辨識裝置,其中該基板為一顯示螢幕的保護玻璃、一積體電路的矽基板或一高分子薄膜。 The fingerprint identification device of claim 1, wherein the substrate is a protective glass for a display screen, a silicon substrate for an integrated circuit, or a polymer film. 如請求項1所述之指紋辨識裝置,其中該些資料線為金屬導電線或透明導電體。 The fingerprint identification device according to claim 1, wherein the data lines are metal conductive lines or transparent conductors. 如請求項1所述之指紋辨識裝置,其中該些指紋感應電極是透明導電材料製作。 The fingerprint identification device according to claim 1, wherein the fingerprint sensing electrodes are made of transparent conductive materials. 如請求項12所述之指紋辨識裝置,其中該透明導電體為氧化銦錫(ITO)。 The fingerprint identification device as claimed in claim 12, wherein the transparent conductor is indium tin oxide (ITO).
TW109126233A 2020-08-03 2020-08-03 Fingerprint sensing apparatus TWI777209B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109126233A TWI777209B (en) 2020-08-03 2020-08-03 Fingerprint sensing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109126233A TWI777209B (en) 2020-08-03 2020-08-03 Fingerprint sensing apparatus

Publications (2)

Publication Number Publication Date
TW202207073A TW202207073A (en) 2022-02-16
TWI777209B true TWI777209B (en) 2022-09-11

Family

ID=81323561

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109126233A TWI777209B (en) 2020-08-03 2020-08-03 Fingerprint sensing apparatus

Country Status (1)

Country Link
TW (1) TWI777209B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201915692A (en) * 2017-09-29 2019-04-16 速博思股份有限公司 Fingerprint identification device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201915692A (en) * 2017-09-29 2019-04-16 速博思股份有限公司 Fingerprint identification device
TWI662458B (en) * 2017-09-29 2019-06-11 速博思股份有限公司 Fingerprint identification device

Also Published As

Publication number Publication date
TW202207073A (en) 2022-02-16

Similar Documents

Publication Publication Date Title
US10121047B2 (en) Fingerprint identification device, touch panel, input device and fingerprint identification method
TWI584185B (en) Integral sensing apparatus for touch and force sensing and method for the same
TWI566150B (en) High-precision force-touch sensor with multilayered electrodes
EP2901255B1 (en) Pressure sensing display device
US20160292487A1 (en) Array substrate, color film substrate and touch display device
CN107644195B (en) Fingerprint identification device without interference
US10365740B2 (en) In-cell touch display device with transparent mesh-like touch electrodes
US20090109194A1 (en) Touch Screen
CN107402660B (en) Pressure touch device with metal wiring
CN102089735A (en) Touch panel, display, and electronic device
US10627946B2 (en) Display panel and display device
US10496217B2 (en) Mutual capacitance integral sensing apparatus for touch and force sensing and method for the same
US20180181239A1 (en) Liquid crystal display device with touch sensor and method for driving the same
TWI703489B (en) Hovering and touch sensing apparatus with auxiliary capacitance excitation signal
TWM520681U (en) Integral sensing apparatus for touch and pressure sensing
TWI604352B (en) Capacitive type pressure sensor and method for the same
WO2018099069A1 (en) Touch display screen, display device, and touch panel
US11651612B2 (en) Fingerprint sensing apparatus
CN101975998A (en) Liquid crystal display (LCD) display screen with touch detection function and implement method thereof
TWI703490B (en) Hovering and touch sensing apparatus
TWI777209B (en) Fingerprint sensing apparatus
CN106873832B (en) Optical induction type touch screen, touch display device and touch detection method
JP7205702B2 (en) fingerprint recognition device
KR102386175B1 (en) Fingerprint sensing apparatus
TW201727445A (en) Integral sensing apparatus for touch and pressure sensing and method for the same

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent