TWI775390B - Method of improving wafer warpage - Google Patents
Method of improving wafer warpage Download PDFInfo
- Publication number
- TWI775390B TWI775390B TW110113902A TW110113902A TWI775390B TW I775390 B TWI775390 B TW I775390B TW 110113902 A TW110113902 A TW 110113902A TW 110113902 A TW110113902 A TW 110113902A TW I775390 B TWI775390 B TW I775390B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- stress
- tetraethoxysilane
- dielectric layer
- high stress
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76835—Combinations of two or more different dielectric layers having a low dielectric constant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/7682—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Formation Of Insulating Films (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
本發明大體上與一種改善晶圓翹曲的方法有關,更具體言之,其係關於一種透過高應力的四乙氧基矽烷(tetraethyl orthosilicate,TEOS)層結構來改善晶圓翹曲的方法。 The present invention generally relates to a method of improving wafer warpage, and more particularly, to a method of improving wafer warpage through a highly stressed tetraethyl orthosilicate (TEOS) layer structure.
三維晶片(3D IC)是一種將多顆晶片或多片晶圓進行三維空間垂直整合的技術,以因應半導體製程受到現今電子與材料物理極限的限制影響。其中,在堆疊晶圓(Wafer-on-Wafer,WoW)的技術中,電子元件建立在兩個或兩個以上的半導體晶片上,然後將晶圓進行對準、鍵合、切粒等步驟而形成3D積體電路,其間通過矽穿孔(through silicon via,TSV)的垂直連接結構來達到元件與元件之間的訊號傳輸。三維晶片的優點包含:在於可將更多的功能融合在更小的布局空間中,以延伸摩爾定律,使得新一代的裝置更小但功能更強大、可減少電路設計與製造的成本、電路層可以建構在不同類型的製程與晶圓上來達到組件優化、所需的內部連線更短、且大幅降低晶片所需之功耗。 Three-dimensional chip (3D IC) is a technology that vertically integrates multiple chips or multiple wafers in three-dimensional space, in response to the limitation of semiconductor manufacturing process by the physical limitations of current electronics and materials. Among them, in the Wafer-on-Wafer (Wafer, WoW) technology, electronic components are built on two or more semiconductor wafers, and then the wafers are aligned, bonded, diced, etc. A 3D integrated circuit is formed, during which signal transmission between components is achieved through a vertical connection structure of through silicon via (TSV). The advantages of 3D wafers include: more functions can be integrated into a smaller layout space to extend Moore's Law, making a new generation of devices smaller but more powerful, reducing the cost of circuit design and manufacturing, circuit layers Can be built on different types of processes and wafers to achieve device optimization, require shorter interconnects, and greatly reduce the power consumption required by the chip.
然而,堆疊晶圓技術對於組成晶圓的翹曲度有非常嚴格的要求。一般而言,在晶圓上形成的層結構會對晶圓施加應力,不論是張應力還是壓應力,造成晶圓向上翹曲或向下翹曲。翹曲程度嚴重的晶圓會影響到晶圓的鍵合以及其堆疊後的電性連接。故此,如何改善晶圓翹曲為三維晶片技術中的重要課題 之一。 However, stacked wafer technology has very strict requirements on the warpage of the constituent wafers. In general, the layer structure formed on the wafer imposes stress on the wafer, either tensile or compressive, causing the wafer to warp up or down. Wafers with severe warpage will affect the bonding of wafers and their electrical connections after stacking. Therefore, how to improve wafer warpage is an important issue in 3D wafer technology one.
有鑑於前述晶圓翹曲的習知問題,本發明特此提出了一種改善晶圓翹曲的方法,其特點在於透過額外形成在金屬間介電層中、具有高應力的四乙氧基矽烷(tetraethyl orthosilicate,TEOS)層來抵銷晶圓的固有應力。同時,此方法也可以避免孔洞在金屬互連線之間產生。 In view of the aforementioned conventional problem of wafer warpage, the present invention hereby proposes a method for improving wafer warpage, which is characterized by additionally forming tetraethoxysilane ( tetraethyl orthosilicate, TEOS) layer to offset the inherent stress of the wafer. At the same time, this method can also avoid the generation of holes between the metal interconnect lines.
本發明的目的在於提出一種改善晶圓翹曲的方法,其步驟包含提供一基底,該基底上形成有多個金屬互連線、使用高密度電漿化學氣相沉積製程在該基底與該些金屬互連線上形成一介電層,其中該介電層的表面高於該些金屬互連線的頂面、進行一化學機械平坦化製程平坦化該介電層,平坦化後的該介電層的表面高於該些金屬互連線的頂面、以及在該介電層上形成一第一高應力四乙氧基矽烷層。 An object of the present invention is to provide a method for improving wafer warpage, the steps of which include providing a substrate on which a plurality of metal interconnects are formed, and using a high-density plasma chemical vapor deposition process on the substrate and the substrates. A dielectric layer is formed on the metal interconnects, wherein the surface of the dielectric layer is higher than the top surface of the metal interconnects, a chemical mechanical planarization process is performed to planarize the dielectric layer, and the planarized dielectric The surface of the layer is higher than the top surface of the metal interconnects, and a first high stress tetraethoxysilane layer is formed on the dielectric layer.
本發明的這類目的與其他目的在閱者讀過下文中以多種圖示與繪圖來描述的較佳實施例之細節說明後應可變得更為明瞭顯見。 These and other objects of the present invention should become more apparent to the reader after reading the following detailed description of the preferred embodiment described in the various figures and drawings.
100:基底 100: base
102:金屬互連線 102: Metal Interconnects
104:介電層 104: Dielectric layer
106:高應力四乙氧基矽烷(TEOS)層 106: High stress tetraethoxysilane (TEOS) layer
108:高應力四乙氧基矽烷(TEOS)層 108: High stress tetraethoxysilane (TEOS) layer
110:孔洞 110: Hole
S1~S8:步驟 S1~S8: Steps
本說明書含有附圖併於文中構成了本說明書之一部分,俾使閱者對本發明實施例有進一步的瞭解。該些圖示係描繪了本發明一些實施例並連同本文描述一起說明了其原理。在該些圖示中:第1圖至第3圖為根據本發明較佳實施例中改善晶圓翹曲的方法流程的截面示意圖;第4圖為根據本發明較佳實施例中第一高應力TEOS層的厚度比例對晶圓翹 曲歸一化後的數值的折線圖;第5圖至第7圖為根據本發明另一實施例中改善晶圓翹曲的方法流程的截面示意圖;第8圖為根據本發明另一實施例中第二高應力TEOS層的厚度比例對晶圓翹曲歸一化後的數值的折線圖;以及第9圖為根據本發明另一實施例中改善晶圓翹曲的方法的流程方塊圖。 This specification contains accompanying drawings, which constitute a part of this specification, so as to enable readers to have a further understanding of the embodiments of the present invention. The drawings depict some embodiments of the invention and together with the description herein explain the principles thereof. Among these figures: Figures 1 to 3 are cross-sectional schematic diagrams of a method for improving wafer warpage according to a preferred embodiment of the present invention; Figure 4 is a first high The ratio of the thickness of the stressed TEOS layer to the wafer warpage Figure 5 to Figure 7 are cross-sectional schematic diagrams of a method for improving wafer warpage according to another embodiment of the present invention; Figure 8 is another embodiment of the present invention. A line graph showing the normalized value of the thickness ratio of the second high stress TEOS layer to the wafer warpage; and FIG. 9 is a block flow diagram of a method for improving wafer warpage according to another embodiment of the present invention.
須注意本說明書中的所有圖示皆為圖例性質,為了清楚與方便圖示說明之故,圖示中的各部件在尺寸與比例上可能會被誇大或縮小地呈現,一般而言,圖中相同的參考符號會用來標示修改後或不同實施例中對應或類似的元件特徵。 It should be noted that all the illustrations in this specification are of the nature of illustrations. For the sake of clarity and convenience of illustration, the sizes and proportions of the components in the illustrations may be exaggerated or reduced. The same reference characters will be used to designate corresponding or similar element features in modified or different embodiments.
現在下文將詳細說明本發明的示例性實施例,其會參照附圖示出所描述之特徵以便閱者理解並實現技術效果。閱者將可理解文中之描述僅透過例示之方式來進行,而非意欲要限制本案。本案的各種實施例和實施例中彼此不衝突的各種特徵可以以各種方式來加以組合或重新設置。在不脫離本發明的精神與範疇的情況下,對本案的修改、等同物或改進對於本領域技術人員來說是可以理解的,並且旨在包含在本案的範圍內。 Exemplary embodiments of the present invention will now be described in detail below, which will illustrate the described features with reference to the accompanying drawings to facilitate the reader's understanding and to achieve technical effects. The reader will understand that the description herein is by way of illustration only and is not intended to limit the present case. The various embodiments of the present invention and various features of the embodiments that do not conflict with each other may be combined or rearranged in various ways. Modifications, equivalents or improvements to the present invention will be understood by those skilled in the art without departing from the spirit and scope of the present invention, and are intended to be included within the scope of the present invention.
閱者應能容易理解,本案中的「在…上」、「在…之上」和「在…上方」的含義應當以廣義的方式被解讀,以使得「在…上」不僅表示「直接在」某物「上」而且還包括在某物「上」且其間有居間特徵或層的含義,並且「在…之上」或「在…上方」不僅表示「在」某物「之上」或「上方」的含義,而且還可以包括其「在」某物「之上」或「上方」且其間沒有居間特徵或層(即,直接在某物上)的含義。 Readers should be able to easily understand that the meanings of "on", "on" and "above" in this case should be interpreted in a broad sense, so that "on" not only means "directly on" "on" something but also includes the meaning of "on" something with intervening features or layers, and "on" or "over" means not only "on" something "on" or The meaning of "above", but can also include its meaning "on" or "over" something without intervening features or layers (ie, directly on something).
此外,諸如「在…之下」、「在…下方」、「下部」、「在…之上」、「上部」等空間相關術語在本文中為了描述方便可以用於描述一個元件或特徵與另一個或多個元件或特徵的關係,如在附圖中示出的。 Furthermore, spatially relative terms such as "below", "below", "lower", "above", "upper" and the like may be used herein for descriptive convenience to describe one element or feature with another The relationship of one or more elements or features as illustrated in the accompanying drawings.
閱者通常可以至少部分地從上下文中的用法理解術語。例如,至少部分地取決於上下文,本文所使用的術語「一或多個」可以用於以單數意義描述任何特徵、結構或特性,或者可以用於以複數意義描述特徵、結構或特性的組合。類似地,至少部分地取決於上下文,諸如「一」、「一個」、「該」或「所述」之類的術語同樣可以被理解為傳達單數用法或者傳達複數用法。另外,術語「基於」可以被理解為不一定旨在傳達排他性的因素集合,而是可以允許存在不一定明確地描述的額外因素,這同樣至少部分地取決於上下文。 A reader can usually understand a term, at least in part, from its usage in the context. For example, the term "one or more" as used herein may be used to describe any feature, structure or characteristic in the singular or may be used to describe a combination of features, structures or characteristics in the plural, depending at least in part on the context. Similarly, terms such as "a," "an," "the," or "said" may likewise be understood to convey singular usages or to convey plural usages, depending at least in part on context. Additionally, the term "based on" may be understood as not necessarily intended to convey an exclusive set of factors, but may allow for the presence of additional factors that are not necessarily explicitly described, again depending at least in part on context.
如本文中使用的,術語「層」是指包括具有厚度的區域的材料部分。層可以在下方或上方結構的整體之上延伸,或者可以具有小於下方或上方結構範圍的範圍。此外,層可以是厚度小於連續結構的厚度的均質或非均質連續結構的區域。例如,層可以位於在連續結構的頂表面和底表面之間或在頂表面和底表面處的任何水平面對之間。層可以水準、豎直和/或沿傾斜表面延伸。基底可以是層,其中可以包括一個或多個層,和/或可以在其上、其上方和/或其下方具有一個或多個層。層可以包括多個層。例如,互連層可以包括一個或多個導體和接觸層(其中形成觸點、互連線和/或通孔)和一個或多個介電層。 As used herein, the term "layer" refers to a portion of a material that includes a region having a thickness. A layer may extend over the entirety of the underlying or overlying structure, or may have an extent that is less than the extent of the underlying or overlying structure. Furthermore, a layer may be a region of a homogeneous or heterogeneous continuous structure having a thickness less than the thickness of the continuous structure. For example, a layer may be located between the top and bottom surfaces of the continuous structure or between any horizontal faces at the top and bottom surfaces. Layers can extend horizontally, vertically and/or along inclined surfaces. A substrate may be a layer, may include one or more layers therein, and/or may have one or more layers thereon, over it, and/or under it. Layers may include multiple layers. For example, the interconnect layer may include one or more conductor and contact layers (in which contacts, interconnect lines and/or vias are formed) and one or more dielectric layers.
閱者更能了解到,當「包含」與/或「含有」等詞用於本說明書時,其明定了所陳述特徵、區域、整體、步驟、操作、要素以及/或部件的存在,但並不排除一或多個其他的特徵、區域、整體、步驟、操作、要素、部件以及/或其組合的存在或添加的可能性。 Readers will better understand that when the words "comprising" and/or "comprising" are used in this specification, they clearly identify the existence of the stated features, regions, integers, steps, operations, elements and/or parts, but do not The presence or addition of one or more other features, regions, integers, steps, operations, elements, components and/or combinations thereof is not excluded.
現在下文的實施例將依序根據第1圖至第3圖的截面結構來說明本發明改善晶圓翹曲的方法流程。須注意,本發明改善晶圓翹曲的方法較佳實施在 半導體後段製程(BEOL)中的金屬間介電層(inter-metal dielectric,IMD)中,特別是後續要進行晶圓堆疊與接合的晶圓中,以達到確保晶圓堆疊接合後形成良好電性連接的發明訴求。至於半導體前段製程(FEOL)中一般所具有的結構與元件,如主動區域、電晶體等,由於其並非本發明之重點且與本發明特徵沒有關係,為了圖示與說明書的簡明之故,圖中將省略這些元件。 Now, the following embodiments will sequentially illustrate the flow of the method for improving wafer warpage of the present invention according to the cross-sectional structures of FIGS. 1 to 3 . It should be noted that the method for improving wafer warpage of the present invention is preferably implemented in In the inter-metal dielectric layer (IMD) in the semiconductor back-end process (BEOL), especially in the wafers that are to be stacked and bonded subsequently, to ensure good electrical properties after wafer stack bonding Connected invention claims. As for the structures and components generally included in the front-end semiconductor process (FEOL), such as active regions, transistors, etc., since they are not the focus of the present invention and have nothing to do with the features of the present invention, for the sake of simplicity of illustration and description, Fig. These elements will be omitted.
首先請參照第1圖,提供一基底100,如以半導體材料所構成的基底,其中半導體材料可選自由矽、鍺、矽鍺化合物、矽碳化物以及砷化鎵等材料所構成之群組。基底100較佳包含有主動區域、電晶體、層間介電層(inter-layer dielectric,ILD)與/或金屬間介電層(inter-metal dielectric,IMD)、金屬互連結構等結構(未圖示)。基底100上形成有金屬互連線102,其間隔排列且具有等高的頂面。在本發明實施例中,金屬互連線102可為一般後段製程中的金屬互連層,如M1,M2,M3等金屬互連層,其材質可為鋁銅合金,可以物理氣相沉積製程(PVD)或是各種化學氣相沉積(CVD)製程形成金屬層後再透過光刻製程圖案化後形成。不同的金屬互連層之間可以導孔件(via,未圖示)電性互連。
Referring first to FIG. 1, a
請參照第2圖。形成金屬互連線102後,接著在基底100與金屬互連線102上形成一介電層104。在本發明實施例中,介電層104可為一金屬間介電層,其材料可為氧化矽或低介電係數(low-k)材料,如多孔性氧化矽、摻氟氧化矽(SiOF)、摻碳氧化矽(SiOC)、非晶碳(a-C和a-C:H)、氟化非晶碳(a-C:F)等,可透過具有高填洞能力的高密度電漿化學氣相沉積(HDP-CVD)製程來形成,避免金屬互連線102之間有孔洞產生。介電層104形成後可進行一化學機械平坦化(CMP)製程來平坦化其表面,平坦化後的介電層104表面高於金屬互連線102的頂面。
Please refer to Figure 2. After the
在習知技術中,高密度電漿化學氣相沉積製程具有良好的填洞性質,但是其所生成層結構的低應力特性無法對晶圓翹曲問題有所改善。對此,本發明立意額外形成一層結構來解決此問題。請參照第3圖,形成介電層104後,
接著在介電層104表面形成一第一高應力的四乙氧基矽烷(tetraethyl orthosilicate,TEOS)層106,其可透過電漿輔助化學氣相沉積(PECVD)製程來形成。第一高應力四乙氧基矽烷層106形成後,可進行化學機械平坦化製程來平坦化其表面並控制其厚度。
In the prior art, the high-density plasma chemical vapor deposition process has good hole-filling properties, but the low-stress property of the resulting layer structure cannot improve the wafer warpage problem. In this regard, the present invention intends to form an additional layer structure to solve this problem. Referring to FIG. 3, after the
在本發明實施例中,第一高應力TEOS層106的應力會隨著其沉積厚度而改變。如第4圖所示,其為第一高應力TEOS層106的厚度比例對晶圓翹曲歸一化後(normalized)的數值的折線圖,圖中的x軸代表了第一高應力TEOS層106的厚度比例,其中POR代表完全不使用TEOS層(厚度為0)的標準製程,100%代表TEOS層厚度最大化的情況,以此類推。y軸則代表了形成有該第一高應力TEOS層106的晶圓歸一化後的翹曲度,其中正值代表晶圓往下翹曲的程度,負值代表晶圓往上翹曲的程度。從圖中可以看到,在本發明實施例中,在完全未形成TEOS層的標準製程(POR)中,晶圓會因為其上所形成的各種層結構所產生的應力而往下翹曲(歸一值為1)。在有形成最大厚度的TEOS層的例子中,使晶圓向下翹曲的應力會被該第一高應力TEOS層106所產生的應力所抵銷,所產生之應力甚至過大而使得晶圓往上翹曲(歸一值為-1.37)。而在形成約52.4%厚度的第一高應力TEOS層106的例子中,晶圓向下翹曲的應力剛好會被沉積該第一高應力TEOS層106所產生的應力所抵銷,使得晶圓幾乎不往任何方向翹曲(歸一值為-0.49),達到最佳功效。故此可知,在本發明實施例中,在填縫的介電層104上形成特定厚度的第一高應力TEOS層106可有效改善晶圓翹曲的問題。
In an embodiment of the present invention, the stress of the first high-
現在下文將依序根據第5圖至第7圖的截面結構來說明根據本發明另一實施例的改善晶圓翹曲的方法流程。在此實施例中,除了前述實施例中所提到的第一高應力TEOS層106,在形成介電層104之前,可以先在基底上形成一層額外的高應力TEOS層。請參照第5圖,金屬互連線102形成後,在基底100上先形成另一第二高應力TEOS層108,其可透過電漿輔助化學氣相沉積(PECVD)製程來
形成,並可透過後續的平坦化製程與/或回蝕刻製程來控制其厚度。在本發明實施例中,第二高應力TEOS層108的表面低於金屬互連線102的頂面,且位於該些金屬互連線102之間。
Now, the flow of a method for improving wafer warpage according to another embodiment of the present invention will be described in sequence according to the cross-sectional structures of FIGS. 5 to 7 . In this embodiment, in addition to the first high
請參照第6圖。形成第二高應力TEOS層108後,接著在第二高應力TEOS層108與金屬互連線102上形成介電層104。介電層104可為一金屬間介電層,其材料可為氧化矽或低介電係數(low-k)材料,如多孔性氧化矽、摻氟氧化矽(SiOF)、摻碳氧化矽(SiOC)、非晶碳(a-C和a-C:H)、氟化非晶碳(a-C:F)等,可透過具有高密度電漿化學氣相沉積(HDP-CVD)製程來形成。在本發明實施例中,由於第二高應力TEOS層108並不具備良好的填洞能力,故在介電層104形成後,介電層104與第二高應力TEOS層108之間會有孔洞110形成。然而,由於介電層104是以具備良好填洞能力的高密度電漿化學氣相沉積(HDP-CVD)形成的,所形成的孔洞110會被侷限在接近第二高應力TEOS層108部位,其頂部不會超過金屬互連線102的頂面,如此可避免該些孔洞影響到後續製程。
Please refer to Figure 6. After the second high
請參照第7圖,介電層104形成後,接著進行化學機械平坦化(CMP)製程來平坦化介電層104的表面,平坦化後的介電層104表面高於金屬互連線102的頂面。之後,與前述實施例相同,在介電層104表面形成第一高應力TEOS層106,其可透過電漿輔助化學氣相沉積(PECVD)製程來形成。第一高應力TEOS層106形成後,可進行化學機械平坦化製程來平坦化其表面並控制其厚度。
Referring to FIG. 7 , after the
在本發明實施例中,形成在基底100上的第二高應力TEOS層108的應力會隨著其沉積厚度而改變,其同樣具有改善晶圓翹曲的功效。如第8圖所示,其中POR代表完全不使用TEOS層(厚度為0)的標準製程,百分比代表所形成的TEOS層的厚度比例,以此類推。y軸則代表了形成有該第二高應力TEOS層108的晶圓歸一化後的翹曲度,其中正值代表晶圓往下翹曲的程度,負值代表晶圓往上翹曲的程度。從圖中可以看到,在本發明實施例中,在完全未形成TEOS層的
標準製程(POR)中,晶圓會因為其上所形成的各種層結構所產生的應力而往下翹曲(歸一值為1)。在基底100有形成第二高應力TEOS層108的例子中,使晶圓向下翹曲的應力部分會被沉積該第二高應力TEOS層108所產生的應力所抵銷(歸一值下降到0.64),改善晶圓翹曲的問題。
In the embodiment of the present invention, the stress of the second high-
現在請參照第9圖,其為根據本發明上述實施例的方法流程圖。首先在步驟S1,在基底100上沉積第二高應力TEOS層108(如第5圖所示)。接著在步驟S2,使用高密度電漿化學氣相沉積(HDP-CVD)製程在第二高應力TEOS層108上沉積介電層104(如第6圖所示)。接著在步驟S3,進行CMP製程平坦化介電層104(如第7圖所示)。接著在步驟S4,在介電層104上沉積第一高應力TEOS層106(如第7圖所示)。接著在步驟S5,進行CMP製程平坦化第一高應力TEOS層106(如第7圖所示)。在上述製程完成後,接下來的步驟S6可以進行晶圓翹曲度的量測,例如透過專門的光學量測機台或壓力量測機台為之,其可測出晶圓的翹曲程度是否在容許範圍內。通過晶圓翹曲度量測後,接著在步驟S7,可對晶圓進行切片,確認金屬互連線之間所形成的孔洞是否有超過其頂面的情形,如果超過,整個方法流程會回到步驟S1,重新設定所要沉積的第一高應力TEOS層106與第二高應力TEOS層108的厚度,並重複上述S1-S7的步驟,直到晶圓翹曲度的量測與孔洞切片的檢測皆通過,如此可將兩個高應力TEOS層的厚度都設定在最佳數值,確保最終實際上線後產品的品質。如果未超過,則流程結束S8。
Please refer now to FIG. 9, which is a flow chart of a method according to the above-described embodiment of the present invention. First, in step S1, a second high
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
S1-S8:步驟 S1-S8: Steps
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110113902A TWI775390B (en) | 2021-04-19 | 2021-04-19 | Method of improving wafer warpage |
CN202110458322.0A CN115223928A (en) | 2021-04-19 | 2021-04-27 | Method for improving warping of chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110113902A TWI775390B (en) | 2021-04-19 | 2021-04-19 | Method of improving wafer warpage |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI775390B true TWI775390B (en) | 2022-08-21 |
TW202242175A TW202242175A (en) | 2022-11-01 |
Family
ID=83606347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110113902A TWI775390B (en) | 2021-04-19 | 2021-04-19 | Method of improving wafer warpage |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115223928A (en) |
TW (1) | TWI775390B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI223849B (en) * | 2001-04-04 | 2004-11-11 | Mosel Vitelic Inc | Planarization method of inter-metal dielectric layer |
-
2021
- 2021-04-19 TW TW110113902A patent/TWI775390B/en active
- 2021-04-27 CN CN202110458322.0A patent/CN115223928A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI223849B (en) * | 2001-04-04 | 2004-11-11 | Mosel Vitelic Inc | Planarization method of inter-metal dielectric layer |
Also Published As
Publication number | Publication date |
---|---|
CN115223928A (en) | 2022-10-21 |
TW202242175A (en) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11830838B2 (en) | Conductive barrier direct hybrid bonding | |
US11984431B2 (en) | 3DIC structure and methods of forming | |
US11587910B2 (en) | Stacked semiconductor structure and method | |
US9530737B1 (en) | Semiconductor device and manufacturing method thereof | |
US9691733B1 (en) | Bonded semiconductor structure and method for forming the same | |
TWI402957B (en) | Through-silicon via with low-k dielectric liner | |
US11145626B2 (en) | Semiconductor package | |
US20170040274A1 (en) | Bond pad structure for low temperature flip chip bonding | |
TW202006796A (en) | Method for integrated circuit fabrication | |
TWI648839B (en) | Device with interconnected structure and method of manufacturing same | |
TWI768208B (en) | Semiconductor chips and methods of manufacturing the same | |
US7605470B2 (en) | Dummy patterns and method of manufacture for mechanical strength of low K dielectric materials in copper interconnect structures for semiconductor devices | |
KR20150043933A (en) | Integrated circuit device having through-silicon via structure and method of manufacturing the same | |
US20160268230A1 (en) | Stacked semiconductor structure | |
TW202123402A (en) | Semiconductor device and semiconductor package | |
TWI775390B (en) | Method of improving wafer warpage | |
US11640950B2 (en) | Semiconductor chip and semiconductor package | |
KR20230086509A (en) | Semiconductor device, semiconductor package, and method of fabricating semiconductor device | |
KR20230035173A (en) | Semiconductor device, semiconductor package and method of manufacturing the same | |
TWI830178B (en) | Packages with deep bond pads and method forming same | |
US20240096830A1 (en) | Adding Sealing Material to Wafer edge for Wafer Bonding | |
TWI829426B (en) | Multilayer stacking wafer bonding structure and method of manufacturing the same | |
TWI822153B (en) | Package structure and method for forming the same | |
TW202303848A (en) | Manufacturing methods of semiconductor devices | |
KR20240156274A (en) | Redistribution layer and methods of fabrication thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |