TWI774406B - Component of electronic vehicle, data collecting system for electronic vehicle, and data collecting method for electronic vehicle - Google Patents

Component of electronic vehicle, data collecting system for electronic vehicle, and data collecting method for electronic vehicle Download PDF

Info

Publication number
TWI774406B
TWI774406B TW110120128A TW110120128A TWI774406B TW I774406 B TWI774406 B TW I774406B TW 110120128 A TW110120128 A TW 110120128A TW 110120128 A TW110120128 A TW 110120128A TW I774406 B TWI774406 B TW I774406B
Authority
TW
Taiwan
Prior art keywords
data
component
unit
bus
electric vehicle
Prior art date
Application number
TW110120128A
Other languages
Chinese (zh)
Other versions
TW202248778A (en
Inventor
黃聖琪
呂昀駿
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW110120128A priority Critical patent/TWI774406B/en
Application granted granted Critical
Publication of TWI774406B publication Critical patent/TWI774406B/en
Publication of TW202248778A publication Critical patent/TW202248778A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Time Recorders, Dirve Recorders, Access Control (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

A data collecting system including a component assembled in an electronic vehicle, a data collector connected to the component through a bus of the electronic vehicle, and a detecting server connected to the data collector is disclosed. The component collects different data from the electronic vehicle and performs different sending procedures respectively under different situations including: A normal sending procedure sends normal data to the bus based on normal frequency; A high-speed sending procedure starts collecting high-speed data and sending the same to the bus based on high-speed frequency after a condition is satisfied; and, A high-resolution sending procedure sends high-resolution data collected within a period of time before and after a malfunction occurs to the bus. The data collector collects these data from the bus. The detecting server analyses the data collected by the data collector for an engineer to review.

Description

電動載具部件、電動載具資料收集系統及電動載具資料收集 方法 Electric Vehicle Components, Electric Vehicle Data Collection System and Electric Vehicle Data Collection method

本發明涉及電動載具,尤其涉及電動載具中的部件,以及用來收集並分析部件的資料的電動載具資料收集系統及電動載具資料收集方法。 The present invention relates to electric vehicles, in particular to components in the electric vehicles, as well as an electric vehicle data collection system and an electric vehicle data collection method for collecting and analyzing the data of the parts.

一般來說,車廠會通過電動載具的總線來收集電動載具運作時的相關資料。然而,車廠通常只會聚焦在電動載具中的大部件的相關問題,因此只會針對總線的故障碼等慢速的資料進行收集。由於所收集的資料量不足、解析度不高並且不具有時間參數,因此在電動載具發生故障時,通常僅有客戶口述的故障經歷以及低解析度的總線資料。如此一來,部件的製造商在收到故障通知時,往往不足以分析出故障發生的原因,並且難以直接重現故障。 Generally speaking, the car factory will collect the relevant data of the operation of the electric vehicle through the bus of the electric vehicle. However, car manufacturers usually only focus on problems related to large components in electric vehicles, so they only collect slow data such as bus fault codes. Due to the insufficient amount of collected data, low resolution and no time parameters, when an electric vehicle fails, there are usually only the customer's oral failure experience and low-resolution bus data. As a result, component manufacturers are often not able to analyze the cause of the failure when notified of the failure, and it is difficult to reproduce the failure directly.

本發明之主要目的,在於提供一種電動載具部件、電動載具資料收集系統及電動載具資料收集方法,可以通過動態資料發送機制將部件的低速資料、高速資料以及具有絕對時間資訊的高解析度資料分別發送到電動載具的總線上,再從總線發送至偵錯伺服器,使得工程人員可以在遠端即時獲得分析所需的有效資料。 The main purpose of the present invention is to provide an electric vehicle component, an electric vehicle data collection system and an electric vehicle data collection method, which can transmit the low-speed data, high-speed data and high-resolution data with absolute time information of components through a dynamic data transmission mechanism. The degree data are respectively sent to the bus of the electric vehicle, and then sent from the bus to the debug server, so that the engineers can obtain the effective data needed for analysis at the remote end in real time.

為了達成上述之目的,本發明的電動載具部件設置於電動載具中並連接該電動載具的總線,並且包括:一通訊單元,以一一般頻率持續收集該電動載具部件的一部件資料中的一一般資料,並執行一一般資料發送程序以基於該一般頻率將該一般資料發送至該總線上;一條件判斷單元,記錄至少一組觸發條件,並基於該部件資料判斷是否符合該觸發條件;一高速資料收集單元,連接該條件判斷單元及該通訊單元,於該部件資料符合該觸發條件後受該條件判斷單元觸發以一高速頻率持續收集該部件資料中的一高速資料,並且該通訊單元執行一高速資料發送程序以基於該高速頻率將該高速資料發送至該總線上,其中該高速頻率高於該一般頻率;一儲存單元,連接該通訊單元;一高解析度資料收集單元,持續收集並暫存該部件資料中的一高解析度資料;一錯誤診斷單元,連接該高解析度資料收集單元,基於該部件資料判斷一故障是否發生;及一計時單元,連接該高解析度資料收集單元,其中暫存的該高解析度資料包括該計時單元提供之一時間資訊,該時間資訊記錄一標準時間; 其中,該高解析度資料收集單元連接該儲存單元,於該故障發生時受該錯誤診斷單元觸發以將當前暫存及後續收集的該高解析度資料儲存至該儲存單元,並且該通訊單元執行一高解析度資料發送程序以將該儲存單元中相對於該故障發生當時及前、後一段特定時間內儲存的該高解析度資料發送至該總線上。 In order to achieve the above-mentioned purpose, the electric vehicle component of the present invention is disposed in the electric vehicle and connected to the bus of the electric vehicle, and includes: a communication unit, which continuously collects a component data of the electric vehicle component at a common frequency a general data in and executes a general data sending program to send the general data to the bus based on the general frequency; a condition judging unit records at least one set of trigger conditions, and judges whether the trigger is met based on the component data condition; a high-speed data collection unit, connected to the condition judgment unit and the communication unit, is triggered by the condition judgment unit to continuously collect a high-speed data in the component data at a high-speed frequency after the component data meets the trigger condition, and the component data The communication unit executes a high-speed data sending program to send the high-speed data to the bus based on the high-speed frequency, wherein the high-speed frequency is higher than the normal frequency; a storage unit is connected to the communication unit; a high-resolution data collection unit, Continuously collect and temporarily store a high-resolution data in the component data; an error diagnosis unit, connected to the high-resolution data collection unit, determines whether a fault occurs based on the component data; and a timing unit, connected to the high-resolution a data collection unit, wherein the temporarily stored high-resolution data includes time information provided by the timing unit, and the time information records a standard time; Wherein, the high-resolution data collection unit is connected to the storage unit, and is triggered by the error diagnosis unit when the fault occurs to store the currently temporarily stored and subsequently collected high-resolution data to the storage unit, and the communication unit executes A high-resolution data sending program is used to send the high-resolution data stored in the storage unit to the bus with respect to the time when the fault occurs, before and after a certain period of time.

為了達成上述之目的,本發明的電動載具資料收集系統包括:一部件,設置於一電動載具中並且連接該電動載具的一總線,該部件執行一一般資料發送程序、一高速資料發送程序或一高解析度資料發送程序,其中該一般資料發送程序持續收集該電動載具的一部件資料中的一一般資料,並且基於一一般頻率發送該一般資料至該總線上,其中該高速資料發送程序於該部件資料符合一觸發條件後開始收集該部件資料中的一高速資料,並且基於高於該一般頻率的一高速頻率發送該高速資料至該總線上,其中該高解析度資料發送程序持續收集並暫存該部件資料中的一高解析度資料,於判斷一故障發生時將當前暫存及後續收集的具有一時間資訊的該高解析度資料儲存至一儲存單元,並且將該儲存單元中相對於該故障發生當時及前、後一段特定時間內儲存的該高解析度資料發送至該總線上;一資料收集器,通訊連接該總線並對該總線上的一總線資料進行全取樣,其中該資料收集器具有一校時單元、一第一通訊單元及一處理單元,該校時單元通過該第一通訊單元連接一NTP伺服器以取得一時間資訊,該處理單元將該總線資料與所取得的該時間資訊進行關聯以產生一上傳資料,其中該總線資料包括該一般資料、該高速資料及該高解析度資料的至少其中之一;及 一偵錯伺服器,與該資料收集器的該第一通訊單元通訊連接以接收該上傳資料,該偵錯伺服器具有一錯誤資料庫及一診斷單元,該錯誤資料庫儲存複數個故障態樣,該診斷單元將該上傳資料與該複數個故障態樣進行比對並即時顯示一比對結果。 In order to achieve the above object, the electric vehicle data collection system of the present invention includes: a component, disposed in an electric vehicle and connected to a bus of the electric vehicle, the component executes a general data transmission procedure, a high-speed data transmission program or a high-resolution data sending program, wherein the general data sending program continuously collects a general data in a component data of the electric vehicle, and sends the general data to the bus based on a general frequency, wherein the high speed data The sending program starts to collect a high-speed data in the component data after the component data meets a trigger condition, and sends the high-speed data to the bus based on a high-speed frequency higher than the normal frequency, wherein the high-resolution data sending program Continuously collect and temporarily store a high-resolution data in the component data, store the currently temporarily stored and subsequently collected high-resolution data with a time information in a storage unit when a fault occurs, and store the The high-resolution data stored in the unit relative to the time when the fault occurs, before and after a certain period of time is sent to the bus; a data collector is connected to the bus and performs full sampling of a bus data on the bus , wherein the data collector has a timing unit, a first communication unit and a processing unit, the timing unit is connected to an NTP server through the first communication unit to obtain time information, and the processing unit associates the bus data with the The obtained time information is correlated to generate an upload data, wherein the bus data includes at least one of the general data, the high-speed data and the high-resolution data; and A debug server communicated with the first communication unit of the data collector to receive the uploaded data, the debug server has an error database and a diagnosis unit, and the error database stores a plurality of fault patterns , the diagnosing unit compares the uploaded data with the plurality of fault patterns and displays a comparison result in real time.

為了達成上述之目的,本發明的電動載具資料收集方法係應用於一電動載具資料收集系統,其中該電動載具資料收集系統包括設置於一電動載具中的一部件、通過該電動載具的一總線與該部件通訊連接的一資料收集器以及與該資料收集器通訊連接的一偵錯伺服器,該電動載具資料收集方法包括:a)該部件持續收集一部件資料中的一般資料,並執行一一般資料發送程序以基於一一般頻率發送該一般資料至該總線上;b)該部件基於該部件資料判斷是否符合一觸發條件;c)該部件於該部件資料符合該觸發條件後持續收集該部件資料中的一高速資料,並執行一高速資料發送程序以基於一高速頻率發送該高速資料至該總線上,其中該高速頻率高於該一般頻率;d)該部件持續收集並暫存該部件資料中的一高解析度資料;e)該部件基於該部件資料判斷一故障是否發生;f)該部件於該故障發生時將當前暫存及後續收集的該高解析度資料儲存至一儲存單元;g)該步驟f後,該部件執行一高解析度資料發送程序以將該儲存單元中相對於該故障發生當時及前、後一段特定時間內儲存的該高解析度資料發送至該總線上,其中該高解析度資料包括一時間資訊,該時間資訊記錄一標準時間;h)該資料收集器對該總線上的一總線資料進行全取樣,其中該總線資料包括該一般資料、該高速資料及該高解析度資料的至少其中之一; i)該資料收集器將所取樣的該總線資料與該標準時間進行關聯以產生一上傳資料;j)該偵錯伺服器由該資料收集器接收該上傳資料;及k)該偵錯伺服器將該上傳資料與預儲存的複數個故障態樣進行比對,並即時顯示一比對結果。 In order to achieve the above-mentioned purpose, the data collection method of an electric vehicle of the present invention is applied to an electric vehicle data collection system, wherein the electric vehicle data collection system includes a component disposed in an electric vehicle, and the electric vehicle data collection system A data collector communicatively connected with the component and a debug server communicatively connected with the data collector, the electric vehicle data collection method includes: a) the component continuously collects the general information in the component data data, and execute a general data sending program to send the general data to the bus based on a general frequency; b) the component determines whether a trigger condition is met based on the component data; c) the component meets the trigger condition when the component data meets the trigger condition Then continue to collect a high-speed data in the component data, and execute a high-speed data sending program to send the high-speed data to the bus based on a high-speed frequency, wherein the high-speed frequency is higher than the normal frequency; d) The component continues to collect and Temporarily store a high-resolution data in the component data; e) the component determines whether a fault has occurred based on the component data; f) the component stores the high-resolution data currently temporarily stored and subsequently collected when the fault occurs to a storage unit; g) after the step f, the component executes a high-resolution data sending program to send the high-resolution data stored in the storage unit relative to the time when the fault occurs, before and after a certain period of time onto the bus, wherein the high-resolution data includes a time information that records a standard time; h) the data collector performs full sampling of a bus data on the bus, wherein the bus data includes the general data , at least one of the high-speed data and the high-resolution data; i) the data collector correlates the sampled bus data with the standard time to generate an upload data; j) the debug server receives the upload data from the data collector; and k) the debug server Compare the uploaded data with a plurality of pre-stored fault patterns, and display a comparison result in real time.

相對於相關技術,本發明令電動載具的部件依照不同情境以不同方式將不同資料發佈到總線上,藉此分別傳輸低速資料、高速資料以及具絕對時間資訊的高解析度資料,並可優化總線的負荷狀態。另,本發明可彈性設定部件的資料的收集動作與發送動作的觸發條件,藉此易於取得工程人員要進行分析所需的有效資訊。並且,通過偵錯伺服器於遠端同步收集、分析並顯示資料,工程人員還可於部件發生故障的同時,即時對部件資料以及故障發生原因進行分析。 Compared with the related art, the present invention enables the components of the electric vehicle to release different data to the bus in different ways according to different situations, thereby respectively transmitting low-speed data, high-speed data and high-resolution data with absolute time information, and can be optimized. The load status of the bus. In addition, the present invention can flexibly set the triggering conditions of the data collection action and the transmission action of the component, thereby facilitating the acquisition of effective information required by the engineer for analysis. In addition, through the synchronous collection, analysis and display of data at the remote end by the debug server, engineers can also analyze the component data and the cause of the failure in real time when the component fails.

另外,本發明允許工程人員在遠端經過分析後直接發送對應的控制指令至資料收集器以對指定的部件進行調整,藉此可協助工程人員在不須親臨現場的情況下於遠端直接對電動載具的部件進行故障修復。 In addition, the present invention allows engineers to directly send corresponding control commands to the data collector after analysis at the remote end to adjust the specified components, thereby assisting the engineers to directly control the Parts of the electric vehicle were faulty repaired.

1:收集系統 1: Collection system

2:電動載具 2: Electric vehicle

20:記憶體 20: Memory

21:部件 21: Components

211:部件通訊單元 211: Component communication unit

212:條件判斷單元 212: Condition judgment unit

213:高速資料收集單元 213: High Speed Data Collection Unit

214:高解析度資料收集單元 214: High Resolution Data Collection Unit

215:錯誤診斷單元 215: Error diagnostic unit

216:部件儲存單元 216: Parts Storage Unit

217:計時單元 217: Timing Unit

22:總線 22: Bus

23:一般資料 23: General Information

24:高速資料 24: High Speed Data

25:高解析度資料 25: High Resolution Data

3:資料收集器 3: Data Collector

31:處理單元 31: Processing unit

32:第一通訊單元 32: The first communication unit

33:校時單元 33: School hours unit

34:第二通訊單元 34: Second communication unit

35:收集單元 35: Collection Unit

36:收集器記憶體 36: Collector Memory

37:收集器儲存單元 37: Collector storage unit

4:偵錯伺服器 4: Debug server

41:伺服器通訊單元 41: Server communication unit

42:伺服器儲存單元 42: Server storage unit

43:解碼單元 43: Decoding unit

44:診斷單元 44: Diagnostic unit

45:人機介面 45: Human Machine Interface

46:錯誤資料庫 46: Error database

5:工程人員 5: Engineering staff

6:NTP伺服器 6: NTP server

C1:控制指令 C1: Control command

S10~S17:時間校對步驟 S10~S17: Time proofreading steps

S20~S36、S40~S60:資料收集步驟 S20~S36, S40~S60: Data collection steps

圖1為本發明的電動載具資料收集系統的方塊圖的具體實施例。 FIG. 1 is a specific embodiment of a block diagram of an electric vehicle data collection system of the present invention.

圖2為本發明的部件的方塊圖的具體實施例。 Figure 2 is a specific embodiment of a block diagram of the components of the present invention.

圖3A為本發明的第一資料變化率示意圖的具體實施例。 FIG. 3A is a specific embodiment of a schematic diagram of a first data change rate of the present invention.

圖3B為本發明的第二資料變化率示意圖的具體實施例。 FIG. 3B is a specific embodiment of a schematic diagram of the second data change rate of the present invention.

圖4為本發明的資料收集器的方塊圖的具體實施例。 FIG. 4 is a specific embodiment of the block diagram of the data collector of the present invention.

圖5為本發明的時間序列示意圖的具體實施例。 FIG. 5 is a specific embodiment of a time series schematic diagram of the present invention.

圖6為本發明的偵錯伺服器的方塊圖的具體實施例。 FIG. 6 is a specific embodiment of a block diagram of a debug server of the present invention.

圖7A為一般資料封包的示意圖。 FIG. 7A is a schematic diagram of a general data packet.

圖7B為本發明的資料封包的示意圖。 FIG. 7B is a schematic diagram of a data packet of the present invention.

圖8為本發明的資料收集流程圖的具體實施例的第一部分。 FIG. 8 is the first part of the specific embodiment of the data collection flow chart of the present invention.

圖9為本發明的資料收集流程圖的具體實施例的第二部分。 FIG. 9 is the second part of the specific embodiment of the data collection flow chart of the present invention.

茲就本發明之一較佳實施例,配合圖式,詳細說明如後。 Hereinafter, a preferred embodiment of the present invention will be described in detail in conjunction with the drawings.

如前文所述,為了解決一般車廠在進行電動載具的測試時,所收集的資料的解析度不足、缺乏對應的時間資訊、故障分析與排除的處理時間冗長,以及工程人員難以在實驗室中直接重現故障,而需到現場才能進行故障分析等問題,本發明公開了一種新穎的電動載具的資料收集系統。 As mentioned above, in order to solve the problems of insufficient resolution of the collected data, lack of corresponding time information, long processing time for fault analysis and troubleshooting, and difficulty for engineers in the laboratory when testing electric vehicles The problem of directly reproducing the fault and needing to go to the scene to carry out the fault analysis, etc., the invention discloses a novel data collection system of the electric vehicle.

請參閱圖1,本發明的電動載具的收集系統1(下面將於說明書中簡稱為收集系統1)主要可應用於各式的電動載具2,包括民生載具(例如電動汽車、電動機車、電動腳踏車等)與工業用載具(例如堆高機)。具體地,本發明的收集系統1可基於不同情境,以不同的頻率來分別收集並發送電動載具2中的一或多個部件21的不同資料。藉由動態資料收集/發送機制,協助工程人員在電動載具2出現故障時即時獲得有效資訊,藉此能夠迅速且準確地對故障進行重現與分析,進而能夠加快故障的排除。 Please refer to FIG. 1 , the collection system 1 of the electric vehicle of the present invention (hereinafter referred to as the collection system 1 in the description) can be mainly applied to various electric vehicles 2 , including livelihood vehicles (such as electric vehicles, electric locomotives) , electric bicycles, etc.) and industrial vehicles (such as stackers). Specifically, the collection system 1 of the present invention can respectively collect and transmit different data of one or more components 21 in the electric vehicle 2 with different frequencies based on different situations. Through the dynamic data collection/transmission mechanism, engineers are assisted to obtain effective information in real time when the electric vehicle 2 fails, so that the failure can be reproduced and analyzed quickly and accurately, thereby speeding up the troubleshooting.

所述收集系統1至少包括設置在電動載具2中的至少一部件21、與電動載具2中的部件21通訊連接並收集部件21發送的資料的資料收集器3,以及與資料收集器3通訊連接並接收資料收集器3收集的資料的偵錯伺服器4。於一實施例中,資料收集器3與部件21可設置在相同位置(例如電動載具2的內部),偵 錯伺服器4可設置於遠處,並且工程人員5可通過偵錯伺服器4來直接查看資料收集器3收集的資料。 The collection system 1 at least includes at least one component 21 disposed in the electric vehicle 2 , a data collector 3 that is connected in communication with the component 21 in the electric vehicle 2 and collects data sent by the component 21 , and a data collector 3 . The debug server 4 that communicates with and receives the data collected by the data collector 3 . In one embodiment, the data collector 3 and the component 21 can be arranged in the same position (eg, inside the electric vehicle 2 ), so that the detection The error server 4 can be installed at a distance, and the engineer 5 can directly view the data collected by the data collector 3 through the error detection server 4 .

所述部件21設置於電動載具2中,並且連接電動載具2上的總線22。於一實施例中,所述部件21可為電動載具2中的馬達、驅動器、電池、儀表或其他可經過韌體的修改而符合本發明的收集系統1的需求的電子元件。所述總線22可例如為採用控制器區域網路(Controller Area Network,CAN)協定做為總線通訊協定的CAN總線。電動載具2的各個部件21可以分別發送各自的部件資料至總線22上,藉此各個部件21之間可通過總線22進行基本通訊,而與這些基本通訊相關的資料即定義為部件資料中的一般資料。上述僅為本發明的部分具體實施範例,但並不以此為限。 The component 21 is arranged in the electric vehicle 2 and is connected to the bus 22 on the electric vehicle 2 . In one embodiment, the component 21 may be a motor, a driver, a battery, a meter or other electronic components in the electric vehicle 2 that can be modified by firmware to meet the requirements of the collection system 1 of the present invention. The bus 22 can be, for example, a CAN bus using a Controller Area Network (CAN) protocol as a bus communication protocol. Each component 21 of the electric vehicle 2 can send their respective component data to the bus 22, whereby basic communication can be performed between the various components 21 through the bus 22, and the data related to these basic communications is defined as the component data. normal information. The above are only some specific embodiments of the present invention, but are not limited thereto.

所述資料收集器3為一種具有處理單元的部件,用以耦接於電動載具2的總線22上,藉由傳輸電子訊號的方式收集電動載具2及部件21的資料,並且可傳遞控制指令給電動載具2。 The data collector 3 is a component with a processing unit, which is coupled to the bus 22 of the electric vehicle 2, collects the data of the electric vehicle 2 and the component 21 by transmitting electronic signals, and can transmit control Command to electric vehicle 2.

所述偵錯伺服器4可通過有線方式或無線方式與資料收集器3通訊連接。於一實施例中,偵錯伺服器4為一種可通過纜線、資料傳輸線、電話線或網路線直接連接資料收集器3的電子設備,例如個人電腦(Personal Computer,PC)、工業電腦(Industrial PC,IPC)、筆記型電腦(Laptop)、平板電腦(Tablet)、智慧型手機(Smart Phone)、機櫃伺服器等,但不加以限定。於另一實施例中,偵錯伺服器4為一種可通過網際網路(Internet)或區域網路(Local Area Network,LAN)無線連接資料收集器3的遠端伺服器或雲端伺服器,但不加以限定。 The debug server 4 can communicate with the data collector 3 in a wired or wireless manner. In one embodiment, the debug server 4 is an electronic device that can be directly connected to the data collector 3 through a cable, a data transmission line, a telephone line or a network line, such as a personal computer (PC), an industrial computer (Industrial Computer) PC, IPC), notebook computer (Laptop), tablet computer (Tablet), smart phone (Smart Phone), rack server, etc., but not limited. In another embodiment, the debug server 4 is a remote server or a cloud server that can wirelessly connect to the data collector 3 through the Internet (Internet) or Local Area Network (LAN). Not limited.

本發明中,所述部件21係經過韌體修改,而可在不同的情境下分別執行一般資料發送程序、高速資料發送程序以及高解析度資料發送程序。在上述不同的程序中,部件21係基於不同頻率來收集不同資料,並且基於不同頻 率來將不同資料發送到電動載具2的總線22上,藉此實現動態資料發送的技術方案。 In the present invention, the component 21 is modified by the firmware, and can execute the general data transmission procedure, the high-speed data transmission procedure and the high-resolution data transmission procedure respectively in different situations. In the different procedures described above, the component 21 collects different data based on different frequencies, and rate to send different data to the bus 22 of the electric vehicle 2, thereby realizing the technical solution of dynamic data sending.

一般來說,在電動載具2通電啟動後,部件21即可持續從電動載具2上對部件資料進行取樣,以取得部件21所需的各項資料。值得一提的是,所述部件資料可為部件21本身的資料,亦可為其他部件21的資料。舉例來說,驅動器作為部件可以從電動載具2上收集驅動器本身的相關資料,亦可收集電池的相關資料,本實施例中電池為電動載具2上的另一部件。 Generally speaking, after the electric vehicle 2 is powered on, the component 21 can continuously sample the component data from the electric vehicle 2 to obtain various data required by the component 21 . It is worth mentioning that the component data may be the data of the component 21 itself or the data of other components 21 . For example, as a component, the driver can collect relevant data of the driver itself from the electric vehicle 2 , and can also collect relevant data of the battery. In this embodiment, the battery is another component on the electric vehicle 2 .

部件21在執行所述一般資料發送程序時,是基於一般頻率來持續從部件資料中對預先定義的一般資料的內容進行取樣,並且基於一般頻率來持續將一般資料發送至總線22上。換句話說,於執行一般資料發送程序時,部件21對於一般資料的取樣頻率,相同於對一般資料的發送頻率。值得一提的是,不同的部件21需要取樣的一般資料可能不同,如驅動器與電池,因此不同的部件21所採用的所述一般頻率亦可能彼此不同。於一實施例中,所述一般資料指的是各個部件21之間進行基本通訊所需的資料,但不以此為限。 When the component 21 executes the general data sending procedure, it continuously samples the content of the predefined general data from the component data based on the general frequency, and continuously sends the general data to the bus 22 based on the general frequency. In other words, when executing the general data sending procedure, the sampling frequency of the component 21 for general data is the same as the sending frequency for general data. It is worth mentioning that different components 21 may have different general data to be sampled, such as drivers and batteries, so the general frequencies used by different components 21 may also be different from each other. In one embodiment, the general data refers to data required for basic communication between the various components 21, but not limited thereto.

部件21在執行所述高速資料發送程序時,是基於部件資料來持續判斷預設的至少一觸發條件是否被滿足,並且在觸發條件被滿足時,才開始基於高速頻率對部件資料中被定義為待收集資料(下稱高速資料)的資料進行取樣,並且基於高速頻率來將所收集的高速資料發送至總線22上。本實施例中,所述高速頻率高於所述一般頻率,並且所述高速頻率及一般頻率皆低於總線22的傳輸能力上限。 When the component 21 executes the high-speed data sending program, it continuously judges whether the preset at least one trigger condition is satisfied based on the component data, and when the trigger condition is satisfied, it starts to define as defined in the component data based on the high-speed frequency. The data of the data to be collected (hereinafter referred to as high-speed data) is sampled, and the collected high-speed data is sent to the bus 22 based on the high-speed frequency. In this embodiment, the high-speed frequency is higher than the general frequency, and both the high-speed frequency and the general frequency are lower than the upper limit of the transmission capacity of the bus 22 .

於一實施例中,部件21在執行高速資料發送程序前,主要是持續收集部件資料中的特定變數,並且將特定變數與觸發條件中記錄的預設閥值進行比較,藉此判斷觸發條件是否被滿足。值得一提的是,在本實施例中,部件 21不會在觸發條件滿足前就收集所述高速資料,因此可避免浪費部件21的運算資源,同時可降低總線22的傳輸負荷。 In one embodiment, before executing the high-speed data sending procedure, the component 21 mainly continuously collects specific variables in the component data, and compares the specific variables with the preset thresholds recorded in the trigger conditions, thereby determining whether the trigger conditions are not. satisfied. It is worth mentioning that in this embodiment, the components 21 will not collect the high-speed data before the trigger condition is satisfied, so it can avoid wasting the computing resources of the component 21, and can reduce the transmission load of the bus 22 at the same time.

本發明中,部件21還會在電動載具2通電啟動後,持續收集部件資料中的具有高變化率而被定義為高解析度資料(下稱高解析度資料)的資料,並且將高解析度資料暫存在部件21的暫存器(圖未標示)中等待發送。本發明中定義的上述高解析度資料具有高變化率,若未採用前述的暫存機制而直接發送高解析度資料到總線22上,單位時間發送的資料量將會超過總線22的處理能力,並且會大幅增加總線22的負荷,使得總線22的頻寬不足,進而造成元件之間通訊失敗。本發明中,部件21在執行所述高解析度資料發送程序時,主要是基於部件資料來持續判斷預先定義的至少一故障是否發生,並且在判斷故障發生時,立即將目前暫存器中的所有高解析度資料皆寫入部件21的儲存單元中(例如圖2所示的部件儲存單元216)。並且,部件21在所述故障發生後持續從部件資料中收集高解析度資料,並且繼續寫入儲存單元中。 In the present invention, after the electric vehicle 2 is powered on, the component 21 will continue to collect data of the component data with a high rate of change that is defined as high-resolution data (hereinafter referred to as high-resolution data), and the high-resolution data will be collected. The data is temporarily stored in the temporary register (not shown in the figure) of the component 21, waiting to be sent. The above-mentioned high-resolution data defined in the present invention has a high rate of change. If the above-mentioned temporary storage mechanism is not used and the high-resolution data is directly sent to the bus 22, the amount of data sent per unit time will exceed the processing capacity of the bus 22. In addition, the load of the bus 22 will be greatly increased, so that the bandwidth of the bus 22 is insufficient, thereby causing communication failure between components. In the present invention, when the component 21 executes the high-resolution data sending program, it is mainly based on the component data to continuously judge whether at least one predefined fault occurs, and when judging the occurrence of the fault, it immediately sends the All high-resolution data is written into the storage unit of the component 21 (eg, the component storage unit 216 shown in FIG. 2 ). Moreover, the component 21 continues to collect high-resolution data from the component data after the failure occurs, and continues to write into the storage unit.

本發明中,部件21在將高解析度資料寫入暫存器及/或儲存單元時,會同時記錄高解析度資料的取樣時間。當儲存單元被寫入後,部件21再將儲存單元中所儲存的帶有取樣時間資訊的所有高解析度資料一併發送至總線22上。 In the present invention, when the component 21 writes the high-resolution data into the register and/or the storage unit, it simultaneously records the sampling time of the high-resolution data. After the storage unit is written, the component 21 sends all the high-resolution data with sampling time information stored in the storage unit to the bus 22 together.

如上所述,高解析度資料指的是部件資料中的高變化率資料,而這種資料對於故障發生原因的分析具有巨大的幫助。然而,為了降低總線22負荷並避免資料遺失,本發明的高解析度資料發送程序是對高解析度資料進行預收集,並且儲存在暫存器/儲存單元中。由於高解析度資料的發送時間晚於收集時間,因此必須在寫入暫存器/儲存單元時加上正確的取樣時間資訊,藉此保持資料的可參考性及故障當時的重現性。 As mentioned above, high-resolution data refers to the high rate of change data in the component data, and this data is of great help in the analysis of the cause of failure. However, in order to reduce the load on the bus 22 and avoid data loss, the high-resolution data sending procedure of the present invention pre-collects the high-resolution data and stores it in the register/storage unit. Since the sending time of high-resolution data is later than the collection time, it is necessary to add the correct sampling time information when writing to the register/storage unit, so as to maintain the referenceability of the data and the reproducibility of the fault.

通過所述高解析度資料發送程序,部件21可以將故障發生當時、故障發生前一段特定時間內以及故障發生後一段特定時間內所儲存的所有高解析度資料皆發送至總線22上,這些高解析度資料的資料量充足,同時記錄有正確的取樣時間資訊,工程人員5可以通過高解析度資料來重現特定時間範圍的故障,進而有效地分析故障的發生原因。 Through the high-resolution data sending program, the component 21 can send all the high-resolution data stored at the time of the failure, within a certain period of time before the failure, and within a certain period of time after the failure to the bus 22. The amount of high-resolution data is sufficient, and the correct sampling time information is recorded, so that the engineer 5 can reproduce the fault in a specific time range through the high-resolution data, thereby effectively analyzing the cause of the fault.

所述資料收集器3通訊連接電動載具2的總線22,並且對總線資料進行全取樣,亦即資料收集器3取得總線22上傳輸的所有總線資料。所述總線資料指的是各個部件21分別發送到總線22上的所有資料,包括所述一般資料、高速資料及高解析度資料,但不以此限定。 The data collector 3 is communicatively connected to the bus 22 of the electric vehicle 2 , and performs full sampling of the bus data, that is, the data collector 3 obtains all the bus data transmitted on the bus 22 . The bus data refers to all data sent by each component 21 to the bus 22, including the general data, high-speed data and high-resolution data, but not limited thereto.

值得一提的是,本發明的電動載具2的總線22可以配置有一至多個連接埠,可以同時連接一至多個資料收集器3。藉此,工程人員5可以依據需求通過不同資料收集器3所提供的不同資料來進行不同的分析程序。 It is worth mentioning that the bus 22 of the electric vehicle 2 of the present invention can be configured with one or more connection ports, and can be connected to one or more data collectors 3 at the same time. In this way, the engineer 5 can perform different analysis procedures through different data provided by different data collectors 3 according to requirements.

於一實施例中,資料收集器3可以從外部伺服器(例如圖4所示的NTP伺服器6)取得正確的時間資訊,並且將取樣所得的總線資料與時間資訊進行關聯,以產生符合特定傳輸封包格式的上傳資料。本發明中,資料收集器3係在收集所述總線資料後,即時產生並對外傳送所述上傳資料。 In one embodiment, the data collector 3 can obtain correct time information from an external server (such as the NTP server 6 shown in Upload data in packet format. In the present invention, the data collector 3 generates and transmits the uploaded data immediately after collecting the bus data.

於一實施例中,偵錯伺服器4與資料收集器3有線連接或無線連接,並且接收資料收集器3所傳送的上傳資料。所述偵錯伺服器4的資料庫(例如圖6所示的錯誤資料庫46)可儲存多種預先定義的故障態樣,以及這些故障態樣所分別對應的參數範圍。偵錯伺服器4接收了所述上傳資料後,可對上傳資料進行解碼以獲得部件21的原始物理量資訊,並且與所述多種故障態樣比對後,即時顯示比對結果給工程人員5進行參考(例如顯示為有故障、無故障或即將故障等)。 In one embodiment, the debug server 4 is wired or wirelessly connected to the data collector 3 , and receives the upload data sent by the data collector 3 . The database of the debug server 4 (eg, the error database 46 shown in FIG. 6 ) can store a variety of predefined failure modes and parameter ranges corresponding to these failure modes. After the error detection server 4 receives the uploaded data, it can decode the uploaded data to obtain the original physical quantity information of the component 21, and after comparing with the various failure modes, the comparison result can be displayed to the engineer 5 in real time. References (eg displayed as faulty, no fault or impending fault, etc.).

通過本發明的收集系統1,工程人員5可以直接從偵錯伺服器4上得到部件21的原始物理量資訊、可能的故障態樣、故障時間以及故障前、後一段時間中部件21的高解析度資料等,藉此,工程人員5能夠較輕易地重現故障,並且分析故障的發生原因,進而能夠從遠端直接進行故障的修復。 Through the collection system 1 of the present invention, the engineer 5 can directly obtain the original physical quantity information of the component 21, the possible failure mode, the failure time, and the high resolution of the component 21 in the period before and after the failure from the debugging server 4 Therefore, the engineer 5 can easily reproduce the fault, analyze the cause of the fault, and then directly repair the fault from the remote end.

如上所述,本發明的收集系統1主要是由電動載具2內的一或多個部件21、連接電動載具2的資料收集器3及與資料收集器3連接的偵錯伺服器4所組成。下面將結合圖示,對收集系統1的各個構成要件進行詳細說明。 As mentioned above, the collection system 1 of the present invention is mainly composed of one or more components 21 in the electric vehicle 2 , the data collector 3 connected to the electric vehicle 2 , and the debug server 4 connected to the data collector 3 . composition. The components of the collection system 1 will be described in detail below with reference to the drawings.

參閱圖2,本發明的部件21是以硬體與韌體所構成,其中硬體部分與一般電動載具的部件組成相同或相似,包括處理器(圖未標示)、記憶體20、部件通訊單元211、部件儲存單元216及計時單元217,韌體部份則記錄於處理器中並由處理器執行。本發明的其中一個技術特徵在於,部件21的韌體部分經過客製化,並且依照執行功能被邏輯分割成條件判斷單元212、高速資料收集單元213、高解析度資料收集單元214及錯誤診斷單元215等韌體單元。 Referring to FIG. 2, the component 21 of the present invention is composed of hardware and firmware, wherein the hardware part is the same as or similar to the components of the general electric vehicle, including the processor (not shown), the memory 20, the component communication The unit 211, the component storage unit 216 and the timing unit 217, the firmware part is recorded in the processor and executed by the processor. One of the technical features of the present invention is that the firmware part of the component 21 is customized and logically divided into a condition judgment unit 212 , a high-speed data collection unit 213 , a high-resolution data collection unit 214 and an error diagnosis unit according to the execution function. 215 and other firmware units.

本發明中,部件21通過部件通訊單元211以一般頻率持續收集部件資料中的一般資料23,並且在第一類情況下(例如為正常運作情況),部件21通過部件通訊單元211持續執行一般資料發送程序,以基於所述一般頻率來將一般資料23發送至電動載具2的總線22。一般資料23常見例如為客戶定義的總線通訊協定(如KWP2000協定)、上控部件對被控部件(如以驅動器控制馬達)發出的特定功能或機制的命令(如燈具開關或使用)、部件本身具有低變化率的物理量或低取樣率即可滿足判斷需求的資料(如電池電量百分比、故障碼、驅動器的開關機指令、周邊部件狀態如腳架未收、置物廂未關、煞車訊號…等)。 In the present invention, the component 21 continuously collects the general data 23 in the component data through the component communication unit 211 at a normal frequency, and in the first type of situation (eg, normal operation), the component 21 continuously executes the general data through the component communication unit 211. A sending program to send the general data 23 to the bus 22 of the electric vehicle 2 based on the general frequency. General data 23 are common, for example, the bus communication protocol defined by the customer (such as the KWP2000 protocol), the specific function or mechanism commands (such as light switch or use) issued by the upper control component to the controlled component (such as controlling a motor with a driver), the component itself Physical quantities with a low rate of change or low sampling rate can meet the needs of judgment data (such as battery power percentage, fault code, drive on/off command, peripheral component status such as tripod not received, storage compartment not closed, brake signal, etc. ).

於第二類情況下(例如為特殊情況),部件21可經過製造商或工程人員5的設定,預先定義一或多個待收集資料(即,於特殊條件下需要收集的高速資料24),但是暫時不通過部件通訊單元211來直接收集並傳送所述高速資料 24。本實施例中,高速資料24是指依據錯誤發生前預判式的偵錯需求而提供的總線資訊(如電池電壓、馬達電流或電壓等)、部件本身具有高變化率的物理量或需較高取樣率才能滿足判斷需求的資料(如馬達轉速變化、編碼器(encoder)的角度變化、保護相關的物理參數如電流、電壓、轉矩、溫度變化等)。 In the second case (for example, a special case), the component 21 can be pre-defined by the manufacturer or the engineer 5 to define one or more data to be collected (that is, the high-speed data 24 that needs to be collected under special conditions), However, the high-speed data is not directly collected and transmitted through the component communication unit 211 for the time being twenty four. In this embodiment, the high-speed data 24 refers to the bus information (such as battery voltage, motor current or voltage, etc.) provided according to the predictive error detection requirement before the error occurs, and the physical quantity of the component itself has a high rate of change or needs to be higher. Only the sampling rate can meet the data required for judgment (such as motor speed changes, encoder angle changes, and protection-related physical parameters such as current, voltage, torque, temperature changes, etc.).

本實施例中,部件21通過條件判斷單元212持續收集部件資料,並且判斷部件資料是否符合條件判斷單元212中預設的一或多個觸發條件。具體地,條件判斷單元212可經過製造商或工程人員5的設定,預先記錄一或多個觸發條件,當任一觸發條件被滿足時,代表部件21可能出現問題,或即將出現問題。因此,當條件判斷單元212基於部件資料判斷至少一個觸發條件被滿足時,會發出啟動命令給高速資料收集單元213。實際應用上,電動載具驅動器及馬達可設定有對應的溫度閥值,以藉由溫度來預先判斷失效。具體地,可針對負溫度係數(negative temperature coefficient,NTC)訊號設定閥值,當NTC訊號的回授值大於設定值時啟動特定物理量或參數的收集。當電動載具因溫度影響而將失效前,可透過高速資料24的收集以進行是否失效的預先判斷。例如,可設定智慧功率模組(intelligent power modules,IPM)溫度預警閥值為95℃、馬達溫度預警閥值為125℃及電容溫度預警閥值為120℃。雖然當這些部件溫度超過這些預警閥值時並不會立即釋出故障代碼,但亦表示部件工作溫度過高而有失效的可能,需找出可能失效的原因並進行預防,故需進行高速資料24的收集以輔助判斷。 In this embodiment, the component 21 continuously collects component data through the condition judging unit 212 , and judges whether the component data complies with one or more trigger conditions preset in the condition judging unit 212 . Specifically, the condition judging unit 212 may pre-record one or more triggering conditions through the setting of the manufacturer or the engineer 5 . When any triggering condition is satisfied, it means that the component 21 may have a problem, or a problem is about to occur. Therefore, when the condition judging unit 212 judges that at least one trigger condition is satisfied based on the component data, it will issue a start command to the high-speed data collecting unit 213 . In practical applications, the electric vehicle driver and the motor can be set with corresponding temperature thresholds, so that the failure can be pre-determined based on the temperature. Specifically, a threshold value can be set for the negative temperature coefficient (NTC) signal, and when the feedback value of the NTC signal is greater than the set value, the collection of specific physical quantities or parameters is started. Before the electric vehicle will fail due to the influence of temperature, the high-speed data 24 can be collected to make a pre-judgment whether it fails. For example, an intelligent power module (IPM) temperature warning threshold can be set to 95°C, a motor temperature warning threshold to 125°C, and a capacitor temperature warning threshold to 120°C. Although the fault code will not be released immediately when the temperature of these components exceeds these warning thresholds, it also means that the working temperature of the components is too high and may fail. It is necessary to find out the cause of the possible failure and prevent it, so it is necessary to conduct high-speed data 24 is collected to aid judgment.

高速資料收集單元213連接條件判斷單元212及部件通訊單元211。高速資料收集單元213收到了所述啟動命令後,會先讀取啟動命令的內容,並且基於高速頻率開始收集啟動命令中所指定的高速資料24。本實施例中,部件通訊單元211在高速資料收集單元213開始收集所指定的高速資料24後,開始執行高速資料發送程序,以基於所述高速頻率將高速資料24發送至總線22上。其中,所述高速頻率係高於在一般資料發送程序中使用的一般頻率。 The high-speed data collection unit 213 is connected to the condition determination unit 212 and the component communication unit 211 . After receiving the activation command, the high-speed data collection unit 213 will first read the content of the activation command, and start to collect the high-speed data 24 specified in the activation command based on the high-speed frequency. In this embodiment, after the high-speed data collection unit 213 starts to collect the designated high-speed data 24, the component communication unit 211 starts to execute the high-speed data sending procedure to send the high-speed data 24 to the bus 22 based on the high-speed frequency. Wherein, the high-speed frequency is higher than the general frequency used in the general data transmission procedure.

於第三類情況下(例如為故障情況),部件21通過高解析度資料收集單元214從所述部件資料中對預定義的特定資料(即,高解析度資料25)進行預收集,並且暫存於部件21內部的暫存器(圖未標示)中。於一實施例中,高解析度資料收集單元214主要是以先進先出(First In First Out,FIFO)的方式依序將高解析度資料25寫入暫存器中,並且當暫存器被寫滿時,優先刪除較舊的資料以維持資料的適用性。 In the third type of situation (eg, a failure situation), the component 21 pre-collects predefined specific data (ie, the high-resolution data 25 ) from the component data through the high-resolution data collection unit 214, and temporarily It is stored in a temporary register (not shown in the figure) inside the component 21 . In one embodiment, the high-resolution data collection unit 214 mainly writes the high-resolution data 25 into the register sequentially in a first-in-first-out (FIFO) manner, and when the register is When full, older data are preferentially deleted to maintain the applicability of the data.

詳細來說,高解析度資料25包括依據錯誤發生時偵錯需求所定義的總線資料(如過電流、過電壓)、部件本身具有極高變化率的物理量或需以極高取樣率才能滿足判斷需求的資料(如交軸電流、直軸電流、扭矩命令等)。 In detail, the high-resolution data 25 includes bus data (such as overcurrent, overvoltage) defined according to the debug requirements when the error occurs, the physical quantity of the component itself with a very high rate of change, or a very high sampling rate to satisfy the judgment. Required data (such as quadrature axis current, direct axis current, torque command, etc.).

所述錯誤診斷單元215連接高解析度資料收集單元214,所述部件儲存單元216連接高解析度資料收集單元214及部件通訊單元211,而所述計時單元217連接高解析度資料收集單元214。 The error diagnosis unit 215 is connected to the high-resolution data collection unit 214 , the component storage unit 216 is connected to the high-resolution data collection unit 214 and the component communication unit 211 , and the timing unit 217 is connected to the high-resolution data collection unit 214 .

本實施例中,部件21通過錯誤診斷單元215持續收集部件資料,並且基於部件資料判斷預定義的一或多種故障是否發生。當錯誤診斷單元215判斷有故障發生時,會發出啟動命令給高解析度資料收集單元214。高解析度資料收集單元214收到了啟動命令後,會將當前暫存器中的高解析度資料25全部儲存至部件儲存單元216。於此同時,高解析度資料收集單元214持續收集高解析度資料25,並且同步儲存至部件儲存單元216。 In this embodiment, the component 21 continuously collects component data through the error diagnosis unit 215, and determines whether one or more predefined faults occur based on the component data. When the fault diagnosis unit 215 determines that a fault occurs, it will issue a start command to the high-resolution data collection unit 214 . After receiving the activation command, the high-resolution data collection unit 214 stores all the high-resolution data 25 in the current register to the component storage unit 216 . At the same time, the high-resolution data collection unit 214 continuously collects the high-resolution data 25 and stores the data in the component storage unit 216 synchronously.

實際應用上,例如可設定IPM溫度故障閥值為100℃、馬達溫度故障閥值為130℃及電容溫度故障閥值為125℃。這些故障閥值相較上述的預警閥值更高,故當這些部件繼續升溫而超過這些故障閥值時,系統便分別釋出故障代碼例如OH1、OH2、OH3等。依據這些故障碼,相關人士便可知道故障發生於哪一個部件。並且,依據故障發生當時及前、後一段時間內收集的高解析度資料25,即可判斷此部件故障、過熱的原因。 In practical applications, for example, the IPM temperature fault threshold can be set to 100°C, the motor temperature fault threshold to 130°C, and the capacitor temperature fault threshold to 125°C. These fault thresholds are higher than the above-mentioned early warning thresholds, so when these components continue to heat up and exceed these fault thresholds, the system will release fault codes such as OH1, OH2, OH3, etc. respectively. Based on these fault codes, the relevant person can know which part the fault occurred in. In addition, according to the high-resolution data 25 collected at the time of the occurrence of the failure, before and after a period of time, the cause of the failure and overheating of the component can be determined.

再以電動載具驅動器發生過電流故障的判斷為例。本實施例中,可設定驅動器電流的故障閥值為212A-rms,其中A代表安培,rms代表平方平均數(root mean square)。由於導致過電流故障的因子屬於高頻率變化,需要高解析度資料25的收集以取得更豐富的資訊,當電機的電流偵測值超過故障閥值時,系統可釋出OCN故障碼。依據此故障碼,即可判斷為過電流故障。藉此,依據在故障發生當時及前後一段時間內收集的高解析度資料25,即可判斷過電流故障發生的原因,例如操作步驟錯誤或部件失效等。 Take the judgment of the overcurrent fault of the electric vehicle driver as an example. In this embodiment, the fault threshold of the driver current can be set to 212A-rms, where A represents ampere and rms represents the root mean square. Since the factors that cause overcurrent faults are high-frequency changes, the collection of high-resolution data 25 is required to obtain richer information. When the current detection value of the motor exceeds the fault threshold, the system can issue an OCN fault code. According to this fault code, it can be judged as an overcurrent fault. In this way, according to the high-resolution data 25 collected at the time of the occurrence of the fault and a period of time before and after the occurrence of the fault, the cause of the overcurrent fault, such as wrong operation steps or component failure, can be determined.

當部件儲存單元216達到一特定門檻(例如被寫滿)時,部件21通過部件通訊單元211執行高解析度資料發送程序,以將部件儲存單元216中儲存的高解析度資料25全部發送至總線22上。通過上述預先資料收集、暫存、儲存與故障時延後發送手段,部件通訊單元211發送到總線22上的高解析度資料25中,包含了故障發生當時、故障發生前一段特定時間以及故障發生後一段特定時間內所儲存的完整資料。 When the component storage unit 216 reaches a certain threshold (for example, it is full), the component 21 executes the high-resolution data sending procedure through the component communication unit 211 to send all the high-resolution data 25 stored in the component storage unit 216 to the bus 22 on. Through the above-mentioned means of pre-data collection, temporary storage, storage and failure-delayed transmission, the high-resolution data 25 sent by the component communication unit 211 to the bus 22 includes the time when the failure occurred, a specific period of time before the failure occurred, and the occurrence of the failure. Complete data stored for a specified period of time thereafter.

具體地,本發明所指的高解析度資料25,是指資料變化率高於總線22的傳輸能力上限的資料。若通過一般的發送程序將高解析度資料25發送至總線22上,將會因為一般的發送程序前的取樣頻率不足而造成高解析度資料25遺失,進而導致資料解析度下降。有鑑於此,本發明藉由資料預收集以及資料暫存的方式完整收集高解析度資料25,並且僅將故障發生當時及前、後一段特定時間內所儲存的高解析度資料25發送到總線22上。由此可看出,因為高解析度資料25的發送時間落後於收集時間,因此時間資訊對於高解析度資料25來說相當重要。 Specifically, the high-resolution data 25 referred to in the present invention refers to data whose rate of change is higher than the upper limit of the transmission capacity of the bus 22 . If the high-resolution data 25 is sent to the bus 22 through a general sending process, the high-resolution data 25 will be lost due to insufficient sampling frequency before the general sending process, and the data resolution will be reduced. In view of this, the present invention completely collects the high-resolution data 25 by means of data pre-collection and data temporary storage, and only sends the high-resolution data 25 stored at the time when the fault occurs, before and after a certain period of time to the bus. 22 on. It can be seen from this that the time information is very important for the high-resolution data 25 because the sending time of the high-resolution data 25 lags the collection time.

部件21的計時單元217可從電動載具2、資料收集器3或其他途徑獲得正確的時間資訊,而高解析度資料收集單元214在將高解析度資料25儲存至暫存器及/或部件儲存單元216時,會同時夾帶對應的時間資訊。如此一來,總 線22上發送的高解析度資料25會同時包含時間資訊,而有助於工程人員5得知故障的實際發生時間,以加強判斷的準確性。 The timing unit 217 of the component 21 can obtain correct time information from the electric vehicle 2, the data collector 3 or other means, and the high-resolution data collection unit 214 stores the high-resolution data 25 in the register and/or the component When storing the unit 216, the corresponding time information will be entrained at the same time. As such, always The high-resolution data 25 sent on the line 22 also includes time information, which helps the engineer 5 to know the actual occurrence time of the fault, so as to enhance the accuracy of judgment.

部件21還包括連接所述部件通訊單元211、條件判斷單元212、高速資料收集單元213、高解析度資料收集單元214及錯誤診斷單元215的記憶體20。本發明中,記憶體20以遠高於所述一般頻率及高速頻率的一超高速頻率來對電動載具2中的部件資料進行全取樣,並且加以記錄。值得一提的是,所述超高速頻率遠高於總線22的傳輸能力上限,因此無論部件21執行一般資料發送程序、高速資料發送程序或高解析度資料發送程序,記憶體20中記錄的資料皆能滿足部件21的收集與發送需求。 The component 21 also includes a memory 20 connected to the component communication unit 211 , the condition determination unit 212 , the high-speed data collection unit 213 , the high-resolution data collection unit 214 and the error diagnosis unit 215 . In the present invention, the memory 20 fully samples and records the component data in the electric vehicle 2 at an ultra-high-speed frequency that is much higher than the general frequency and the high-speed frequency. It is worth mentioning that the ultra-high-speed frequency is much higher than the upper limit of the transmission capacity of the bus 22. Therefore, no matter whether the component 21 executes the general data transmission procedure, the high-speed data transmission procedure or the high-resolution data transmission procedure, the data recorded in the memory 20 will not be affected. All can meet the collection and delivery requirements of the component 21 .

所述記憶體20記錄了與部件21有關的所有部件資料,於一實施例中,部件通訊單元211可從記憶體20中收集部件資料中的一般資料23,條件判斷單元212可從記憶體20中收集部件資料以判斷所述觸發條件是否被滿足,高速資料收集單元213可從記憶體20中收集部件資料中的高速資料24,高解析度資料收集單元214可從記憶體20中收集部件資料中的高解析度資料25,錯誤診斷單元215可從記憶體20中收集部件資料以判斷故障是否發生。 The memory 20 records all the component data related to the component 21 . In an embodiment, the component communication unit 211 can collect the general data 23 in the component data from the memory 20 , and the condition determination unit 212 can obtain the general data 23 from the memory 20 . The high-speed data collection unit 213 can collect the high-speed data 24 in the component data from the memory 20 , and the high-resolution data collection unit 214 can collect the component data from the memory 20 In the high-resolution data 25 in the memory, the error diagnosis unit 215 can collect component data from the memory 20 to determine whether a fault occurs.

舉例來說,條件判斷單元212可從記憶體20中收集部件資料中的第一變數,並且於第一變數達到預設的特定閥值時,認定部件資料符合觸發條件而啟動高速資料發送程序。例如,若將前述馬達溫度作為第一變數且超過125℃的溫度預警閥值時,條件判斷單元212判斷溫度符合觸發條件而啟動高速資料發送程序。 For example, the condition judging unit 212 can collect the first variable in the component data from the memory 20, and when the first variable reaches a preset specific threshold, determine that the component data meets the triggering condition and start the high-speed data sending process. For example, if the aforementioned motor temperature is used as the first variable and exceeds the temperature warning threshold of 125°C, the condition determining unit 212 determines that the temperature meets the triggering condition and starts the high-speed data sending process.

再例如,錯誤診斷單元215可從記憶體20中收集部件資料,將部件資料中的第二變數與預設的多個故障參數逐一進行比對,並以比對結果是否相符為基礎,判斷故障是否發生,再於判斷故障發生時啟動高解析度資料發送程序。例如,當馬達溫度持續升溫而超過130℃的溫度故障閥值時,錯誤診斷單 元215據以釋出OH2故障碼,依據故障碼作為第二變數並與多個故障參數(如OH1、OH2、OH3…)進行比對,藉此判斷對應為發生馬達溫度過高的故障。或者,當驅動器電流超過故障閥值212A-rms時,錯誤診斷單元215據以釋出OCN故障碼,依據故障碼作為第二變數與多個故障參數(如OVN、OCN…)進行比對,藉此判斷對應為發生過電流的故障。惟,上述僅為本發明的部分具體實施範例,但並不以此為限。 For another example, the error diagnosis unit 215 can collect the component data from the memory 20, compare the second variable in the component data with a plurality of preset fault parameters one by one, and judge the fault based on whether the comparison result is consistent. If it occurs, then start the high-resolution data sending program when it is judged that the fault occurs. For example, when the motor temperature continues to rise and exceeds the temperature fault threshold of 130°C, the fault diagnosis The element 215 releases the OH2 fault code accordingly, and uses the fault code as the second variable and compares it with multiple fault parameters (such as OH1, OH2, OH3...), thereby judging that it corresponds to a fault that the motor temperature is too high. Or, when the driver current exceeds the fault threshold 212A-rms, the error diagnosis unit 215 releases the OCN fault code accordingly, and compares the fault code with a plurality of fault parameters (eg OVN, OCN . This judgment corresponds to the occurrence of an overcurrent fault. However, the above are only some specific embodiments of the present invention, but not limited thereto.

續請同時參閱圖3A及圖3B,圖3A的示意圖(a)顯示了部件21的原始變數隨著時間的變化趨勢,圖3A的示意圖(b)顯示了部件21通過所述一般資料發送程序所發送的變數隨著時間的變化趨勢,圖3B的示意圖(c)顯示了部件21通過所述高速資料發送程序所發送的變數隨著時間的變化趨勢,而圖3B的示意圖(d)顯示了部件21通過所述高解析度資料發送程序所發送的變數隨著時間的變化趨勢。 Please refer to FIG. 3A and FIG. 3B at the same time, the schematic diagram (a) of FIG. 3A shows the change trend of the original variables of the component 21 over time, and the schematic diagram (b) of FIG. 3A shows the component 21 through the general data sending procedure. The change trend of the variables sent over time, the schematic diagram (c) of FIG. 3B shows the change trend of the variables sent by the component 21 through the high-speed data transmission program with time, and the schematic diagram (d) of FIG. 3B shows the component 21 Change trends of variables sent by the high-resolution data sending program over time.

如圖3A的示意圖(b)所示,一般資料發送程序所發送的一般資料23的取樣周期約為100ms,只能呈現資料的趨勢。如圖3B的示意圖(c)所示,高速資料發送程序所發送的高速資料24的取樣周期約為1ms,相對於一般資料的曲線可以呈現較多的細節。如圖3B的示意圖(d)所示,高解析度資料發送程序所發送的高解析度資料25的取樣周期約為200μs,相對於高速資料的曲線又可以呈現更多細微的變化。而依據不同需求以不同週期取樣取得不同變化率的資料,在發送時可減少總線的工作負擔,又可符合工程人員判斷故障原因的需求。 As shown in the schematic diagram (b) of FIG. 3A , the sampling period of the general data 23 sent by the general data sending program is about 100 ms, which can only show the trend of the data. As shown in the schematic diagram (c) of FIG. 3B , the sampling period of the high-speed data 24 sent by the high-speed data sending program is about 1 ms, and the curve of the general data can present more details. As shown in the schematic diagram (d) of FIG. 3B , the sampling period of the high-resolution data 25 sent by the high-resolution data sending program is about 200 μs, and the curve relative to the high-speed data can show more subtle changes. According to different requirements, the data of different rate of change is obtained by sampling in different cycles, which can reduce the workload of the bus when sending, and can also meet the needs of engineers to determine the cause of the fault.

再如圖3A的示意圖(a)所示,部件21的原始變數的取樣率(即,記憶體20從電動載具2上收集部件資料的頻率)遠大於一般資料發送程序、高速資料發送程序以及高解析度資料發送程序所採用的頻率。因此,無論所述一般資料發送程序、高速資料發送程序以及高解析度資料發送程序採用什麼頻率來發 送資料,記憶體20皆可滿足部件21的需求。藉此,本發明可以確實達到令部件21進行動態資料發送機制的目的。 As shown in the schematic diagram (a) of FIG. 3A , the sampling rate of the original variables of the component 21 (ie, the frequency at which the memory 20 collects component data from the electric vehicle 2 ) is much larger than that of the general data transmission process, the high-speed data transmission process, and the The frequency used by the high-resolution data sending process. Therefore, no matter what frequency the general data transmission process, the high-speed data transmission process, and the high-resolution data transmission process use to transmit To send data, the memory 20 can meet the requirements of the component 21 . In this way, the present invention can surely achieve the purpose of enabling the component 21 to perform a dynamic data transmission mechanism.

續請參閱圖4,本發明的資料收集器3主要可包括處理單元31、第一通訊單元32、校時單元33、第二通訊單元34、收集單元35、收集器記憶體36及收集器儲存單元37。 4, the data collector 3 of the present invention may mainly include a processing unit 31, a first communication unit 32, a timing unit 33, a second communication unit 34, a collection unit 35, a collector memory 36, and a collector storage Unit 37.

處理單元31可例如為處理器(Processor)、微控制單元(Micro Control Unit,MCU)、系統單晶片(System on Chip,SoC)或可編程邏輯控制器(Programmable Logic Controller,PLC)。第一通訊單元32與第二通訊單元34可以整合在一起,亦可為獨立的兩個單元,並且可為有線通訊單元(例如為總線連接器)或無線通訊單元(例如採用Wi-Fi、藍牙、射頻或Zigbee等通訊協定的傳輸模組),但不加以限定。 The processing unit 31 may be, for example, a processor (Processor), a Micro Control Unit (MCU), a System on Chip (SoC), or a Programmable Logic Controller (PLC). The first communication unit 32 and the second communication unit 34 can be integrated together, or can be two independent units, and can be a wired communication unit (such as a bus connector) or a wireless communication unit (such as Wi-Fi, Bluetooth , RF or Zigbee and other communication protocols), but not limited.

於一實施例中,資料收集器3通過第一通訊單元32連接外部的網路時間協定(Network Time Protocol,NTP)伺服器6及偵錯伺服器4,通過第二通訊單元34連接電動載具2上的總線22,並且校時單元33連接第一通訊單元32以及第二通訊單元34。本實施例中,校時單元33可於資料收集器3啟動後,通過第一通訊單元32向NTP伺服器6取得正確的時間資訊。並且,校時單元33通過第二通訊單元34將時間資訊發送給電動載具2內的一或多個部件21,藉此各個部件21可以藉由所得到的時間資訊,利用內部的計時機制(例如圖2所示的計時單元217)來維持時間的正確性,並且令電動載具2中的多個部件21保持時間的一致性。 In one embodiment, the data collector 3 is connected to the external Network Time Protocol (NTP) server 6 and the debug server 4 through the first communication unit 32 , and is connected to the electric vehicle through the second communication unit 34 2, and the timing unit 33 is connected to the first communication unit 32 and the second communication unit 34. In this embodiment, the time calibration unit 33 can obtain correct time information from the NTP server 6 through the first communication unit 32 after the data collector 3 is activated. In addition, the timing unit 33 sends the time information to one or more components 21 in the electric vehicle 2 through the second communication unit 34, whereby each component 21 can use the internal timing mechanism ( For example, the timing unit 217 shown in FIG. 2 is used to maintain the correctness of the time, and to make the multiple components 21 in the electric vehicle 2 maintain the consistency of the time.

處理單元31連接第一通訊單元32、第二通訊單元34、收集單元35、收集器記憶體36及收集器儲存單元37,並且收集單元35連接第二通訊單元34。於一實施例中,收集單元35通過第二通訊單元34對電動載具2的總線22上的總線資料進行全取樣,並且將總線資料暫存於收集器記憶體36。本實施例中,資料收集器3是對總線22上的資料進行全取樣,因此所得到的總線資料將會完整 包含電動載具2中的各個部件21依據不同程序各自發送至總線22上的一般資料23、高速資料24以及高解析度資料25。 The processing unit 31 is connected to the first communication unit 32 , the second communication unit 34 , the collection unit 35 , the collector memory 36 and the collector storage unit 37 , and the collection unit 35 is connected to the second communication unit 34 . In one embodiment, the collecting unit 35 samples all the bus data on the bus 22 of the electric vehicle 2 through the second communication unit 34 , and temporarily stores the bus data in the collector memory 36 . In this embodiment, the data collector 3 fully samples the data on the bus 22, so the obtained bus data will be complete It includes the general data 23 , the high-speed data 24 and the high-resolution data 25 sent to the bus 22 by the various components 21 in the electric vehicle 2 according to different procedures.

處理單元31將收集器記憶體36中的總線資料與所取得的時間資訊進行關聯,以產生附帶時間戳記且符合特定傳輸格式的上傳資料,並且再通過第一通訊單元32將上傳資料對外傳送至偵錯伺服器4。 The processing unit 31 associates the bus data in the collector memory 36 with the obtained time information, so as to generate the upload data with a time stamp and conforming to a specific transmission format, and then transmit the upload data to the external through the first communication unit 32. Debug server 4.

值得一提的是,為了令工程人員5能夠在偵錯伺服器4上同步獲得電動載具2的相關資訊,在一般實施例中,資料收集器3會在取樣後即時通過第一通訊單元32將所述上傳資料發送至偵錯伺服器4。然而,若因傳輸路徑發生問題(例如網路通訊不佳、連接線損壞等),則處理單元31會先將上傳資料儲存至收集器儲存單元37中。並且,處理單元31於所述問題排除(例如網路訊號恢復正常、更換連接線等)後,再讀取收集器儲存單元37中儲存的上傳資料,並通過第一通訊單元32傳送至偵錯伺服器4。值得一提的是,收集器記憶體36及收集器儲存單元37亦可整合在一起。 It is worth mentioning that, in order to enable the engineer 5 to obtain the relevant information of the electric vehicle 2 on the debug server 4 synchronously, in the general embodiment, the data collector 3 will immediately pass the first communication unit 32 after sampling. The uploaded data is sent to the debug server 4 . However, if there is a problem with the transmission path (eg, poor network communication, damaged connection line, etc.), the processing unit 31 will first store the uploaded data in the collector storage unit 37 . In addition, after the problem is eliminated (for example, the network signal returns to normal, the connection cable is replaced, etc.), the processing unit 31 reads the uploaded data stored in the collector storage unit 37 and transmits it to the debugger through the first communication unit 32 Server 4. It is worth mentioning that the collector memory 36 and the collector storage unit 37 can also be integrated together.

值得一提的是,雖然本發明的部件21中可設置有如圖2中所示的計時單元217,然而因為電動載具2本身的設計考量,所述計時單元217可能無法以在斷電後仍可持續運作的實時時鐘(Real-Time Clock,RTC)計時器來實現。於此情況中,每次在電動載具2斷電後,部件21就會失去絕對時間資訊。有鑑於此,本發明的收集系統1藉由資料收集器3的校時單元33來提供部件21正確的時間資訊。 It is worth mentioning that, although the timing unit 217 shown in FIG. 2 may be provided in the component 21 of the present invention, due to the design consideration of the electric vehicle 2 itself, the timing unit 217 may not be able to keep the timing unit 217 even after the power is turned off. Real-time clock (Real-Time Clock, RTC) timer that operates continuously. In this case, the component 21 loses absolute time information every time the electric vehicle 2 is powered off. In view of this, the collection system 1 of the present invention provides the correct time information of the component 21 by the time calibration unit 33 of the data collector 3 .

請同時參閱圖5,圖5中以電動載具2包含了兩個部件21(包括第一部件以及第二部件)為例,進行說明,但本發明的收集系統1並不以兩個部件21的實施例為限。 Please refer to FIG. 5 at the same time. In FIG. 5, the electric vehicle 2 includes two parts 21 (including the first part and the second part) as an example for description, but the collection system 1 of the present invention does not include the two parts 21. The examples are limited.

首先,資料收集器3通過第一通訊單元32向NTP伺服器6發出時間資訊的請求(步驟S10)。NTP伺服器收到所述請求後,立即回覆標準時間給資料 收集器3(步驟S11),並且,資料收集器3通過校時單元33將此標準時間設定為資料收集器3的系統時間。 First, the data collector 3 sends a time information request to the NTP server 6 through the first communication unit 32 (step S10 ). After the NTP server receives the request, it immediately responds with the standard time to the data The collector 3 (step S11 ), and the data collector 3 sets the standard time as the system time of the data collector 3 through the timing unit 33 .

於系統時間設定完成後,資料收集器3再逐一對總線22上的部件21進行時間設定。具體地,資料收集器3通過第二通訊單元34發送系統時間至第一部件(步驟S12)。第一部件接收所述系統時間後,由計時單元217完成內部的時間設定,並且回傳現在時間至資料收集器3以進行確認(步驟S13)。 After the system time setting is completed, the data collector 3 performs time setting for the components 21 on the bus 22 one by one. Specifically, the data collector 3 sends the system time to the first component through the second communication unit 34 (step S12). After the first component receives the system time, the timing unit 217 completes the internal time setting, and returns the current time to the data collector 3 for confirmation (step S13 ).

於第一部件設定完成後,資料收集器3接著通過第二通訊單元34發送系統時間至第二部件(步驟S14)。若在發送後一定時間內(例如一秒)沒有收到第二部件的回覆,或是第二部件回傳了錯誤的時間,則資料收集器3重新發送系統時間至第二部件(步驟S15)。於一實施例中,資料收集器3在重新發送了兩次系統時間至第二部件(步驟S15及步驟S16),並且都沒有收到回覆或是收到錯誤的時間時,認定第二部件為異常。 After the setting of the first component is completed, the data collector 3 then sends the system time to the second component through the second communication unit 34 (step S14). If no reply is received from the second component within a certain period of time (for example, one second) after sending, or the second component returns an incorrect time, the data collector 3 resends the system time to the second component (step S15 ). . In one embodiment, when the data collector 3 resends the system time to the second component twice (step S15 and step S16 ), and neither receives a reply or receives the wrong time, it determines that the second component is abnormal.

當認定第二部件異常時,資料收集器3通過第一通訊單元32發送異常報告至偵錯伺服器4,以向偵錯伺服器4通報第二部件的時間設定異常(步驟S17)。 When it is determined that the second component is abnormal, the data collector 3 sends an abnormality report to the debugging server 4 through the first communication unit 32 to notify the debugging server 4 that the time setting of the second component is abnormal (step S17 ).

然而,上述僅為本發明的其中一種具體實施範例,本發明的資料收集器3實可通過多種不同的設定方式來對電動載具2中的部件21進行時間設定,而不以圖5中的設定方式為限。 However, the above is only one of the specific implementation examples of the present invention, the data collector 3 of the present invention can actually set the time of the components 21 in the electric vehicle 2 through a variety of different setting methods. The setting method is limited.

續請參閱圖6,本發明的偵錯伺服器4為一種以硬體與韌體所構成電子裝置,例如可為個人電腦、筆記型電腦、平板電腦、智慧型手機、工業電腦或櫃型伺服器等。其中,偵錯伺服器4的硬體部分與一般電子裝置的部件組成相同或相似,主要包括處理單元(圖未標示)、伺服器通訊單元41、伺服器儲存單元42、人機介面45及錯誤資料庫46等,韌體部份則由處理單元記錄並執 行。本發明中,偵錯伺服器4的韌體部件係經過客製化,依照所需功能而被邏輯分割成解碼單元43及診斷單元44,但不以此為限。 Please continue to refer to FIG. 6 , the debug server 4 of the present invention is an electronic device composed of hardware and firmware, such as a personal computer, a notebook computer, a tablet computer, a smart phone, an industrial computer or a cabinet-type servo device, etc. Among them, the hardware part of the debug server 4 is the same as or similar to the components of general electronic devices, mainly including a processing unit (not shown in the figure), a server communication unit 41, a server storage unit 42, a man-machine interface 45 and an error The database 46, etc., the firmware part is recorded and executed by the processing unit Row. In the present invention, the firmware components of the debug server 4 are customized and logically divided into the decoding unit 43 and the diagnosis unit 44 according to the required functions, but not limited thereto.

所述處理單元可例如為處理器、微控制單元、系統單晶片或可編程邏輯控制器,用以執行韌體以運行解碼單元43與診斷單元44的對應功能。所述伺服器通訊單元41可為有線通訊單元(例如為連接器)或無線通訊單元(例如採用Wi-Fi、藍牙、射頻或Zigbee等通訊協定的傳輸模組)。所述錯誤資料庫46可為電子裝置內部的儲存器。所述人機介面45可為電子裝置上的鍵盤、滑鼠、顯示器、觸控螢幕等可與使用者進行互動的互動設備的任意組合。惟,上述皆僅為本發明的具體實施範例,但並不以上述者為限。 The processing unit may be, for example, a processor, a microcontroller unit, a system-on-a-chip or a programmable logic controller for executing firmware to execute the corresponding functions of the decoding unit 43 and the diagnosis unit 44 . The server communication unit 41 may be a wired communication unit (eg, a connector) or a wireless communication unit (eg, a transmission module using a communication protocol such as Wi-Fi, Bluetooth, RF, or Zigbee). The error database 46 may be a memory inside the electronic device. The human-machine interface 45 can be any combination of interactive devices such as keyboard, mouse, display, touch screen, etc. on the electronic device that can interact with the user. However, the above are only specific embodiments of the present invention, but are not limited to the above.

本發明中,偵錯伺服器4通過伺服器通訊單元41與資料收集器3通訊連接,以接收資料收集器3發送的上傳資料。伺服器儲存單元42連接伺服器通訊單元41,用以儲存伺服器通訊單元41接收的上傳資料。 In the present invention, the debug server 4 communicates with the data collector 3 through the server communication unit 41 to receive the uploaded data sent by the data collector 3 . The server storage unit 42 is connected to the server communication unit 41 for storing the uploaded data received by the server communication unit 41 .

解碼單元43連接伺服器儲存單元42,用以對所述上傳資料進行解碼,以將上傳資料還原成電動載具2中各個部件21的真實物理量,例如輸出電壓、輸出電流、電池剩餘量、馬達旋轉角度等,但不以此為限。其中,由於上傳資料中夾帶了時間戳記,因此解碼單元43解碼後產生的真實物理量可以有效反應各個部件21在各個時間點的真實資訊。 The decoding unit 43 is connected to the server storage unit 42 for decoding the uploaded data, so as to restore the uploaded data to the real physical quantities of each component 21 in the electric vehicle 2, such as output voltage, output current, remaining battery capacity, motor Rotation angle, etc., but not limited to this. Wherein, since the time stamp is entrained in the uploaded data, the real physical quantity generated after decoding by the decoding unit 43 can effectively reflect the real information of each component 21 at each time point.

診斷單元44連接解碼單元43、人機介面45及錯誤資料庫46,其中,錯誤資料庫46中記錄有工程人員5預先定義的一或多種故障態樣,所述故障態樣可例如為特定故障碼與特定物理量的對應關係。舉例來說,所述故障態樣可例如「當電池的輸出電壓小於第一門檻值時,對應至第一故障碼代表電壓異常」、「當驅動器的輸入電流大於第二門檻值時,對應至第二故障碼代表電流異常」等,但不以限定。 The diagnosis unit 44 is connected to the decoding unit 43 , the human-machine interface 45 and the error database 46 , wherein the error database 46 records one or more failure modes predefined by the engineer 5 , and the failure mode can be, for example, a specific failure Correspondence between codes and specific physical quantities. For example, the fault state can be, for example, "when the output voltage of the battery is less than the first threshold, the first fault code corresponding to the voltage is abnormal", "when the input current of the driver is greater than the second threshold, corresponding to the The second fault code represents abnormal current", etc., but not limited.

所述特定故障碼、特定物理量及門檻值可為各個部件21的研發人員經過實驗後所定義出來,並且記錄於錯誤資料庫46中。若研發人員認為上述資訊或數值需要修改,以提昇診斷單元44的分析品質與分析結果的準確性,則可通過人機介面45對偵錯伺服器4進行操作,以對錯誤資料庫46中記錄的故障態樣進行新增、刪除或修改等編輯動作。 The specific fault codes, specific physical quantities and threshold values can be defined by the developers of each component 21 through experiments, and recorded in the error database 46 . If the researcher thinks that the above information or values need to be modified in order to improve the analysis quality of the diagnosis unit 44 and the accuracy of the analysis results, the error detection server 4 can be operated through the man-machine interface 45 to record the errors in the error database 46 . to add, delete or modify the fault state.

診斷單元44從解碼單元43接收解碼後的真實物理量後,並且將真實物理量與錯誤資料庫46中的複數個故障態樣進行比對後,產生比對結果以呈現初步分析結果,例如「發生故障」、「無故障」或「即將故障」等。 After the diagnosis unit 44 receives the decoded real physical quantity from the decoding unit 43, and compares the real physical quantity with a plurality of fault patterns in the error database 46, a comparison result is generated to present a preliminary analysis result, such as "fault occurs. ", "No fault" or "Failure imminent", etc.

值得一提的是,電動載具2中配置有多個部件21,並且多個部件21可能彼此影響,有時候A部件疑似故障,實際上是B部件有問題所導致。於一實施例中,所述資料收集器3可從總線22上同時收集多個部件21的資料,並且同步發送給偵錯伺服器4。於此實施例中,診斷單元44可以結合不同部件21的多組數據進行同步分析,藉此更精準地判斷故障的可能發生原因。 It is worth mentioning that the electric vehicle 2 is equipped with multiple components 21, and the multiple components 21 may affect each other. Sometimes the A component is suspected to be faulty, but it is actually caused by a problem with the B component. In one embodiment, the data collector 3 can simultaneously collect data of a plurality of components 21 from the bus 22 and send the data to the debug server 4 synchronously. In this embodiment, the diagnosing unit 44 can perform synchronous analysis in combination with multiple sets of data of different components 21 , so as to more accurately determine the possible cause of the failure.

於一實施例中,偵錯伺服器4可通過人機介面45直接顯示電動載具2中各個部件21的相關資訊(即,所述真實物理量),並且同時顯示診斷單元44的初步分析結果。藉此,工程人員5可以直接從偵錯伺服器4的人機介面45上得到要重現故障以及分析故障發生原因所需的所有資料。並且,通過同步顯示診斷單元44初步分析結果,本發明還可協助工程人員5更迅速地判讀故障的發生原因。 In one embodiment, the error detection server 4 can directly display the relevant information (ie, the real physical quantities) of each component 21 in the electric vehicle 2 through the man-machine interface 45 , and simultaneously display the preliminary analysis result of the diagnosis unit 44 . In this way, the engineer 5 can directly obtain all the data needed to reproduce the fault and analyze the cause of the fault from the man-machine interface 45 of the debugging server 4 . In addition, by synchronously displaying the preliminary analysis result of the diagnosis unit 44, the present invention can also assist the engineer 5 in interpreting the cause of the failure more quickly.

本發明中,從各個部件21發送所述一般資料23、高速資料24與高解析度資料25至總線22上,到偵錯伺服器4通過人機介面45顯示真實物理量及比對結果,這之間的動作可以在數秒內完成。藉此,可以有效避免傳統上工程人員5難以藉由事後取得的資料來重現故障,並且需要到電動載具2所在地才能夠進行偵錯與檢修的問題。 In the present invention, the general data 23 , the high-speed data 24 and the high-resolution data 25 are sent from each component 21 to the bus 22 , and the debug server 4 displays the real physical quantity and the comparison result through the man-machine interface 45 . The action can be completed in seconds. In this way, it is possible to effectively avoid the traditional problem that it is difficult for the engineer 5 to reproduce the fault based on the data obtained afterwards, and it is necessary to go to the location of the electric vehicle 2 to perform debugging and maintenance.

值得一提的是,於一實施例中,所述人機介面45亦可直接連接伺服器通訊單元41。具體地,當工程人員5通過人機介面45查看各個部件21的相關資料,並且認為該些資料需要進行修改或增加時,可以直接對人機介面45進行操作,以令偵錯伺服器4產生對應的控制指令C1,並且通過伺服器通訊單元41將控制指令C1發送至資料收集器3。 It is worth mentioning that, in an embodiment, the human-machine interface 45 can also be directly connected to the server communication unit 41 . Specifically, when the engineer 5 checks the relevant data of each component 21 through the man-machine interface 45 and thinks that the data needs to be modified or added, the man-machine interface 45 can be directly operated to make the error detection server 4 generate The corresponding control command C1 is sent to the data collector 3 through the server communication unit 41 .

於一實施例中,所述控制指令C1中可記錄工程人員5認為需要調整的部件21的ID,以及需要調整的內容。資料收集器3在接收控制指令C1後,可依據控制指令C1的內容對總線22上的對應部件21進行對應調整。本實施例中,控制指令C1記錄的調整內容可例如包括調整部件21發送的一般資料23、高速資料24或高解度資料的內容、調整部件21的資料取樣頻率或資料發送頻率、修改高速資料發送程序的觸發條件、修改判斷故障是否發生的故障參數以及更新部件21的韌體等,但不加以限定。前述流程或可稱為空中編程(Over-the-air programming,簡稱OTA)。通過反向發送控制指令C1給資料收集器3的技術方案,本發明的收集系統1可充許工程人員5在遠端模擬親臨現場對電動載具2進行偵錯的工作模式。 In one embodiment, the control instruction C1 can record the ID of the component 21 that the engineer 5 thinks needs to be adjusted, and the content that needs to be adjusted. After receiving the control command C1, the data collector 3 can adjust the corresponding components 21 on the bus 22 according to the content of the control command C1. In this embodiment, the adjustment content recorded by the control command C1 may include, for example, the content of general data 23, high-speed data 24 or high-resolution data sent by the adjustment component 21, data sampling frequency or data transmission frequency of the adjustment component 21, modification of high-speed data The trigger conditions of the sending program, the modification of the fault parameters for judging whether the fault occurs, and the firmware of the updating component 21, etc., are not limited. The foregoing process may be referred to as Over-the-air programming (OTA for short). Through the technical solution of sending the control command C1 to the data collector 3 in reverse, the collecting system 1 of the present invention can allow the engineer 5 to simulate the working mode of visiting the electric vehicle 2 in person at the remote site to debug the electric vehicle 2 .

參閱圖7A,目前一般電動載具中的部件所使用的資料收集方式,是不論有無錯誤發生,皆會一直發送所有資料到總線上。因此,除了部件之間的基本通訊封包(即,類似本發明所指的一般資料23),各部件還需要在資料封包中加入大量的偵錯封包。如此一來,總線的頻寬將會被各部件持續發送的資料塞滿,使得總線的負荷居高不下。 Referring to FIG. 7A , the current data collection method used by the components in the general electric vehicle is to always send all data to the bus regardless of whether an error occurs or not. Therefore, in addition to the basic communication packets between components (ie, similar to the general data 23 referred to in the present invention), each component also needs to add a large number of debug packets into the data packets. In this way, the bandwidth of the bus will be filled with the data continuously sent by each component, making the load of the bus remain high.

並且,因為總線的負荷極高,即使要通過附加的資料收集器來收集總線上的資料,資料收集器亦無法對總線進行全取樣,而必須要通過部份取樣或是壓縮的方式降低資料量。如此一來,後端工程人員通過資料收集器所獲得的資料會是大幅縮減後的低解析度資料。如此一來,當電動載具發生故障 時,後端工程人員難以從這些資料來於遠端直接重現故障,並且分析故障的發生原因。 Moreover, because the load of the bus is extremely high, even if the data on the bus is collected by an additional data collector, the data collector cannot fully sample the bus, and must reduce the amount of data by partial sampling or compression. . In this way, the data obtained by the backend engineers through the data collector will be greatly reduced low-resolution data. As a result, when the electric vehicle fails At the time, it is difficult for back-end engineers to directly reproduce the fault from the remote end from these data, and analyze the cause of the fault.

於本發明的收集系統1中,各部件21平時只需發送通訊所需的基本通訊封包(即,一般資料23)至總線22上,只有當預設的觸發條件滿足(由條件判斷單元212進行判斷)或是故障發生(由錯誤診斷單元215進行診斷)時,才會以高速頻率來發送高速資料24,或是以特定頻率發送高解析度資料25,同時伴隨必要的偵錯封包。而當截止條件被滿足時(即,所述觸發條件不再符合,或故障被排除),部件21即停止發送高速資料24或高解析度資料25。藉此,本發明的收集系統1可以大幅降低總線22上傳輸的偵錯封包的數量,進而減輕總線2的負荷,並且相較於現有技術,資料收集器3可從總線22取得具有較高的解析度的總線資料。 In the collection system 1 of the present invention, each component 21 usually only needs to send basic communication packets (ie, general data 23) required for communication to the bus 22, and only when a preset trigger condition is satisfied (by the condition judging unit 212 ) When a fault occurs (diagnosed by the error diagnosis unit 215), the high-speed data 24 is sent at a high-speed frequency, or the high-resolution data 25 is sent at a specific frequency, accompanied by necessary error detection packets. And when the cut-off condition is met (ie, the trigger condition is no longer met, or the fault is eliminated), the component 21 stops sending the high-speed data 24 or the high-resolution data 25 . Thereby, the collection system 1 of the present invention can greatly reduce the number of debug packets transmitted on the bus 22, thereby reducing the load on the bus 2, and compared with the prior art, the data collector 3 can obtain a higher value from the bus 22. Resolution bus data.

參閱圖7B,本發明的收集系統1大幅降低了總線22的負荷,故即使資料收集器3對總線22進行全取樣,也不會增加資料收集器3的負擔。藉此,可以有效提高資料的解析度與有效性,協助偵錯伺服器4以及工程人員5更有效地分析故障的發生原因。 Referring to FIG. 7B , the collection system 1 of the present invention greatly reduces the load on the bus 22 , so even if the data collector 3 performs full sampling on the bus 22 , the load on the data collector 3 will not be increased. In this way, the resolution and validity of the data can be effectively improved, and the debugging server 4 and the engineer 5 can be assisted to analyze the cause of the failure more effectively.

本發明進一步揭露了一種電動載具資料收集方法(下面將於說明書中簡稱為收集方法),所述收集方法主要應用於如圖1所示的收集系統1,並且通過如圖2、圖4、圖6所示的部件21、資料收集器3及偵錯伺服器4來實現。 The present invention further discloses a data collection method for electric vehicles (hereinafter referred to as collection method in the specification), the collection method is mainly applied to the collection system 1 shown in FIG. The component 21 shown in FIG. 6 , the data collector 3 and the debug server 4 are realized.

請參閱圖8,要實現本發明的收集方法,首先通過設置在電動載具2內的至少一部件21持續收集電動載具2運作時產生的部件資料中的一般資料23。並且,部件21亦持續收集部件資料中的高解析度資料25並且進行暫存(步驟S20)。接著,部件21通過部件通訊單元211執行一般資料發送程序,以基於一般頻率發送一般資料23至總線22上(步驟S22)。 Referring to FIG. 8 , to implement the collection method of the present invention, firstly, at least one component 21 disposed in the electric vehicle 2 continuously collects the general data 23 in the component data generated when the electric vehicle 2 operates. In addition, the component 21 also continuously collects the high-resolution data 25 in the component data and temporarily stores it (step S20 ). Next, the component 21 executes the general data sending procedure through the component communication unit 211 to send the general data 23 to the bus 22 based on the general frequency (step S22).

所述一般資料23常見者,例如為客戶定義的總線通訊協定(如KWP2000協定)、上控部件對被控部件(如以驅動器控制馬達)發出的特定功能或機制的命令(如燈具開關或使用)、部件本身具有低變化率的物理量或低取樣率即可滿足判斷需求的資料(如電池電量百分比、故障碼、驅動器的開關機指令、周邊部件狀態如腳架未收、置物廂未關、煞車訊號…等)。 The general information 23 is common, such as the bus communication protocol defined by the customer (such as the KWP2000 protocol), the command of the specific function or mechanism issued by the upper control component to the controlled component (such as controlling the motor with the driver) (such as light switch or use ), the component itself has a low rate of change of physical quantity or a low sampling rate to meet the needs of judgment (such as battery power percentage, fault code, drive switch command, peripheral components status such as the tripod is not received, the storage compartment is not closed, brake signal...etc).

於一實施例中,部件21在步驟S20中是在電動載具2運作時,通過部件通訊單元211以一般頻率持續從記憶體20中取樣一般資料23,而在步驟S22中,是通過部件通訊單元211以一般頻率將一般資料23發送到總線22上。並且,部件21在步驟S20中是在電動載具2運作時,通過高解析度資料收集單元214以特定的頻率(例如上述一般頻率、高速頻率或是超過總線22的傳輸速率的其他頻率)持續從記憶體20中取樣高解析度資料25,並且以先進先出(First In First Out,FIFO)的方式將高解析度資料25暫存於暫存器中,以進行故障發生前的資料預收集。需說明的是,因高解析度資料是預收集的資料,故只要確保能夠取得故障發生時的對應資料即可,無需特別設定將高解析度資料25發送至總線22上的發送頻率。 In one embodiment, the component 21 continuously samples the general data 23 from the memory 20 at a normal frequency through the component communication unit 211 when the electric vehicle 2 is operating in step S20, and in step S22, the component communication unit 211 continuously samples the general data 23 from the memory 20 at a normal frequency. Unit 211 sends general data 23 onto bus 22 at a general frequency. In addition, in step S20 , when the electric vehicle 2 is operating, the component 21 continues at a specific frequency (such as the above-mentioned general frequency, high-speed frequency, or other frequency exceeding the transmission rate of the bus 22 ) through the high-resolution data collection unit 214 . The high-resolution data 25 is sampled from the memory 20, and the high-resolution data 25 is temporarily stored in the temporary register in a first-in-first-out (FIFO) manner, so as to pre-collect the data before the failure occurs. . It should be noted that, since the high-resolution data is pre-collected data, it is only necessary to ensure that the corresponding data when the fault occurs can be obtained, and there is no need to specially set the sending frequency for sending the high-resolution data 25 to the bus 22 .

本發明中,部件21還通過條件判斷單元212對記憶體20中的部件資料進行取樣,並且基於部件資料判斷是否符合預設的觸發條件(步驟S24)。當條件判斷單元212判斷部件資料符合觸發條件時,致動高速資料收集單元213開始從記憶體20中對取樣部件資料中的高速資料24進行取樣(步驟S26)。步驟S26後,部件21通過部件通訊單元211執行高速資料發送程序,以基於高速頻率發送高速資料24至總線22上(步驟S28)。 In the present invention, the component 21 also samples the component data in the memory 20 through the condition determination unit 212, and judges whether the preset trigger condition is met based on the component data (step S24). When the condition determination unit 212 determines that the component data meets the trigger condition, the high-speed data collection unit 213 is activated to start sampling the high-speed data 24 in the sampled component data from the memory 20 (step S26 ). After step S26, the component 21 executes the high-speed data sending procedure through the component communication unit 211 to send the high-speed data 24 to the bus 22 based on the high-speed frequency (step S28).

所述高速資料24是指依據錯誤發生前預判式的偵錯需求而提供的總線資訊(如電池電壓、馬達電流或電壓等)、部件本身具有高變化率的物理量 或需較高取樣率才能滿足判斷需求的資料(如馬達轉速變化、編碼器的角度變化、保護相關的物理參數如電流、電壓、轉矩、溫度變化等)。 The high-speed data 24 refers to the bus information (such as battery voltage, motor current or voltage, etc.) provided according to the pre-determined debug requirement before the error occurs, and the physical quantity of the component itself with a high rate of change. Or data that requires a higher sampling rate to meet the judgment requirements (such as motor speed changes, encoder angle changes, protection-related physical parameters such as current, voltage, torque, temperature changes, etc.).

於一實施例中,部件21在步驟S26中是在所述觸發條件被滿足時,由條件判斷單元212觸發高速資料收集單元213開始以高速頻率持續從記憶體20中對高速資料24進行取樣,並且令部件通訊單元211以高速頻率持續將高速資料24發送到總線22上,直至不滿足觸發條件為止。 In one embodiment, in step S26, when the trigger condition is satisfied, the condition determination unit 212 triggers the high-speed data collection unit 213 to continuously sample the high-speed data 24 from the memory 20 at a high-speed frequency, And make the component communication unit 211 continue to send the high-speed data 24 to the bus 22 at the high-speed frequency until the trigger condition is not satisfied.

於一實施例中,部件21的製造商可針對不同的潛在問題而在部件21的韌體中預設多組不同觸發條件,並且各組觸發條件分別對應至不同的高速資料24。當一個觸發條件被滿足時,代表部件21可能發生或即將發生對應的潛在問題,而所述高速資料24則指的是在部件資料中,與該些潛在問題具有高度相關性的資料。於步驟S24中,條件判斷單元212是在當前收集的部件資料符合任一組觸發條件時,產生並發送對應的啟動命令給高速資料收集單元213,以令高速資料收集單元213開始收集與這個觸發條件相關的高速資料24。 In one embodiment, the manufacturer of the component 21 can preset multiple sets of different trigger conditions in the firmware of the component 21 for different potential problems, and each set of trigger conditions corresponds to different high-speed data 24 respectively. When a trigger condition is satisfied, it indicates that a corresponding potential problem may occur or is about to occur in the component 21 , and the high-speed data 24 refers to the data in the component data that is highly correlated with these potential problems. In step S24, the condition judging unit 212 generates and sends a corresponding start command to the high-speed data collection unit 213 when the currently collected component data meets any set of trigger conditions, so that the high-speed data collection unit 213 starts to collect and this trigger. Condition-related high-speed data 24.

舉例來說,所述觸發條件可為「第一變數超過第一閥值」,而於步驟S24中,條件判斷單元212可以在部件資料中的第一變數超過第一閥值時,認定觸發條件被滿足。例如,若將前述馬達溫度作為第一變數且超過125℃的溫度預警閥值時,條件判斷單元212判斷溫度符合觸發條件而啟動高速資料發送程序。此時,條件判斷單元212藉由啟動命令來控制高速資料收集單元213,以令高速資料收集單元213開始收集所述第一變數,以及與第一變數具有相關性的第二變數。惟,上述僅為一個具體實施範例,但並不以此為限。 For example, the trigger condition may be "the first variable exceeds the first threshold", and in step S24, the condition determination unit 212 may determine the trigger condition when the first variable in the component data exceeds the first threshold satisfied. For example, if the aforementioned motor temperature is used as the first variable and exceeds the temperature warning threshold of 125°C, the condition determining unit 212 determines that the temperature meets the triggering condition and starts the high-speed data sending process. At this time, the condition judging unit 212 controls the high-speed data collecting unit 213 by starting the command, so that the high-speed data collecting unit 213 starts collecting the first variable and the second variable that is related to the first variable. However, the above is only a specific implementation example, but not limited thereto.

在通過步驟S20持續收集並暫存高解析度資料25的同時,部件21還通過錯誤診斷單元215對記憶體20中的部件資料進行取樣,並且基於部件資料判斷部件21是否有故障發生(步驟S30)。當錯誤診斷單元215判斷部件資料有存在故障條件時,致動高解析度資料收集單元214將目前暫存器中的所有高解析度 資料25都寫入部件儲存單元216中。並且,高解析度資料收集單元214自故障發生當時及之後一段時間持續從記憶體20中取樣高解析度資料25,並且一併寫入部件儲存單元216中(步驟S32)。 While continuously collecting and temporarily storing the high-resolution data 25 through step S20, the component 21 also samples the component data in the memory 20 through the error diagnosis unit 215, and judges whether the component 21 has a fault based on the component data (step S30). ). When the error diagnosis unit 215 determines that there is a fault condition in the component data, the high-resolution data collection unit 214 is activated to collect all the high-resolution data currently in the register. The data 25 are all written to the component storage unit 216 . In addition, the high-resolution data collection unit 214 continues to sample the high-resolution data 25 from the memory 20 from the time when the fault occurs and for a period of time afterward, and writes the high-resolution data 25 into the component storage unit 216 (step S32 ).

所述高解析度資料25包括依據錯誤發生時的偵錯需求所定義的總線資料(如過電流、過電壓)、部件本身具有極高變化率的物理量或需以極高取樣率才能滿足判斷需求的資料(如交軸電流、直軸電流、扭矩命令等)。 The high-resolution data 25 includes bus data (such as overcurrent, overvoltage) defined according to the debug requirements when the error occurs, the physical quantities of the component itself with a very high rate of change, or a very high sampling rate to meet the judgment requirements. information (such as quadrature axis current, direct axis current, torque command, etc.).

舉例來說,錯誤診斷單元215可記錄有多種故障參數,而於步驟S30中,錯誤診斷單元215是將部件資料中的第二變數與多種故障參數進行比對,並且當比對結果顯示第二變數符合多種故障參數之一時,判斷故障發生。例如,當馬達溫度持續升溫而超過130℃的溫度故障閥值時,錯誤診斷單元215據以釋出OH2故障碼,將此故障碼作為第二變數與多個故障參數(如OH1、OH2、OH3…)進行比對,進而判斷對應為發生馬達溫度過高的故障。或者,當驅動器電流超過故障閥值212A-rms,錯誤診斷單元215據以釋出OCN故障碼,將此故障碼作為第二變數,並且判斷出發生過電流的故障。 For example, the error diagnosis unit 215 may record various failure parameters, and in step S30, the error diagnosis unit 215 compares the second variable in the component data with the various failure parameters, and when the comparison result shows the second variable When the variable conforms to one of the various fault parameters, it is judged that the fault occurs. For example, when the temperature of the motor continues to rise and exceeds the temperature fault threshold of 130°C, the fault diagnosis unit 215 will release the OH2 fault code accordingly, and use this fault code as the second variable and multiple fault parameters (such as OH1, OH2, OH3). ...) to compare, and then judge that the fault is caused by excessive motor temperature. Alternatively, when the driver current exceeds the fault threshold 212A-rms, the error diagnosis unit 215 releases the OCN fault code accordingly, uses the fault code as the second variable, and determines that an overcurrent fault occurs.

接著,部件21判斷預設的資料發送條件是否符合(步驟S34)。當任一資料發送條件(例如,儲存單元216被寫滿)符合時,部件21通過部件通訊單元211執行高解析度資料發送程序,在不超過總線22的負荷的情況下,依據總線22的負荷狀態決定一個發送頻率(例如上述的一般頻率、高速頻率或其他任意頻率),再基於這個發送頻率來將儲存單元216中儲存的所有高解析度資料25發送到總線22上(步驟S36)。 Next, the component 21 determines whether the preset data transmission conditions are met (step S34). When any data sending condition (for example, the storage unit 216 is full) is satisfied, the component 21 executes the high-resolution data sending procedure through the component communication unit 211, and the load of the bus 22 is not exceeded under the condition that the load of the bus 22 is not exceeded. The state determines a transmission frequency (such as the above-mentioned general frequency, high-speed frequency or any other frequency), and then transmits all the high-resolution data 25 stored in the storage unit 216 to the bus 22 based on this transmission frequency (step S36).

本實施例中,高解析度資料收集單元214在將高解析度資料25寫入暫存器及/或部件儲存單元216時,會通過計時單元217添加正確的時間戳記,因此被發送到總線22上的高解析度資料25具有正確的時間資訊,並且包含了故障發生當時及前、後一段特定時間內的所有資料。 In this embodiment, when the high-resolution data collection unit 214 writes the high-resolution data 25 into the register and/or the component storage unit 216 , the timing unit 217 adds a correct time stamp, and thus is sent to the bus 22 The high-resolution data 25 on the device has correct time information and contains all the data at the time when the fault occurred, before and after a specific period of time.

接續請參閱圖9,在部件21將一般資料23、高速資料24與高解析度資料25發送到電動載具2的總線22上時,資料收集器3持續對總線22上的總線資料進行全取樣(步驟S40),並且將所取得的總線資料與正確時間進行關聯,以產生上傳資料(步驟S42)。 Continuing to refer to FIG. 9 , when the component 21 sends the general data 23 , the high-speed data 24 and the high-resolution data 25 to the bus 22 of the electric vehicle 2 , the data collector 3 continuously performs full sampling of the bus data on the bus 22 (step S40 ), and associate the acquired bus data with the correct time to generate upload data (step S42 ).

具體地,本發明令部件21通過不同的頻率(一般頻率及高速頻率)以及不同的資料收集方式(持續收集及預收集),動態地將不同資料(一般資料23、高速資料24與高解析度資料25)發送至總線22上,更彈性地使用頻寬並大幅降低了總線22的負荷。因此,資料收集器3可以採用全取樣的資料收集方式,收集總線22上的所有資料,無需壓縮資料進行部份取樣,以避免資料的遺失、提高資料解析度,藉此協助工程人員5有效地進行故障的重現與分析。 Specifically, the present invention enables the component 21 to dynamically collect different data (general data 23, high-speed data 24 and high-resolution data) through different frequencies (general frequency and high-speed frequency) and different data collection methods (continuous collection and pre-collection). The data 25) is sent to the bus 22, the bandwidth is used more flexibly and the load of the bus 22 is greatly reduced. Therefore, the data collector 3 can use the full sampling data collection method to collect all the data on the bus 22 without compressing the data for partial sampling, so as to avoid data loss and improve the data resolution, thereby helping the engineer 5 to effectively Troubleshoot and analyze.

步驟S42後,資料收集器3對外發送上傳資料(步驟S44),並且由偵錯伺服器4接收資料收集器3發送的上傳資料(步驟S46)。於接收上傳資料後,偵錯伺服器4可以將上傳資料與預儲存的多種故障態樣進行比對,以即時產生並顯示比對結果。通過所述比對結果,工程人員5可以輕易且迅速地判斷電動載具2中各個部件21目前的狀況、是否有故障發生、如何重現故障、故障的發生原因以及故障的修復方式。 After step S42, the data collector 3 sends the upload data to the outside world (step S44), and the error detection server 4 receives the upload data sent by the data collector 3 (step S46). After receiving the uploaded data, the debug server 4 can compare the uploaded data with pre-stored various failure modes, so as to generate and display the comparison result in real time. Through the comparison results, the engineer 5 can easily and quickly determine the current status of each component 21 in the electric vehicle 2 , whether there is a failure, how to reproduce the failure, the cause of the failure, and how to repair the failure.

具體地,於步驟S46後,偵錯伺服器4首先通過解碼單元43對上傳資料進行解碼,以產生各個部件21原始的物理量資訊(步驟S48)。接著,偵錯伺服器4由診斷單元44將這些物理量資訊與錯誤資料庫46中記錄的多種故障態樣進行比對分析,並產生初步的分析結果(步驟S50)。藉此,偵錯伺服器4可以通過人機介面45同步顯示各部件21的物理量資訊,以及偵錯伺服器4基於該些物理量資訊初步做出的分析結果(步驟S52)。通過人機介面45顯示的上述資料,工程人員5可以有效且迅速地對電動載具2的當前狀況進行分析。 Specifically, after step S46, the error detection server 4 first decodes the uploaded data through the decoding unit 43 to generate the original physical quantity information of each component 21 (step S48). Next, the diagnostic unit 44 of the debug server 4 compares and analyzes the physical quantity information with various failure modes recorded in the error database 46, and generates a preliminary analysis result (step S50). Thereby, the debug server 4 can synchronously display the physical quantity information of each component 21 through the man-machine interface 45, and the preliminary analysis result made by the debug server 4 based on the physical quantity information (step S52). Through the above-mentioned data displayed on the man-machine interface 45 , the engineer 5 can analyze the current status of the electric vehicle 2 effectively and quickly.

本發明的收集方法除了可通過偵錯伺服器4來同步顯示部件21的資料以及初步分析結果給工程人員5查看之外,若工程人員5查看後認為需要對當前收集的資料進行修改或增加,則工程人員5還可參考錯誤資料庫46中預定義的故障態樣,通過偵錯伺服器4來直接對各個部件21進行遠端調整。舉例來說,工程人員5可通過偵錯伺服器4來直接調整各部件21的資料取樣頻率、為條件判斷單元212定義新的觸發條件、為錯誤診斷單元215設定新的故障態樣等,但不以此為限。 In the collection method of the present invention, in addition to synchronizing the data of the display part 21 and the preliminary analysis results for the engineering personnel 5 to check through the debug server 4, if the engineering personnel 5 thinks that it is necessary to modify or increase the currently collected data after checking, Then, the engineer 5 can also refer to the pre-defined failure modes in the error database 46 to directly perform remote adjustment of each component 21 through the error detection server 4 . For example, the engineer 5 can directly adjust the data sampling frequency of each component 21 through the debug server 4, define a new trigger condition for the condition determination unit 212, set a new failure mode for the error diagnosis unit 215, etc., but Not limited to this.

具體地,偵錯伺服器4可通過人機介面45接受工程人員5的外部操作,以產生對應的控制指令C1(步驟S54)。接著,偵錯伺服器4對外發送控制指令C1(步驟S56),並且由資料收集器3接收偵錯伺服器4發送的控制指令C1(步驟S58)。 Specifically, the debug server 4 can accept the external operation of the engineer 5 through the man-machine interface 45 to generate the corresponding control command C1 (step S54 ). Next, the debug server 4 sends the control command C1 to the outside (step S56 ), and the data collector 3 receives the control command C1 sent by the debug server 4 (step S58 ).

於接收控制指令C1後,資料收集器3通過電動載具2的總線22來連接控制指令C1中指示的部件21,並且基於控制指令C1的內容對部件21進行對應調整(步驟S60)。於一實施例中,所述控制指令C1的內容可例如但不限於調整部件21發送的一般資料23、高速資料或高解度資料的內容、調整部件21的資料取樣頻率或資料發送頻率、修改高速資料發送程序的觸發條件、修改判斷故障是否發生的故障參數以及更新部件21的韌體等,但不加以限定。 After receiving the control command C1, the data collector 3 connects the components 21 indicated in the control command C1 through the bus 22 of the electric vehicle 2, and adjusts the components 21 correspondingly based on the content of the control command C1 (step S60). In an embodiment, the content of the control command C1 can be, for example, but not limited to, the content of the general data 23 sent by the adjustment component 21, the content of high-speed data or high-resolution data, the data sampling frequency or data sending frequency of the adjustment component 21, modification The trigger conditions of the high-speed data transmission program, the modification of the fault parameters for judging whether the fault occurs, and the firmware of the update component 21, etc., are not limited.

以上所述僅為本發明之較佳具體實例,非因此即侷限本發明之專利範圍,故舉凡運用本發明內容所為之等效變化,均同理皆包含於本發明之範圍內,合予陳明。 The above description is only a preferred specific example of the present invention, and therefore does not limit the scope of the patent of the present invention. Therefore, all equivalent changes made by using the content of the present invention are all included in the scope of the present invention. Bright.

1:資料收集系統 1: Data collection system

2:電動載具 2: Electric vehicle

21:部件 21: Components

22:總線 22: Bus

3:資料收集器 3: Data Collector

4:偵錯伺服器 4: Debug server

5:工程人員 5: Engineering staff

Claims (11)

一種電動載具部件,該電動載具部件設置於一電動載具中並連接該電動載具的一總線,包括:一通訊單元,以一一般頻率持續收集該電動載具部件的一部件資料中的一一般資料,並執行一一般資料發送程序以基於該一般頻率將該一般資料發送至該總線上;一條件判斷單元,記錄至少一組觸發條件,並基於該部件資料判斷是否符合該觸發條件;一高速資料收集單元,連接該條件判斷單元及該通訊單元,於該部件資料符合該觸發條件後受該條件判斷單元觸發以一高速頻率持續收集該部件資料中的一高速資料,並且該通訊單元執行一高速資料發送程序以基於該高速頻率將該高速資料發送至該總線上,其中該高速頻率高於該一般頻率;一儲存單元,連接該通訊單元;一高解析度資料收集單元,持續收集並暫存該部件資料中的一高解析度資料;一錯誤診斷單元,連接該高解析度資料收集單元,基於該部件資料判斷一故障是否發生;及一計時單元,連接該高解析度資料收集單元,其中暫存的該高解析度資料包括該計時單元提供之一時間資訊,該時間資訊記錄一標準時間;其中,該高解析度資料收集單元連接該儲存單元,於該故障發生時受該錯誤診斷單元觸發以將當前暫存及後續收集的該高解析度資料儲存至該儲存單元,並且該通訊單元執行一高解析度資料發送程序以將該儲存單元中相 對於該故障發生當時及前、後一段特定時間內儲存的該高解析度資料發送至該總線上。 An electric vehicle component, the electric vehicle component is arranged in an electric vehicle and connected to a bus of the electric vehicle, including: a communication unit, which continuously collects a component data of the electric vehicle component at a normal frequency a general data, and execute a general data sending program to send the general data to the bus based on the general frequency; a condition judging unit, recording at least one set of trigger conditions, and based on the component data to determine whether the trigger condition is met ; a high-speed data collection unit, connected to the condition judgment unit and the communication unit, after the component data meets the trigger condition, is triggered by the condition judgment unit to continuously collect a high-speed data in the component data at a high-speed frequency, and the communication The unit executes a high-speed data sending program to send the high-speed data to the bus based on the high-speed frequency, wherein the high-speed frequency is higher than the normal frequency; a storage unit, connected to the communication unit; a high-resolution data collection unit, continuously Collecting and temporarily storing a high-resolution data in the component data; an error diagnosis unit, connected to the high-resolution data collection unit, and judging whether a fault occurs based on the component data; and a timing unit, connected to the high-resolution data A collection unit, wherein the temporarily stored high-resolution data includes time information provided by the timing unit, and the time information records a standard time; wherein, the high-resolution data collection unit is connected to the storage unit, and is subject to the failure when the fault occurs. The error diagnosis unit is triggered to store the currently temporarily stored and subsequently collected high-resolution data to the storage unit, and the communication unit executes a high-resolution data sending procedure to match the data in the storage unit. The high-resolution data stored at the time when the fault occurs, before and after a certain period of time is sent to the bus. 如請求項1所述的電動載具部件,其中該總線為控制器區域網路(Controller Area Network,CAN)總線,並且該電動載具部件更包括連接該通訊單元、該條件判斷單元、該高速資料收集單元、該高解析度資料收集單元及該錯誤診斷單元的一記憶體,該電動載具部件以高於該一般頻率及該高速頻率的一超高速頻率對該電動載具中的該部件資料進行全取樣,並將全取樣的結果記錄於該記憶體中,該記憶體提供該全取樣的結果給該部件通訊單元、該條件判斷單元、該高速資料收集單元、該高解析度資料收集單元及該錯誤診斷單元。 The electric vehicle component as claimed in claim 1, wherein the bus is a Controller Area Network (CAN) bus, and the electric vehicle component further includes the communication unit, the condition judging unit, the high-speed A memory of the data collection unit, the high-resolution data collection unit and the error diagnosis unit, the electric vehicle component is connected to the component in the electric vehicle at an ultra-high-speed frequency higher than the normal frequency and the high-speed frequency The data is fully sampled, and the results of the full sampling are recorded in the memory, and the memory provides the results of the full sampling to the component communication unit, the condition judging unit, the high-speed data collection unit, and the high-resolution data collection. unit and the error diagnosis unit. 如請求項2所述的電動載具部件,其中該條件判斷單元從該記憶體中收集該部件資料,依據該部件資料中的一第一變數是否超過一特定閥值以判斷是否符合該觸發條件;及該錯誤診斷單元從該記憶體中收集該部件資料,並依據該部件資料中的一第二變數與一故障參數是否對應以判斷該故障是否發生。 The electric vehicle component of claim 2, wherein the condition judging unit collects the component data from the memory, and judges whether the trigger condition is met according to whether a first variable in the component data exceeds a specific threshold. ; and the fault diagnosis unit collects the component data from the memory, and judges whether the fault occurs according to whether a second variable in the component data corresponds to a fault parameter. 一種電動載具資料收集系統,包括:一部件,設置於一電動載具中並且連接該電動載具的一總線,該部件執行一一般資料發送程序、一高速資料發送程序或一高解析度資料發送程序,其中該一般資料發送程序持續收集該電動載具的一部件資料中的一一般資料,並且基於一一般頻率發送該一般資料至該總線上,其中該高速資料發送程序於該部件資料符合一觸發條件後開始收集該部件資料中的一高速資料,並且基於高於該一般頻率的一高速頻率發送該高速資料至該總線上,其中該高解析度資料發送程序持續收集並暫存該部件資料中的一高解析度資料,於判斷一故障發生時將當前暫存及後續收集的具有一時間資訊的該 高解析度資料儲存至一儲存單元,並且將該儲存單元中相對於該故障發生當時及前、後一段特定時間內儲存的該高解析度資料發送至該總線上;一資料收集器,通訊連接該總線並對該總線上的一總線資料進行全取樣,其中該資料收集器具有一校時單元、一第一通訊單元及一處理單元,該校時單元通過該第一通訊單元連接一NTP伺服器以取得一時間資訊,該處理單元將該總線資料與所取得的該時間資訊進行關聯以產生一上傳資料,其中該總線資料包括該一般資料、該高速資料及該高解析度資料的至少其中之一;及一偵錯伺服器,與該資料收集器的該第一通訊單元通訊連接以接收該上傳資料,該偵錯伺服器具有一錯誤資料庫及一診斷單元,該錯誤資料庫儲存複數個故障態樣,該診斷單元將該上傳資料與該複數個故障態樣進行比對並即時顯示一比對結果。 An electric vehicle data collection system, comprising: a component disposed in an electric vehicle and connected to a bus of the electric vehicle, the component executes a general data transmission program, a high-speed data transmission program or a high-resolution data A sending program, wherein the general data sending program continuously collects a general data in a component data of the electric vehicle, and sends the general data to the bus based on a general frequency, wherein the high-speed data sending program is in accordance with the component data. After a trigger condition starts to collect a high-speed data in the component data, and sends the high-speed data to the bus based on a high-speed frequency higher than the normal frequency, wherein the high-resolution data sending program continues to collect and temporarily store the component A high-resolution data in the data, when judging that a fault occurs, the current temporary storage and subsequent collection of the data with a time information The high-resolution data is stored in a storage unit, and the high-resolution data stored in the storage unit relative to the time when the fault occurs, before and after a certain period of time is sent to the bus; a data collector, a communication connection The bus also performs full sampling of a bus data on the bus, wherein the data collector has a time calibration unit, a first communication unit and a processing unit, and the time calibration unit is connected to an NTP server through the first communication unit To obtain a time information, the processing unit associates the bus data with the obtained time information to generate an upload data, wherein the bus data includes at least one of the general data, the high-speed data and the high-resolution data 1; and a debug server, communicating with the first communication unit of the data collector to receive the uploaded data, the debug server has an error database and a diagnosis unit, the error database stores a plurality of For the failure state, the diagnostic unit compares the uploaded data with the plurality of failure states and displays a comparison result in real time. 如請求項4所述的電動載具資料收集系統,其中該部件具有一記憶體,該部件以高於該一般頻率及該高速頻率的一超高速頻率對該電動載具的該部件資料進行全取樣並將全取樣的結果記錄於該記憶體中,並且該部件從該記憶體中收集該部件資料;該部件依據該部件資料中的一第一變數是否超過一特定閥值以判斷是否符合該觸發條件;及該部件依據該部件資料中的一第二變數與一故障參數是否對應以判斷該故障是否發生。 The electric vehicle data collection system as claimed in claim 4, wherein the component has a memory, and the component collects the component data of the electric vehicle at an ultra-high-speed frequency higher than the normal frequency and the high-speed frequency. Sampling and recording the results of all sampling in the memory, and the component collects the component data from the memory; the component judges whether it conforms to the component according to whether a first variable in the component data exceeds a specific threshold triggering conditions; and the component determines whether the fault occurs according to whether a second variable in the component data corresponds to a fault parameter. 如請求項4所述的電動載具資料收集系統,其中該總線為控制器區域網路(Controller Area Network,CAN)總線,並且該資料收集器還包括: 一第二通訊單元,連接該校時單元及該處理單元,該資料收集器通過該第二通訊單元通訊連接該總線,將該時間資訊發送給該總線上的該部件,並且對該總線資料進行取樣;一收集器記憶體,連接該處理單元;一收集單元,連接該第二通訊單元及該處理單元,收集該第二通訊單元取樣的該總線資料,並通過該處理單元暫存於該收集器記憶體;及一收集器儲存單元,連接該處理單元,於該處理單元無法通過該第一通訊單元將該上傳資料發送至該偵錯伺服器時儲存該上傳資料。 The electric vehicle data collection system according to claim 4, wherein the bus is a Controller Area Network (CAN) bus, and the data collector further comprises: A second communication unit is connected to the timing unit and the processing unit, the data collector communicates with the bus through the second communication unit, sends the time information to the component on the bus, and processes the bus data. Sampling; a collector memory connected to the processing unit; a collection unit connected to the second communication unit and the processing unit to collect the bus data sampled by the second communication unit and temporarily store in the collection through the processing unit and a collector storage unit, connected to the processing unit, and storing the uploaded data when the processing unit cannot send the uploaded data to the debug server through the first communication unit. 如請求項6所述的電動載具資料收集系統,其中該偵錯伺服器還包括:一伺服器通訊單元,與該資料收集器通訊連接,並接收該上傳資料;一伺服器儲存單元,連接該伺服器通訊單元,儲存該上傳資料;一解碼單元,連接該伺服器儲存單元與該診斷單元,解碼該上傳資料以產生一真實物理量,其中該診斷單元將該真實物理量與該複數個故障態樣進行比對以產生該比對結果;一人機介面,連接該錯誤資料庫及該診斷單元,以顯示該比對結果,並且接收一外部操作以編輯該錯誤資料庫中記錄的該複數故障態樣。 The electric vehicle data collection system according to claim 6, wherein the debug server further comprises: a server communication unit, connected to the data collector, and receiving the uploaded data; a server storage unit, connected to The server communication unit stores the uploaded data; a decoding unit is connected to the server storage unit and the diagnosis unit, and decodes the uploaded data to generate a real physical quantity, wherein the diagnosis unit and the plurality of fault states compare the sample to generate the comparison result; a human-machine interface, connect the error database and the diagnosis unit to display the comparison result, and receive an external operation to edit the plurality of fault states recorded in the error database Sample. 如請求項7所述的電動戴具資料收集系統,其中該人機介面連接該伺服器通訊單元,接收該外部操作以通過該伺服器通訊單元發送一控制指令至該資料收集器,並且該資料收集器依據該控制指令對該總線上的該部件進行調整,其中該控制指令包括調整該一般資料、該高速資料或該高解析度資料的內容、調整該部件的資料取樣頻率或資料發送頻率、修改該高速資料發送程序的該觸發條件、修改判斷該故障是否發生的一故障參數及更新該部件的韌體的至少其中之一。 The electric wearable data collection system as claimed in claim 7, wherein the human-machine interface is connected to the server communication unit, receives the external operation to send a control command to the data collector through the server communication unit, and the data The collector adjusts the component on the bus according to the control command, wherein the control command includes adjusting the content of the general data, the high-speed data or the high-resolution data, adjusting the data sampling frequency or data sending frequency of the component, At least one of modifying the trigger condition of the high-speed data transmission program, modifying a failure parameter for judging whether the failure occurs, and updating the firmware of the component. 一種電動載具資料收集方法,應用於一電動載具資料收集系統,其中該電動載具資料收集系統包括設置於一電動載具中的一部件、通過該電動載具的一總線與該部件通訊連接的一資料收集器以及與該資料收集器通訊連接的一偵錯伺服器,該電動載具資料收集方法包括:a)該部件持續收集一部件資料中的一般資料,並執行一一般資料發送程序以基於一一般頻率發送該一般資料至該總線上;b)該部件基於該部件資料判斷是否符合一觸發條件;c)該部件於該部件資料符合該觸發條件後持續收集該部件資料中的一高速資料,並執行一高速資料發送程序以基於一高速頻率發送該高速資料至該總線上,其中該高速頻率高於該一般頻率;d)該部件持續收集並暫存該部件資料中的一高解析度資料;e)該部件基於該部件資料判斷一故障是否發生;f)該部件於該故障發生時將當前暫存及後續收集的該高解析度資料儲存至一儲存單元;g)該步驟f後,該部件執行一高解析度資料發送程序以將該儲存單元中相對於該故障發生當時及前、後一段特定時間內儲存的該高解析度資料發送至該總線上,其中該高解析度資料包括一時間資訊,該時間資訊記錄一標準時間;h)該資料收集器對該總線上的一總線資料進行全取樣,其中該總線資料包括該一般資料、該高速資料及該高解析度資料的至少其中之一;i)該資料收集器將所取樣的該總線資料與該標準時間進行關聯以產生一上傳資料;j)該偵錯伺服器由該資料收集器接收該上傳資料;及 k)該偵錯伺服器將該上傳資料與預儲存的複數個故障態樣進行比對,並即時顯示一比對結果。 An electric vehicle data collection method, applied to an electric vehicle data collection system, wherein the electric vehicle data collection system includes a component disposed in an electric vehicle, and communicates with the component through a bus of the electric vehicle A connected data collector and a debug server connected in communication with the data collector, the electric vehicle data collection method includes: a) the component continuously collects general data in a component data, and executes a general data transmission The program sends the general data to the bus based on a general frequency; b) the component determines whether a trigger condition is met based on the component data; c) the component continues to collect the component data after the component data meets the trigger condition. a high-speed data, and execute a high-speed data sending program to send the high-speed data to the bus based on a high-speed frequency, wherein the high-speed frequency is higher than the normal frequency; d) the component continuously collects and temporarily stores a part of the component data high-resolution data; e) the component determines whether a fault occurs based on the component data; f) the component stores the high-resolution data currently temporarily stored and subsequently collected in a storage unit when the fault occurs; g) the After step f, the component executes a high-resolution data sending program to send the high-resolution data stored in the storage unit to the bus for a specific period of time when the fault occurs, before and after the failure, wherein the high-resolution data is stored on the bus. The resolution data includes a time information, and the time information records a standard time; h) The data collector performs full sampling of a bus data on the bus, wherein the bus data includes the general data, the high-speed data and the high-resolution data at least one of the data; i) the data collector associates the sampled bus data with the standard time to generate an upload data; j) the debug server receives the upload data from the data collector; and k) The debugging server compares the uploaded data with a plurality of pre-stored fault patterns, and displays a comparison result in real time. 如請求項9所述的電動載具資料收集方法,其中該部件具有一記憶體,該部件以高於該一般頻率及該高速頻率的一超高速頻率對該電動載具中的該部件資料進行全取樣並將全取樣的結果記錄於該記憶體中;該步驟b)是從該記憶體中收集該部件資料,並依據該部件資料中的一第一變數是否超過一特定閥值以判斷是否符合該觸發條件;該步驟e)是從該記憶體中收集該部件資料,並依據該部件資料中的一第二變數與一故障參數是否對應以判斷該故障是否發生。 The method for collecting data of an electric vehicle as claimed in claim 9, wherein the component has a memory, and the component records the data of the component in the electric vehicle at an ultra-high-speed frequency higher than the normal frequency and the high-speed frequency. All sampling is performed and the result of all sampling is recorded in the memory; the step b) is to collect the component data from the memory, and determine whether a first variable in the component data exceeds a specific threshold value. The trigger condition is met; the step e) is to collect the component data from the memory, and determine whether the fault occurs according to whether a second variable in the component data corresponds to a fault parameter. 如請求項10所述的電動載具資料收集方法,其中更包括:l)該偵錯伺服器接收一外部操作以產生一控制指令;m)該資料收集器接收該控制指令;及n)該資料收集器依據該控制指令對該總線上的該部件進行調整,其中該控制指令包括調整該一般資料、該高速資料或該高解析度資料的內容、調整該部件的資料取樣頻率或資料發送頻率、修改該高速資料發送程序的該觸發條件、修改該故障參數以及更新該部件的韌體的至少其中之一。 The data collection method for an electric vehicle as claimed in claim 10, further comprising: l) the debug server receives an external operation to generate a control command; m) the data collector receives the control command; and n) the The data collector adjusts the component on the bus according to the control command, wherein the control command includes adjusting the content of the general data, the high-speed data or the high-resolution data, and adjusting the data sampling frequency or data sending frequency of the component , at least one of modifying the triggering condition of the high-speed data transmission program, modifying the fault parameter, and updating the firmware of the component.
TW110120128A 2021-06-03 2021-06-03 Component of electronic vehicle, data collecting system for electronic vehicle, and data collecting method for electronic vehicle TWI774406B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110120128A TWI774406B (en) 2021-06-03 2021-06-03 Component of electronic vehicle, data collecting system for electronic vehicle, and data collecting method for electronic vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110120128A TWI774406B (en) 2021-06-03 2021-06-03 Component of electronic vehicle, data collecting system for electronic vehicle, and data collecting method for electronic vehicle

Publications (2)

Publication Number Publication Date
TWI774406B true TWI774406B (en) 2022-08-11
TW202248778A TW202248778A (en) 2022-12-16

Family

ID=83807105

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110120128A TWI774406B (en) 2021-06-03 2021-06-03 Component of electronic vehicle, data collecting system for electronic vehicle, and data collecting method for electronic vehicle

Country Status (1)

Country Link
TW (1) TWI774406B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI840208B (en) * 2023-04-28 2024-04-21 台達電子工業股份有限公司 Remote diagnosing system of electronic vehicle and remote diagnosing method for using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100475143C (en) * 2004-03-25 2009-04-08 株式会社三角工具加工 Load body state judgment device and vehicle seat
US20110285982A1 (en) * 1995-06-07 2011-11-24 Breed David S Method and arrangement for obtaining information about objects around a vehicle
CN103939081A (en) * 2014-05-07 2014-07-23 中国石油大学(华东) Fast logging engineering parameter data collecting system and processing method thereof
US20190156600A1 (en) * 2006-11-16 2019-05-23 Ge Global Sourcing Llc Locomotive sensor system for monitoring engine and lubricant health
TW201937447A (en) * 2018-03-01 2019-09-16 大陸商北京嘀嘀無限科技發展有限公司 Systems and methods for identifying risky driving behavior
US20210108926A1 (en) * 2019-10-12 2021-04-15 Ha Q. Tran Smart vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110285982A1 (en) * 1995-06-07 2011-11-24 Breed David S Method and arrangement for obtaining information about objects around a vehicle
CN100475143C (en) * 2004-03-25 2009-04-08 株式会社三角工具加工 Load body state judgment device and vehicle seat
US20190156600A1 (en) * 2006-11-16 2019-05-23 Ge Global Sourcing Llc Locomotive sensor system for monitoring engine and lubricant health
CN103939081A (en) * 2014-05-07 2014-07-23 中国石油大学(华东) Fast logging engineering parameter data collecting system and processing method thereof
TW201937447A (en) * 2018-03-01 2019-09-16 大陸商北京嘀嘀無限科技發展有限公司 Systems and methods for identifying risky driving behavior
US20210108926A1 (en) * 2019-10-12 2021-04-15 Ha Q. Tran Smart vehicle

Also Published As

Publication number Publication date
TW202248778A (en) 2022-12-16

Similar Documents

Publication Publication Date Title
CN107222362B (en) Automatic test platform for finished vehicle CAN network and optimization method thereof
CN115514590B (en) Electric vehicle component, electric vehicle data collection system and electric vehicle data collection method
CN109408338B (en) Method, device, equipment and system for grabbing trace of NVME (network video management entity) hard disk
CN105446933B (en) The debugging system and adjustment method of multi-core processor
WO2012155842A1 (en) Ctcs-3 train control test and simulation system
CN109976959A (en) A kind of portable device and method for server failure detection
TWI774406B (en) Component of electronic vehicle, data collecting system for electronic vehicle, and data collecting method for electronic vehicle
JP2017507432A (en) Measuring system having a plurality of sensors
KR102534956B1 (en) LED display update configuration method, receiving card, LED display module and LED display
CN112559267B (en) Inter-integrated circuit bus I2C slave and I2C controller test method
CN107976990A (en) A kind of complete vehicle fault test method based on CANoe
CN110647139A (en) Evaluation test tool and evaluation test method for OBD (on-Board diagnostics) mass production vehicle
WO2021027852A1 (en) Train signal system and linkage method therefor
CN116627877B (en) On-chip bus state recording system and method
CN113092130A (en) Method for simulating conformance test of electric automobile and vehicle-mounted terminal
CN109634175B (en) Method and system for controlling dynamic verification of configuration program
CN114924546A (en) Calibration system and method for hardware-in-loop test
CN113536658B (en) Electromechanical equipment lightweight fault diagnosis method based on STM32 embedded processor
WO2024078601A1 (en) Icon detection script generation method, and device and storage medium
CN109446002B (en) Jig plate, system and method for grabbing SATA hard disk by server
CN101106559A (en) ATP-ATO debugging method based on packet parsing
CN113960991B (en) Vehicle fault diagnosis system, method and device, system-on-chip and vehicle
CN111682987B (en) Real vehicle environment simulation and rapid test system based on OSEK NM
CN115017086A (en) Oscillograph based on three-processor architecture
Xu et al. Design of vehicle gateway automatic test system based on CANoe