TWI775864B - position detection system - Google Patents

position detection system Download PDF

Info

Publication number
TWI775864B
TWI775864B TW107118930A TW107118930A TWI775864B TW I775864 B TWI775864 B TW I775864B TW 107118930 A TW107118930 A TW 107118930A TW 107118930 A TW107118930 A TW 107118930A TW I775864 B TWI775864 B TW I775864B
Authority
TW
Taiwan
Prior art keywords
gnss
vehicle
mentioned
information
unit
Prior art date
Application number
TW107118930A
Other languages
Chinese (zh)
Other versions
TW201903433A (en
Inventor
浅野晃
Original Assignee
日商京三製作所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商京三製作所股份有限公司 filed Critical 日商京三製作所股份有限公司
Publication of TW201903433A publication Critical patent/TW201903433A/en
Application granted granted Critical
Publication of TWI775864B publication Critical patent/TWI775864B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks

Abstract

本發明提供一種利用GNSS高精度且準確地檢測列車之位置的技術。車上裝置(20)在進行基於第一GNSS部(15)及第二GNSS部(16)的GNSS資訊進行的列車位置計算的情況下,進行GNSS檢定,在檢定合格的情況下,車上裝置(20)進行使用了GNSS的速度資訊之絕對位置檢測處理。另外,在車輛(10)距離地上裝置(60)位於規定距離內的情況下,車上裝置(20)從地上裝置(60)獲得GNSS誤差資訊,反映於第一GNSS部(15)及第二GNSS部(16)檢測出的位置資訊中。 The present invention provides a technique for detecting the position of a train with high precision and accuracy using GNSS. The on-board device (20) performs GNSS verification when the train position calculation based on the GNSS information of the first GNSS unit (15) and the second GNSS unit (16) is performed, and when the verification is passed, the on-board device (20) Absolute position detection processing using GNSS velocity information is performed. In addition, when the vehicle (10) is located within a predetermined distance from the ground device (60), the on-vehicle device (20) obtains GNSS error information from the ground device (60), and reflects it on the first GNSS unit (15) and the second In the position information detected by the GNSS unit (16).

Description

位置檢測系統 position detection system

本發明係有關於一種根據GNSS訊號檢測列車(車輛)之行駛位置之位置檢測裝置及位置檢測系統。 The present invention relates to a position detection device and a position detection system for detecting the running position of a train (vehicle) according to GNSS signals.

作為把握列車之行駛位置之技術例如有如下技術:利用從測速發電機(以下,稱為“TG”,Tachoenerator)獲得之訊號,加總列車行駛之距離來檢測列車之行駛位置。而且,也有使用了GNSS(Global Navigation Satellite System,全球衛星導航系統)之技術。在使用了GNSS之技術中例如有如下技術:利用設置於列車之GNSS接收裝置獲得來自GNSS衛星的電波,檢測出列車的當前位置等等,控制列車速度(參照專利文獻1)。 As a technique for grasping the running position of the train, for example, there is a technique of detecting the running position of the train by summing up the distance traveled by the train using a signal obtained from a tachometer generator (hereinafter, referred to as "TG", Tachoenerator). Furthermore, there is also a technology using GNSS (Global Navigation Satellite System). Among technologies using GNSS, for example, a GNSS receiver installed in a train obtains radio waves from GNSS satellites, detects the current position of the train, and controls the speed of the train (see Patent Document 1).

〔先前技術文獻〕 [Prior Art Literature] 〔專利文獻〕 [Patent Documents]

〔專利文獻1〕日本特許公開2016-194497號公報 [Patent Document 1] Japanese Patent Laid-Open No. 2016-194497

但是,於專利文獻1公開之技術中存在如下問題:在使用運行用之數據檢測出彎道或隧道等特徵性位置時,修正行駛位置,但若離開了這樣的特徵性位置,則行駛位置之檢測精度因誤差的累積而下降。 However, the technique disclosed in Patent Document 1 has a problem in that, when a characteristic position such as a curve or a tunnel is detected using the driving data, the driving position is corrected, but if the driving position is separated from such a characteristic position, the driving position is not changed. Detection accuracy decreases due to accumulation of errors.

本發明係鑒於以上那樣的狀況而完成者,提供解決上記問題之技術。The present invention has been made in view of the above situation, and provides a technique for solving the above-mentioned problems.

[解決問題之手段][means to solve the problem]

本發明係一種位置檢測裝置,其具備:第一GNSS天線及第二GNSS天線,其於一個車輛之前後方向隔開規定距離而設置,接收來自GNSS衛星之GNSS訊號;第一GNSS接收部,其與前述第一GNSS天線連接;第二GNSS接收部,其與前述第二GNSS天線連接;位置計算部,其基於前述第一GNSS接收部及前述第二GNSS接收部接收到的前述GNSS訊號計算前述車輛之位置;及誤差資訊獲得部,其從地上側的設備獲得GNSS誤差資訊;前述位置計算部在距離前述地上側的設備在一定之區域內的情況下,反映前述GNSS誤差資訊地計算前述車輛之位置。The present invention relates to a position detection device, which includes: a first GNSS antenna and a second GNSS antenna, which are arranged at a predetermined distance in the front and rear directions of a vehicle, and receive GNSS signals from GNSS satellites; a first GNSS receiving unit, which connected to the first GNSS antenna; a second GNSS receiving unit connected to the second GNSS antenna; and a position calculating unit that calculates the above based on the GNSS signals received by the first GNSS receiving unit and the second GNSS receiving unit the position of the vehicle; and an error information obtaining unit that obtains GNSS error information from the equipment on the ground side; the position calculating unit calculates the vehicle by reflecting the GNSS error information when it is within a certain area from the equipment on the ground side the location.

另外,也可以具備:前述車輛行駛之路線之資料庫;及檢定部,其檢定是否處於能夠執行基於前述資料庫和前述GNSS訊號進行的前述車輛之位置的計算處理之狀態;在前述檢定部判斷為處於能夠執行前述車輛之位置的確定處理之狀態的情況下,前述位置計算部執行基於前述GNSS訊號的前述車輛之位置的計算處理,在判斷為不處於能夠執行前述車輛之位置的計算處理之狀態的情況下,前述位置計算部基於測速發電機執行前述車輛之位置的確定處理。In addition, it may be provided with: a database of the route of the vehicle; and a verification unit for verifying whether or not the calculation process of the position of the vehicle can be performed based on the database and the GNSS signal; the verification unit determines whether In a state where the determination process of the position of the vehicle can be executed, the position calculation unit executes the calculation process of the position of the vehicle based on the GNSS signal, and when it is determined that the calculation process of the position of the vehicle can not be executed. In the case of the state, the position calculation unit executes the determination process of the position of the vehicle based on the tachogenerator.

另外,也可以在前述位置計算部執行基於前述GNSS訊號的前述車輛之位置的計算處理的情況下,將前述第一GNSS接收部計算的速度向量和前述第二GNSS接收部計算的速度向量之變化的特徵點,與前述資料庫進行比較,計算前述車輛之位置。In addition, when the position calculation unit executes the calculation process of the position of the vehicle based on the GNSS signal, the change of the velocity vector calculated by the first GNSS reception unit and the velocity vector calculated by the second GNSS reception unit may be calculated. The feature points of , are compared with the aforementioned database, and the position of the aforementioned vehicle is calculated.

本發明係藉由搭載於車輛的車上裝置和設置於地上側的地上裝置計算前述車輛之位置之位置檢測系統,前述車上裝置具備:第一GNSS天線及第二GNSS天線,其於一個車輛之前後方向隔開規定距離而設置,接收來自GNSS衛星之GNSS訊號;第一GNSS接收部,其與前述第一GNSS天線連接;第二GNSS接收部,其與前述第二GNSS天線連接;位置計算部,其基於前述第一GNSS接收部及前述第二GNSS接收部接收到的前述GNSS訊號計算前述車輛之位置;誤差資訊獲得部,其從地上側的設備獲得GNSS誤差資訊;及車上側通訊部,其與前述地上裝置進行通訊;前述地上裝置具備:第三GNSS天線,其從前述GNSS衛星接收GNSS訊號;第三GNSS接收部,其與前述第三GNSS天線連接;地上側控制部,其保持前述第三GNSS天線的位置資訊,根據前述第三GNSS天線的位置資訊和基於由前述第三GNSS天線接收到的GNSS訊號計算的位置資訊,計算前述GNSS誤差資訊;及地上側通訊部,其將前述GNSS誤差資訊向前述車上裝置發送;前述車上裝置的前述位置計算部在計算前述車輛之位置時反映前述GNSS誤差資訊。The present invention is a position detection system for calculating the position of the vehicle by means of an on-board device mounted on the vehicle and a ground device installed on the ground side, wherein the on-board device includes a first GNSS antenna and a second GNSS antenna, which are connected to one vehicle. The front and rear directions are separated by a predetermined distance and receive GNSS signals from GNSS satellites; a first GNSS receiver is connected to the first GNSS antenna; a second GNSS receiver is connected to the second GNSS antenna; position calculation a part that calculates the position of the vehicle based on the GNSS signals received by the first GNSS receiving part and the second GNSS receiving part; an error information obtaining part that obtains GNSS error information from equipment on the ground side; and a communication part on the vehicle side , which communicates with the above-mentioned ground device; the above-mentioned ground device is provided with: a third GNSS antenna, which receives GNSS signals from the above-mentioned GNSS satellites; a third GNSS receiving part, which is connected with the above-mentioned third GNSS antenna; The position information of the third GNSS antenna, according to the position information of the third GNSS antenna and the position information calculated based on the GNSS signal received by the third GNSS antenna, calculate the aforementioned GNSS error information; and the ground side communication part, which will The GNSS error information is sent to the on-board device; the position calculation unit of the on-board device reflects the GNSS error information when calculating the position of the vehicle.

本發明係藉由搭載於車輛的車上裝置、和設置於地上側的地上裝置及指令中心計算前述車輛之位置之位置檢測系統,前述車上裝置具備:第一GNSS天線及第二GNSS天線,其於一個車輛之前後方向隔開規定距離而設置,接收來自GNSS衛星之GNSS訊號;第一GNSS接收部,其與前述第一GNSS天線連接;第二GNSS接收部,其與前述第二GNSS天線連接;位置計算部,其將基於前述第一GNSS接收部及前述第二GNSS接收部的前述GNSS訊號之位置資訊向前述指令中心通知,而且根據前述位置資訊計算前述車輛之位置;誤差資訊獲得部,其從前述指令中心獲得前述車輛之前述位置之修正資訊;及車上側通訊部,其與前述地上裝置及前述指令中心進行通訊;前述地上裝置具備:第三GNSS天線,其從前述GNSS衛星接收GNSS訊號;第三GNSS接收部,其與前述第三GNSS天線連接;地上側控制部,其保持前述第三GNSS天線的位置資訊,根據前述第三GNSS天線的位置資訊和基於由前述第三GNSS天線接收到的GNSS訊號計算的位置資訊,計算前述GNSS誤差資訊,將前述GNSS誤差資訊向前述指令中心通知;及地上側通訊部,其與前述車上裝置和前述指令中心進行通訊;前述指令中心,其與前述車上裝置和前述地上裝置進行通訊,根據從前述車上裝置獲得的基於前述第一GNSS接收部及前述第二GNSS接收部的前述GNSS訊號之前述位置資訊、以及從前述地上裝置獲得的前述GNSS誤差資訊,修正前述車輛之位置資訊,根據修正後之位置資訊,進行前述車輛之運行管理。The present invention is a position detection system for calculating the position of the vehicle by means of an on-board device mounted on a vehicle, a ground device installed on the ground side, and a command center, wherein the on-board device includes a first GNSS antenna and a second GNSS antenna, It is installed at a predetermined distance in the front and rear directions of a vehicle, and receives GNSS signals from GNSS satellites; a first GNSS receiving part is connected to the aforementioned first GNSS antenna; a second GNSS receiving part is connected to the aforementioned second GNSS antenna connection; a position calculating unit that notifies the command center of the position information based on the GNSS signals of the first GNSS receiving unit and the second GNSS receiving unit, and calculates the position of the vehicle based on the position information; an error information obtaining unit , which obtains the correction information of the aforementioned position of the aforementioned vehicle from the aforementioned command center; and a communication unit on the vehicle side, which communicates with the aforementioned ground device and the aforementioned command center; the aforementioned ground device is provided with: a third GNSS antenna, which is received from the aforementioned GNSS satellites GNSS signal; a third GNSS receiving part, which is connected to the third GNSS antenna; a ground-side control part, which holds the position information of the third GNSS antenna, based on the position information of the third GNSS antenna and based on the third GNSS antenna The position information calculated by the GNSS signal received by the antenna, calculate the aforementioned GNSS error information, and notify the aforementioned GNSS error information to the aforementioned command center; , which communicates with the on-board device and the ground device, based on the position information obtained from the on-board device based on the GNSS signals of the first GNSS receiver and the second GNSS receiver, and from the on-board device The obtained GNSS error information is used to correct the position information of the vehicle, and the operation management of the vehicle is performed according to the corrected position information.

[發明之效果][Effect of invention]

根據本發明,能夠實現利用GNSS精度更高地檢測列車(車輛)的位置之技術。According to the present invention, a technique for detecting the position of a train (vehicle) with higher accuracy using GNSS can be realized.

接著,參照圖式具體地說明用於實施本發明的形態(以下,簡稱為“實施方式”)。Next, an aspect for implementing the present invention (hereinafter, simply referred to as an “embodiment”) will be specifically described with reference to the drawings.

第1圖係表示本實施方式涉及之列車運行系統1的概要之圖。第2圖係列車運行系統1之方塊圖。在第1圖中,表示向圖示右方向行進之車輛10的前頭進入了月臺88的狀態。FIG. 1 is a diagram showing an outline of a train operation system 1 according to the present embodiment. Figure 2 is a block diagram of the vehicle operating system 1 of the series. In FIG. 1 , the front of the vehicle 10 traveling in the right direction in the drawing has entered the platform 88 .

如第1圖所示,對於列車運行系統1,作為車輛側的裝置而在前頭的車輛10中具備第一GNSS部15、第二GNSS部16及車上裝置20,作為地上側的裝置而在車站的月臺88中具備地上裝置60及第三GNSS部61。進而,對於列車運行系統1,作為地上側的裝置而具備控制車輛10和車上裝置20並統括進行運行管理的指令中心70。As shown in FIG. 1, the train operation system 1 includes a first GNSS unit 15, a second GNSS unit 16, and an on-board device 20 in a preceding vehicle 10 as vehicle-side devices, and as ground-side devices in a The platform 88 of the station is provided with the ground device 60 and the third GNSS unit 61 . Furthermore, the train operation system 1 includes, as a device on the ground side, a command center 70 that controls the vehicle 10 and the on-board device 20 and performs overall operation management.

在本實施方式中,使用車輛側的第一GNSS部15、第二GNSS部16和地上側的第三GNSS部61,來提高在車站(月臺88)附近地域處的車輛位置的計算精度。In this embodiment, the first GNSS unit 15 , the second GNSS unit 16 on the vehicle side, and the third GNSS unit 61 on the ground side are used to improve the calculation accuracy of the vehicle position in the area near the station (platform 88 ).

若列車進入了規定的通訊區域,則地上裝置60向車上裝置20發送第三GNSS部61所獲得的GNSS資訊。已知第三GNSS部61的第三GNSS接收部61a的絕對位置,例如,向車上裝置20通知已獲得的GNSS資訊與絕對值之差(以下,稱為“GNSS誤差”。)。在存在於月臺88附近之車輛10(第一GNSS部15、第二GNSS部16)中,根據來自與第三GNSS部61相同的GNSS衛星98之GNSS資訊,計算位置資訊。When the train enters a predetermined communication area, the ground device 60 transmits the GNSS information obtained by the third GNSS unit 61 to the on-board device 20 . Knowing the absolute position of the third GNSS receiving unit 61 a of the third GNSS unit 61 , for example, the on-vehicle device 20 is notified of the difference between the obtained GNSS information and the absolute value (hereinafter, referred to as “GNSS error”). In the vehicle 10 (the first GNSS unit 15 , the second GNSS unit 16 ) existing near the platform 88 , position information is calculated based on GNSS information from the same GNSS satellites 98 as the third GNSS unit 61 .

另外,也可以車輛10的車上裝置20將基於第一GNSS部15及第二GNSS部16之位置資訊向地上側的指令中心70發送,地上裝置60將第三GNSS部61的GNSS誤差資訊向地上側的指令中心70發送。在這種情況下,指令中心70能夠準確地進行車輛10的位置修正,能夠根據該列車位置(車輛10的修正後的位置)進行連動控制和訊號控制。In addition, the on-board device 20 of the vehicle 10 may transmit the position information based on the first GNSS unit 15 and the second GNSS unit 16 to the command center 70 on the ground side, and the ground device 60 may transmit the GNSS error information of the third GNSS unit 61 to the command center 70 on the ground side. It is sent from the command center 70 on the ground side. In this case, the command center 70 can accurately correct the position of the vehicle 10 , and can perform interlocking control and signal control based on the train position (the corrected position of the vehicle 10 ).

計算出的位置資訊包含由第三GNSS部61計算出的GNSS誤差的可能性較高。於是,在車上裝置20中,在根據第一GNSS部15及第二GNSS部16的GNSS資訊計算位置資訊的情況下,獲得由第三GNSS部61計算出的GNSS誤差作為GNSS誤差資訊並反映,進行排除GNSS誤差之處理。尚且,也可以如上述般,在指令中心70從車輛10和地上裝置60獲得位置資訊的情況下,指令中心70進行排除GNSS誤差之處理。以下,主要對由車輛10和地上裝置60進行GNSS誤差的排除處理之事例進行說明。There is a high possibility that the calculated position information includes the GNSS error calculated by the third GNSS unit 61 . Then, in the on-vehicle device 20, when the position information is calculated from the GNSS information of the first GNSS unit 15 and the second GNSS unit 16, the GNSS error calculated by the third GNSS unit 61 is obtained as GNSS error information and reflected , to eliminate GNSS errors. Furthermore, as described above, when the command center 70 obtains the position information from the vehicle 10 and the ground device 60 , the command center 70 may perform a process of eliminating GNSS errors. Hereinafter, an example in which the GNSS error elimination process is mainly performed by the vehicle 10 and the ground device 60 will be described.

在車輛10側的構成中,第一GNSS部15具備第一GNSS天線15a及第一GNSS接收部15b。第二GNSS部16具備第二GNSS天線16a和第二GNSS接收部16b。In the configuration on the vehicle 10 side, the first GNSS unit 15 includes a first GNSS antenna 15a and a first GNSS receiving unit 15b. The second GNSS unit 16 includes a second GNSS antenna 16a and a second GNSS receiving unit 16b.

第一GNSS天線15a設置於車輛10的上部前端附近。第二GNSS天線16a設置於車輛10的上部後端附近。第一GNSS天線15a和第二GNSS天線16a間隔規定的距離(以下,稱為“設置距離a”)而設置。例如,在車輛10之長度為20m的情況下,設置距離a為17m左右。The first GNSS antenna 15 a is provided near the upper front end of the vehicle 10 . The second GNSS antenna 16 a is provided near the upper rear end of the vehicle 10 . The first GNSS antenna 15a and the second GNSS antenna 16a are installed at a predetermined distance (hereinafter, referred to as "installation distance a"). For example, when the length of the vehicle 10 is 20 m, the installation distance a is about 17 m.

第一GNSS接收部15b根據第一GNSS天線15a接收到的GNSS訊號計算第一GNSS天線15a的位置資訊,而且計算第一GNSS天線15a的位置處之速度向量,將各計算結果輸出至車上裝置20。The first GNSS receiving unit 15b calculates the position information of the first GNSS antenna 15a according to the GNSS signal received by the first GNSS antenna 15a, and calculates the velocity vector at the position of the first GNSS antenna 15a, and outputs each calculation result to the on-board device 20.

第二GNSS接收部16b根據第二GNSS天線16a接收到的GNSS訊號計算第二GNSS天線16a的位置資訊,而且計算第二GNSS天線16a的位置處之速度向量,將各計算結果輸出至車上裝置20。The second GNSS receiving unit 16b calculates the position information of the second GNSS antenna 16a according to the GNSS signal received by the second GNSS antenna 16a, calculates the velocity vector at the position of the second GNSS antenna 16a, and outputs each calculation result to the on-board device 20.

車上裝置20在檢測到速度向量的特徵點時,與預備的系統固有的資訊比較,確定車輛10的位置。另外,車上裝置20在從地上裝置60獲得了第三GNSS部61的位置資訊的情況下,將該位置資訊反映於第一GNSS部15及第二GNSS部16的計算結果,修正位置資訊。When the on-vehicle device 20 detects the characteristic point of the velocity vector, it compares it with the information inherent in the prepared system, and determines the position of the vehicle 10 . In addition, when the on-vehicle device 20 obtains the position information of the third GNSS unit 61 from the ground device 60, the position information is reflected in the calculation results of the first GNSS unit 15 and the second GNSS unit 16, and the position information is corrected.

在此,參照第3圖~第5圖,對基於GNSS訊號的行駛位置檢測之原理及位置資訊的修正處理進行說明。在本實施方式中,如上述之車上裝置20在檢測到速度向量發生變化的規定的特徵點時,與預備的系統固有的資訊(運行用數據部31的資訊)比較,在判斷為與被認為的特徵點一致的情況下,判斷為“位於資料庫中所記錄的位置”。在此,所謂特徵點例如是軌道99轉彎時的起點或終點等。此外,於特徵點的檢測處理之前,執行是否處於執行基於GNSS訊號之位置資訊的計算處理亦可的狀態之GNSS檢定。另外,於車站(月臺88)等那樣的需要精度高的位置資訊之區域,根據地上側的位置資訊及其地點的GNSS資訊,修正GNSS誤差。Here, with reference to FIGS. 3 to 5, the principle of the detection of the traveling position based on the GNSS signal and the correction processing of the position information will be described. In the present embodiment, when the on-vehicle device 20 as described above detects a predetermined feature point in which the speed vector changes, it compares it with the information unique to the system (the information of the operation data unit 31 ) which is prepared, and judges that it is the same as the target. When it is considered that the feature points match, it is determined as "located at the position recorded in the database". Here, the feature point is, for example, the starting point or the ending point when the track 99 turns. In addition, before the detection process of the feature point, a GNSS check is performed to determine whether or not the calculation process of the position information based on the GNSS signal can be performed. In addition, in areas such as stations (platforms 88 ) where high-precision position information is required, GNSS errors are corrected based on the position information on the ground side and the GNSS information of the location.

<基本技術><Basic Technology>

1.GNSS檢定 GNSS檢定係為了提高GNSS資訊的可靠性而進行者。僅於GNSS檢定合格時,基於該GNSS資訊之位置資訊被用於車輛10之位置確定。於GNSS檢定中,使用車輛10的2台GNSS接收機(第一GNSS接收部15b、第二GNSS接收部16b)。1. GNSS verification GNSS verification is carried out to improve the reliability of GNSS information. Only when the GNSS verification is qualified, the position information based on the GNSS information is used for the position determination of the vehicle 10 . For the GNSS verification, two GNSS receivers (the first GNSS receiver 15b and the second GNSS receiver 16b) of the vehicle 10 are used.

如上述,第一GNSS天線15a和第二GNSS天線16a以無關聯的設置距離a而設置。具體而言,於車輛10之前後端(例如前頭的車輛10的前頭側和連結側這2個場所)設置第一GNSS天線15a和第二GNSS天線16a。此時,不僅設置距離a,也構築由車輛10的頂棚形成的電波環境之非關聯環境。即,對第一及第二GNSS天線15a、16a,構築不同的衰減環境。藉此,2個GNSS接收機(第一及第二GNSS接收部15b、16b)構成為不會因相同的衰減的影響而輸出錯誤資訊。As described above, the first GNSS antenna 15a and the second GNSS antenna 16a are installed at an unrelated installation distance a. Specifically, the first GNSS antenna 15a and the second GNSS antenna 16a are provided at the front and rear ends of the vehicle 10 (for example, two places on the front side and the connection side of the preceding vehicle 10). In this case, not only the distance a but also the non-related environment of the radio wave environment formed by the ceiling of the vehicle 10 is constructed. That is, different attenuation environments are constructed for the first and second GNSS antennas 15a and 16a. Thereby, the two GNSS receivers (the first and second GNSS receivers 15b and 16b) are configured not to output erroneous information due to the influence of the same fading.

於GNSS檢定的邏輯中,將來自GNSS衛星98的資訊與系統固有的資訊比較,僅在檢定合格時使用GNSS資訊。In the logic of the GNSS verification, the information from the GNSS satellites 98 is compared with the information inherent in the system, and the GNSS information is used only when the verification is qualified.

2.基於使用了GNSS資訊之速度資訊的行駛距離加總進行之位置檢測 基於GNSS資訊之速度資訊的加總進行之位置檢測,係藉由在絕對位置確定之後,對速度資訊進行積分來計算行駛距離而進行者。2. The position detection based on the summation of the travel distance using the speed information of the GNSS information The position detection based on the summation of the speed information of the GNSS information is calculated by integrating the speed information after the absolute position is determined. distance.

於GNSS檢定邏輯中,使用第3圖中(a)之“軌跡”檢定、第3圖中(b)之“位置”檢定、第3圖中(c)之“方位(Dp)”檢定。僅在檢定合格的情況使用基於GNSS資訊之速度資訊。在檢定不合格的情況,使用來自TG32(參照第5圖)等其他速度檢測手段的速度資訊。尚且,於檢定時,參照運行用數據部31,與所記錄的數據比較。In the GNSS verification logic, the "Track" verification in Figure 3 (a), the "Position" verification in Figure 3 (b), and the "Direction (Dp)" verification in Figure 3 (c) are used. Speed information based on GNSS information is only used when the verification is passed. If the verification fails, the speed information from other speed detection means such as TG32 (see Figure 5) is used. In addition, at the time of verification, the operation data part 31 is referred to and compared with the recorded data.

所謂“軌跡”檢定,係判斷是否正在預定的行駛路徑行駛。所謂“位置”檢定,係判斷根據GNSS訊號得到的第一及第二GNSS天線15a、16a之間隔(後述第4圖的“實測距離D”)是否與實際的設置距離a一致。所謂“方位”檢定,係判斷是否與預定的方位(軌道方位)一致。The so-called "trajectory" test is to determine whether the vehicle is traveling on a predetermined path. The so-called "position" verification is to determine whether the interval between the first and second GNSS antennas 15a and 16a obtained from the GNSS signal (the "measured distance D" in Fig. 4 described later) matches the actual installation distance a. The so-called "azimuth" test is to judge whether it is consistent with the predetermined azimuth (orbital azimuth).

3.使用了GNSS的速度資訊之絕對位置檢測 在使用了GNSS的速度資訊之絕對位置檢測中,利用由2台GNSS接收機(第一GNSS接收部15b、第二GNSS接收部16b)計算的速度向量於軌道99的彎道處隨時變化之現象。若該軌道的彎道處的速度向量的變化滿足以下所示的條件(a)~(c),則針對GNSS的故障、接收機的故障、衰減的影響的、不能識別變化的概率極低。 (a)在彎道起點前,利用TG等預先確定彎道的起點即將到來。 (b)從彎道起點前到彎道終點後,GNSS檢定合格。 (c)於路線資料庫(運行用數據部31)登記有絕對位置檢測資訊。3. Absolute position detection using GNSS velocity information In absolute position detection using GNSS velocity information, the velocity calculated by the two GNSS receivers (the first GNSS receiver 15b, the second GNSS receiver 16b) is used The phenomenon that the vector changes over time at the curve of the track 99. If the change in the velocity vector at the curve of the track satisfies the following conditions (a) to (c), the probability of not recognizing the change due to GNSS failure, receiver failure, or attenuation is extremely low. (a) Before the starting point of the curve, the starting point of the curve is determined in advance using TG or the like. (b) From the start of the curve to the end of the curve, the GNSS verification is qualified. (c) Absolute position detection information is registered in the route database (operation data unit 31 ).

(1)基於軌道的曲率進行之位置檢測 參照第4圖說明基於軌道99的曲率之位置檢測處理。在此,使用曲率半徑R代替曲率。對於從2台GNSS接收機(第一GNSS接收部15b、第二GNSS接收部16b)得到的速度向量V(V1、V2),若車輛10從直線99a進入了彎道99b,則角度θ對應於軌道99(彎道99b)的曲率半徑R發生變化。在此,將第一GNSS天線15a的速度向量V1與第二GNSS天線16a的速度向量V2所成之角設為角度θ。(1) Position detection based on the curvature of the track The position detection processing based on the curvature of the track 99 will be described with reference to FIG. 4 . Here, the radius of curvature R is used instead of the curvature. Regarding the velocity vectors V ( V1 , V2 ) obtained from the two GNSS receivers (the first GNSS receiver 15 b and the second GNSS receiver 16 b ), when the vehicle 10 enters the curve 99 b from the straight line 99 a , the angle θ corresponds to The curvature radius R of the rail 99 (curve 99b) changes. Here, let the angle formed by the velocity vector V1 of the first GNSS antenna 15a and the velocity vector V2 of the second GNSS antenna 16a be the angle θ.

根據該角度θ用下面的公式計算軌道99(彎道99b)的曲率半徑R,與登記於路線資料庫(運行用數據部31)中的軌道99的曲率(曲率半徑)進行比較,藉此確定彎道位置(起點C1和終點C2),在終點C2、即在變為θ=0度的地點檢測出絕對位置。 Sin(θ/2)=(D/2)/R R=(D/2)/Sin(θ/2) D:根據GNSS訊號計算的第一GNSS天線15a與第二GNSS天線16a之間的實測距離。From this angle θ, the curvature radius R of the track 99 (curve 99 b ) is calculated by the following formula, and is determined by comparing it with the curvature (curvature radius) of the track 99 registered in the route database (the data part 31 for running) The curve position (start point C1 and end point C2) is detected as an absolute position at the end point C2, that is, at the point where θ=0 degrees. Sin(θ/2)=(D/2)/R R=(D/2)/Sin(θ/2) D: The measured distance between the first GNSS antenna 15a and the second GNSS antenna 16a calculated according to the GNSS signal .

(2)基於軌道的彎道行駛距離進行之位置檢測 在上述的基於軌道99的曲率(曲率半徑R)進行位置檢測的情況下,當曲率大時角度θ的絕對值變小,所以有時因誤差而不能確定彎道位置。因此,在曲率比規定大的情況下,進行基於軌道99的彎道行駛距離LR之位置檢測。即,計算從軌道99變為彎道99b的起點C1到終點C2之彎道行駛距離LR,與登記於路線資料庫(運行用數據部31)中的彎道99b之距離進行比較,藉此確定彎道位置,在彎道終點、即在變為θ=0度的地點檢測出絕對位置。(2) Position detection based on the curve travel distance of the track In the above-mentioned position detection based on the curvature of the track 99 (curvature radius R), the absolute value of the angle θ becomes smaller when the curvature is large. error and cannot determine the corner position. Therefore, when the curvature is larger than the predetermined value, the position detection based on the curve travel distance LR of the rail 99 is performed. That is, the curve travel distance LR from the start point C1 to the end point C2 of the track 99 to the curve 99b is calculated, and the distance LR of the curve 99b registered in the route database (the data unit 31 for driving) is compared to determine the distance. As for the curve position, the absolute position is detected at the end point of the curve, that is, at the point where θ=0 degrees.

(3)基於軌道的彎道變化點進行之位置檢測 如第5圖所示,對於從第一GNSS天線15a、第二GNSS天線16a得到的速度向量差,在軌道99從右彎道99d向左彎道99e變化、從左彎道向右彎道變化的情況下,若取速度向量V1與V2之差,則符號(正負)逆轉。於該軌道的彎道變化點C3之前後,GNSS檢定合格,滿足上述條件(a)和(b),從而確定彎道變化點C3,在彎道變化點C3檢測出絕對位置。(3) Position detection based on the curve change point of the track As shown in FIG. 5, for the velocity vector difference obtained from the first GNSS antenna 15a and the second GNSS antenna 16a, on the track 99 from the right curve 99d to the left When the curve 99e changes from a left curve to a right curve, when the difference between the speed vectors V1 and V2 is taken, the sign (positive and negative) is reversed. Before and after the curve change point C3 of the track, the GNSS verification is qualified, and the above conditions (a) and (b) are satisfied, so that the curve change point C3 is determined, and the absolute position is detected at the curve change point C3.

(4)在系統中的適用 此外,配合於適用路線區域來選擇組合上述(1)~(3)之位置檢測方式。(4) Application to the system In addition, the position detection methods of the above (1) to (3) are selected and combined according to the applicable route area.

4.使用了地上側的GNSS資訊之位置修正4. The position correction using the GNSS information on the ground side

於車站(月臺88)等那樣的需要精度高的位置資訊之區域,根據地上側的位置資訊及其地點的GNSS資訊,修正GNSS誤差。第6圖係說明GNSS誤差修正的概念之圖。 In an area such as a station (platform 88 ) that requires high-precision position information, GNSS errors are corrected based on the position information on the ground side and the GNSS information of the location. FIG. 6 is a diagram illustrating the concept of GNSS error correction.

在第三GNSS接收部61a中,記錄有第三GNSS天線61b的測量完的固定位置資訊P3(X3_0,Y3_0)。位置資訊P3為固定值,例如用經度緯度表示。第三GNSS接收部61a計算基於GNSS衛星98得到的位置資訊P3_G(X3_g,Y3_g)與固定位置資訊P3(X3_0,Y3_0)之差即GNSS誤差資訊ΔP3(Δx,Δy)。 In the third GNSS receiving unit 61a, the measured fixed position information P3 (X3_0, Y3_0) of the third GNSS antenna 61b is recorded. The position information P3 is a fixed value, and is represented by, for example, longitude and latitude. The third GNSS receiving unit 61a calculates the difference between the position information P3_G (X3_g, Y3_g) obtained from the GNSS satellites 98 and the fixed position information P3 (X3_0, Y3_0), that is, the GNSS error information ΔP3 (Δx, Δy).

ΔP3(Δx,Δy)=(X3_g,Y3_g)-(X3_0,Y3_0)=(X3_g-X3_0,Y3_g-Y3_0) ΔP3(Δx, Δy)=(X3_g, Y3_g)-(X3_0, Y3_0)=(X3_g-X3_0, Y3_g-Y3_0)

第三GNSS接收部61a將該GNSS誤差ΔP3(Δx,Δy)作為GNSS誤差資訊向車上裝置20發送。 The third GNSS receiving unit 61a transmits the GNSS error ΔP3 (Δx, Δy) to the on-vehicle device 20 as GNSS error information.

在車上裝置20中,將GNSS誤差ΔP3(Δx,Δy)反映於第一GNSS部15及第二GNSS部16之GNSS資訊P1_G(X1_g,Y1_g)、P2_G(X2_g,Y2_g)中,計算修正後GNSS資訊P1_0(X1_0,Y1_0)、P2_0(X2_0,Y2_0)。 In the on-vehicle device 20, the GNSS error ΔP3 (Δx, Δy) is reflected in the GNSS information P1_G (X1_g, Y1_g) and P2_G (X2_g, Y2_g) of the first GNSS unit 15 and the second GNSS unit 16, and the corrected GNSS information P1_0 (X1_0, Y1_0), P2_0 (X2_0, Y2_0).

P1_0(X1_0,Y1_0)=(X1_g-Δx,Y1_g-Δy) P1_0(X1_0, Y1_0)=(X1_g-Δx, Y1_g-Δy)

P2_0(X2_0,Y2_0)=(X2_g-Δx,Y2_g-Δy) P2_0(X2_0, Y2_0)=(X2_g-Δx, Y2_g-Δy)

在此,使適用GNSS誤差資訊時的車輛10(車上裝置20)與地上裝置60之間的距離在使用相同的GNSS衛星98的充分近的範圍內,藉此能夠實質性地消除第一GNSS部15及第二GNSS部16的測量誤差,能夠提高使用第一GNSS部15及第二GNSS部16計算出的車輛10的列車位置之精度。 Here, the first GNSS can be substantially eliminated by setting the distance between the vehicle 10 (on-vehicle device 20 ) and the ground device 60 when the GNSS error information is applied within a sufficiently close range using the same GNSS satellites 98 . The measurement errors of the unit 15 and the second GNSS unit 16 can improve the accuracy of the train position of the vehicle 10 calculated using the first GNSS unit 15 and the second GNSS unit 16 .

<具體的技術> <Specific technology>

參照第2圖說明用於執行上述的絕對位置檢測處理及GNSS誤差修正處理的構成。 A configuration for executing the above-described absolute position detection process and GNSS error correction process will be described with reference to FIG. 2 .

地上裝置60具備地上側運行控制部62和地上通訊部63。地上側運行控制部62保持第三GNSS天線61b的設置位置之位置資訊,而且獲得第三GNSS部61接收到的GNSS訊號,計算設置位置之位置資訊與根據GNSS訊號計算出的位置資訊之差(GNSS誤差資訊),經由地上通訊部63向車上裝置20發送。地上通訊部63與車上裝置20(車上通訊部33)進行通訊。The ground device 60 includes a ground-side operation control unit 62 and a ground communication unit 63 . The ground-side operation control part 62 holds the position information of the installation position of the third GNSS antenna 61b, and obtains the GNSS signal received by the third GNSS part 61, and calculates the difference between the position information of the installation position and the position information calculated from the GNSS signal ( GNSS error information) is transmitted to the on-vehicle device 20 via the ground communication unit 63 . The ground communication unit 63 communicates with the in-vehicle device 20 (the in-vehicle communication unit 33 ).

車上裝置20設置於設置有第一GNSS部15及第二GNSS部16的車輛10,控制列車(車輛10)之運行。具體而言,車上裝置20控制列車速度,或推定列車位置,或推定列車朝向,藉此把握列車(車輛10)之運行狀態,執行適當的列車運行。另外,車上裝置20與地上裝置60進行通訊,直接或間接地進行線路封閉等處理。The on-board device 20 is installed in the vehicle 10 provided with the first GNSS unit 15 and the second GNSS unit 16 , and controls the operation of the train (vehicle 10 ). Specifically, the on-board device 20 controls the speed of the train, estimates the position of the train, or estimates the direction of the train, thereby grasping the running state of the train (vehicle 10 ), and executing an appropriate train operation. In addition, the on-vehicle device 20 communicates with the ground device 60 to directly or indirectly perform processing such as line closing.

車上裝置20具備車上側運行控制部30、列車狀態確定部40、運行用數據部31、TG32、車上通訊部33和行駛履歷部34。The on-board device 20 includes an on-board operation control unit 30 , a train state determination unit 40 , an operation data unit 31 , a TG 32 , an on-board communication unit 33 , and a travel history unit 34 .

運行用數據部31記錄有列車(車輛10)運行的路線的資訊(運行資訊)。作為運行資訊,包括列車(車輛10)行駛的路徑資訊、地點資訊、各地點處的列車行進方向的方位Dp、彎道資訊(起點、終點、曲率半徑)及每個速度限制區間的限制速度資訊等。The operation data unit 31 records information (operation information) of the route on which the train (vehicle 10 ) runs. As the operation information, it includes the route information of the train (vehicle 10 ), the location information, the azimuth Dp of the traveling direction of the train at each location, the curve information (starting point, end point, curvature radius), and speed limit information for each speed limit section Wait.

行駛履歷部34記錄車輛10之行駛履歷。TG32係以前一直使用的根據車輪之旋轉測量速度的速度測量裝置。車上通訊部33藉由無線與地上裝置60的地上通訊部63及其他外部裝置(例如運行指揮部等)發送接收資訊。The travel history unit 34 records the travel history of the vehicle 10 . The TG32 is a speed measuring device that has been used in the past to measure the speed based on the rotation of the wheel. The on-vehicle communication unit 33 transmits and receives information with the ground communication unit 63 of the ground device 60 and other external devices (for example, the operation command department, etc.) by wireless.

車上側運行控制部30使用列車狀態確定部40、TG32和運行用數據部31進行列車運行控制。所謂列車運行控制,例如,確定列車(車輛10)之位置,或計算速度,並將計算結果等顯示於規定的顯示裝置。對於速度的顯示,既可以顯示任意一者的速度,也可以顯示兩者的速度。The on-board operation control unit 30 performs train operation control using the train state determination unit 40 , the TG 32 and the operation data unit 31 . In the so-called train operation control, for example, the position of the train (vehicle 10 ) is determined, or the speed is calculated, and the calculation result and the like are displayed on a predetermined display device. As for the display of the speed, either the speed may be displayed, or the speed of both may be displayed.

列車狀態確定部40具備列車位置計算部42、列車方位計算部44、GNSS檢定部46和確定位置檢測部48。The train state identification unit 40 includes a train position calculation unit 42 , a train orientation calculation unit 44 , a GNSS verification unit 46 , and a specified position detection unit 48 .

列車位置計算部42從第一GNSS部15及第二GNSS部16獲得它們各自檢測出的位置資訊。而且,列車位置計算部42根據從第一及第二GNSS部15、16輸出的位置資訊,計算第一GNSS天線15a、第二GNSS天線16a間的實測距離D。The train position calculation unit 42 obtains the position information detected by the first GNSS unit 15 and the second GNSS unit 16 respectively. Then, the train position calculation unit 42 calculates the measured distance D between the first GNSS antenna 15a and the second GNSS antenna 16a based on the position information output from the first and second GNSS units 15 and 16 .

列車方位計算部44根據列車位置計算部42獲得的位置資訊,計算車輛10的行進方向(方位)。將計算出的行進方向(方位)輸出至確定位置檢測部48。The train direction calculation unit 44 calculates the traveling direction (direction) of the vehicle 10 based on the position information obtained by the train position calculation unit 42 . The calculated traveling direction (azimuth) is output to the specified position detection unit 48 .

GNSS檢定部46進行上述的GNSS檢定處理。即,GNSS檢定部46進行由第3圖中(a)之“軌跡”檢定、第3圖中(b)之“位置”檢定、第3圖中(c)之“方位”檢定所示的處理。此時,GNSS檢定部46參照運行用數據部31。The GNSS verification unit 46 performs the above-described GNSS verification process. That is, the GNSS verification unit 46 performs the processing shown by the “track” verification in (a) in FIG. 3, the “position” verification in (b) in the third diagram, and the “azimuth” verification in (c) in the third diagram . At this time, the GNSS verification unit 46 refers to the operation data unit 31 .

確定位置檢測部48在GNSS檢定判斷為合格的情況下,進行上述的使用了GNSS的速度資訊之絕對位置檢測處理。若進行了絕對位置檢測處理,則用於車上側運行控制部30等進行的列車(車輛10)的各種控制之位置資訊被更新為檢測出的位置資訊。即,例如,在絕對位置檢測處理被執行前的行駛狀態的把握中使用了TG32,從而即使因車輪的空轉或滑行等產生了誤差的情況下,該誤差也被適當地消除。此外,在產生的誤差為規定以上地大的情況下,車上側運行控制部30判斷為有列車(車輛10)的車輪等發生異常之虞或存在運行用數據部31的數據的錯誤等,向駕駛者發出警告,或者也可以經由車上通訊部33向運行指揮部等通知。The fixed position detection unit 48 performs the above-described absolute position detection process using the speed information of the GNSS when the GNSS test is judged to be acceptable. When the absolute position detection process is performed, the position information used for various controls of the train (vehicle 10 ) by the on-board operation control unit 30 and the like is updated to the detected position information. That is, for example, by using the TG32 for grasping the running state before the execution of the absolute position detection process, even if an error occurs due to idling or coasting of the wheels, the error is appropriately eliminated. In addition, when the generated error is greater than a predetermined value, the on-board operation control unit 30 determines that there is a possibility that the wheels of the train (vehicle 10 ) are abnormal, or that there is an error in the data of the operation data unit 31 , and reports The driver issues a warning, or may notify the operation command or the like via the on-board communication unit 33 .

關於絕對位置檢測處理,確定位置檢測部48選擇性地使用(1)基於軌道的曲率進行之位置檢測、(2)基於軌道的彎道行駛距離進行之位置檢測、(3)基於軌道的彎道變化點進行之位置檢測、這3種位置檢測方法。也可以根據需要組合這些位置檢測方法。Regarding the absolute position detection process, the specified position detection unit 48 selectively uses (1) position detection based on the curvature of the track, (2) position detection based on the curve travel distance of the track, and (3) curve based on the track. Position detection by changing point, these three position detection methods. These position detection methods can also be combined as required.

另外,確定位置檢測部48在車輛10距離地上裝置60位於規定距離內的情況下,從地上裝置60獲得GNSS誤差資訊,並反映於第一GNSS部15及第二GNSS部16檢測出的位置資訊中。In addition, when the vehicle 10 is located within a predetermined distance from the ground device 60, the specified position detection unit 48 obtains GNSS error information from the ground device 60, and reflects it on the position information detected by the first GNSS unit 15 and the second GNSS unit 16 middle.

參照第7圖之流程圖,總結說明基於以上構成之處理。 在車上裝置20中,列車狀態確定部40的列車位置計算部42根據第一GNSS部15及第二GNSS部16接收到的GNSS訊號,計算位置資訊(S10)。繼而,GNSS檢定部46進行GNSS檢定,判斷是否處於能夠使用GNSS資訊的狀況(S12)。Referring to the flowchart of FIG. 7, the processing based on the above configuration will be collectively described. In the on-board device 20 , the train position calculation unit 42 of the train state determination unit 40 calculates position information based on the GNSS signals received by the first GNSS unit 15 and the second GNSS unit 16 ( S10 ). Next, the GNSS verification unit 46 performs GNSS verification and determines whether or not the GNSS information can be used ( S12 ).

在GNSS檢定為不合格的情況下(S14的“否”),車上側運行控制部30進行使用了TG32之列車位置計算處理,進行基於此之運行控制(S16)。在GNSS檢定合格的情況下(S14的“是”),車上側運行控制部30判斷是否位於與地上裝置60有通訊從而使用地上裝置60(第三GNSS部61)之GNSS資訊的區域(S18)。在非使用地上裝置60(第三GNSS部61)之GNSS資訊的區域的情況下(S18的“否”),即不使用GNSS誤差資訊的區域的情況下,車上裝置20進行使用了車上GNSS數據(第一GNSS部15、第二GNSS部16之GNSS資訊)的列車位置計算,進行基於此的運行控制(S20)。When the GNSS verification is unacceptable (NO in S14 ), the on-board operation control unit 30 performs the train position calculation process using the TG32, and performs operation control based on this ( S16 ). If the GNSS verification is passed (Yes in S14 ), the on-vehicle operation control unit 30 determines whether or not it is located in an area where communication with the ground device 60 and use of the GNSS information of the ground device 60 (third GNSS unit 61 ) is performed ( S18 ) . In the case of an area that does not use the GNSS information of the ground device 60 (third GNSS unit 61 ) (“No” in S18 ), that is, in the case of an area where the GNSS error information is not used, the on-vehicle device 20 performs the operation using the on-vehicle device 20 . The train position is calculated based on the GNSS data (GNSS information of the first GNSS unit 15 and the second GNSS unit 16 ), and operation control based on this is performed ( S20 ).

在係使用地上裝置60(第三GNSS部61)之GNSS資訊的區域內的情況下(S18的“是”),車上裝置20從地上裝置60獲得GNSS誤差資訊(S22),使GNSS誤差資訊反映於車上GNSS數據(第一GNSS部15、第二GNSS部16之GNSS資訊)(S24),計算修正後的列車位置,進行使用了該列車位置的運行控制(S26)。If it is within the area where the GNSS information of the ground device 60 (third GNSS unit 61 ) is used (Yes in S18 ), the on-vehicle device 20 obtains the GNSS error information from the ground device 60 ( S22 ), and uses the GNSS error information Reflected on the on-board GNSS data (GNSS information of the first GNSS unit 15 and the second GNSS unit 16 ) ( S24 ), the corrected train position is calculated, and operation control using the train position is performed ( S26 ).

以上,根據本實施方式,在車輛10中,能夠基於從第一及第二GNSS接收部15b、16b輸出的資訊,高精度且穩定地決定列車(車輛10)的絕對位置,該第一及第二GNSS接收部15b、16b與前後隔開規定的設置距離a而設置的第一及第二GNSS天線15a、16a連接。特別是,在列車即將進入車站那樣的情況下,例如,在訊號的切換或道口的動作中,為了迅速且安全地進行這些動作,而要求精度高的列車位置檢測。更具體而言,需要在恰當的時刻進行軌道的閉鎖區間的設定/解除。在這樣的情況,使月臺88的地上裝置60的第三GNSS部61的GNSS誤差資訊反映於由車輛10的第一GNSS部15、第二GNSS部16得到的位置資訊中,能夠排除位置資訊的誤差,能夠迅速安全地進行使用了該位置資訊的運行控制。As described above, according to the present embodiment, in the vehicle 10, the absolute position of the train (vehicle 10) can be determined with high accuracy and stability based on the information output from the first and second GNSS receiving units 15b and 16b. The two GNSS receiving units 15b and 16b are connected to the first and second GNSS antennas 15a and 16a which are provided at a predetermined distance a in the front and rear. In particular, when a train is about to enter a station, for example, during signal switching or crossing operations, highly accurate train position detection is required in order to perform these operations quickly and safely. More specifically, it is necessary to set/release the lock section of the track at an appropriate timing. In such a case, the position information can be excluded by reflecting the GNSS error information of the third GNSS unit 61 of the ground device 60 on the platform 88 in the position information obtained by the first GNSS unit 15 and the second GNSS unit 16 of the vehicle 10 . error, the operation control using the position information can be performed quickly and safely.

以上,基於實施方式說明瞭本發明。該實施方式係示例,本領域的技術人員應該理解這些各構成要素的組合能夠存在各種變形例,而且,這樣的變形例仍屬於本發明之範圍。The present invention has been described above based on the embodiments. This embodiment is an example, and it should be understood by those skilled in the art that various modifications can be made to the combination of these constituent elements, and such modifications still belong to the scope of the present invention.

1‧‧‧列車運行系統(位置檢測系統)10‧‧‧車輛15‧‧‧第一GNSS部15a‧‧‧第一GNSS天線15b‧‧‧第一GNSS接收部16‧‧‧第二GNSS部16a‧‧‧第二GNSS天線16b‧‧‧第二GNSS接收部20‧‧‧車上裝置(位置檢測裝置)30‧‧‧車上側運行控制部31‧‧‧運行用數據部32‧‧‧TG33‧‧‧車上通訊部34‧‧‧行駛履歷部40‧‧‧列車狀態確定部42‧‧‧列車位置計算部44‧‧‧列車方位計算部46‧‧‧GNSS檢定部48‧‧‧確定位置檢測部60‧‧‧地上裝置61‧‧‧第三GNSS部61a‧‧‧第三GNSS接收部61b‧‧‧第三GNSS天線62‧‧‧地上側運行控制部63‧‧‧地上通訊部70‧‧‧指令中心88‧‧‧月臺99‧‧‧軌道1‧‧‧Train running system (position detection system) 10‧‧‧Vehicle 15‧‧‧First GNSS part 15a‧‧‧First GNSS antenna 15b‧‧‧First GNSS receiving part 16‧‧‧Second GNSS part 16a‧‧‧Second GNSS antenna 16b‧‧‧Second GNSS receiving unit 20‧‧‧On-vehicle device (position detection device) 30‧‧‧On-vehicle operation control unit 31‧‧‧Operating data unit 32‧‧‧ TG33‧‧‧On-board communication part 34‧‧‧Travel history part40‧‧‧Train status determination part42‧‧‧Train position calculation part44‧‧‧Train orientation calculation part 46‧‧‧GNSS verification part48‧‧‧ Fixed position detection unit 60‧‧‧Ground device 61‧‧‧Third GNSS part 61a‧‧‧third GNSS receiving part 61b‧‧‧third GNSS antenna 62‧‧‧ground-side operation control part 63‧‧‧terrestrial communication Section 70‧‧‧Command Center 88‧‧‧Platform 99‧‧‧track

第1圖係表示本實施方式涉及之具備基於GNSS訊號之行駛位置檢測機能之列車的構成之功能方塊圖。 第2圖係說明本實施方式涉及之執行基於GNSS訊號之行駛位置檢測機能時的檢定處理原理之圖。 第3圖係說明本實施方式涉及之基於GNSS訊號之行駛位置檢測機能之圖。 第4圖係說明本實施方式涉及之基於GNSS訊號之行駛位置檢測機能之圖。 第5圖係表示本實施方式涉及之搭載於前頭車輛之車上裝置的構成之功能方塊圖。 第6圖係說明本實施方式涉及之GNSS誤差修正的概念之圖。 第7圖係本實施方式涉及之基於GNSS訊號之位置計算處理之流程圖。FIG. 1 is a functional block diagram showing the configuration of a train having a function of detecting a running position based on a GNSS signal according to the present embodiment. FIG. 2 is a diagram illustrating the principle of verification processing when the running position detection function based on the GNSS signal is executed according to the present embodiment. FIG. 3 is a diagram for explaining the running position detection function based on the GNSS signal according to the present embodiment. FIG. 4 is a diagram for explaining the running position detection function based on the GNSS signal according to the present embodiment. FIG. 5 is a functional block diagram showing the configuration of the on-board device mounted on the preceding vehicle according to the present embodiment. FIG. 6 is a diagram illustrating the concept of GNSS error correction according to the present embodiment. FIG. 7 is a flowchart of the position calculation process based on the GNSS signal according to the present embodiment.

1:列車運行系統(位置檢測系統) 1: Train operation system (position detection system)

10:車輛 10: Vehicles

15:第一GNSS部 15: First GNSS Division

15a:第一GNSS天線 15a: First GNSS Antenna

15b:第一GNSS接收部 15b: The first GNSS receiving section

16:第二GNSS部 16: Second GNSS Division

16a:第二GNSS天線 16a: Second GNSS Antenna

16b:第二GNSS接收部 16b: Second GNSS receiving section

20:車上裝置(位置檢測裝置) 20: On-board device (position detection device)

60:地上裝置 60: Ground installation

61‧‧‧第三GNSS部 61‧‧‧Part 3 GNSS

61a‧‧‧第三GNSS接收部 61a‧‧‧The Third GNSS Receiving Section

61b‧‧‧第三GNSS天線 61b‧‧‧Third GNSS Antenna

70‧‧‧指令中心 70‧‧‧Command Center

88‧‧‧月臺 88‧‧‧Platform

98‧‧‧GNSS衛星 98‧‧‧GNSS satellites

99‧‧‧軌道 99‧‧‧track

Claims (2)

一種位置檢測系統,係藉由搭載於車輛的車上裝置和設置於地上側的地上裝置計算前述車輛之位置的位置檢測系統,其特徵為,前述車上裝置包括:第一GNSS天線及第二GNSS天線,於一個車輛之前後方向隔開規定距離而設置,接收來自GNSS衛星之GNSS訊號;第一GNSS接收部,與前述第一GNSS天線連接;第二GNSS接收部,與前述第二GNSS天線連接;位置計算部,基於前述第一GNSS接收部及前述第二GNSS接收部接收到的前述GNSS訊號計算前述車輛之位置;誤差資訊獲得部,從地上側的設備獲得GNSS誤差資訊;車上側通訊部,與前述地上裝置進行通訊;及車上側運行控制部,進行前述車輛的運行控制;前述地上裝置係被設置於車站,具備:第三GNSS天線,從前述GNSS衛星接收GNSS訊號;第三GNSS接收部,與前述第三GNSS天線連接;地上側控制部,保持前述第三GNSS天線的測量完的固定位置資訊,根據前述第三GNSS天線的測量完的固定位置資訊和基於由前述第三GNSS天線接收到的GNSS訊號計算的位置資訊,計算前述GNSS誤差資訊;及地上側通訊部,將前述GNSS誤差資訊向前述車上裝置發送;前述地上裝置係,接收前述GNSS訊號而計算位置資訊,根據前述位置資訊與前述固定位置資訊計算前述GNSS誤差資訊,在前述車輛進入了規定的通訊區 域的情況下,發送前述GNSS誤差資訊;前述車上裝置係,前述車上側運行控制部判斷前述車輛是否位於前述規定的通訊區域內,在判定前述車輛位於前述規定的通訊區域內的情況下,取得前述GNSS誤差資訊,使前述GNSS位置資訊反映於、前述位置計算部基於前述第一GNSS接收部及前述第二GNSS接收部接收到的前述GNSS訊號計算的前述車輛之位置的結果,而作為前述車輛的位置,在判定前述車輛不位於前述規定的通訊區域內的情況下,不使用前述GNSS誤差資訊,將前述位置計算部基於前述第一GNSS接收部及前述第二GNSS接收部接收到的前述GNSS訊號計算的前述車輛之位置的結果,作為前述車輛的位置。 A position detection system is a position detection system that calculates the position of the vehicle by means of an on-board device mounted on a vehicle and a ground device installed on the ground side, wherein the on-board device comprises: a first GNSS antenna and a second The GNSS antenna is installed at a predetermined distance in the front and rear directions of a vehicle, and receives GNSS signals from GNSS satellites; the first GNSS receiver is connected to the first GNSS antenna; the second GNSS receiver is connected to the second GNSS antenna connection; a position calculation unit, which calculates the position of the vehicle based on the GNSS signals received by the first GNSS receiving unit and the second GNSS receiving unit; an error information obtaining unit, which obtains GNSS error information from the equipment on the ground side; communication on the vehicle side a part for communicating with the above-mentioned ground equipment; and an operation control part on the vehicle side for controlling the operation of the above-mentioned vehicle; the above-mentioned ground equipment is installed at the station and includes: a third GNSS antenna for receiving GNSS signals from the above-mentioned GNSS satellites; a third GNSS The receiving unit is connected to the third GNSS antenna; the ground-side control unit holds the measured fixed position information of the third GNSS antenna, based on the measured fixed position information of the third GNSS antenna and based on the third GNSS antenna The position information calculated by the GNSS signal received by the antenna, calculates the aforementioned GNSS error information; and the ground side communication unit sends the aforementioned GNSS error information to the aforementioned on-board device; the aforementioned ground device system receives the aforementioned GNSS signal and calculates the position information, according to The aforementioned position information and the aforementioned fixed position information calculate the aforementioned GNSS error information, and the aforementioned vehicle enters the specified communication area In the case of the above-mentioned GNSS error information, the above-mentioned GNSS error information is sent; in the above-mentioned on-board device system, the above-mentioned on-board operation control unit judges whether the above-mentioned vehicle is located in the above-mentioned predetermined communication area. The GNSS error information is acquired, and the GNSS position information is reflected in the result of the position of the vehicle calculated by the position calculating unit based on the GNSS signals received by the first GNSS receiving unit and the second GNSS receiving unit, as the above For the position of the vehicle, when it is determined that the vehicle is not located within the predetermined communication area, the position calculation unit is based on the information received by the first GNSS receiving unit and the second GNSS receiving unit without using the GNSS error information. The result of the position of the aforementioned vehicle calculated by the GNSS signal is used as the position of the aforementioned vehicle. 一種位置檢測系統,係藉由搭載於車輛的車上裝置、和設置於地上側的地上裝置及指令中心計算前述車輛之位置的位置檢測系統,前述車上裝置具備:第一GNSS天線及第二GNSS天線,於一個車輛之前後方向隔開規定距離而設置,接收來自GNSS衛星之GNSS訊號;第一GNSS接收部,與前述第一GNSS天線連接;第二GNSS接收部,與前述第二GNSS天線連接;位置計算部,將基於前述第一GNSS接收部及前述第二GNSS接收部的前述GNSS訊號之車輛位置資訊向前述指令中心通知,而且根據前述車輛位置資訊計算前述車輛之位置;及車上側通訊部,與前述地上裝置及前述指令中心進行通訊;前述地上裝置係被設置於車站,具備:第三GNSS天線,從前述GNSS衛星接收GNSS訊號; 第三GNSS接收部,與前述第三GNSS天線連接;地上側控制部,保持前述第三GNSS天線的測量完的固定位置資訊,根據前述第三GNSS天線的測量完的固定位置資訊和基於由前述第三GNSS天線接收到的前述GNSS訊號計算的位置資訊,計算前述GNSS誤差資訊,將前述GNSS誤差資訊向前述指令中心通知;及地上側通訊部,與前述車上裝置和前述指令中心進行通訊;前述地上裝置係,接收前述GNSS訊號而計算位置資訊,根據前述位置資訊與前述固定位置資訊計算前述GNSS誤差資訊,在前述車輛進入了規定的通訊區域的情況下,發送前述GNSS誤差資訊;前述指令中心,與前述車上裝置進行通訊而獲得前述車輛位置資訊,進行前述車輛之運行管理,接收來自前述地上裝置的前述GNSS誤差資訊而修正前述車輛位置資訊,根據修正後之位置資訊,進行前述車輛之運行管理。 A position detection system is a position detection system that calculates the position of the vehicle by means of an on-board device mounted on a vehicle, a ground device installed on the ground side, and a command center, wherein the on-board device includes: a first GNSS antenna and a second The GNSS antenna is installed at a predetermined distance in the front and rear directions of a vehicle, and receives GNSS signals from GNSS satellites; the first GNSS receiver is connected to the first GNSS antenna; the second GNSS receiver is connected to the second GNSS antenna connection; a position calculation unit that notifies the command center of the vehicle position information based on the GNSS signals of the first GNSS receiving unit and the second GNSS receiving unit, and calculates the position of the vehicle based on the vehicle position information; and the on-board side The communication part communicates with the above-mentioned ground equipment and the above-mentioned command center; the above-mentioned ground equipment is installed at the station, and is provided with: a third GNSS antenna, which receives GNSS signals from the above-mentioned GNSS satellites; The third GNSS receiving unit is connected to the third GNSS antenna; the ground-side control unit holds the measured fixed position information of the third GNSS antenna, based on the measured fixed position information of the third GNSS antenna and based on the The third GNSS antenna receives the position information calculated by the aforementioned GNSS signal, calculates the aforementioned GNSS error information, and notifies the aforementioned GNSS error information to the aforementioned command center; and the ground-side communication unit communicates with the aforementioned on-board device and the aforementioned command center; The above-mentioned ground device system receives the above-mentioned GNSS signal and calculates the position information, calculates the above-mentioned GNSS error information according to the above-mentioned position information and the above-mentioned fixed position information, and transmits the above-mentioned GNSS error information when the above-mentioned vehicle enters a predetermined communication area; The above-mentioned command The center communicates with the above-mentioned on-board device to obtain the above-mentioned vehicle position information, manages the operation of the above-mentioned vehicle, receives the above-mentioned GNSS error information from the above-mentioned ground device and corrects the above-mentioned vehicle position information, and conducts the above-mentioned vehicle according to the corrected position information. operation management.
TW107118930A 2017-06-01 2018-06-01 position detection system TWI775864B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-108891 2017-06-01
JP2017108891A JP6534701B2 (en) 2017-06-01 2017-06-01 Position detection system

Publications (2)

Publication Number Publication Date
TW201903433A TW201903433A (en) 2019-01-16
TWI775864B true TWI775864B (en) 2022-09-01

Family

ID=64455795

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107118930A TWI775864B (en) 2017-06-01 2018-06-01 position detection system

Country Status (4)

Country Link
JP (1) JP6534701B2 (en)
CN (1) CN110914710B (en)
TW (1) TWI775864B (en)
WO (1) WO2018221541A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112578420B (en) * 2020-12-22 2022-08-30 卡斯柯信号有限公司 Locomotive running state detection method based on satellite positioning
TWI760261B (en) * 2021-07-14 2022-04-01 交通部臺灣鐵路管理局 Train speed monitoring system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294825A (en) * 2002-03-28 2003-10-15 Railway Technical Res Inst Method and system for detection of own position of train
JP2005247042A (en) * 2004-03-02 2005-09-15 Mitsubishi Electric Corp Operation server for train position detection management, on-vehicle equipment for train position detection management, method for train position detection management, system for train position detection management, and train position display device
CN101357644A (en) * 2008-09-08 2009-02-04 北京交通大学 Locomotive wheel diameter automatic calibration system and method based on satellite positioning
JP2016037070A (en) * 2014-08-05 2016-03-22 公益財団法人鉄道総合技術研究所 Program and data generation device
JP2016194497A (en) * 2015-04-02 2016-11-17 株式会社京三製作所 Position detection device
TW201700993A (en) * 2010-10-04 2017-01-01 高通公司 Method of providing messages for locating a device using a reference point

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3753833B2 (en) * 1997-03-27 2006-03-08 アジア航測株式会社 Road linear automatic surveying equipment
JP2007284013A (en) * 2006-04-20 2007-11-01 Mitsubishi Electric Corp Vehicle position measuring device and vehicle position measuring method
JP4926213B2 (en) * 2009-07-15 2012-05-09 株式会社京三製作所 Train control device
CN103625507B (en) * 2012-08-24 2016-02-24 河南蓝信科技股份有限公司 High Speed Railway Trains is followed the trail of close to method for early warning and system thereof
DE102013205486A1 (en) * 2013-03-27 2014-10-02 Deere & Company Arrangement and method for position detection with a hand-held device
DE102014208541A1 (en) * 2014-05-07 2015-11-12 Continental Teves Ag & Co. Ohg Determination of redundant absolute positions with driving dynamics sensors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294825A (en) * 2002-03-28 2003-10-15 Railway Technical Res Inst Method and system for detection of own position of train
JP2005247042A (en) * 2004-03-02 2005-09-15 Mitsubishi Electric Corp Operation server for train position detection management, on-vehicle equipment for train position detection management, method for train position detection management, system for train position detection management, and train position display device
CN101357644A (en) * 2008-09-08 2009-02-04 北京交通大学 Locomotive wheel diameter automatic calibration system and method based on satellite positioning
TW201700993A (en) * 2010-10-04 2017-01-01 高通公司 Method of providing messages for locating a device using a reference point
JP2016037070A (en) * 2014-08-05 2016-03-22 公益財団法人鉄道総合技術研究所 Program and data generation device
JP2016194497A (en) * 2015-04-02 2016-11-17 株式会社京三製作所 Position detection device

Also Published As

Publication number Publication date
JP6534701B2 (en) 2019-06-26
CN110914710B (en) 2023-06-27
JP2018205048A (en) 2018-12-27
WO2018221541A1 (en) 2018-12-06
CN110914710A (en) 2020-03-24
TW201903433A (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP5973024B1 (en) Position detection device
JP5249556B2 (en) On-board device for travel route detection
US10928205B2 (en) In-vehicle device and vehicle
JP5422111B2 (en) On-board device for travel route detection
JP4861069B2 (en) Train position detector
US8868324B2 (en) Relative vehicular positioning using vehicular communications
US20090043435A1 (en) Methods and systems for making a gps signal vital
JP4945286B2 (en) Train position detector
TWI775864B (en) position detection system
US7860649B2 (en) Vehicle position detecting system and method
JP2010234979A (en) Position detecting device and position detecting method in operation security system for railroad vehicle
US8401787B2 (en) Method of determining drive lane using steering wheel model
JP2007284013A (en) Vehicle position measuring device and vehicle position measuring method
JP2008196906A (en) Vehicle position detection system, on-board equipment and vehicle position detection method
US11383725B2 (en) Detecting vehicle environment sensor errors
JP3267080B2 (en) Hybrid navigation system
JP5412482B2 (en) Train position detector
JP5398500B2 (en) Train control device
JP6173714B2 (en) In-vehicle device, position correction method thereof, and position correction program
US11493934B2 (en) GPS data integrity verification
JP2008024146A (en) Calculation system of train door opening permission range
JPH10103984A (en) Apparatus for computing position of vehicle
WO2022168353A1 (en) Vehicle position estimation device, autonomous driving device, and vehicle position estimation method
US20230221126A1 (en) Vehicle position estimation device and vehicle position estimation method
JP2012159474A (en) Vehicle information processor

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent