TWI773670B - Klebsiella pneumoniae antibodies and methods to treat klebsiella pneumoniae infections - Google Patents

Klebsiella pneumoniae antibodies and methods to treat klebsiella pneumoniae infections Download PDF

Info

Publication number
TWI773670B
TWI773670B TW106114006A TW106114006A TWI773670B TW I773670 B TWI773670 B TW I773670B TW 106114006 A TW106114006 A TW 106114006A TW 106114006 A TW106114006 A TW 106114006A TW I773670 B TWI773670 B TW I773670B
Authority
TW
Taiwan
Prior art keywords
seq
amino acid
sequence
set forth
acid sequence
Prior art date
Application number
TW106114006A
Other languages
Chinese (zh)
Other versions
TW201839137A (en
Inventor
貝媞娜C 芙瑞斯
娜娃羅 伊莉莎白特 黛安國
Original Assignee
美國紐約州立大學研究基金會
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美國紐約州立大學研究基金會 filed Critical 美國紐約州立大學研究基金會
Priority to TW106114006A priority Critical patent/TWI773670B/en
Publication of TW201839137A publication Critical patent/TW201839137A/en
Application granted granted Critical
Publication of TWI773670B publication Critical patent/TWI773670B/en

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The instant invention relates to antibodies (which includes whole antibodies and functional parts thereof) as therapeutic and diagnostics tools to combat K. pneumoniae (Kp) infections, and diseases and disorders which are caused by or associated with Kp infections.

Description

克雷伯氏肺炎桿菌(KLEBSIELLA PNEUMONIAE)抗體及治療克雷伯氏肺炎桿菌感染之方法Klebsiella pneumoniae (KLEBSIELLA PNEUMONIAE) antibody and method for treating Klebsiella pneumoniae infection

克雷伯氏肺炎桿菌係可引起住院患者之肺、尿路、傷口及軟組織感染的腸桿菌科家族之革蘭氏陰性(gram-negative)病原體。另外,克雷伯氏肺炎桿菌可在健康人中、主要在腸道中、同時亦在鼻、喉及皮膚中無症狀攜帶[1]。尚未完全瞭解關於克雷伯氏肺炎桿菌可如何引起侵襲性疾病之機制[2]。由於多抗藥性基因之獲取,近年來,克雷伯氏肺炎桿菌感染已成為世界範圍內的威脅[3]。舉例而言,碳青黴烯(carbapenem)抗性克雷伯氏肺炎桿菌在世界範圍內傳播;最成功之純系型係ST258。 已出現克雷伯氏肺炎桿菌的變體菌株,高毒力(hypervirulent)克雷伯氏肺炎桿菌(hvKp )。此變體菌株可引起侵襲性感染,包括化膿性肝膿瘍、肺炎、眼炎及腦膜炎[2]。其已在世界範圍內報導[4-6],但大多數此菌株來自亞洲,其中其係臺灣[7]、新加坡[8]、香港[9]及韓國[10]肝膿瘍之主要病因。事實上,在臺灣,化膿性肝膿瘍之年發病率在1996年至2004年間每100,000人增加了11至17例[11PMCPMC2609891]。高達13%之hvKp 感染可轉移性擴散至眼或腦膜[11]。大百分比的hvKp 感染散佈至眼或腦膜[12,Fang CT,PMCPMC4076766],此通常導致不可逆損害,如視力喪失、神經缺陷或胺體喪失。死亡率在3%至42%之範圍內[2]。最近的流行病學研究表明,健康成人在其胃腸道中攜帶毒性毒株,且基於MLST分型,推斷出定殖菌株引起患者之侵襲性感染[13]。 Klebsiella pneumoniae is a gram-negative pathogen of the Enterobacteriaceae family that causes lung, urinary tract, wound and soft tissue infections in hospitalized patients. In addition, Klebsiella pneumoniae can be asymptomatically carried in healthy individuals, mainly in the gut, but also in the nose, throat, and skin [1]. The mechanisms by which Klebsiella pneumoniae can cause invasive disease are not fully understood [2]. Due to the acquisition of multi-drug resistance genes, Klebsiella pneumoniae infection has become a worldwide threat in recent years [3]. For example, carbapenem-resistant Klebsiella pneumoniae spreads worldwide; the most successful pure phylotype is ST258. A variant strain of Klebsiella pneumoniae, the hypervirulent Klebsiella pneumoniae (hv Kp ), has emerged. This variant strain can cause invasive infections, including purulent liver abscesses, pneumonia, ophthalmia, and meningitis [2]. It has been reported worldwide [4-6], but most of this strain is from Asia, where it is the main cause of liver abscesses in Taiwan [7], Singapore [8], Hong Kong [9] and Korea [10]. In fact, in Taiwan, the annual incidence of purulent liver abscess increased by 11 to 17 cases per 100,000 population between 1996 and 2004 [11PMCPMC2609891]. Up to 13% of hv Kp infections have metastatic spread to the eye or meninges [11]. A large percentage of hv Kp infections spread to the eye or meninges [12, Fang CT, PMCPMC4076766], which often results in irreversible damage such as vision loss, neurological deficits, or loss of amine bodies. Mortality rates range from 3 to 42 percent [2]. Recent epidemiological studies have shown that healthy adults carry virulent strains in their gastrointestinal tract, and based on MLST typing, colonizing strains are inferred to cause invasive infections in patients [13].

幸運的是,且與ST258菌株相反[12],hvKp菌株展現較少的其莢膜多醣(CPS)多樣性。K1血清型係普遍之CPS且據報導存在於高達81% hvKp菌株上,之後分別係K2血清型及非-K1/K2血清型[10、11、13、14]。 Fortunately, and in contrast to the ST258 strain [12], the hv Kp strain exhibited less diversity in its capsular polysaccharide (CPS). The K1 serotype is the prevalent CPS and has been reported to be present in up to 81% of hv Kp strains, followed by the K2 serotype and the non-K1/K2 serotype, respectively [10, 11, 13, 14].

歷史上,觀察到hvKp對標準抗生素係泛敏感的,因此,若早期識別,該等感染通常可成功地得以治療,儘管其具有侵襲性。隨著抗性hvKp菌株之出現,主要關注之一在於該等變體可獲得賦予質體之多抗藥性(MDR),如攜帶bla KPC-2及bla KPC-3者。因此,根據中國最近之報告,發現hvKp菌株對碳青黴烯及阿米卡星(amikacin)仍然敏感,但對19種經測試的抗微生物劑中之14種具有抗性[15]。此外,報告指出,自2010年12月至2012年6月,抗生素抗性持續上升[15]。已展現活體外獲取帶有KPC之質體的高毒力菌株[16]。此外,最近在中國已分離出展現碳青黴烯抗性之hvKp菌株[17]。 Historically, hv Kp has been observed to be pan-susceptible to standard antibiotics and thus, if identified early, these infections can often be successfully treated, despite their invasive nature. With the emergence of resistant hv Kp strains, one of the major concerns is that these variants can acquire multidrug resistance (MDR) conferring plastids, such as those carrying bla KPC -2 and bla KPC -3 . Therefore, according to a recent report from China, the hv Kp strain was found to be still sensitive to carbapenems and amikacin, but resistant to 14 out of 19 tested antimicrobials [15]. In addition, the report noted that antibiotic resistance continued to rise from December 2010 to June 2012 [15]. In vitro acquisition of highly virulent strains with KPC plastids has been demonstrated [16]. In addition, hv Kp strains exhibiting carbapenem resistance have recently been isolated in China [17].

因此,鑒於出現之多抗藥性hvKp菌株之迫在眉睫的威脅,顯然,迫切需要發現診斷及治療工具來對抗雷伯氏肺炎桿菌感染、具體而言對抗hvKp血清型K1感染。Therefore, given the imminent threat of emerging multi-drug resistant hv Kp strains, it is clear that there is an urgent need to discover diagnostic and therapeutic tools to combat P. lebsiella infection, in particular hv Kp serotype K1 infection.

本發明係關於作為用以對抗克雷伯氏肺炎桿菌(Kp )感染及由Kp 感染引起或與其相關之疾病及病症之治療及診斷工具的抗體(其包括全抗體及其功能部分)。 如本文所用術語「抗體」(「antibody」或「antibodies」)為業內公認且應理解為指結合至已知抗原之多肽分子或多肽分子之活性片段。 在本發明之一個實施例中,提供由雜交瘤4C5 (IgG1同型)產生之單株抗體(mAb)。在另一實施例中,提供由雜交瘤19A10 (IgG3同型)產生之單株抗體。該等IgG mAb針對高毒力Kp K1血清型之莢膜多醣(CPS)具有高親和力。 mAb 4C5之重鏈之經分離核苷酸及胺基酸序列分別示於SEQ ID NO: 1及SEQ ID NO: 2中。重鏈之CDR 1-3之胺基酸序列分別示於SEQ ID NO: 12-14中。mAb 4C5之輕鏈之核苷酸及胺基酸序列分別示於SEQ ID NO: 3及SEQ ID NO: 4中。輕鏈之CDR 1-3之胺基酸序列分別示於SEQ ID NO: 18-20中。 mAb 19A10之重鏈之經分離核苷酸及胺基酸序列分別示於SEQ ID NO: 5及SEQ ID NO: 6中。重鏈之CDR 1-3之胺基酸序列分別示於SEQ ID NO: 24-26中。mAb 19A10之輕鏈之核苷酸及胺基酸序列分別示於SEQ ID NO: 7及SEQ ID NO: 8中。輕鏈之CDR 1-3之胺基酸序列分別示於SEQ ID NO: 30-32中。 「經分離」意指生物分子不含至少一些與其一起天然存在之組份。術語「CDR」係指抗體之超變區。mAb包含6個超變區:3個位於VH中(H1、H2、H3),且3個位於VL中(L1、L2、L3)。 在另一實施例中,提供mAb 4C5及mAb 19A10之任何功能上等效之抗體或功能部分。「功能上等效之」抗體/部分與如本文所述mAb實質上共用至少一種主要功能性質,包括針對Kp 感染被動免疫。 舉例而言,mAb 4C5及mAb 19A10可具有因其序列之至少一個、特定而言至少2個、更特定而言至少3個或更多保守取代改變的胺基酸序列,使得mAb基本上維持其功能。保守胺基酸取代不會使得抗體不能結合至個體受體。熟習此項技術者應能夠預測在維持構象及抗原中性之高機率的同時可進行何種胺基酸取代。影響維持構象及抗原中性之機率之考慮因素包括(但不限於):(a)疏水性胺基酸之取代不太可能影響抗原性,此乃因疏水性殘基更可能位於蛋白內部;(b)生理化學上類似之胺基酸之取代不太可能影響構象,此乃因經取代胺基酸在結構上模擬天然胺基酸;及(c) 改變進化上保守之序列可能對構象產生不利影響,因為此等保守性質表示該胺基酸序列可能具有功能重要性。 本發明亦提供包含本文所述CDR中之至少一者之功能肽片段。功能片段之實例包括Fab、F(ab')2 、scFv及Fv片段。 在一個實施例中,本發明係關於展現與SEQ ID NO: 2或6中給出之序列85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%一致之經分離胺基酸序列的重鏈可變區或其功能部分,其包含至少一個、通常至少2個、更通常至少3個分別具有多肽序列SEQ ID NO: 12-14或24-26之重鏈CDR,但尤其所有CDR嵌入其天然框架區中。 在一個實施例中,本發明係關於展現與SEQ ID NO: 4或8中給出之序列85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%一致之經分離胺基酸序列的輕鏈可變區或其功能部分,其包含至少一個、通常至少2個、更通常至少3個分別具有多肽序列SEQ ID NO: 18-20或30-32之輕鏈CDR,但尤其所有CDR嵌入其天然框架區中。 照慣例,可利用電腦程式(例如Bestfit程式(Wisconsin Sequence Analysis Package,Unix版本8,Genetics Computer Group, University Research Park, 575 Science Drive Madison, Wis. 53711))來測定序列一致性。 在一個實施例中,本發明提供包含編碼本文所述胺基酸序列之經分離核苷酸序列的多核苷酸。治療方法 在本發明之一個實施例中,提供用於克雷伯氏肺炎桿菌感染、特定而言由K1血清型之高毒力菌株之感染的被動免疫療法,其係藉由向有需要之個體投與治療組合物來完成。治療組合物可預防、抑制、治療及/或緩和個體之疾病及病症的影響,該疾病及病症係由Kp 感染引起或與其相關,包括但不限於例如化膿性肝膿瘍、肺炎、眼炎、腦膜炎及神經病症。個體包括處於獲得Kp 感染之風險、或患有Kp 感染及/或與Kp 感染相關之病症/疾病之哺乳動物、特定而言人類。 治療組合物包含治療有效量的如本文所述mAb中之至少一者,包括任何功能上等效之抗體或其功能部分。在一些實施例中,組合物僅包含mAb 4C5或mAb 19A10、及/或其功能等效物/片段中之一者。在其他實施例中,組合物包含mAb 4C5及mAb 19A10、及/或其功能等效物/片段。 抗體可在生理上可接受之調配物中製備且可包含使用已知技術之醫藥上可接受之載劑、稀釋劑及/或賦形劑。舉例而言,抗體可與醫藥上可接受之載劑、稀釋劑及/或賦形劑組合以形成治療組合物。適宜醫藥載劑、稀釋劑及/或賦形劑為業內熟知且包括(例如)磷酸鹽緩衝鹽水溶液、水、乳液(例如油/水乳液)、各種類型之潤濕劑、無菌溶液等。醫藥組合物可進一步包含蛋白質性載劑,例如特定而言人類起源之血清白蛋白或免疫球蛋白。醫藥組合物之調配物可根據熟習此項技術者已知之標準方法完成。 組合物可以適宜醫藥上有效之劑量以固體、液體或氣溶膠形式投與個體。固體組合物之實例包括丸劑、乳霜及可植入劑量單元。丸劑可經口投與。治療性乳霜可經局部投與。可植入劑量單元可於(例如)感染位點(例如,肝)局部投與,或可(例如)經皮下植入用於治療組合物之全身性釋放。液體組合物之實例包括適於經肌內、經皮下、經靜脈內、經動脈內注射之調配物及用於局部及眼內投與之調配物。氣溶膠調配物之實例包括用於投與肺之吸入器調配物。 組合物可藉由標準投與途徑投與。一般而言,組合物可藉由局部、經口、直腸、鼻、皮間、腹膜內或非經腸(例如,靜脈內、皮下或肌內)途徑投與。另外,可將組合物納入持續釋放基質(例如生物可降解聚合物)中,聚合物植入期望遞送之附近。該方法包括投與單次劑量、以預定時間間隔投與重複劑量及在預定時段內持續投與。 熟習相關技術者已熟知,組合物之劑量應端視不同因素而定,例如所治療病況、所用具體組合物及其他臨床因素,例如患者之重量、大小、性別及一般健康狀況、機體表面積、欲投與之具體化合物或組合物、同時投與之其他藥物及投與途徑。 組合物可與包含生物活性物質或化合物之其他組合物、例如與抗生素(例如,碳青黴烯及阿米卡星)及/或止痛藥及/或抗發炎化合物組合投與。其他生物活性物質可為呈混合物形式之已經包含抗體之相同組合物之部分,其中抗體及其他生物活性物質在相同醫藥上可接受之溶劑及/或載劑或抗體中互混或與其互混;或其他生物活性物質可作為單獨組合物之部分單獨提供。抗體可與一或多種其他生物活性物質同時、間歇或依序投與個體。 蛋白質性醫藥活性物質可以介於1 ng/劑量與10 mg/劑量之間之量存在。通常,投與方案應在介於0.1 µg與10 mg本發明抗體之間之範圍內,特定而言在1.0 µg至1.0 mg之範圍內,且更特定而言在介於1.0 µg與100 µg之間之範圍內。若投與係經由連續輸注發生,則更適當劑量可在介於0.01 µg與10 mg單元/公斤體重/小時之間之範圍內。 投與通常將為非經腸,例如靜脈內投與。用於非經腸投與之製劑包括無菌水性或非水性溶液、懸浮液及乳液。非水性溶劑包括(但不限於)丙二醇、聚乙二醇、植物油(例如橄欖油)及可注射有機酯(例如油酸乙酯)。水性溶劑可選自由以下組成之群:水、醇/水溶液、乳液或懸浮液,包括鹽水及緩衝介質。非經腸媒劑包括氯化鈉溶液、林格氏右旋糖(Ringer's dextrose)、右旋糖及氯化鈉、乳酸林格氏液或固定油。靜脈內媒劑包括流體及營養補充劑、電解質補充劑(例如基於林格氏右旋糖之彼等)及其他。亦可存在防腐劑,例如抗微生物劑、抗氧化劑、螯合劑、惰性氣體等。診斷方法 在一個實施例中,本發明係關於診斷Kp 感染之方法。個體中Kp 感染之診斷可藉由以下來達成:在試樣中或原位檢測本發明抗體、特定而言單株抗體或其活性片段與Kp 多醣之表位的免疫特異性結合,其包括使懷疑含有Kp 多醣之試樣或特定身體部分或身體區域與結合Kp 多醣之表位之抗體接觸,容許抗體結合至多醣以形成免疫複合物,檢測免疫複合物之形成及使免疫複合物之存在或不存在與試樣或特定身體部分或區域中Kp 多醣之存在或不存在相關,視情況比較該免疫複合物之量與正常對照值,其中與正常對照值相比該免疫複合物之量增加指示該個體患有或處於發生Kp 感染或相關疾病或病況之風險。 可在個體中用於診斷Kp 感染或相關疾病或病況、或用於監測最小殘存疾病之生物試樣係(例如)流體,例如尿液、血清、血漿、唾液、胃分泌物、黏液、腦脊髓液、淋巴液及諸如此類或自個體獲得之組織或細胞試樣。為了測定試樣中存在或不存在Kp 多醣,可使用熟習此項技術者已知之任一免疫分析,例如利用間接檢測方法使用二級試劑進行檢測之分析、ELISA分析及免疫沈澱及凝集分析。該等分析之詳細說明示於(例如) Harlow及Lane, Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory, New York 1988 555-612,頒予Maertens及Stuyver、Zrein等人之WO96/13590 (1998)及WO96/29605中。獲得 mAb 4C5 mAb 19A10 之方法及其特徵 針對本發明之高毒力K1血清型之莢膜多醣(CPS)之高親和力IgG mAb不僅靶向用於免疫之菌株,且亦靶向其他不相關之K1-Kp 菌株。採用CPS與免疫原性蛋白、炭疽芽孢桿菌(Bacillus anthracis)保護性抗原(PA)共價偶聯,以增強IgG mAb之分離,如先前對其他多糖所述[33-36]。此偶聯驅動針對胸腺依賴性路徑之免疫原性反應,此容許分離記憶IgG mAb[37],此乃因多醣抗原不可經由主要組織相容性複合體處理及呈遞。 用獲自克雷伯氏肺炎桿菌K1血清型的莢膜之莢膜多醣(CPS)與PA蛋白偶聯免疫小鼠以增強免疫反應。每兩週量測對K1多醣具有特異性之抗體效價。在抗體效價足夠高時,實施與骨髓瘤細胞之融合以獲得特異性雜交瘤。選擇對K1血清型具有高特異性信號之雜交瘤並純化單株雜交瘤。獲得兩種分別產生mAb 4C5及19A10、IgG1及IgG3同型之高度特異性雜交瘤。 兩種mAb皆特異性識別K1血清型。兩種mAb在亞奈莫耳濃度(subnanomolar)範圍內對K1多醣具有高結合親和力。兩種mAb可同時結合至K1莢膜多醣且研發夾心式ELISA以檢測經腹膜內、靜脈內及氣管內感染K1血清型之小鼠之尿液及血清中的K1 CPS。兩種mAb皆降低該等細菌之人類血清抗性。兩種mAb皆促進補體沈積並促進細菌由鼠類及人類巨噬細胞之吞噬。在動物感染模型中,兩種mAb皆減少在氣管內及腹膜內感染後在脾、肝及肺中發現之細菌之數目。在氣管內感染中,在同時使用兩種mAb時,小鼠之存活改善。在腹膜內感染中,小鼠之存活由兩種mAb獨立地改善且在同時使用二者時進一步改善。 兩種mAb觀察到共同的保護特徵,儘管其同型不同且亦結合不同的非重疊表位。二者能夠凝集並促進莢膜膨脹,如靶向Kp CPS之其他mAb所述[12, 25]。此外,兩種mAb均能夠在人類血清存在下同等地預防K1-Kp 之存活。[26, 27] 血清抗性係重要的毒力特徵[26, 27]。莢膜係藉由抑制可自殺或促進吞噬之補體的結合來逃避人類免疫反應[28]。與其保護效能一致,本發明數據展現兩種mAb皆促進補體沈積。IgG1 4C5 mAb展現較mAb 19A10增強之補體沈積以及更有效之調理吞噬作用。與此發現一致,本文亦證明在兩種鼠類感染模型中mAb 4C5與19A10相比增強之保護作用。 多光子顯微鏡檢查係研究即時病原體宿主相互作用之有力技術,尤其在將肝血管內免疫反應視為與病原體散佈能力相關之情形下[29-31]。利用標記之大腸桿菌細菌之舊研究及利用牛分枝桿菌(Mycobacterium bovis)及伯氏疏螺旋體(Borrelia burghdorferi)之最近研究分別記載由肝及庫普弗細胞(Kupfer cell) (KC)自細菌循環快速去除[32, 33]。由於K1-Kp 主要引起侵襲性肝膿瘍,故本文採用活體內顯微鏡檢查以在存在及不存在K1特異性mAb下研究經由肝之hvKp 的運輸[2]。肝竇狀隙形成襯有駐留巨噬細胞(稱為庫弗氏細胞)之狹窄毛細血管之廣泛網絡。其經由CD1d捕獲並攝取病原體存在之抗原,從而產生有效監督及過濾系統。hvKp 細菌之靜脈內高劑量注射展現利用mAb之共治療捕獲肝中之細菌且隨時間流逝逐漸增強自循環之細菌去除。相比之下,假感染之小鼠不可自血液清除hvKp ,且CFU計數在血液中仍較高。當注射較少細菌時,細菌在mAb處理之小鼠中迅速自肝及血液清除。再次,並且與鼠類模型中增強之保護一致,與mAb 19A10相比,利用mAb4C5觀察到更快之清除。對於病原體,由庫普弗細胞之吞噬作用亦可藉由誘導趨化介素及細胞介素生成並增強嗜中性球及天然殺手細胞之招募來改變宿主反應[34-36]。值得注意的是,活體內顯微鏡檢查亦揭示腹腔巨噬細胞對K1-hvKp 細菌之初始清除的作用,與初始遏製屎腸球菌(Enterococcus faecium)或大腸桿菌腹膜內感染相似[37,38]。 來自FcγR缺陷小鼠之骨髓源巨噬細胞顯示受損之Ab介導之調理的K1-hvKp 的吞噬作用。有趣的是,亦已顯示庫弗氏細胞藉由快速吞噬作用消除循環腫瘤細胞,此依賴於與高(FcγRI)以及低親和力Fc受體(FcγRIV)之結合[39]。本文記載FcγR缺陷巨噬細胞中之一些殘留吞噬作用,其可能經補體介導且亦藉由Ab處理增強。鼠類IgG3及IgG1二者皆結合至低親和力受體FcγRIII及FcγR I [40]以及高親和力新生FcγR (FcRn) [41, 42]。後一受體在胞吞空泡之酸性環境中結合至調理細菌[42]。本發明微觀數據展現,hvKp 不能逃避與其他革蘭氏陰性細菌相反之吞噬溶酶體隔室。因此推斷出,mAb促進攝入吞噬溶酶體中,並此處殺死細菌。由於如沙門氏菌(Salmonella)中所述之逃逸Ab-病原體複合物,因此不期望細胞內TRIM21信號傳導[43]。 本發明之工作未明確哪個同型將構成最有利的,但指示遺傳改造之mAb (其中FcγR受體接合被阻斷)將不會有效。細菌CPS主要在小鼠中誘導IgM及IgG3抗體[23]且人類中中誘導IgG2抗體[44]。因此,實驗數據表明IgG3抗體對於細菌免疫性係重要的[45-47],且抗CPS IgG3展現經由Fc介導之協同結合而增加之結合多價CPS表位的親和力[48]。PS與蛋白質之偶聯將反應轉移至可同樣保護之IgG1抗體的生成[49]。在本發明情形下,發現IgG1及IgG3兩者皆發揮保護作用,而4C5則具有較高IgG1保護效能。 不同種類之IgG抗體之效應物反應不同。傳統地,IgG2a及2b對於抗病毒免疫性起關鍵作用且其亦係強效Ab介導之自體免疫疾病[50]。小鼠IgG1及IgG3展現FcγR活化。以活化-對-抑制比量測之對活化受體抑制性FcγR受體的結合親和力影響其整體活性[50]。與IgG3 Ab相比,IgG1 Ab具有優異的活化信號傳導[50]。此可解釋在可比較之結合親和力背景下由IgG3抗體施加之所觀察到之較低效應物過程。過去研究已顯示抗體介導之保護可取決於IgG亞類,但結果亦取決於特定Ab。舉例而言,發現針對腦膜炎球菌PorA蛋白及炭疽芽孢桿菌莢膜之兩種IgG3 mAb較其他亞類更具保護性[47, 51]。彼等差異藉由每一亞類中驅動其結合親和力之CH2-CH3結構域的差異相互作用來解釋。另一方面,發現針對新型隱球菌(Cryptococcus neoformans)莢膜之IgG3 mAb不具保護性,除非其切換成IgG1同型切換變體[52, 53]。在後一情形下,缺乏保護藉由CH結構域對抗體對其靶多醣之結合親和力的貢獻來解釋。其他研究者比較抗體對隱球菌多糖莢膜之相對調理活性,並推斷出,對於IgG2a,該抗莢膜活性最大,之後係IgG1,然後係IgG2b [54]。以上所有皆強調預測FcR相互作用對效能之貢獻的複雜性,並指示此品質係重要的且必須對每種抗感染性Ab進行實驗評價。 最重要的是,源自患有復發性hvKp 介導之肝囊腫之患者之臨床數據指示,血清之調理及殺死效能隨時間增加,此與進化保護性免疫反應一致[55]。被動免疫療法模擬有效免疫反應且保護性Ab之高效價製劑可單獨使用或與抗生素組合使用以控制由K1-Kp 引起之侵襲性感染。重要的是,在治療之前,需要快速確認適當的感染hvKp 菌株(K1-CPS)。本文中展現,尿液中分泌之CPS Ag可藉由ELISA利用K1-CPS特異性Ab來診斷。然後,可將此種基於夾心之ELISA容易地進一步發展成與其他市售診斷性Ag測試相似之基於側向流的分析。本文中展現,CPS Ag在尿液及血液中皆分泌。 在再度出現呈如由MRSA、多耐藥性(MDR)結核分枝桿菌及現在的MDR hvKp 所例示的耐藥性形式之眾所周知之病原體微生物時,似乎審慎地包括抗感染性Ab之前期發展對抗出現的抗性病原體。由於即使在最佳情況下,研發Ab療法亦耗費數年,所以公司及研究基金會限制更加主動地研發針對傳染病之mAb療法係短視的。利用針對腸定殖細菌(如hvKp )之抗有效Ab的治療係不應干擾微生物群之靶向幹預。如由帕利珠單抗(palivizumab)在早產兒中、減少RSV相關疾病之住院的效能所證明,已顯示mAb在免疫受損宿主中有效[56]。隨著連續快速推進之全球化,且在世界大部分地區抗生素的不限制使用,遠離居住之「超敏感」病原體成為應預計到達之不期望之高度抗性病原體。 在本發明中,已顯示被動免疫療法亦係用以控制由K1-Kp 引起之侵襲性感染的成功治療。已展現mAb 4C5及19A10二者之保護特徵。實例 材料及方法 K1-Kp 菌株 於Bronx之Montefiore Medical Center (MMC)及Stony Brook之Stony Brook University Hospital自住院病人收集K1-Kp 菌株(n= 4)。於37℃下在Luria-Bertani (LB)肉湯或瓊脂板中培養Kp 菌株。使用MMC之20號K1-Kp 菌株進行CPS純化及活體外活體內實驗。為獲得穩定之GFP標記之菌株,將菌株用由Triplett博士友好提供之pPROBEKT質體轉變[22]。CPS 純化 如先前所述分離CPS,進行極少修改[23, 24]。簡言之,將20號Kp 菌株接種在1L LB肉湯中並於37℃下o/n生長。藉由離心使細胞成丸粒並用PBS洗滌。將細胞再懸浮於蒸餾水中至5% (wt/vol)並藉由酚-水萃取CPS。藉由添加5體積之甲醇加上1% (v/v)乙酸鈉於甲醇中之飽和溶液使水相中存在之CPS沈澱並於24℃下培育1h。在將丸粒溶解於水中後,將其用水透析6小時,之後冷凍-乾燥。將凍乾之多醣在0.8% NaCl、0.05% NaN3、0.1M Tris-HCl (pH 7)中溶解至10 mg/ml濃度並於37℃下用核酸酶(50 mg/ml DNase I及RNase A)消解兩次並保持24h。隨後,添加蛋白酶K (50 mg/ml)並於55℃下培育1 h並於室溫下培育24 h,進行兩次。如上文所述使多醣沈澱並溶解於水中。藉由超速離心(105000 × g,16 h,4℃)去除LPS並將試樣冷凍乾燥。遵循先前公開之方案利用酚進一步萃取CPS [25]。藉由尺寸排除層析在管柱S200HR (GE Healthcare Life Sciences)上利用PBS進一步純化CPS。收集各部分並藉由酚-硫酸方法分析多醣之存在[26]。CPS-PA 偶聯 對於偶聯而言,如所述並進行修改,利用四氟硼酸1-氰基-4-二甲基胺基-吡啶鎓(CDAP)活化分離之Kp CPS [27]。自Wadsworth Center, NYS Department of Health獲得炭疽芽孢桿菌之PA (保護性抗原)並且其先前用於PS-蛋白質偶聯[28]。簡言之,將CPS在NaCl 0.15 M中溶解至10 mg/ml (1ml)。於t= 0 s時,在攪拌的同時緩慢添加100 µl CDAP (100 mg/ml,於乙腈中) (1 mg CDAP/mg PS)。30 s後,添加0.2 M TEA (10 µl/mg PS)以升高pH。於t = 2’ 30 s時,添加0.1M硼酸鈉pH 9.3以將pH調節至9並添加10 mg於0.15 M NaCl中之PA。將反應物於4℃下培育o/n並用水透析。使用S200HR凝膠過濾管柱(GE Healthcare Life Sciences)純化PS-蛋白質偶聯產物。層析圖中之A280nm 監測蛋白質之存在,同時藉由酚-硫酸方法監測PS含量[26]。mAb 生成 藉由用完全弗氏佐劑(complete Freund’s adjuvant,CFA)中之100 µg PA-偶聯之K1-CPS、之後用不完全弗氏佐劑(IFA)中之PA-偶聯之K1-CPS之補強注射對BALB/c小鼠進行免疫來生成K1 CPS之MAb。如所述實施融合及選殖[29]。凝集分析 如先前所述在載玻片上實施凝集[21]。 人類血清抗性分析 如先前所述且進行最少修改來實施抗性分析[18]。於室溫下將1.4×106 cfu之K1-Kp 與20µg 4C5或19A10 mAb一起培育1h。隨後將其與3:1 (vol:vol)正常人類血清(時間0)混合並於37℃下培育2h。在時間0、1及2獲取等份試樣,並計算菌落形成單位(CFU)。將存活比率繪示為與時間0相比發現之K1-Kp 之數目的圖。實施三個獨立實驗。C3b- 沈積分析 對先前所述方案進行修改,藉由流式細胞術量測補體之沈積[30]。簡言之,稀釋LB o/n培養物並使其生長以達到中對數期。將5×107 個細胞再懸浮於1ml PBS + 20%正常人類血清 + 1% BSA中。添加PBS、20µg 4C5或1910 mAb並培育15’。隨後,將細胞用PBS + 1% BSA洗滌2次並分成兩半。將一半與1:500綿羊抗人類C3c FITC (Bio-Rad)在PBS + 1% BSA中一起培育。將另一半在不存在抗體下培育。於4℃下將試樣培育25 min。使用無血清培育之細菌試樣作為陰性對照以設定臨限值及螢光強度。強度高於10視為對C3結合呈陽性。將移動至門中之細菌之百分比乘以界定群體之平均螢光(X-平均值)以得到螢光指數(FI)來實施量化。結果由相對於PBS培育之mAb處理之信號的增量表示。吞噬作用實驗 遵循製造商說明書將細菌進行pH-rodo® (Life Technologies)標記。使用J744.16鼠類巨噬細胞細胞系或THP-1人類單核球細胞系進行吞噬作用分析。用佛波醇(phorbol)12-肉豆蔻酸酯12-乙酸酯(PMA)分化THP-1細胞,用100 nM PMA處理2×105 c/ml達3天。在吞噬作用實驗之前一天,將J744.16及THP-1細胞二者以5x105 c/ml之濃度接種在35 mm玻璃底部微孔培養皿(MatTek Corporation)中。在實驗當天,將5×106 個pHrodo® 標記之K1-Kp 細胞與PBS、20μg同型對照、4C5或19A10 mAb一起培育1小時。將巨噬細胞用pHrodo® 標記之K1-Kp 以MOI 10:1感染。使用具有10×物鏡之Zeiss Axiovert 200M倒置顯微鏡在5% CO2 及37℃之條件下利用容納在封閉室中之培養皿立即評價吞噬作用,在2h之實驗持續時間內每4分鐘獲取影像。藉由對在67及150 min時展現經標記之細菌之巨噬細胞的百分比進行計數來量測吞噬作用。 對於具有初代巨噬細胞之實驗而言,如所述[31]自野生型或FcR剔除小鼠(Fcer1gtm1Rav , The Jackson Laboratory)分離骨髓巨噬細胞。在巨噬細胞分化7天後,實施如上文所概述之吞噬作用實驗。活體內動物實驗 自Taconic Biosciences, Inc購得6-8週齡雌性BALB/c或Swiss Webster小鼠。在用5×104 CFU之K1-Kp i.p.攻毒之前120 min或在用1×104 CFU氣管內(i.t.)攻毒之前24h用500 µg PBS、對照同型、4C5、19A10或4C5 + 19A10 mAb腹膜內(i.p.)處理小鼠(n = 10)。監測6隻小鼠之存活達15天。對4隻小鼠之肝、脾及肺進行處理以列舉均質化組織中之細菌。 所有動物實驗皆係在Animal Institute Committee (AIC)批准下根據由Albert Einstein College of Medicine及Stony Brook University所述之規則及條例實施。活體內顯微鏡檢查 (IVM) 如先前所述實施肝活體方案[32]。簡言之,藉由i.p.注射氯胺酮(120 mg/kg)與甲苯噻嗪(10 mg/Kg)之混合物麻醉小鼠。向尾靜脈插套管用於投與額外麻醉劑及實驗試劑(若需要)。實施中線剖腹術,之後沿著肋緣至腋中線去除皮膚及腹部肌肉以暴露肝。將小鼠置於右側位置,且在定製的臺上自腹部取出單一肝葉。用鹽水浸泡之紗布潤濕暴露之組織,以防止在成像期間脫水。用紅外熱燈維持體溫,且用生理鹽水緩衝液連續灌注肝。藉由檢查器Z1系統(Zeiss)實施活體內顯微鏡檢查,以1幀/秒之速度拍攝間時視訊。藉由Zen2012 軟體 (Zeiss)進一步分析視訊。統計分析 數據係以平均值± 標準偏差或中值範圍提供。利用對數秩測試分析存活數據。利用Mac之GraphPad Prism 6實施統計測試。結果 CPS-PA 偶聯及 mAb 產生 如先前報導純化20號、K1血清型Kp 菌株之CPS [12]。考鑒於CPS係具有有限免疫原性之T細胞獨立性抗原,恢復IgG產生之機率較低。因此,CPS與保護性抗原(PA)、一種已成功地用於其他多醣偶聯物中之炭疽芽孢桿菌蛋白偶聯[62]。藉由CDAP介導之多醣之活化實施偶聯[61]。非偶聯之CPS +PA及偶聯之CPS-PA之層析圖示於圖1中。如所預計,偶聯增加隨後彙集之CPS部分之蛋白質含量。 用偶聯之K1-PA CPS免疫產生6種不同之雜交瘤,其各自產生對K1-CPS具有特異性之IgG (表1)。其中之二者經選擇用於進一步研發,此乃因其係更高之mAb產生者且展現不同的同型類別(4C5 -IgG1-及19A10-IgG3-)。 發現藉由ELISA與純化K1-CPS之結合性質在亞奈莫耳濃度範圍內。計算出4C5之Kd為0.3642+/- 0.07244 nM,而19A10之Kd為0.2419+/-0.3210 nM,此確認兩種mAb對K1-CPS之高結合能力。使用同型特異性二級Ab之ELISA分析指示兩種Ab皆可同時結合至純化CPS。僅在較高濃度下檢測到一些抑制(數據未顯示)。活體外抗體介導之活性 首先,檢查mAb對細菌生長之效應。出於此目的,分析在4C5或19A10 mAb存在下生長之K1-Kp 之存活率。在共培育2 h後,兩種mAb皆誘導細菌存活率顯著減少(圖2A及2B)。 此外,當與K1-Kp 共培育時,兩種mAb皆誘導凝集並導致莢膜膨脹(圖2C)。凝集亦與表現GFP之菌株K1-pPROBEKT及不用於免疫之三個其他臨床K1-Kp 菌株一起出現(數據未顯示)。未觀察到不表現K1-CPS之非K1-hvKp 菌株之凝集。 與mAb之共培育減少無脊椎動物動物模型大蠟螟中之K1-Kp 毒力(p值分別為0.0172及0.032) (圖2F)。 體外生長實驗表明,K1-hvKp 在血清中易於複製之遺傳能力由兩種mAb降低30倍(2h p值= 0.003) (圖2D)。 另外,量化在mAb存在下在莢膜上之C3-補體沈積並與在PBS及正常人類血清(NHS)存在下Kp 細菌進行比較,如材料及方法中所述。該等實驗發現,4C5培育將C3b沈積增加1.44×及19A10 1.17× (圖2E) (p值<0.05)。 在評估膜攻擊複合物(MAC)在K1-Kp 細菌中之沈積時,觀察到與PBS或IgG對照相比19A10結合後顯著沈積(圖2G) (2-因子ANOVA p值<0.0001,PBS對4C5 n.s,PBS對19A10 p值<0.0001,且PBS對陽性對照聚集之人類IgG p值<0.0001)。4C5 mAb 促進專門吞噬細胞中 K1-Kp 之吞噬作用 接下來,研究4C5促進K1-Kp 細胞由鼠巨噬細胞細胞系J744.16攝取之能力,用pHrodo® (LifeTechnologies)標記Kp 細菌,其允許適當檢測與僅附著之Kp 細菌相反之真實吞噬作用事件,此乃因羅丹明-螢光取決於吞噬溶酶體之酸性pH酸。藉由在特定時間點吞噬細菌之巨噬細胞之數目來測定吞噬作用指數。 在細菌與PBS一起培育時未記錄到吞噬作用(0%吞噬巨噬細胞) (圖3A-B及補充視訊1)。相比之下,在K1-Kp 與4C5 mAb共培育時,在感染後67及150 min,13.85及27.65%巨噬細胞展現吞噬細菌(p值= 分別0.0004及0.005)。對於19A10 mAb而言,發現類似結果(感染後66.7及150 min,分別27.45%及38.05%) (p值= 分別0.0002及0.003)。 mAb之調理吞噬性質亦歸檔在人類巨噬細胞細胞系內。兩種mAb皆促進吞噬作用,4C5 (圖3D-C及補充視訊2) (67min 22%對0% p值=0.008;150min 30%對0% p值=0.003)、以及19A10 mAb (6.83%及20.04%巨噬細胞在67min及150min時吞噬,p值= 分別0.0005及0.042)。在觀察到初始吞噬作用後吞噬8h時,未觀察到細菌自吞噬溶酶體逃逸(數據未顯示)。 另外觀察都,FcγR缺陷小鼠之骨髓源巨噬細胞展現與野生型源骨髓巨噬細胞相比顯著降低之吞噬作用(對於4C5,p值<0.05,且對於19A10,p值<0.01),從而展現調理吞噬效應取決於Fc受體接合。 關於殺死,發現J744.16鼠類巨噬細胞在用4C5或19A10調理時殺死K1-Kp (圖3D) (ANOVA p值<0.0001,對於4C5及19A10處理,p值<0.01)。在細菌與PBS或IgG對照一起培育時,未觀察到吞噬作用。 嗜中性球不僅藉由吞噬作用殺死病原體,且亦可釋放捕獲並殺死各種微生物之網狀結構,稱作嗜中性球細胞外捕網(NET)。此過程稱為NETosis,且參與清除許多感染性病原體,包括真菌、寄生蟲及細菌。單獨K1-Kp 不會誘導釋放NET,而(圖3E-F)白色念珠菌之菌絲會誘導釋放,如先前所報導。然而,與4C5或19A10共培育之K1-Kp 導致釋放NET (ANOVA p值<0.0001,對於4C5及19A10處理,p值<0.0001)。僅利用K1-Kp 特異性mAb觀察到NETosis,且在使用IgG對照Ab之對照實驗中不存在。4C5 19A10 引發鼠類 K1-Kp 感染中之保護反應 在組合兩種 mAb 時增強。 接下來,在使用20號K1-Kp 菌株之兩種不同鼠類感染模型中測試調理吞噬活體外活性是否與活體內保護效能相關。對於該等實驗,在腹膜內接種5×104 K1-Kp CFU之前2h,將Swiss-Webster小鼠用PBS、500 μg IgG同型對照或500 mg 4C5 mAb或500 mg 19A10 mAb預處理。在與PBS-或對照同型處理之小鼠比較時,用4C5處理增強存活(p值=0.0027) (圖4A)。在與PBS或同型對照處理比較時,用4C5處理顯著降低肝以及肺及脾中之細菌荷載(CFU) (在所有情形下,p值<0.001) (圖4B)。對於經19A10 mAb處理之小鼠,觀察到類似保護趨勢(p值=0.0170)且用19A10處理亦顯著降低細菌器官負荷(在所有情形下,p值<0.001)。用mAb之組合處理增強保護效能(p值=0.014)且亦顯著降低細菌負荷(p值<0.001)。 接下來,在氣管內感染模型中測試保護。在氣管內接種1×104 K1-Kp CFU之前24h,用PBS、同型對照及mAb處理小鼠。與PBS-或同型對照處理相比,再次用4C5處理顯著增強小鼠之存活(圖4C及4D) (p值=0.0027)。在用mAb19A10處理後,亦觀察到保護效能以及較低細菌器官負荷(p值=0.0051)。在此模型中,組合療法亦進一步增強存活以及細菌清除率(p值=0.0009) (圖4C及4D)。 最後,比較i.p.感染K1-Kp 菌株之經mAb-及PBS-處理之小鼠之組織中的細胞介素及趨化介素誘導。與PBS處理之小鼠相比,mAb處理之小鼠之肝及脾均質物中之促發炎細胞介素含量顯著較低,例如IFN-γ、IL1-β、IL-2、IL-6及TNF-α (對於肝及脾二者,2-因子ANOVA處理p值<0.0001,圖4E-F)。在肺中觀察到類似趨勢(圖7A-C)。抗體促進 K1-Kp 由肝中庫弗氏細胞之捕獲 為解密促進K1-Kp 自器官清除之機制,實施活體內顯微鏡檢查分析。在不處理下經i.v.注射108 CFU時,與使用任一mAb相比,流經血管之細菌數目顯著較高且持續較長(p <0.05) (圖6A)。同時,在使用兩種抗體時,在肝組織中捕獲之細菌數目顯著較高(圖6B)。在i.p.注射5×104 CFU時,在使用任一mAb時,在血管中未檢測到細菌或於組織中未捕獲細菌(圖6C及D)。此外,在不處理下在腹腔中發現大量hv-Kp ,而在注射mAb時清除hv-Kp (數據未顯示)。將i.v.注射之細菌接種物大小減少至5×104 ,導致細菌完全清除(圖5F)。 mAb 處理減少經抗生素處理之 K1-Kp 定殖小鼠中細菌的散佈。 在胃腸定殖之鼠類模型中檢查mAb之保護效能,其中藉由抗生素處理促進向肝、脾及腸系膜淋巴結(MLN)之細菌散佈。給予經口攝取經108 個GFP標記之kvKp 定殖的小鼠胺苄青黴素,導致糞便中之細菌負荷顯著增加,且隨後易位並散佈至腸系膜淋巴結(MLN)、脾及肝。研究mAb處理是否保護對抗MLN、脾及肝中散佈及減少之細菌負荷。數據指示,與PBS處理之小鼠相比,向MLN、肝及脾之細菌散佈顯著減少,且該等器官中之細菌負荷達6 log以下(圖8) (2-因子ANOVA p值<0.0001)。相比之下,在糞便中觀察到之細菌定殖顯示與mAb處理無顯著差異,指示定殖本身不受全身性mAb處理影響。兩種 mAb 在尿液及血清試樣中皆提供 K1- 感染之檢測工具 . 最近,使用mAb設計夾心式ELISA以能夠快速非侵襲性檢測鼠類體液中之K1-Kp CPS (圖6A)。利用兩種mAb之ELISA測試展現CPS之檢測靈敏度在血清中低至0.20 μg/ml且在尿液中低至0.11 μg/ml (圖6B及6D)。在i.v.感染之小鼠之血清試樣中檢測CPS,且在i.p.-及i.t感染之小鼠之尿液試樣中檢測CPS。隨時間在不同小鼠之尿液中發現低至0.11 μg/ml之CPS之量且其與疾病之嚴重程度相對應(圖6D)。重要地,ELISA係特異性且不檢測其他非K1-CPS表現Kp 菌株之CPS。處理 mAb 會減少 K1-Kp 定殖小鼠中胺苄青黴素誘導之自腸之散佈 。 在胃腸定殖之鼠類模型中檢查mAb之保護效能,其中藉由用抗生素處理促進向肝、脾及腸系膜淋巴結(MLN)之細菌散佈。經由經口攝取向經108 個GFP標記之K1-Kp 定殖的小鼠給予胺苄青黴素,此導致糞便中之細菌負荷增加且隨後易位及散佈至腸系膜淋巴結(MLN)、脾及肝(圖9A-B及8)。研究了mAb處理是否保護抵抗MLN、脾及肝中之散佈及減少細菌負荷(圖9B)。數據指示,向MLN、肝及脾之細菌散佈顯著減少且細菌負荷與PBS處理之小鼠相比在彼等器官中低高達6 log(圖8) (2-因子ANOVA p值<0.0001)。相比之下,在糞便中觀察到之細菌定殖顯示與mAb處理無顯著差異,此指示定殖本身不受全身性mAb處理影響。單株抗體之測序 自冷凍雜交瘤細胞萃取總RNA且自RNA合成cDNA。隨後實施PCR以使抗體之可變區(重鏈及輕鏈)擴增,隨後將其單獨選殖至標準選殖載體中並進行測序。材料 雜交瘤細胞;TRIzol®試劑(Ambion,目錄號: 15596-026);PrimeScriptTM第1鏈cDNA合成套組(Takara,目錄號:6110A)。方法 總RNA萃取 遵循TRIzol®試劑之技術手冊自雜交瘤細胞分離總RNA。藉由瓊脂醣凝膠電泳分析總RNA。RT-PCR 遵循PrimeScriptTM第1鏈cDNA合成套組之技術手冊使用同型特異性反義引子或通用引子將總RNA逆轉錄成cDNA。根據GenScript之RACE之標準操作程序使VH及VL之抗體片段擴增。抗體基因之選殖 使用標準分子選殖程序將擴增之抗體片段單獨選殖至標準選殖載體中。篩選及測序 實施群落PCR篩選以鑑別具有恰當大小之插入物之純系。對於每一抗體片段測序不小於5個具有恰當大小之插入物之單一群落。 RNA 萃取 使試樣之經分離之總RNA與DNA標記Marker III (TIANGEN,目錄號:MD 103)一起在1.5%瓊脂醣/GelRedTM 凝膠上運行。抗體基因之 PCR 產物 使每一試樣之4微升PCR產物與DNA標記Marker III一起在1.5%瓊脂醣/GelRedTM凝膠上運行。將PCR產物純化並儲存於-20° C下直至進一步使用。測序結果及分析 發送5個具有恰當VH及VL插入物大小之單一群落用於測序。發現2個不同純系之VH及VL基因幾乎相同。 下文列舉之共有序列係由雜交瘤4C5產生之抗體之序列重鏈 DNA 序列 (405 bp) 前導序列-FR1 -CDR1 -FR2 -CDR2 -FR3 -CDR3 -FR4 ATGGACTGGAGTTGGGTCTTTCTCTTCCTCCTGTCAGTAAATGAAGGTGTCTACTGTCAGGTCCAGCTGCAGCAGTCTGGAGATGATCTGGTAACGCCTGGGGCCTCAGTGAAGCTGTCCTGCAAGGCTTCTGGCTACACCTTCACC AGCTACTGGATTAAC TGGATAAAACAGAGGCCTGGACAGGGCCTTGAGTGGGTAGGA CGTATTACTCCTGGACGTGGTAATACTTACTACAATGAAATGTTCAAGGAC AAGGCAACACTGACTGTAGACACATCCTCCAGAACAGCCTACATTCAGCTCAGCAGCCTGTCATCTGAGGACTCTGCTGTCTATTTCTGTGCAAGG GGGGGTGTCTGGTTTGCTTAC TGGGGCCAAGGGACTCTGGTCACTGTCTCTGCA (SEQ ID NO: 1) mAb 4C5重鏈之CDR1、CDR2及CDR3之核苷酸序列分別係如下SEQ ID NO: 9、10及11: AGCTACTGGATTAAC (SEQ ID NO: 9) CGTATTACTCCTGGACGTGGTAATACTTACTACAATGAAATGTTCAAGGAC (SEQ ID NO: 10) GGGGGTGTCTGGTTTGCTTAC (SEQ ID NO: 11) 重鏈:胺基酸序列(135 AA) 前導序列-FR1 -CDR1 -FR2 -CDR2 -FR3 -CDR3 -FR4 MDWSWVFLFLLSVNEGVYCQVQLQQSGDDLVTPGASVKLSCKASGYTFT SYWIN WIKQRPGQGLEWVG RITPGRGNTYYNEMFKD KATLTVDTSSRTAYIQLSSLSSEDSAVYFCAR GGVWFAY WGQGTLVTVSA (SEQ ID NO: 2) mAb 4C5重鏈之CDR1、CDR2及CDR3之胺基酸序列分別係如下SEQ ID NO: 12、13及14: SYWIN (SEQ ID NO: 12) RITPGRGNTYYNEMFKD (SEQ ID NO: 13) GGVWFAY (SEQ ID NO: 14)輕鏈 DNA 序列 (393 bp) 前導序列-FR1 -CDR1 -FR2 -CDR2 -FR3 -CDR3 -FR4 ATGGGCATCAAGATGGAGTCACAGATTCAGGCATTTGTATTCGTGTTTCTCTGGTTGTCTGGTGTTGACGGAGACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCATCACCTGC AAGGCCAGTCAGGATGTGAGTACTGCTGTAGCC TGGTATCAGCAAAAACCAGGGCAATCTCCTAAACTACTGATTTAC TGGGCATCCACCCGGCACACT GGAGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTATACTCTCACCATCAGCAGTGTGCAGGCTGAAGACCTGGCACTTTATTACTGT CAGCAACATTATAGCACTCCGTACACG TTCGGAGGGGGGACCAAGCTGGAAATAAAA (SEQ ID NO: 3) mAb 4C5輕鏈之CDR1、CDR2及CDR3之核苷酸序列分別係如下SEQ ID NO: 15、16及17: AAGGCCAGTCAGGATGTGAGTACTGCTGTAGCC (SEQ ID NO: 15) TGGGCATCCACCCGGCACACT (SEQ ID NO: 16) CAGCAACATTATAGCACTCCGTACACG (SEQ ID NO: 17)輕鏈 胺基酸序列 (131 AA) 前導序列-FR1 -CDR1 -FR2 -CDR2 -FR3 -CDR3 -FR4 MGIKMESQIQAFVFVFLWLSGVDGDIVMTQSHKFMSTSVGDRVSITC KASQDVSTAVA WYQQKPGQSPKLLIY WASTRHT GVPDRFTGSGSGTDYTLTISSVQAEDLALYYC QQHYSTPYT FGGGTKLEIK (SEQ ID NO: 4) mAb 4C5輕鏈之CDR1、CDR2及CDR3之胺基酸序列分別係如下SEQ ID NO: 18、19及20: KASQDVSTAVA (SEQ ID NO: 18) WASTRHT (SEQ ID NO: 19) QQHYSTPYT (SEQ ID NO: 20) 下文列舉之共有序列係由雜交瘤19A10產生之抗體之序列重鏈 DNA 序列 (399 bp) 前導序列-FR1 -CDR1 -FR2 -CDR2 -FR3 -CDR3 -FR4 ATGGCTGTCCTGGTGCTGTTCCTCTGCCTGGTTGCATTTCCAAGCTGTGTCCTGTCCCAGGTGCAGCTGAAGGAGTCAGGACCTGGCCTGGTGGCGCCCTCACAGAGCCTGTCCATCACTTGCACTGTCTCTGGGTTTTCATTAACC AGCTATGGTGTACAC TGGGTTCGCCAGCCTCCAGGAAAGGGTCTGGAGTGGCTGGGA GTAATATGGGCTGGTGGAAGCACAAATTATAATTCGGCTCTCATGTCC AGACTGAGCATCAGCAAAGACAACTCCAAGAGCCAAGTTTTCTTAAAAATGAACAGTCTGCAAACTGATGACACAGCCATGTACTACTGTGCCTTA CTATGGCTAAGAGCTTAC TGGGGCCAAGGGACTCTGGTCACTGTCTCTGCA (SEQ ID NO: 5) mAb 19A10重鏈之CDR1、CDR2及CDR3之核苷酸序列分別係如下SEQ ID NO: 21、22及23: AGCTATGGTGTACAC (SEQ ID NO: 21) GTAATATGGGCTGGTGGAAGCACAAATTATAATTCGGCTCTCATGTCC (SEQ ID NO: 22) CTATGGCTAAGAGCTTAC (SEQ ID NO: 23)重鏈 胺基酸序列 (133 AA) 前導序列-FR1 -CDR1 -FR2 -CDR2 -FR3 -CDR3 -FR4 MAVLVLFLCLVAFPSCVLSQVQLKESGPGLVAPSQSLSITCTVSGFSLT SYGVH WVRQPPGKGLEWLG VIWAGGSTNYNSALMS RLSISKDNSKSQVFLKMNSLQTDDTAMYYCAL LWLRAY WGQGTLVTVSA (SEQ ID NO: 6) mAb 19A10重鏈之CDR1、CDR2及CDR3之胺基酸序列分別係如下SEQ ID NO: 24、25及26: SYGVH (SEQ ID NO: 24) VIWAGGSTNYNSALMS (SEQ ID NO: 25) LWLRAY (SEQ ID NO: 26)輕鏈 DNA 序列 (393 bp) 前導序列-FR1 -CDR1 -FR2 -CDR2 -FR3 -CDR3 -FR4 ATGAAGTTGCCTGTTAGGCTGTTGGTGCTGATGTTCTGGATTCCTGCTTCCAGCAGTGATGTTTTGATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGC AGATCTAGTCAGAGCATTGTACATAGTAATGGAAACACCTATTTAGAA TGGTACCTGCAGAAACCAGGCCAGTCTCCAAAGCTCCTGATCTAC AAAGTTTCCAACCGATTTTCT GGGGTCCCAGACAGGTTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTGGGAGTTTATTACTGC TTTCAAGGTTCACATGTTCCGTGGACG TTCGGTGGAGGCACCAAGCTGGAAATCAAA (SEQ ID NO: 7) mAb 19A10輕鏈之CDR1、CDR2及CDR3之核苷酸序列分別係如下SEQ ID NO: 27、28及29: AGATCTAGTCAGAGCATTGTACATAGTAATGGAAACACCTATTTAGAA (SEQ ID NO: 27) AAAGTTTCCAACCGATTTTCT (SEQ ID NO: 28) TTTCAAGGTTCACATGTTCCGTGGACG (SEQ ID NO: 29)輕鏈 胺基酸序列 (131 AA) 前導序列-FR1 -CDR1 -FR2 -CDR2 -FR3 -CDR3 -FR4 MKLPVRLLVLMFWIPASSSDVLMTQTPLSLPVSLGDQASISC RSSQSIVHSNGNTYLE WYLQKPGQSPKLLIY KVSNRFS GVPDRFSGSGSGTDFTLKISRVEAEDLGVYYC FQGSHVPWT FGGGTKLEIK (SEQ ID NO: 8) mAb 19A10輕鏈之CDR1、CDR2及CDR3之胺基酸序列分別係如下SEQ ID NO: 30、31及32: RSSQSIVHSNGNTYLE (SEQ ID NO: 30) KVSNRFS (SEQ ID NO: 31) FQGSHVPWT (SEQ ID NO: 32) 參考書目 1. Podschun等人,Clinical microbiology reviews. 1998;11(4):589-603。 2. Shon等人,Virulence. 2013;4(2):107-18. 3. (CDC) CfDCaP. Antibiotic Resistance Threats in the United States, 2013. Promotion DoHQ;2013。 4. Fierer等人,Journal of clinical microbiology. 2011;49(12):4371-3。 5. Vila等人,The open microbiology journal. 2011;5:107-13。 6. Turton等人,Journal of medical microbiology. 2007;56(Pt 5):593-7。 7. Chang等人,Journal of the Formosan Medical Association 1995;94(5):232-7。 8. Yeoh等人,Tropical liver abscess. Postgraduate medical journal. 1997;73(856):89-92。 9. Lok等人,J. of microbiology, immunology and infection. 2008;41(6):483-90。 10. Chung等人,The Journal of infection. 2007;54(6):578-83。 11. Fang等人,Clinical infectious diseases. 2007;45(3):284-93。 12. Diago-Navarro等人,The Journal of infectious diseases. 2014;210(5):803-13。 13. Hsu等人,Microbiology. 2011;157(Pt 12):3446-57。 14. Yu等人,Diagnostic microbiology and infectious disease. 2008;62(1):1-6。 15. Li等人,Infectious Diseases Society of America. 2014;58(2):225-32。 16. Siu等人,BMC infectious diseases. 2014;14:176。 17. Zhang等人,Zhonghua yi xue za zhi. 2014;94(46):3666-70。 18. Dubois等人,Analytical Chemistry. 1956;28(3):350-6。 19. Kubler-Kielb等人,Infection and immunity. 2006;74(8):4744-9。 20. Theilacker等人,Infection and immunity. 2003;71(7):3875-84。 21. Oscarson等人,Vaccine. 2005;23(30):3961-72。 22. Finn等人,Br Med Bull. 2004;70:1-14. d 23. Slack等人,The Journal of experimental medicine. 1980;151(4):853-62。 24. Thanawastien等人,Proc Natl Acad Sci U S A. 2015;112(10):E1143-51。 25. Wu等人,Infection and immunity. 2009;77(2):615-21。 26. Podschun等人,The Journal of infectious diseases. 1993;168(6):1415-21。 27. Podschun等人,Journal of medical microbiology. 1992;36(4):250-4。 28. Tomas等人,Microb Pathog. 1988;5(2):141-7。 29. Choong等人,Methods in enzymology. 2012;506:35-61。 30. Shi等人,Cell Microbiol. 2012;14(12):1819-27。 31. Shi等人,J Clin Invest. 2010;120(5):1683-93。 32. Egen等人,Immunity. 2008;28(2):271-84。 33. Lee等人,Nat Immunol. 2010;11(4):295-302。 34. Benacerraf等人,The Journal of experimental medicine. 1959;110(1):27-48。 35. Gregory等人,J Leukoc Biol. 2002;72(2):239-48。 36. Marques等人,J Hepatol. 2015;63(3):733-42。 37. Leendertse等人,Innate Immun. 2009;15(1):3-12. d 38. Anand等人,J Pediatr Surg. 2007;42(6):927-32。 39. Gul等人,J Clin Invest. 2014;124(2):812-23。 40. Bruhns等人,Blood. 2012;119(24):5640-9。 41. Zhu等人,J Immunol. 2001;166(5):3266-76。 42. Vidarsson等人,Blood. 2006;108(10):3573-9。 43. McEwan等人,Nat Immunol. 2013;14(4):327-36。 44. Riesen等人,Scand J Immunol. 1976;5(4):383-90。 45. Perlmutter等人,J Immunol. 1978;121(2):566-72。 46. Briles等人,Nature. 1981;294(5836):88-90。 47. Hovenden等人,Pathog. 2013;9(4):e1003306. d 48. Greenspan等人,Immunol Today. 1992;13(5):164-8。 49. McLay等人,J Immunol. 2002;168(7):3437-43。 50. Nimmerjahn等人,Science. 2005;310(5753):1510-2。 51. Michaelsen等人,Scand J Immunol. 2004;59(1):34-9。 52. Yuan等人,J Immunol. 1995;154(4):1810-6。 53. Yuan等人,Infection and immunity. 1998;66(3):1057-62。 54. Schlageter等人,Infection and immunity. 1990;58(6):1914-8。 55. Yeh等人,J. of microbiology, immunology and infection. 2012;45(2):141-6。 56. The IMpact-RSV Study Group. Pediatrics. 1998;102(3 Pt 1):531-7。 57. Chelius等人,Applied and environmental microbiology. 2000;66(2):783-7。 58. Reddy等人,Methods for General & Molecular Microbiology, 第3版,2007: 1106。 59. Cano等人,BMC microbiology. 2009;9:156。 60. Hirschfeld等人,J Immunol. 2000;165(2):618-22。 61. Lees等人,Vaccine. 1996;14(3):190-8。 62. Chow等人,Vaccine. 2011;29(10):1891-8。 63. Varshney等人,The Journal of biological chemistry. 2011;286(11):9737-47。 64. Melin等人,Infection and immunity. 2009;77(2):676-84。 65. Stukes等人,J Vis Exp. 2014;(92):e52084。 66. McDonald等人,Science. 2010;330(6002):362-6。The present invention relates to antibodies (which include whole antibodies and functional parts thereof) as therapeutic and diagnostic tools for combating Klebsiella pneumoniae ( Kp ) infection and diseases and disorders caused by or associated with Kp infection. The term "antibody" or "antibodies" as used herein is art recognized and should be understood to refer to a polypeptide molecule or an active fragment of a polypeptide molecule that binds to a known antigen. In one embodiment of the present invention, monoclonal antibodies (mAbs) produced by hybridoma 4C5 (IgGl isotype) are provided. In another embodiment, monoclonal antibodies produced by hybridoma 19A10 (IgG3 isotype) are provided. These IgG mAbs have high affinity for the capsular polysaccharide (CPS) of the highly virulent Kp K1 serotype. The isolated nucleotide and amino acid sequences of the heavy chain of mAb 4C5 are shown in SEQ ID NO: 1 and SEQ ID NO: 2, respectively. The amino acid sequences of CDRs 1-3 of the heavy chain are shown in SEQ ID NOs: 12-14, respectively. The nucleotide and amino acid sequences of the light chain of mAb 4C5 are shown in SEQ ID NO: 3 and SEQ ID NO: 4, respectively. The amino acid sequences of CDRs 1-3 of the light chain are shown in SEQ ID NOs: 18-20, respectively. The isolated nucleotide and amino acid sequences of the heavy chain of mAb 19A10 are shown in SEQ ID NO: 5 and SEQ ID NO: 6, respectively. The amino acid sequences of CDRs 1-3 of the heavy chain are shown in SEQ ID NOs: 24-26, respectively. The nucleotide and amino acid sequences of the light chain of mAb 19A10 are shown in SEQ ID NO: 7 and SEQ ID NO: 8, respectively. The amino acid sequences of CDRs 1-3 of the light chain are shown in SEQ ID NOs: 30-32, respectively. "Isolated" means that the biomolecule is free of at least some of the components with which it naturally occurs. The term "CDR" refers to the hypervariable regions of an antibody. The mAb contains 6 hypervariable regions: 3 are located in the VH (H1, H2, H3) and 3 are located in the VL (L1, L2, L3). In another embodiment, any functionally equivalent antibody or functional portion of mAb 4C5 and mAb 19A10 is provided. "Functionally equivalent" antibodies/portions substantially share at least one major functional property with mAbs as described herein, including passive immunity against Kp infection. For example, mAb 4C5 and mAb 19A10 can have amino acid sequences altered by at least one, specifically at least 2, more specifically at least 3 or more conservative substitutions in their sequences such that the mAbs substantially maintain their Function. Conservative amino acid substitutions do not render the antibody incapable of binding to the individual receptor. One skilled in the art should be able to predict what amino acid substitutions can be made while maintaining a high probability of conformation and antigenic neutrality. Considerations that affect the probability of maintaining conformation and antigenic neutrality include (but are not limited to): (a) substitution of hydrophobic amino acids is unlikely to affect antigenicity since hydrophobic residues are more likely to be internal to the protein; ( b) substitution of physiochemically similar amino acids is unlikely to affect conformation, since substituted amino acids structurally mimic natural amino acids; and (c) changes to evolutionarily conserved sequences may adversely affect conformation impact, as these conserved properties suggest that the amino acid sequence may be of functional importance. The present invention also provides functional peptide fragments comprising at least one of the CDRs described herein. Examples of functional fragments include Fab, F(ab') 2 , scFv, and Fv fragments. In one embodiment, the invention relates to exhibiting 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93% of the sequence given in SEQ ID NO: 2 or 6 , 94%, 95%, 96%, 97%, 98%, or 99% identical heavy chain variable regions or functional portions thereof of isolated amino acid sequences comprising at least one, usually at least 2, more usually at least 3 heavy chain CDRs with polypeptide sequences SEQ ID NOs: 12-14 or 24-26, respectively, but in particular all CDRs are embedded in their native framework regions. In one embodiment, the invention relates to exhibiting 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93% of the sequence given in SEQ ID NO: 4 or 8 , 94%, 95%, 96%, 97%, 98% or 99% identical light chain variable regions or functional portions thereof of isolated amino acid sequences comprising at least one, usually at least 2, more usually at least 3 light chain CDRs with polypeptide sequences SEQ ID NOs: 18-20 or 30-32, respectively, but in particular all CDRs are embedded in their native framework regions. Conventionally, sequence identity can be determined using a computer program such as the Bestfit program (Wisconsin Sequence Analysis Package, Unix version 8, Genetics Computer Group, University Research Park, 575 Science Drive Madison, Wis. 53711). In one embodiment, the present invention provides polynucleotides comprising isolated nucleotide sequences encoding amino acid sequences described herein. Methods of Treatment In one embodiment of the present invention, passive immunotherapy is provided for Klebsiella pneumoniae infection, in particular infection by a highly virulent strain of serotype K1, by administering to an individual in need thereof This is accomplished by administering a therapeutic composition. Therapeutic compositions can prevent, inhibit, treat and/or ameliorate the effects of diseases and disorders in individuals caused by or associated with Kp infection, including but not limited to, for example, purulent liver abscesses, pneumonia, ophthalmia, meninges inflammation and neurological disorders. Individuals include mammals, in particular humans, who are at risk of acquiring a Kp infection, or have a Kp infection and/or a condition/disease associated with a Kp infection. Therapeutic compositions comprise a therapeutically effective amount of at least one of the mAbs described herein, including any functionally equivalent antibody or functional portion thereof. In some embodiments, the composition comprises only one of mAb 4C5 or mAb 19A10, and/or functional equivalents/fragments thereof. In other embodiments, the composition comprises mAb 4C5 and mAb 19A10, and/or functional equivalents/fragments thereof. Antibodies can be prepared in physiologically acceptable formulations and can include pharmaceutically acceptable carriers, diluents and/or excipients using known techniques. For example, antibodies can be combined with pharmaceutically acceptable carriers, diluents and/or excipients to form therapeutic compositions. Suitable pharmaceutical carriers, diluents and/or excipients are well known in the art and include, for example, phosphate buffered saline solutions, water, emulsions (eg, oil/water emulsions), various types of wetting agents, sterile solutions, and the like. The pharmaceutical composition may further comprise a proteinaceous carrier, such as serum albumin or immunoglobulins of human origin in particular. Formulation of pharmaceutical compositions can be accomplished according to standard methods known to those skilled in the art. The compositions can be administered to a subject in solid, liquid or aerosol form in a suitable pharmaceutically effective dose. Examples of solid compositions include pills, creams, and implantable dosage units. Pills can be administered orally. Therapeutic creams can be administered topically. Implantable dosage units can be administered locally, eg, at a site of infection (eg, the liver), or can be implanted, eg, subcutaneously, for systemic delivery of the therapeutic composition. Examples of liquid compositions include formulations suitable for intramuscular, subcutaneous, intravenous, intraarterial injection, and formulations for topical and intraocular administration. Examples of aerosol formulations include inhaler formulations for administration to the lungs. The compositions can be administered by standard routes of administration. In general, compositions can be administered by topical, oral, rectal, nasal, interdermal, intraperitoneal, or parenteral (eg, intravenous, subcutaneous, or intramuscular) routes. Additionally, the composition can be incorporated into a sustained release matrix (eg, a biodegradable polymer) that is implanted near where delivery is desired. The method includes administering a single dose, administering repeated doses at predetermined time intervals, and administering continuously over a predetermined period of time. It is well known to those skilled in the relevant art that the dosage of the composition will depend on various factors, such as the condition being treated, the particular composition being used, and other clinical factors such as the patient's weight, size, gender and general health, body surface area, desire for The particular compound or composition is administered along with other drugs and routes of administration. The compositions can be administered in combination with other compositions comprising biologically active substances or compounds, such as with antibiotics (eg, carbapenems and amikacin) and/or pain relievers and/or anti-inflammatory compounds. The other biologically active substance may be part of the same composition already comprising the antibody in a mixture in which the antibody and the other biologically active substance are intermixed in or with the same pharmaceutically acceptable solvent and/or carrier or antibody; or other biologically active substances may be provided separately as part of a separate composition. Antibodies can be administered to an individual simultaneously, intermittently, or sequentially with one or more other biologically active substances. The proteinaceous pharmaceutically active substance may be present in amounts between 1 ng/dose and 10 mg/dose. Generally, the dosing regimen should be in the range between 0.1 μg and 10 mg of the antibody of the invention, specifically in the range of 1.0 μg to 1.0 mg, and more specifically between 1.0 μg and 100 μg within the range. If administration occurs via continuous infusion, more appropriate doses may range between 0.01 μg and 10 mg units/kg body weight/hour. Administration will typically be parenteral, eg, intravenous. Formulations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions and emulsions. Non-aqueous solvents include, but are not limited to, propylene glycol, polyethylene glycol, vegetable oils (eg, olive oil), and injectable organic esters (eg, ethyl oleate). Aqueous solvents can be selected from the group consisting of water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (eg, those based on Ringer's dextrose), and others. Preservatives, such as antimicrobials, antioxidants, chelating agents, inert gases, and the like, may also be present. Diagnostic Methods In one embodiment, the present invention pertains to methods of diagnosing Kp infection. Diagnosis of Kp infection in an individual can be achieved by detecting, in a sample or in situ, the immunospecific binding of an antibody of the invention, in particular a monoclonal antibody or an active fragment thereof, to an epitope of a Kp polysaccharide, which includes using Contacting a sample or specific body part or body region suspected of containing Kp polysaccharide with an antibody that binds an epitope of Kp polysaccharide, allowing the antibody to bind to the polysaccharide to form an immune complex, detecting the formation of an immune complex and allowing the presence or absence of an immune complex Absence correlates with the presence or absence of Kp polysaccharide in the sample or specific body part or region, as appropriate comparing the amount of the immune complex to a normal control value, wherein an increase in the amount of the immune complex compared to the normal control value is indicative The individual has or is at risk of developing a Kp infection or related disease or condition. Biological samples that can be used in individuals to diagnose Kp infection or related diseases or conditions, or to monitor minimal residual disease, are, for example, fluids such as urine, serum, plasma, saliva, gastric secretions, mucus, cerebrospinal Fluid, lymph, and the like or tissue or cell samples obtained from an individual. To determine the presence or absence of Kp polysaccharides in a sample, any immunoassay known to those skilled in the art can be used, such as assays using secondary reagents for detection by indirect detection methods, ELISA assays, and immunoprecipitation and agglutination assays. A detailed description of these assays is given, for example, in Harlow and Lane, Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory, New York 1988 555-612, WO 96/13590 to Maertens and Stuyver, Zrein et al. (1998) and In WO 96/29605. Methods of obtaining mAb 4C5 and mAb 19A10 and their characteristics High affinity IgG mAbs directed against the capsular polysaccharide (CPS) of the highly virulent K1 serotype of the present invention target not only the strain used for immunization, but also target To other unrelated strains K1- Kp . Covalent coupling of CPS to the immunogenic protein, Bacillus anthracis protective antigen (PA), was used to enhance the isolation of IgG mAbs as previously described for other polysaccharides [33-36]. This coupling drives an immunogenic response against the thymus-dependent pathway, which allows the isolation of memory IgG mAbs [37], as polysaccharide antigens cannot be processed and presented by the major histocompatibility complex. Capsular polysaccharide (CPS) obtained from the capsule of Klebsiella pneumoniae K1 serotype was coupled to PA protein to immunize mice to enhance immune response.The titers of antibodies specific to K1 polysaccharide were measured every two weeks. When the antibody titer is high enough, fusion with myeloma cells is performed to obtain specific hybridomas. Hybridomas with high specific signal for K1 serotype are selected and individual hybridomas are purified. Two mAbs, 4C5 and 4C5, respectively, are obtained. Highly specific hybridoma of 19A10, IgG1 and IgG3 isotypes. Both mAbs specifically recognize the K1 serotype. Both mAbs have high binding affinity to K1 polysaccharide in the subnanomolar range. Both mAbs can Simultaneously binds to K1 capsular polysaccharide and a sandwich ELISA was developed to detect K1 CPS in urine and serum of mice infected with K1 serotype intraperitoneally, intravenously and intratracheally. Both mAbs reduced the human levels of these bacteria Serum resistance. Both mAbs promote complement deposition and promote bacterial phagocytosis by murine and human macrophages. In animal infection models, both mAbs reduce spleen, liver and lung after intratracheal and intraperitoneal infection The number of bacteria found in the tracheal infection. In the intratracheal infection, the survival of the mice was improved when the two mAbs were used simultaneously. In the intraperitoneal infection, the survival of the mice was improved by the two mAbs independently and when the two mAbs were used simultaneously. A further improvement was observed with the two mAbs. A common protective profile was observed for both mAbs, although they were of different isotypes and also bound different non-overlapping epitopes. Both were able to agglutinate and promote capsular swelling, as described for other mAbs targeting Kp CPS [12] , 25]. Furthermore, both mAbs were able to equally prevent K1- Kp survival in the presence of human serum.[26, 2 7] Serum resistance is an important virulence trait [26, 27]. Capsules evade human immune responses by inhibiting suicidal or phagocytosis-promoting complement binding [28]. Consistent with their protective efficacy, the present data demonstrate that both mAbs promote complement deposition. IgG1 4C5 mAb exhibited enhanced complement deposition and more efficient opsonophagocytosis than mAb 19A10. Consistent with this finding, enhanced protection by mAb 4C5 compared to 19A10 in two murine infection models is also demonstrated herein. Multiphoton microscopy is a powerful technique for studying immediate pathogen-host interactions, especially where intravascular immune responses in the liver are considered to correlate with the ability of the pathogen to disseminate [29-31]. Old studies using labeled Escherichia coli bacteria and recent studies using Mycobacterium bovis and Borrelia burghdorferi document cycling from bacteria from liver and Kupfer cells (KC), respectively Fast removal [32, 33]. Since K1- Kp primarily causes invasive liver abscesses, in vivo microscopy was employed here to study the transport of hv Kp through the liver in the presence and absence of K1-specific mAbs [2]. The hepatic sinusoids form an extensive network of narrow capillaries lined with resident macrophages, called Kupffer cells. It captures and ingests antigens present in pathogens via CDld, resulting in an efficient surveillance and filtering system. Intravenous high-dose injection of hv Kp bacteria demonstrated that co-treatment with mAbs captured bacteria in the liver and progressively enhanced bacterial removal from the circulation over time. In contrast, mock-infected mice were unable to clear hv Kp from the blood, and CFU counts remained high in the blood. When less bacteria were injected, bacteria were rapidly cleared from the liver and blood in mAb-treated mice. Again, and consistent with the enhanced protection in the murine model, faster clearance was observed with mAb4C5 compared to mAb 19A10. For pathogens, phagocytosis by Kupffer cells can also alter the host response by inducing chemokine and cytokinin production and enhancing the recruitment of neutrophils and natural killer cells [34-36]. Notably, intravital microscopy also revealed a role for the initial clearance of K1-hv Kp bacteria by peritoneal macrophages, similar to the initial suppression of Enterococcus faecium or E. coli intraperitoneal infection [37,38] . Bone marrow-derived macrophages from FcγR-deficient mice displayed impaired Ab-mediated phagocytosis of opsonized K1-hv Kp . Interestingly, Kupffer cells have also been shown to eliminate circulating tumor cells by rapid phagocytosis, which is dependent on binding to both high (FcyRI) and low affinity Fc receptors (FcyRIV) [39]. Described herein is some residual phagocytosis in FcyR-deficient macrophages, possibly mediated by complement and also enhanced by Ab treatment. Both murine IgG3 and IgG1 bind to the low affinity receptors FcyRIII and FcyR I [40] and the high affinity nascent FcyR (FcRn) [41, 42]. The latter receptor binds to opsonized bacteria in the acidic environment of endocytic vacuoles [42]. The microscopic data of the present invention demonstrate that hv Kp cannot escape the phagolysosomal compartment in contrast to other Gram-negative bacteria. It is therefore inferred that mAbs facilitate uptake into phagolysosomes, where they kill bacteria. Intracellular TRIM21 signaling is undesirable due to the escape of Ab-pathogen complexes as described in Salmonella [43]. The work of the present invention did not define which isotype would constitute the most favorable, but indicated that genetically engineered mAbs in which FcyR receptor engagement was blocked would not be effective. Bacterial CPS mainly induces IgM and IgG3 antibodies in mice [23] and IgG2 antibodies in humans [44]. Thus, experimental data suggest that IgG3 antibodies are important for bacterial immunity [45-47], and anti-CPS IgG3 exhibits increased affinity for binding to multivalent CPS epitopes via Fc-mediated cooperative binding [48]. Conjugation of PS to protein shifts the reaction to the production of IgG1 antibodies that can also protect [49]. In the context of the present invention, both IgG1 and IgG3 were found to exert protective effects, while 4C5 had higher IgG1 protective efficacy. Different classes of IgG antibodies have different effector responses. Traditionally, IgG2a and 2b play a key role in antiviral immunity and are also potent Ab-mediated autoimmune diseases [50]. Mouse IgG1 and IgG3 exhibit FcγR activation. Binding affinity to an activating receptor-inhibiting FcγR receptor, measured as an activation-to-inhibition ratio, affects its overall activity [50]. IgG1 Abs have superior activation signaling compared to IgG3 Abs [50]. This may explain the observed lower effector process applied by the IgG3 antibody in the context of comparable binding affinity. Past studies have shown that antibody-mediated protection can depend on the IgG subclass, but the results also depend on the specific Ab. For example, two IgG3 mAbs against the meningococcal PorA protein and the B. anthracis capsule were found to be more protective than the other subclasses [47, 51]. These differences are explained by the differential interactions of the CH2-CH3 domains in each subclass that drive their binding affinity. On the other hand, an IgG3 mAb against the capsule of Cryptococcus neoformans was found not to be protective unless it was switched to an IgGl isotype-switched variant [52, 53]. In the latter case, the lack of protection is explained by the contribution of the CH domain to the binding affinity of the antibody to its target polysaccharide. Other investigators compared the relative opsonization activity of antibodies against the cryptococcal polysaccharide capsule and concluded that the anti-capsule activity was greatest for IgG2a, followed by IgG1, and then IgG2b [54]. All of the above underscore the complexity of predicting the contribution of FcR interactions to potency and indicate that this quality is important and must be experimentally evaluated for each anti-infective Ab. Most importantly, clinical data from patients with recurrent hv Kp -mediated liver cysts indicate that the opsonizing and killing potency of serum increases over time, consistent with an evolutionary protective immune response [55]. Passive immunotherapy mimics an effective immune response and high titer formulations of protective Ab can be used alone or in combination with antibiotics to control invasive infections caused by K1- Kp . Importantly, the appropriate infectious hv Kp strain (K1-CPS) needs to be rapidly confirmed prior to treatment. It is shown here that CPS Ag secreted in urine can be diagnosed by ELISA using K1-CPS specific Ab. This sandwich-based ELISA can then be easily further developed into a lateral flow-based assay similar to other commercially available diagnostic Ag tests. It is demonstrated herein that CPS Ag is secreted in both urine and blood. In the re-emergence of well-known pathogenic microorganisms in drug-resistant forms as exemplified by MRSA, multidrug-resistant (MDR) M. tuberculosis and now MDR hv Kp , it seems prudent to include anti-infective Ab pre-development against emerging resistant pathogens. Because even in the best-case scenario, developing Ab therapeutics takes years, it is short-sighted for companies and research foundations to limit more proactive development of mAb therapeutics for infectious diseases. Treatment with anti-effective Abs against gut-colonizing bacteria such as hv Kp should not interfere with targeted interventions in the microbiota. mAbs have been shown to be effective in immunocompromised hosts, as demonstrated by the efficacy of palivizumab in reducing hospitalizations for RSV-related disease in preterm infants [56]. With the continuous rapid advance of globalization, and the unrestricted use of antibiotics in most parts of the world, "hypersensitive" pathogens that are far from inhabiting become undesirably highly resistant pathogens that should be expected to arrive. In the present invention, passive immunotherapy has also been shown to be a successful treatment to control invasive infections caused by K1- Kp . The protective characteristics of both mAbs 4C5 and 19A10 have been demonstrated. EXAMPLES Materials and Methods K1- Kp strains K1- Kp strains (n=4) were collected from hospitalized patients at Montefiore Medical Center (MMC) in Bronx and Stony Brook University Hospital in Stony Brook. Kp strains were grown in Luria-Bertani (LB) broth or agar plates at 37°C. CPS purification and in vitro and in vivo experiments were performed using the K1- Kp strain of MMC No. 20. To obtain stable GFP-tagged strains, the strains were transformed with pPROBEKT plastids kindly provided by Dr. Triplett [22]. CPS purification CPS was isolated as previously described with minimal modifications [23, 24]. Briefly, Kp strain #20 was inoculated in 1 L of LB broth and grown o/n at 37°C. Cells were pelleted by centrifugation and washed with PBS. Cells were resuspended in distilled water to 5% (wt/vol) and CPS was extracted by phenol-water. The CPS present in the aqueous phase was precipitated by adding 5 volumes of methanol plus 1% (v/v) saturated solution of sodium acetate in methanol and incubated at 24°C for 1 h. After dissolving the pellets in water, they were dialyzed against water for 6 hours and then freeze-dried. The lyophilized polysaccharide was dissolved in 0.8% NaCl, 0.05% NaN3, 0.1M Tris-HCl (pH 7) to a concentration of 10 mg/ml and treated with nuclease (50 mg/ml DNase I and RNase A) at 37°C Digest twice and keep for 24h. Subsequently, proteinase K (50 mg/ml) was added and incubated twice at 55°C for 1 h and at room temperature for 24 h. The polysaccharide was precipitated and dissolved in water as described above. The LPS was removed by ultracentrifugation (105000 x g, 16 h, 4°C) and the samples were freeze-dried. CPS was further extracted with phenol following a previously published protocol [25]. CPS was further purified by size exclusion chromatography on a column S200HR (GE Healthcare Life Sciences) using PBS. Fractions were collected and analyzed for the presence of polysaccharides by the phenol-sulfuric acid method [26]. CPS-PA coupling For coupling, the isolated Kp CPS was activated using 1-cyano-4-dimethylamino-pyridinium tetrafluoroborate (CDAP) as described with modifications [27]. PA (protective antigen) of B. anthracis was obtained from Wadsworth Center, NYS Department of Health and was previously used for PS-protein conjugation [28]. Briefly, CPS was dissolved in NaCl 0.15 M to 10 mg/ml (1 ml). At t=0 s, 100 μl CDAP (100 mg/ml in acetonitrile) (1 mg CDAP/mg PS) was added slowly while stirring. After 30 s, 0.2 M TEA (10 µl/mg PS) was added to raise the pH. At t = 2' 30 s, 0.1 M sodium borate pH 9.3 was added to adjust the pH to 9 and 10 mg of PA in 0.15 M NaCl was added. The reaction was incubated o/n at 4°C and dialyzed against water. The PS-protein conjugated product was purified using S200HR gel filtration columns (GE Healthcare Life Sciences). The presence of protein was monitored at A 280 nm in the chromatogram, while PS content was monitored by the phenol-sulfuric acid method [26]. mAbs were generated by K1-CPS conjugated with 100 µg of PA in complete Freund's adjuvant (CFA) followed by K1-conjugated with PA in incomplete Freund's adjuvant (IFA). Booster injection of CPS BALB/c mice were immunized to generate MAbs of K1 CPS. Fusion and colonization were performed as described [29]. Agglutination assay Agglutination was performed on glass slides as previously described [21]. Human Serum Resistance Assays Resistance assays were performed as previously described with minimal modifications [18]. 1.4×10 6 cfu of K1- Kp was incubated with 20 μg of 4C5 or 19A10 mAb for 1 h at room temperature. It was then mixed with 3:1 (vol:vol) normal human serum (time 0) and incubated at 37°C for 2h. Aliquots were taken at times 0, 1 and 2 and colony forming units (CFU) were calculated. Survival ratios are plotted as a graph of the number of K1- Kp found compared to time 0. Three independent experiments were performed. C3b- Deposition Assay Complement deposition was measured by flow cytometry with a modification of the previously described protocol [30]. Briefly, LB o/n cultures were diluted and grown to mid-log phase. 5 x 107 cells were resuspended in 1 ml PBS + 20% normal human serum + 1% BSA. Add PBS, 20 µg 4C5 or 1910 mAb and incubate for 15'. Subsequently, cells were washed 2 times with PBS + 1% BSA and divided in half. Half were incubated with 1:500 sheep anti-human C3c FITC (Bio-Rad) in PBS + 1% BSA. The other half was incubated in the absence of antibody. The samples were incubated at 4°C for 25 min. Serum-free incubated bacterial samples were used as negative controls to set threshold values and fluorescence intensity. Intensities above 10 were considered positive for C3 binding. Quantification was performed by multiplying the percentage of bacteria that moved into the gate by the mean fluorescence (X-mean) of the defined population to obtain the fluorescence index (FI). Results are represented by the increase in signal treated with mAb relative to PBS incubation. Phagocytosis Assay Bacteria were pH-rodo ® (Life Technologies) labeled following the manufacturer's instructions. Phagocytosis assays were performed using the J744.16 murine macrophage cell line or the THP-1 human monocyte cell line. THP-1 cells were differentiated with phorbol 12-myristate 12-acetate (PMA) and treated with 100 nM PMA at 2 x 105 c /ml for 3 days. One day prior to phagocytosis experiments, both J744.16 and THP-1 cells were seeded at a concentration of 5x105 c/ml in 35 mm glass bottom microwell dishes (MatTek Corporation). On the day of the experiment, 5×10 6 pHrodo ® labeled K1- Kp cells were incubated with PBS, 20 μg isotype control, 4C5 or 19A10 mAb for 1 hour. Macrophages were infected with pHrodo® -labeled K1- Kp at MOI 10:1. Phagocytosis was assessed immediately using a Zeiss Axiovert 200M inverted microscope with a 10× objective at 5% CO 2 and 37° C. using petri dishes housed in a closed chamber, with images acquired every 4 min for the duration of the 2 h experiment. Phagocytosis was measured by counting the percentage of macrophages displaying labeled bacteria at 67 and 150 min. For experiments with primary macrophages, bone marrow macrophages were isolated from wild-type or FcR knockout mice ( Fcerlg tm1Rav , The Jackson Laboratory) as described [31]. After 7 days of macrophage differentiation, phagocytosis experiments as outlined above were performed. In vivo animal experiments 6-8 week old female BALB/c or Swiss Webster mice were purchased from Taconic Biosciences, Inc. 500 μg PBS, control isotype, 4C5, 19A10 or 4C5 + 19A10 mAb 120 min prior to challenge with 5×10 4 CFU of K1- Kp ip or 24 h prior to challenge with 1×10 4 CFU intratracheal (it) Mice (n = 10) were treated intraperitoneally (ip). The survival of 6 mice was monitored for 15 days. The liver, spleen and lung of 4 mice were processed to enumerate bacteria in the homogenized tissue. All animal experiments were performed with the approval of the Animal Institute Committee (AIC) in accordance with the rules and regulations described by the Albert Einstein College of Medicine and Stony Brook University. Intravital microscopy (IVM) Liver in vivo protocols were performed as previously described [32]. Briefly, mice were anesthetized by ip injection of a mixture of ketamine (120 mg/kg) and xylazine (10 mg/Kg). The tail vein is cannulated for administration of additional anesthetics and experimental reagents (if needed). A midline laparotomy was performed, followed by removal of the skin and abdominal muscles along the costal margin to the midaxillary line to expose the liver. The mouse was placed in the right position and a single liver lobe was removed from the abdomen on a custom made table. Wet exposed tissue with saline soaked gauze to prevent dehydration during imaging. Body temperature was maintained with an infrared heat lamp, and the liver was continuously perfused with saline buffer. Intravital microscopy was performed by the Inspector Z1 system (Zeiss), with temporal video taken at 1 frame/sec. The video was further analyzed by Zen2012 software (Zeiss). Statistical Analysis Data are presented as mean ± standard deviation or median range. Survival data were analyzed using the log-rank test. Statistical tests were performed using GraphPad Prism 6 for Mac. Results CPS-PA conjugation and mAb production CPS of strain No. 20, K1 serotype Kp was purified as previously reported [12]. Considering that CPS is a T cell-independent antigen with limited immunogenicity, the probability of restoring IgG production is low. Thus, CPS is conjugated to the protective antigen (PA), a B. anthracis protein that has been used successfully in other polysaccharide conjugates [62]. Coupling was carried out by CDAP-mediated activation of the polysaccharide [61]. Chromatograms of unconjugated CPS+PA and conjugated CPS-PA are shown in FIG. 1 . As expected, conjugation increased the protein content of the subsequently pooled CPS fractions. Immunization with conjugated K1-PA CPS produced 6 different hybridomas, each producing IgG specific for K1-CPS (Table 1). Two of them were selected for further development because they are higher mAb producers and display different isotype classes (4C5-IgG1- and 19A10-IgG3-). The binding properties by ELISA to purified K1-CPS were found to be in the subnaimole concentration range. The Kd for 4C5 was calculated to be 0.3642 +/- 0.07244 nM, while the Kd for 19A10 was 0.2419 +/- 0.3210 nM, confirming the high binding capacity of both mAbs to K1-CPS. ELISA analysis using isotype-specific secondary Abs indicated that both Abs could bind to purified CPS simultaneously. Some inhibition was detected only at higher concentrations (data not shown). In Vitro Antibody-Mediated Activity First, the effect of mAbs on bacterial growth was examined. For this purpose, the survival of K1- Kp grown in the presence of 4C5 or 19A10 mAbs was analyzed. Both mAbs induced a significant reduction in bacterial viability after 2 h of co-incubation (Figures 2A and 2B). Furthermore, both mAbs induced agglutination and resulted in capsule swelling when co-incubated with K1- Kp (Fig. 2C). Agglutination also occurred with the GFP-expressing strain K1-pPROBEKT and three other clinical K1- Kp strains not used for immunization (data not shown). Agglutination of non-K1-hv Kp strains not expressing K1-CPS was not observed. Co-incubation with mAbs reduced K1- Kp virulence in the invertebrate animal model G. mellonella (p values 0.0172 and 0.032, respectively) (Figure 2F). In vitro growth experiments showed that the heritability of K1-hv Kp to be easily replicated in serum was reduced 30-fold by both mAbs (2h p-value = 0.003) (Fig. 2D). Additionally, C3-complement deposition on the capsule in the presence of mAb was quantified and compared to Kp bacteria in the presence of PBS and normal human serum (NHS), as described in Materials and Methods. These experiments found that 4C5 incubation increased C3b deposition by 1.44x and 19A10 by 1.17x (Fig. 2E) (p value < 0.05). When evaluating membrane attack complex (MAC) deposition in K1- Kp bacteria, significant deposition was observed following 19A10 binding compared to PBS or IgG controls (Fig. 2G) (2-factor ANOVA p-value < 0.0001, PBS vs 4C5 ns, PBS vs. 19A10 p-value < 0.0001 and PBS vs. positive control aggregated human IgG p-value < 0.0001). The 4C5 mAb promotes phagocytosis of K1- Kp in specialized phagocytes Next, the ability of 4C5 to promote the uptake of K1- Kp cells by the murine macrophage cell line J744.16 was investigated, labeling Kp bacteria with pHrodo ® (LifeTechnologies), which allows appropriate True phagocytosis events were detected as opposed to only attached Kp bacteria, since rhodamine-fluorescence is dependent on the acidic pH of phagolysosomes. The phagocytosis index is determined by the number of macrophages phagocytosing bacteria at a specific time point. Phagocytosis (0% phagocytosed macrophages) was not recorded when bacteria were incubated with PBS (Fig. 3A-B and Supplementary Video 1). In contrast, when K1- Kp was co-incubated with 4C5 mAb, 13.85 and 27.65% of macrophages exhibited phagocytosis of bacteria at 67 and 150 min after infection (p-value = 0.0004 and 0.005, respectively). Similar results were found for the 19A10 mAb (66.7 and 150 min post-infection, 27.45% and 38.05%, respectively) (p-value = 0.0002 and 0.003, respectively). The opsonophagocytic properties of the mAbs were also documented in human macrophage cell lines. Both mAbs promoted phagocytosis, 4C5 (Fig. 3D-C and Supplementary Video 2) (67min 22% vs. 0% p-value=0.008; 150min 30% vs. 0% p-value=0.003), and 19A10 mAb (6.83% and 20.04% of macrophages were phagocytosed at 67 min and 150 min, p-value = 0.0005 and 0.042, respectively). At 8 h after initial phagocytosis was observed, no bacterial escape from the phagolysosome was observed (data not shown). It was also observed that bone marrow-derived macrophages from FcγR-deficient mice exhibited significantly reduced phagocytosis compared to wild-type-derived bone marrow macrophages (p-value < 0.05 for 4C5 and p-value < 0.01 for 19A10), thus Exhibiting opsonophagocytic effects depends on Fc receptor engagement. Regarding killing, J744.16 murine macrophages were found to kill K1- Kp when opsonized with 4C5 or 19A10 (Fig. 3D) (ANOVA p-value < 0.0001, p-value < 0.01 for 4C5 and 19A10 treatments). Phagocytosis was not observed when bacteria were incubated with PBS or IgG controls. Neutrophils not only kill pathogens by phagocytosis, but also release a network that captures and kills various microorganisms, called neutrophil extracellular traps (NETs). This process is called NETosis and is involved in the removal of many infectious pathogens, including fungi, parasites and bacteria. K1- Kp alone did not induce release of NETs, whereas (Fig. 3E-F) hyphae of C. albicans did, as previously reported. However, K1- Kp co-incubated with 4C5 or 19A10 resulted in the release of NETs (ANOVA p-value < 0.0001, p-value < 0.0001 for 4C5 and 19A10 treatments). NETosis was only observed with the K1- Kp specific mAb and was absent in the control experiments with the IgG control Ab. 4C5 and 19A10 elicited a protective response in murine K1- Kp infection, which was enhanced when the two mAbs were combined. Next, it was tested whether opsonophagocytic in vitro activity correlates with in vivo protective efficacy in two different murine infection models using K1- Kp strain number 20. For these experiments, Swiss-Webster mice were pretreated with PBS, 500 μg IgG isotype control or 500 mg 4C5 mAb or 500 mg 19A10 mAb 2 h prior to intraperitoneal inoculation with 5×10 4 K1- Kp CFU. Treatment with 4C5 enhanced survival when compared to PBS- or control isotype-treated mice (p-value=0.0027) (Figure 4A). Treatment with 4C5 significantly reduced bacterial load (CFU) in liver as well as lung and spleen (p-value < 0.001 in all cases) when compared to PBS or isotype control treatment (Figure 4B). Similar protective trends were observed for mice treated with 19A10 mAb (p value = 0.0170) and treatment with 19A10 also significantly reduced bacterial organ burden (p value < 0.001 in all cases). Treatment with the combination of mAbs enhanced protective efficacy (p-value=0.014) and also significantly reduced bacterial load (p-value<0.001). Next, protection was tested in an endotracheal infection model. Mice were treated with PBS, isotype controls and mAbs 24 h prior to intratracheal inoculation of 1×10 4 K1- Kp CFU. Retreatment with 4C5 significantly enhanced the survival of mice compared to PBS- or isotype control treatment (Figures 4C and 4D) (p-value=0.0027). Protective efficacy and lower bacterial organ burden were also observed after treatment with mAb19A10 (p-value=0.0051). Combination therapy also further enhanced survival and bacterial clearance in this model (p-value=0.0009) (Figures 4C and 4D). Finally, the induction of cytokines and chemokines in tissues of mAb- and PBS-treated mice ip infected with K1- Kp strain was compared. The liver and spleen homogenates of mAb-treated mice had significantly lower levels of pro-inflammatory cytokines such as IFN-γ, IL1-β, IL-2, IL-6 and TNF compared to PBS-treated mice -α (2-factor ANOVA treatment p-value < 0.0001 for both liver and spleen, Figures 4E-F). Similar trends were observed in the lungs (Figure 7A-C). Antibodies promote capture of K1- Kp from K1-Kp cells in the liver To decipher the mechanisms that promote the clearance of K1- Kp from organs, in vivo microscopy analysis was performed. When 108 CFU was injected iv without treatment, the number of bacteria flowing through the blood vessels was significantly higher and longer (p < 0.05) than with either mAb (Fig. 6A). At the same time, the number of bacteria captured in liver tissue was significantly higher when both antibodies were used (Figure 6B). At 5 x 104 CFU injected ip, no bacteria were detected in blood vessels or captured in tissues with either mAb (Figure 6C and D). Furthermore, high amounts of hv- Kp were found in the peritoneal cavity without treatment, whereas hv- Kp was cleared upon mAb injection (data not shown). Reducing the size of the iv injected bacterial inoculum to 5 x 104 resulted in complete bacterial clearance (Fig. 5F). Treatment with mAb reduced bacterial dispersal in antibiotic-treated K1- Kp colonized mice. The protective efficacy of mAbs was examined in a murine model of gastrointestinal colonization in which bacterial dissemination to the liver, spleen and mesenteric lymph nodes (MLN) was promoted by antibiotic treatment. Oral administration of ampicillin to mice colonized with 108 GFP-tagged kv Kp resulted in a marked increase in bacterial load in the feces and subsequent translocation and dissemination to mesenteric lymph nodes (MLN), spleen and liver. It was investigated whether mAb treatment protects against disseminated and reduced bacterial load in MLN, spleen and liver. The data indicated that bacterial dispersal to MLN, liver and spleen was significantly reduced compared to PBS-treated mice, and bacterial loads in these organs were below 6 log (Figure 8) (2-factor ANOVA p-value<0.0001) . In contrast, bacterial colonization observed in feces showed no significant difference from mAb treatment, indicating that colonization itself was not affected by systemic mAb treatment. Both mAbs provided tools for the detection of K1 -infection in both urine and serum samples . Recently, a sandwich ELISA was designed using the mAbs to enable rapid non-invasive detection of K1- Kp CPS in murine body fluids (Figure 6A). ELISA testing with both mAbs demonstrated detection sensitivity of CPS as low as 0.20 μg/ml in serum and as low as 0.11 μg/ml in urine (Figures 6B and 6D). CPS was detected in serum samples from iv-infected mice, and in urine samples from ip- and it-infected mice. Amounts of CPS as low as 0.11 μg/ml were found in the urine of different mice over time and corresponded to the severity of the disease ( FIG. 6D ). Importantly, the ELISA was specific and did not detect CPS of other non-K1-CPS expressing Kp strains. Treatment of the mAb reduced ampicillin-induced dispersal from the gut in K1- Kp colonized mice. The protective efficacy of mAbs was examined in a murine model of gastrointestinal colonization in which bacterial dissemination to the liver, spleen and mesenteric lymph nodes (MLN) was promoted by treatment with antibiotics. Administration of ampicillin to mice colonized with 10 GFP-tagged K1- Kp via oral ingestion resulted in increased bacterial load in feces and subsequent translocation and dissemination to mesenteric lymph nodes (MLN), spleen and liver ( 9A-B and 8). It was investigated whether mAb treatment protected against MLN, dissemination in spleen and liver and reduced bacterial load (Figure 9B). The data indicated that bacterial dispersal to MLN, liver and spleen was significantly reduced and bacterial burden was up to 6 log lower in these organs compared to PBS-treated mice (Figure 8) (2-factor ANOVA p-value<0.0001). In contrast, bacterial colonization observed in feces showed no significant difference from mAb treatment, indicating that colonization itself was not affected by systemic mAb treatment. Sequencing of Monoclonal Antibodies Total RNA was extracted from frozen hybridoma cells and cDNA was synthesized from RNA. PCR was then performed to amplify the variable regions (heavy and light chains) of the antibody, which were then individually cloned into standard clone vectors and sequenced. Materials Hybridoma cells; TRIzol® reagent (Ambion, catalog number: 15596-026); PrimeScript™ 1st strand cDNA synthesis kit (Takara, catalog number: 6110A). Methods Total RNA extraction Total RNA was isolated from hybridoma cells following the technical manual for TRIzol® reagents. Total RNA was analyzed by agarose gel electrophoresis. RT-PCR followed the technical manual of the PrimeScript™ 1st Strand cDNA Synthesis Kit using isotype-specific antisense primers or universal primers to reverse-transcribe total RNA into cDNA. Antibody fragments of VH and VL were amplified according to the standard operating procedure of GenScript's RACE. Cloning of Antibody Genes Amplified antibody fragments are individually cloned into standard cloning vectors using standard molecular cloning procedures. Screening and Sequencing Colony PCR screening was performed to identify clones with inserts of appropriate size. A single population of no less than 5 inserts of the appropriate size was sequenced for each antibody fragment. Total RNA extraction The isolated total RNA of the samples was run on a 1.5% agarose/GelRed gel with DNA marker Marker III (TIANGEN, catalog number: MD 103). PCR product of antibody gene 4 microliters of PCR product from each sample was run on a 1.5% agarose/GelRed™ gel with DNA marker Marker III. PCR products were purified and stored at -20 ° C until further use. Sequencing Results and Analysis Five single colonies with appropriate VH and VL insert sizes were sent for sequencing. The VH and VL genes of the two different clones were found to be almost identical.下文列舉之共有序列係由雜交瘤4C5產生之抗體之序列重鏈 DNA 序列 (405 bp)前導序列- FR1 - CDR1 - FR2 - CDR2 - FR3 - CDR3 - FR4 ATGGACTGGAGTTGGGTCTTTCTCTTCCTCCTGTCAGTAAATGAAGGTGTCTACTGT CAGGTCCAGCTGCAGCAGTCTGGAGATGATCTGGTAACGCCTGGGGCCTCAGTGAAGCTGTCCTGCAAGGCTTCTGGCTACACCTTCACC AGCTACTGGATTAAC TGGATAAAACAGAGGCCTGGACAGGGCCTTGAGTGGGTAGGA CGTATTACTCCTGGACGTGGTAATACTTACTACAATGAAATGTTCAAGGAC AAGGCAACACTGACTGTAGACACATCCTCCAGAACAGCCTACATTCAGCTCAGCAGCCTGTCATCTGAGGACTCTGCTGTCTATTTCTGTGCAAGG GGGGGTGTCTGGTTTGCTTAC TGGGGCCAAGGGACTCTGGTCACTGTCTCTGCA (SEQ ID NO: 1) The nucleotide sequences of CDR1, CDR2 and CDR3 of the heavy chain of mAb 4C5 are the following SEQ ID NOs: 9, 10 and 11, respectively: AGCTACTGGATTAAC (SEQ ID NO: 9) CGTATTACTCCTGGACGTGGTAATACTTACTACAATGAAATGTTCAAGGAC (SEQ ID NO: 10) GGGGGTGTCTGGTTTGCTTAC (SEQ ID NO: 11) 重鏈:胺基酸序列(135 AA) 前導序列- FR1 - CDR1 - FR2 - CDR2 - FR3 - CDR3 - FR4 MDWSWVFLFLLSVNEGVYC QVQLQQSGDDLVTPGASVKLSCKASGYTFT SYWIN WIKQRPGQGLEWVG RITPGRGNTYYNEMFKD KATLTVDTSSRTAYIQLSSLSSEDSAVYFCAR GGVWFAY WGQGTLVTVSA ( SEQ ID NO: 2) mAb The amino acid sequences of CDR1, CDR2 and CDR3 of the 4C5 heavy chain are the following SEQ ID NOs: 12, 13 and 14, respectively: SYWIN (SE Q ID NO: 12) RITPGRGNTYYNEMFKD (SEQ ID NO: 13) GGVWFAY (SEQ ID NO: 14)輕鏈 DNA 序列 (393 bp)前導序列- FR1 - CDR1 - FR2 - CDR2 - FR3 - CDR3 - FR4 ATGGGCATCAAGATGGAGTCACAGATTCAGGCATTTGTATTCGTGTTTCTCTGGTTGTCTGGTGTTGACGGA GACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCATCACCTGC AAGGCCAGTCAGGATGTGAGTACTGCTGTAGCC TGGTATCAGCAAAAACCAGGGCAATCTCCTAAACTACTGATTTAC TGGGCATCCACCCGGCACACT GGAGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTATACTCTCACCATCAGCAGTGTGCAGGCTGAAGACCTGGCACTTTATTACTGT CAGCAACATTATAGCACTCCGTACACG TTCGGAGGGGGGACCAAGCTGGAAATAAAA (SEQ ID NO: 3) mAb 4C5輕鏈之CDR1、CDR2及CDR3之核苷酸序列分別係如下SEQ ID NO: 15、16及17: AAGGCCAGTCAGGATGTGAGTACTGCTGTAGCC (SEQ ID NO: 15) TGGGCATCCACCCGGCACACT ( SEQ ID NO: 16) CAGCAACATTATAGCACTCCGTACACG (SEQ ID NO: 17)輕鏈 胺基酸序列 (131 AA)前導序列- FR1 - CDR1 - FR2 - CDR2 - FR3 - CDR3 - FR4 MGIKMESQIQAFVFVFLWLSGVDG DIVMTQSHKFMSTSVGDRVSITC KASQDVSTAVA WYQQKPGQSPKLLIY WASTRHT GVPDRFTGSGSGTDYTLTISSVQAEDLALYYC QQHYSTPYT FGGGTKLEIK ( SEQ ID NO: 4) The amino acid sequences of CDR1, CDR2 and CDR3 of the light chain of mAb 4C5 are respectively the following SEQ IDs NO: 18, 19 and 20: KASQDVSTAVA (SEQ ID NO: 18) WASTRHT (SEQ ID NO: 19) QQHYSTPYT (SEQ ID NO: 20) The consensus sequence listed below is the sequence heavy chain of the antibody produced by hybridoma 19A10 : DNA 序列 (399 bp)前導序列- FR1 - CDR1 - FR2 - CDR2 - FR3 - CDR3 - FR4 ATGGCTGTCCTGGTGCTGTTCCTCTGCCTGGTTGCATTTCCAAGCTGTGTCCTGTCC CAGGTGCAGCTGAAGGAGTCAGGACCTGGCCTGGTGGCGCCCTCACAGAGCCTGTCCATCACTTGCACTGTCTCTGGGTTTTCATTAACC AGCTATGGTGTACAC TGGGTTCGCCAGCCTCCAGGAAAGGGTCTGGAGTGGCTGGGA GTAATATGGGCTGGTGGAAGCACAAATTATAATTCGGCTCTCATGTCC AGACTGAGCATCAGCAAAGACAACTCCAAGAGCCAAGTTTTCTTAAAAATGAACAGTCTGCAAACTGATGACACAGCCATGTACTACTGTGCCTTA CTATGGCTAAGAGCTTAC TGGGGCCAAGGGACTCTGGTCACTGTCTCTGCA (SEQ ID NO: 5) mAb 19A10重鏈之CDR1、CDR2及CDR3之核苷The acid sequences are the following SEQ ID NOs: 21, 22 and 23, respectively: AGCTATGGTGTACAC (SEQ ID NO: 21) GTAATATGGGCTGGTGGAAGCACAAATTATAATTCGGCTCTCATGTCC (SEQ ID NO: 22) CTATGGCTAAGAGCTTAC (SEQ ID NO: 23) Heavy chain : amino acid sequence (133 AA) Preamble - FR1 - CDR1 - FR2 - CDR2 - FR3 - CDR3 - FR4 MAVLVLFLCLVAFPSCVLS QVQLKESGPGLVAPSQSLSITCTVSGFSLT SYGVH WVRQPPGKGLEWLG VIWAGGSTNYNSALMS RLSISKDNSKSQVFLKMNSLQTDDTAMYYCAL LWLRAY WGQGTLVTVS A (SEQ ID NO: 6) The amino acid sequences of CDR1, CDR2 and CDR3 of the heavy chain of mAb 19A10 are the following SEQ ID NOs: 24, 25 and 26, respectively: SYGVH (SEQ ID NO: 24) VIWAGGSTNYNSALMS (SEQ ID NO: 25) LWLRAY (SEQ ID NO: 26)輕鏈 DNA 序列 (393 bp)前導序列- FR1 - CDR1 - FR2 - CDR2 - FR3 - CDR3 - FR4 ATGAAGTTGCCTGTTAGGCTGTTGGTGCTGATGTTCTGGATTCCTGCTTCCAGCAGT GATGTTTTGATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGC AGATCTAGTCAGAGCATTGTACATAGTAATGGAAACACCTATTTAGAA TGGTACCTGCAGAAACCAGGCCAGTCTCCAAAGCTCCTGATCTAC AAAGTTTCCAACCGATTTTCT GGGGTCCCAGACAGGTTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTGGGAGTTTATTACTGC TTTCAAGGTTCACATGTTCCGTGGACG TTCGGTGGAGGCACCAAGCTGGAAATCAAA (SEQ ID NO: 7) The nucleotide sequences of CDR1, CDR2 and CDR3 of the light chain of mAb 19A10 are the following SEQ ID NOs: 27, 28 and 29, respectively: AGATCTAGTCAGAGCATTGTACATAGTAATGGAAACACCTATTTAGAA (SEQ ID NO: 27) AAAGTTTCCAACCGATTTTCT (SEQ ID NO: 28) TTTCAAGGTTCACATGTTCCGTGGACG (SEQ ID NO: 29) Light chain : amino acid sequence (131 AA) leader sequence - FR1 - CDR1 - FR2 - CDR2 - FR3 - CDR3 - FR4 MKLPVRLLVLMFWIPASSS DVLMTQTPLSLPVSLGDQASISC RSSQSIVHSNGNTYLE WYLQKPGQSPKLLIY KVSNRFS GVPDRFSGSGSG The amino acid sequences of CDR1, CDR2 and CDR3 of TDFTLKISRVEAEDLGVYYC FQGSHVPWT FGGGTKLEIK (SEQ ID NO: 8) mAb 19A10 light chain are the following SEQ ID NOs: 30, 31 and 32, respectively: RSSQSIVHSNGNTYLE (SEQ ID NO: 30) KVSNRFS (SEQ ID NO: 30) NO: 31) FQGSHVPWT (SEQ ID NO: 32) Bibliography 1. Podschun et al. Clinical microbiology reviews. 1998;11(4):589-603. 2. Shon et al., Virulence. 2013;4(2):107-18. 3. (CDC) CfDCaP. Antibiotic Resistance Threats in the United States, 2013. Promotion DoHQ;2013. 4. Fierer et al., Journal of clinical microbiology. 2011;49(12):4371-3. 5. Vila et al. The open microbiology journal. 2011;5:107-13. 6. Turton et al., Journal of medical microbiology. 2007;56(Pt 5):593-7. 7. Chang et al., Journal of the Formosan Medical Association 1995;94(5):232-7. 8. Yeoh et al. Tropical liver abscess. Postgraduate medical journal. 1997;73(856):89-92. 9. Lok et al, J. of microbiology, immunology and infection. 2008;41(6):483-90. 10. Chung et al. The Journal of infection. 2007;54(6):578-83. 11. Fang et al., Clinical infectious diseases. 2007;45(3):284-93. 12. Diago-Navarro et al. The Journal of infectious diseases. 2014;210(5):803-13. 13. Hsu et al., Microbiology. 2011;157(Pt 12):3446-57. 14. Yu et al., Diagnostic microbiology and infectious disease. 2008;62(1):1-6. 15. Li et al., Infectious Diseases Society of America. 2014;58(2):225-32. 16. Siu et al., BMC infectious diseases. 2014;14:176. 17. Zhang et al., Zhonghua yi xue za zhi. 2014;94(46):3666-70. 18. Dubois et al. Analytical Chemistry. 1956;28(3):350-6. 19. Kubler-Kielb et al. Infection and immunity. 2006;74(8):4744-9. 20. Theilacker et al. Infection and immunity. 2003;71(7):3875-84. 21. Oscarson et al., Vaccine. 2005;23(30):3961-72. 22. Finn et al., Br Med Bull. 2004;70:1-14.d 23. Slack et al., The Journal of experimental medicine. 1980;151(4):853-62. 24. Thanawastien et al., Proc Natl Acad Sci US A. 2015;112(10):E1143-51. 25. Wu et al., Infection and immunity. 2009;77(2):615-21. 26. Podschun et al. The Journal of infectious diseases. 1993;168(6):1415-21. 27. Podschun et al., Journal of medical microbiology. 1992;36(4):250-4. 28. Tomas et al, Microb Pathog. 1988;5(2):141-7. 29. Choong et al. Methods in enzymology. 2012;506:35-61. 30. Shi et al, Cell Microbiol. 2012;14(12):1819-27. 31. Shi et al, J Clin Invest. 2010;120(5):1683-93. 32. Egen et al., Immunity. 2008;28(2):271-84. 33. Lee et al., Nat Immunol. 2010; 11(4):295-302. 34. Benacerraf et al. The Journal of experimental medicine. 1959;110(1):27-48. 35. Gregory et al, J Leukoc Biol. 2002;72(2):239-48. 36. Marques et al, J Hepatol. 2015;63(3):733-42. 37. Leendertse et al., Innate Immun. 2009;15(1):3-12.d 38. Anand et al., J Pediatr Surg. 2007;42(6):927-32. 39. Gul et al, J Clin Invest. 2014;124(2):812-23. 40. Bruhns et al. Blood. 2012;119(24):5640-9. 41. Zhu et al, J Immunol. 2001;166(5):3266-76. 42. Vidarsson et al. Blood. 2006;108(10):3573-9. 43. McEwan et al., Nat Immunol. 2013;14(4):327-36. 44. Riesen et al, Scand J Immunol. 1976;5(4):383-90. 45. Perlmutter et al, J Immunol. 1978;121(2):566-72. 46. Briles et al, Nature. 1981;294(5836):88-90. 47. Hovenden et al, Pathog. 2013; 9(4):e1003306.d 48. Greenspan et al, Immunol Today. 1992; 13(5):164-8. 49. McLay et al, J Immunol. 2002;168(7):3437-43. 50. Nimmerjahn et al. Science. 2005;310(5753):1510-2. 51. Michaelsen et al, Scand J Immunol. 2004;59(1):34-9. 52. Yuan et al, J Immunol. 1995;154(4):1810-6. 53. Yuan et al., Infection and immunity. 1998;66(3):1057-62. 54. Schlageter et al. Infection and immunity. 1990;58(6):1914-8. 55. Yeh et al., J. of microbiology, immunology and infection. 2012;45(2):141-6. 56. The IMpact-RSV Study Group. Pediatrics. 1998;102(3 Pt 1):531-7. 57. Chelius et al. Applied and environmental microbiology. 2000;66(2):783-7. 58. Reddy et al., Methods for General & Molecular Microbiology, 3rd Edition, 2007: 1106. 59. Cano et al. BMC microbiology. 2009;9:156. 60. Hirschfeld et al, J Immunol. 2000;165(2):618-22. 61. Lees et al., Vaccine. 1996;14(3):190-8. 62. Chow et al, Vaccine. 2011;29(10):1891-8. 63. Varshney et al. The Journal of biological chemistry. 2011;286(11):9737-47. 64. Melin et al., Infection and immunity. 2009;77(2):676-84. 65. Stukes et al, J Vis Exp. 2014;(92):e52084. 66. McDonald et al. Science. 2010;330(6002):362-6.

圖1:於A280nm下記錄之S200HR凝膠過濾層析的層析圖。1A顯示K1-CPS在與PA蛋白偶聯後之層析圖;1B顯示偶聯之前之層析圖。下方線指出含有藉由酚-硫酸方法檢測之K1-CPS之部分[26]。 Figure 1: Chromatogram of S200HR gel filtration chromatography recorded at A280nm. 1A shows the chromatogram of K1-CPS after coupling with PA protein; 1B shows the chromatogram before coupling. The lower line indicates the fraction containing K1-CPS detected by the phenol-sulfuric acid method [26].

圖2:mAb效應之活體外表徵。A、B)分別在4C5或19A10存在下K1 hv-Kp之存活率。於不同時間點藉由CFU/ml記錄生長。監測三個獨立實驗。C)在mAb存在或不存在下K1 hv-Kp之凝集分析。向細胞中添加10μg mAb並培育1h。下部圖顯示經表現GFP之質體pPROBEKT-Km菌株轉變之凝集。D)人類血清抗性分析。在正常人類血清存在下CR-Kp菌株之生長。評價在與NHS一起培育2小時後K1 hv-Kp之活的CFU的含量。顯示在時間0’時相對於CFU之數目之活細胞的含量。E)補體沈積分析。藉由抗人類C3c FITC之螢光信號量測沈積。獲得三個獨立實驗且顯示相對於PBS培育之mAb處理之信號增益%。F)顯示K1-Kp與25μg 4C5或19A10之預培育延長經感染之大蠟螟(G.mellonella)的存活。藉由經Bonferroni多重比較測試校正之對數秩(Mantel-Cox)測試(n=20隻蟲/組)測定顯著性。G)MAC沈積因19A10Ab處理而增強。在3個獨立實驗中,藉由ELISA在與NHS或HI-NHS及mAB、聚集之人類IgG或PBS一起培育之K1-Kp細菌中量測抗人類C5b-9之信號。以標準偏差顯示相對於每一PBS對照之AP信號之平均增加%。藉由具有事後Tukey多重比較測試之ANOVA計算p值。H)在IgG對照、4C5或19A10存在下在LB介質中之K1-Kp生長。實驗係一式四份地進行。槓代表計算之平均值±標準偏差。p值係藉由具有事後Tukey多重比較測試之2-因子ANOVA來測定。 Figure 2: In vitro characterization of mAb effects. A, B) Survival of K1 hv- Kp in the presence of 4C5 or 19A10, respectively. Growth was recorded by CFU/ml at different time points. Three independent experiments were monitored. C) Agglutination analysis of K1 hv- Kp in the presence or absence of mAb. 10 μg mAb was added to cells and incubated for 1 h. The lower panel shows agglutination transformed by the GFP expressing plastid pPROBEKT-Km strain. D) Human serum resistance assay. Growth of the CR- Kp strain in the presence of normal human serum. The content of live CFU of K1 hv- Kp was evaluated after incubation with NHS for 2 hours. The content of viable cells at time 0' is shown relative to the number of CFUs. E) Complement deposition analysis. Deposition was measured by the fluorescent signal of anti-human C3c FITC. Three independent experiments were obtained and show % signal gain relative to PBS-incubated mAb treatment. F) Shows that preincubation of K1- Kp with 25 μg 4C5 or 19A10 prolongs the survival of infected G. mellonella. Significance was determined by the log-rank (Mantel-Cox) test adjusted for Bonferroni's multiple comparisons test (n=20 worms/group). G) MAC deposition was enhanced by 19A10Ab treatment. In 3 independent experiments, the anti-human C5b-9 signal was measured by ELISA in K1- Kp bacteria incubated with NHS or HI-NHS and mAB, aggregated human IgG or PBS. The mean % increase in AP signal relative to each PBS control is shown as standard deviation. p-values were calculated by ANOVA with post hoc Tukey's multiple comparison test. H) Growth of K1- Kp in LB medium in the presence of IgG control, 4C5 or 19A10. Experiments were performed in quadruplicate. Bars represent calculated mean ± standard deviation. p-values were determined by 2-way ANOVA with post hoc Tukey's multiple comparison test.

圖3:吞噬作用分析.A)在PBS(藍色)、IgG對照(紅色)、4C5(綠色)或19A10(紫色)存在下K1 hv-Kp之鼠類巨噬細胞J744吞噬作用。B)在PBS(藍色)、IgG對照(紅色)、4C5(綠色)或19A10(紫色)存在下K1 hv-Kp之THP-1分化之人類巨噬細胞吞噬作用。C)在PBS(藍色)、IgG對照(紅色)、4C5(綠色)或19A10(紫色)存在下K1 hv-Kp之野生型(實體)或FcR-KO(四方形)吞噬作用之骨髓源巨噬細胞。在所有實驗中,在開始共培育67min及150min後顯示內部具有pH-rodo標記之細菌之巨噬細胞的%。執行三個獨立實驗。(D)顯示K1-Kp之鼠類巨噬細胞J744.16殺死。p值係藉由具有Sidak多重比較測試之單因子ANOVA來測定。(E)在利用與mAbs 4C5、19A10及IgG對照一起培育之白色念珠菌(C.albicans)、K1-Kp或K1-Kp刺激後由人類嗜中性球之NET釋放的量化(示於F中)。槓以標準偏差反映場中之總嗜中性球中面積超過1,000μm2的嗜中性球之核之平均百分比(3個獨立重複)。p值係藉由具有Sidak多重比較測試之單因子ANOVA來測定。(F)由人類嗜中性球之增強之NET釋放係由4C5及19A10共培育之K1-Kp細菌而非由同型匹配之對照Ab誘導。 Figure 3: Phagocytosis assay. A) Phagocytosis of K1 hv- Kp murine macrophages J744 in the presence of PBS (blue), IgG control (red), 4C5 (green) or 19A10 (purple). B) Phagocytosis of THP-1 differentiated human macrophages of K1 hv- Kp in the presence of PBS (blue), IgG control (red), 4C5 (green) or 19A10 (purple). C) Bone marrow-derived macrophages by wild-type (solid) or FcR-KO (tetragonal) phagocytosis of K1 hv- Kp in the presence of PBS (blue), IgG control (red), 4C5 (green) or 19A10 (purple). phagocytes. In all experiments, the % of macrophages showing pH-rodo labeled bacteria inside after 67 min and 150 min after initial co-incubation. Three independent experiments were performed. (D) Murine macrophage J744.16 killing of K1- Kp is shown. p-values were determined by one-way ANOVA with Sidak's multiple comparison test. (E) Quantification of NET release from human neutrophils following stimulation with C. albicans, K1- Kp or K1- Kp incubated with mAbs 4C5, 19A10 and IgG controls (shown in F ). The bars reflect the average percentage of neutrophil nuclei with an area greater than 1,000 μm2 of the total neutrophils in the field (3 independent replicates) with standard deviation. p-values were determined by one-way ANOVA with Sidak's multiple comparison test. (F) Enhanced NET release from human neutrophils was induced by K1- Kp bacteria co-cultured with 4C5 and 19A10 but not by the isotype-matched control Ab.

圖4.A)及B)分別在i.p.注射5×104 K1-Kp CFU後小鼠存活及肺、肝及脾細菌計數。C)及D)分別在i.t.注射1×104 K1-Kp CFU後存活及肺、肝及脾細菌計數。將小鼠用PBS、IgG對照、4C5、19A10或4C5及19A10處理。器官細菌荷載係由CFU/ml表示。*表示p值<0.05,** p值<0.01且*** p值<0.001且*** p值<0.0001。顯示具有標準偏差之肝(E)及脾(F)中平均細胞介素含量(i.p.感染5×104 K1-Kp後24h)的比較(n=4隻小鼠/組)。黑色*表示PBS與4C5之比較且藍色*表示與19A10之比較。實施具有Dunnett多重比較測試之2-因子ANOVA進行p值測定。 Figure 4. A) and B) mouse survival and lung, liver and spleen bacterial counts after ip injection of 5 x 104 K1 - Kp CFU, respectively. C) and D) Survival and lung, liver and spleen bacterial counts after it injection of 1×10 4 K1- Kp CFU, respectively. Mice were treated with PBS, IgG control, 4C5, 19A10 or 4C5 and 19A10. Organ bacterial load is expressed as CFU/ml. * indicates p-value < 0.05, **p-value < 0.01 and ***p-value < 0.001 and ***p-value < 0.0001. A comparison of mean interleukin content in liver (E) and spleen (F) (24 h after ip infection with 5 x 104 K1 - Kp ) with standard deviation is shown (n=4 mice/group). Black* indicates comparison of PBS with 4C5 and blue* indicates comparison with 19A10. A 2-way ANOVA with Dunnett's multiple comparisons test was performed for p-value determination.

5. 活體內顯微鏡檢查法. A) 注射後不同時間點,在血竇(直徑介於5μm與8μm之間)中通過固定點的細菌數目。B) 在注射後之不同時間點在視野中捕獲之固定細菌的數目。對於A)及B)中之每一組,具有/無mAb治療之小鼠接受1×108 個表現GFP之K1 hv-Kp 之i.v.注射,基於上述方案進行1小時IVM視訊。C) 注射後24小時,在血竇(直徑介於5μm與8μm之間)中通過固定點的細菌數目。D) 在注射後24小時在視野中捕獲之固定細菌的數目。對於C)及D)中之每一組,具有/無mAb治療之小鼠接受5×104 個表現GFP之hv-Kp 之i.p.注射,基於上述方案進行1小時IVM視訊。E) 在i.p.注射5×104 個表現GFP之hv-Kp 後未經治療之小鼠之腹腔內的200×顯微鏡檢查影像。F) i.v.注射1×104 個表現GFP之hv-Kp 後24小時,在血竇(直徑介於5μm與8μm之間)中通過固定點的細菌數目。 具有或無mAb治療之小鼠接受i.p 1×104 個CFU表現GFP之hv-Kp 。**表示p值<0.01。 6 . 經感染小鼠中之K1-CPS檢測方法。A) 經設計夾心式ELISA之方案。用4C5 mAb塗佈ELISA板且隨後與含有或不含K1-CPS之試樣一起培育。隨後,經由抗小鼠IgG3偶聯之mAb結合並檢測19A10 mAb。B) 於不同時間點獲得之血清中i.v.注射1×104 CFU K1 hv-Kp 之小鼠中的K1-CPS檢測。C) 於不同時間點獲得之尿液中i.p.注射5×104 CFU K1 hv-Kp 之小鼠中的K1-CPS檢測。D) 於不同時間點獲得之尿液中i.t.注射1×104 CFU K1-Kp 之小鼠中的K1-CPS檢測。 7. 活體內保護研究 . (A) i.p.注射5×104 K1-Kp 且分別經PBS、250 μg 4C5、19A10或125 μg 4C5及19A10處理之小鼠(n=6/組)的存活分析。p值係利用經Bonferroni多重比較測試校正之對數秩(Mantel-Cox)測定。(B) 感染後24h平均細菌器官荷載。顯示平均log CFU/ml + 標準偏差(n=4隻小鼠/組)。黑色*表示PBS及兩種mAb的比較。在(B)中實施具有Tukey多重比較測試之2-因子ANOVA用於p值測定。(C) 顯示具有標準偏差之肺中平均細胞介素含量(i.p.感染5×104 K1-Kp 後24h)的比較(n=4隻小鼠/組)。黑色*表示PBS與4C5之比較且藍色*表示與19A10之比較。實施具有Dunnett多重比較測試之2-因子ANOVA進行p值測定。 8. 細菌定殖及散佈保護研究 . 經1×108 K1-Kp 定殖後第8天之散佈後器官及糞便中之平均細菌荷載。顯示平均log CFU/ml + 標準偏差(n=3隻小鼠/組)。實施具有Dunnet多重比較測試之2-因子ANOVA用於p值測定。黑色*表示PBS之比較。 9 . (A) 在胺苄青黴素(ampicillin)治療後,經定殖小鼠之糞便之細菌CFU計數增加超過5 log。(B) 經定殖小鼠中的胺苄青黴素及mAb治療之時間。補充視訊 1-6 。三個關於i.v注射之視訊剪輯皆係在感染後30 min以5 fps播放,顯示用PBS、4C5或19A10治療。關於i.p感染之視訊剪輯係在感染後24 h以5 fps播放,顯示用PBS、4C5或19A10治療。 Figure 5. Intravital microscopy. A) Number of bacteria passing through immobilization points in sinusoids (between 5 and 8 μm in diameter) at different time points after injection. B) Number of immobilized bacteria captured in the field of view at different time points after injection. For each group in A) and B), mice with/without mAb treatment received iv injections of 1 x 108 GFP expressing K1 hv- Kp with 1 hour IVM video based on the above protocol. C) Number of bacteria passing through the fixed point in sinusoids (between 5 and 8 μm in diameter) 24 hours after injection. D) Number of immobilized bacteria captured in the field of view 24 hours after injection. For each group in C) and D), mice with/without mAb treatment received 5 x 104 ip injections of GFP-expressing hv- Kp for 1 hour IVM video based on the protocol described above. E) 200x microscopic images of the intraperitoneal cavity of untreated mice following ip injection of 5x104 hv- Kp expressing GFP. F) Number of bacteria passing through the fixed point in sinusoids (between 5 and 8 μm in diameter) 24 hours after iv injection of 1×10 4 hv- Kp expressing GFP. Mice with or without mAb treatment received ip 1 x 104 CFU of hv- Kp expressing GFP. ** denotes p-value &lt; 0.01. Figure 6. K1-CPS detection method in infected mice. A) Protocol for the designed sandwich ELISA. ELISA plates were coated with 4C5 mAb and subsequently incubated with samples with or without K1-CPS. Subsequently, the 19A10 mAb was bound and detected via an anti-mouse IgG3-conjugated mAb. B) K1-CPS detection in mice injected iv with 1×10 4 CFU K1 hv- Kp in serum obtained at different time points. C) K1-CPS detection in mice injected ip with 5×10 4 CFU K1 hv- Kp in urine obtained at different time points. D) K1-CPS detection in mice it injected with 1×10 4 CFU K1- Kp in urine obtained at different time points. Figure 7. In vivo protection study . (A) Survival analysis of mice (n=6/group) injected ip with 5×10 4 K1- Kp and treated with PBS, 250 μg 4C5, 19A10 or 125 μg 4C5 and 19A10, respectively . p-values were determined using log-rank (Mantel-Cox) corrected for Bonferroni's multiple comparisons test. (B) Mean bacterial organ load 24 h after infection. Mean log CFU/ml + standard deviation is shown (n=4 mice/group). Black * indicates the comparison of PBS and two mAbs. A 2-factor ANOVA with Tukey's multiple comparison test was performed in (B) for p-value determination. (C) Shows a comparison of mean interleukin content in lungs (24 h after ip infection with 5 x 104 K1 - Kp ) with standard deviation (n=4 mice/group). Black* indicates comparison of PBS with 4C5 and blue* indicates comparison with 19A10. A 2-way ANOVA with Dunnett's multiple comparisons test was performed for p-value determination. Figure 8. Bacterial colonization and dispersal protection studies . Mean bacterial loads in organs and feces after dissemination on day 8 after colonization with 1 x 108 K1- Kp . Mean log CFU/ml + standard deviation is shown (n=3 mice/group). A 2-factor ANOVA with Dunnet's multiple comparison test was performed for p-value determination. Black* indicates PBS comparison. Figure 9. (A) Bacterial CFU counts in feces of colonized mice increased by more than 5 log following ampicillin treatment. (B) Time of ampicillin and mAb treatment in colonized mice. Supplementary Videos 1-6 . The three video clips of iv injections were all played at 5 fps at 30 min post infection, showing treatment with PBS, 4C5 or 19A10. Video clips on ip infection were shown at 5 fps 24 h after infection showing treatment with PBS, 4C5 or 19A10.

<110> 美國紐約州立大學研究基金會(THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK) <110> THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK

<120> 克雷伯氏肺炎桿菌(KLEBSIELLA PNEUMONIAE)抗體及治療克雷伯氏肺炎桿菌感染之方法 <120> Klebsiella pneumoniae (KLEBSIELLA PNEUMONIAE) antibody and method for treating Klebsiella pneumoniae infection

<130> 178-437 P <130> 178-437P

<140> <140>

<141> 2015-10-21 <141> 2015-10-21

<160> 8 <160> 8

<170> PatentIn version 3.5 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 405 <211> 405

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequences

<220> <220>

<223> 合成序列 <223> Synthetic sequences

<400> 1

Figure 106114006-A0305-02-0039-1
<400> 1
Figure 106114006-A0305-02-0039-1

<210> 2 <210> 2

<211> 135 <211> 135

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequences

<220> <220>

<223> 合成序列 <223> Synthetic sequences

<400> 2

Figure 106114006-A0305-02-0039-2
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
<400> 2
Figure 106114006-A0305-02-0039-2
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005

Claims (19)

一種經分離之多核苷酸,其編碼抗體或其活性片段之輕鏈可變區(LCVR),該LCVR包含與SEQ ID NO:4中所述之序列至少95%一致且與SEQ ID NO:4共用至少一種主要功能性質之胺基酸序列,其中該序列包括包含SEQ ID NO:18-20之胺基酸序列之輕鏈CDRs。 An isolated polynucleotide encoding the light chain variable region (LCVR) of an antibody or active fragment thereof, the LCVR comprising at least 95% identity to the sequence set forth in SEQ ID NO:4 and identical to SEQ ID NO:4 An amino acid sequence that shares at least one major functional property, wherein the sequence includes light chain CDRs comprising the amino acid sequences of SEQ ID NOs: 18-20. 一種經分離之多核苷酸,其編碼抗體或其活性片段之重鏈可變區(HCVR),該HCVR包含與SEQ ID NO:2中所述之序列至少95%一致且與SEQ ID NO:2共用至少一種主要功能性質之胺基酸序列,其中該序列包括包含SEQ ID NO:12-14之胺基酸序列之重鏈CDRs。 An isolated polynucleotide encoding the heavy chain variable region (HCVR) of an antibody or active fragment thereof, the HCVR comprising at least 95% identity to the sequence set forth in SEQ ID NO:2 and identical to SEQ ID NO:2 An amino acid sequence that shares at least one major functional property, wherein the sequence includes heavy chain CDRs comprising the amino acid sequences of SEQ ID NOs: 12-14. 如請求項1之經分離之多核苷酸,其中該胺基酸序列與SEQ ID NO:4中所述之序列至少99%一致。 The isolated polynucleotide of claim 1, wherein the amino acid sequence is at least 99% identical to the sequence set forth in SEQ ID NO:4. 如請求項2之經分離之多核苷酸,其中該胺基酸序列與SEQ ID NO:2中所述之序列至少99%一致。 The isolated polynucleotide of claim 2, wherein the amino acid sequence is at least 99% identical to the sequence set forth in SEQ ID NO:2. 一種經分離之多核苷酸,其編碼抗體或其活性片段之輕鏈可變區(LCVR),該LCVR包含與SEQ ID NO:8中所述之序列至少95%一致且與SEQ ID NO:8共用至少一種主要功能性質之胺基酸序列,其中該序列包括包含SEQ ID NO:30-32之胺基酸序列之輕鏈CDRs。 An isolated polynucleotide encoding the light chain variable region (LCVR) of an antibody or an active fragment thereof, the LCVR comprising at least 95% identity to the sequence set forth in SEQ ID NO:8 and identical to SEQ ID NO:8 An amino acid sequence that shares at least one major functional property, wherein the sequence includes light chain CDRs comprising the amino acid sequences of SEQ ID NOs: 30-32. 一種經分離之多核苷酸,其編碼抗體或其活性片段之重鏈可變區(HCVR),該HCVR包含與SEQ ID NO:6中所述之序列至少95%一致且與SEQ ID NO:6共用至少一種主要功能性質之胺基酸序列,其中該序列包括包含SEQ ID NO:24-26之胺基酸序列之重鏈CDRs。 An isolated polynucleotide encoding the heavy chain variable region (HCVR) of an antibody or active fragment thereof, the HCVR comprising at least 95% identity to the sequence set forth in SEQ ID NO:6 and identical to SEQ ID NO:6 An amino acid sequence that shares at least one major functional property, wherein the sequence includes heavy chain CDRs comprising the amino acid sequences of SEQ ID NOs: 24-26. 如請求項5之經分離之多核苷酸,其中該胺基酸序列與SEQ ID NO:8中所述之序列至少99%一致。 The isolated polynucleotide of claim 5, wherein the amino acid sequence is at least 99% identical to the sequence set forth in SEQ ID NO:8. 如請求項6之經分離之多核苷酸,其中該胺基酸序列與SEQ ID NO:6中所述之序列至少99%一致。 The isolated polynucleotide of claim 6, wherein the amino acid sequence is at least 99% identical to the sequence set forth in SEQ ID NO:6. 一種經分離之多肽,其包含抗體或其活性片段之輕鏈可變區(LCVR),該LCVR包含與SEQ ID NO:4中所述之序列至少95%一致且與SEQ ID NO:4共用至少一種主要功能性質之胺基酸序列,其中該序列包括包含SEQ ID NO:18-20之胺基酸序列之輕鏈CDRs。 An isolated polypeptide comprising a light chain variable region (LCVR) of an antibody or an active fragment thereof, the LCVR comprising at least 95% identical to the sequence set forth in SEQ ID NO:4 and sharing at least 4 with SEQ ID NO:4 An amino acid sequence of primary functional properties, wherein the sequence includes light chain CDRs comprising the amino acid sequences of SEQ ID NOs: 18-20. 一種經分離之多肽,其包含抗體或其活性片段之重鏈可變區(HCVR),該HCVR包含與SEQ ID NO:2中所述之序列至少95%一致且與SEQ ID NO:2共用至少一種主要功能性質之胺基酸序列,其中該序列包括包含SEQ ID NO:12-14之胺基酸序列之重鏈CDRs。 An isolated polypeptide comprising a heavy chain variable region (HCVR) of an antibody or an active fragment thereof, the HCVR comprising at least 95% identical to the sequence set forth in SEQ ID NO:2 and sharing at least 2 with SEQ ID NO:2 An amino acid sequence of primary functional properties, wherein the sequence includes heavy chain CDRs comprising the amino acid sequences of SEQ ID NOs: 12-14. 如請求項9之經分離之多肽,其中該胺基酸序列與SEQ ID NO:4中所述之序列至少99%一致。 The isolated polypeptide of claim 9, wherein the amino acid sequence is at least 99% identical to the sequence set forth in SEQ ID NO:4. 如請求項10之經分離之多肽,其中該胺基酸序列與SEQ ID NO:2中所述之序列至少99%一致。 The isolated polypeptide of claim 10, wherein the amino acid sequence is at least 99% identical to the sequence set forth in SEQ ID NO:2. 一種經分離之多肽,其包含抗體或其活性片段之輕鏈可變區(LCVR),該LCVR包含與SEQ ID NO:8中所述之序列至少95%一致且與SEQ ID NO:8共用至少一種主要功能性質之胺基酸序列,其中該序列包括包含SEQ ID NO:30-32之胺基酸序列之輕鏈CDRs。 An isolated polypeptide comprising a light chain variable region (LCVR) of an antibody or an active fragment thereof, the LCVR comprising at least 95% identical to the sequence set forth in SEQ ID NO:8 and sharing at least 8 with SEQ ID NO:8 An amino acid sequence of primary functional properties, wherein the sequence includes light chain CDRs comprising the amino acid sequences of SEQ ID NOs: 30-32. 一種經分離之多肽,其包含抗體或其活性片段之重鏈可變區(HCVR),該HCVR包含與SEQ ID NO:6中所述之序列至少95%一致且與SEQ ID NO:6共用至少一種主要功能性質之胺基酸序列,其中該序列包括包含SEQ ID NO:24-26之胺基酸序列之重鏈CDRs。 An isolated polypeptide comprising a heavy chain variable region (HCVR) of an antibody or an active fragment thereof, the HCVR comprising at least 95% identical to the sequence set forth in SEQ ID NO:6 and sharing at least 6 with SEQ ID NO:6 An amino acid sequence of primary functional properties, wherein the sequence includes heavy chain CDRs comprising the amino acid sequences of SEQ ID NOs: 24-26. 如請求項13之經分離之多肽,其中該胺基酸序列與SEQ ID NO:8中所述之序列至少99%一致。 The isolated polypeptide of claim 13, wherein the amino acid sequence is at least 99% identical to the sequence set forth in SEQ ID NO:8. 如請求項14之經分離之多肽,其中該胺基酸序列與SEQ ID NO:6中所述之序列至少99%一致。 The isolated polypeptide of claim 14, wherein the amino acid sequence is at least 99% identical to the sequence set forth in SEQ ID NO:6. 一種至少一種如請求項9、11、13及15中任一項之多肽及至少一種如請求項10、12、14及16中任一項之多肽之用途,其係用於製備抑制有需要個體之克雷伯氏肺炎桿菌(K.pneumoniae)感染的藥物。 Use of at least one polypeptide according to any one of claims 9, 11, 13 and 15 and at least one polypeptide according to any one of claims 10, 12, 14 and 16 for the preparation of inhibiting an individual in need thereof Drugs for Klebsiella pneumoniae ( K.pneumoniae ) infection. 如請求項17之用途,其中該克雷伯氏肺炎桿菌感染係血清型K1之高毒力(hypervirulent)克雷伯氏肺炎桿菌感染。 The use of claim 17, wherein the Klebsiella pneumoniae infection is a hypervirulent Klebsiella pneumoniae infection of serotype K1. 一種診斷個體之克雷伯氏肺炎桿菌感染之方法,該方法包含使該個體之生物試樣與至少一種如請求項9、11、13及15中任一項之多肽及至少一種如請求項10、12、14及16中任一項之多肽接觸;確定是否形成免疫複合物;及比較所形成之複合物之量與正常對照值。A method of diagnosing Klebsiella pneumoniae infection in an individual, the method comprising combining a biological sample of the individual with at least one polypeptide as claimed in any one of claims 9, 11, 13 and 15 and at least one as claimed in claim 10 contacting the polypeptide of any one of , 12, 14, and 16; determining whether an immune complex is formed; and comparing the amount of the complex formed to a normal control value.
TW106114006A 2017-04-26 2017-04-26 Klebsiella pneumoniae antibodies and methods to treat klebsiella pneumoniae infections TWI773670B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106114006A TWI773670B (en) 2017-04-26 2017-04-26 Klebsiella pneumoniae antibodies and methods to treat klebsiella pneumoniae infections

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106114006A TWI773670B (en) 2017-04-26 2017-04-26 Klebsiella pneumoniae antibodies and methods to treat klebsiella pneumoniae infections

Publications (2)

Publication Number Publication Date
TW201839137A TW201839137A (en) 2018-11-01
TWI773670B true TWI773670B (en) 2022-08-11

Family

ID=65033812

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106114006A TWI773670B (en) 2017-04-26 2017-04-26 Klebsiella pneumoniae antibodies and methods to treat klebsiella pneumoniae infections

Country Status (1)

Country Link
TW (1) TWI773670B (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 Diago-Navarro E., et al., "Antibody-Based Immunotherapy To Treat and Prevent Infection with Hypervirulent Klebsiella pneumoniae", Clinical and Vaccine Immunology, 24 ,January 2017, e00456-16. *

Also Published As

Publication number Publication date
TW201839137A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US11447543B2 (en) Antibodies to S. aureus surface determinants
JP7001661B2 (en) Staphylococcus aureus leukocidin, its therapeutic composition, and its use
JP2021105034A (en) Novel anti-lam and anti-pim6/lam monoclonal antibodies for diagnosis and treatment of mycobacterium tuberculosis infections
EP2860191B1 (en) Human monoclonal antibody against S. aureus derived alpha-toxin and its use in treating or preventing abscess formation
JP6506172B2 (en) Method of treating Staphylococcus aureus (S. aureus) related diseases
WO2020098701A1 (en) Antibody against staphylococcus aureus α-hemolysin and uses thereof
WO2021052461A1 (en) Anti-alpha-hemolysin antibody and use thereof
KR20210089719A (en) Use of clazakizumab for amelioration of desensitization and kidney transplantation in HLA-sensitized patients
EP3441474B1 (en) Pharmaceutical compositions containing a mutated leukocidin e
CN116789813B (en) Monoclonal antibody for resisting staphylococcus aureus alpha-hemolysin and application thereof
CN107614517B (en) Antibodies against infectious diseases
TWI773670B (en) Klebsiella pneumoniae antibodies and methods to treat klebsiella pneumoniae infections
WO2021233408A1 (en) ANTI-α-HEMOLYSIN ANTIBODY AND STABILIZING PREPARATION THEREOF
WO2021160153A1 (en) Human cd47-targeting single-domain antibody and use thereof
WO2020237023A1 (en) Formulations for altering microbiome to reduce risks of hereditary and spontaneous colorectal cancers
WO2017070567A1 (en) Klebsiella pneumoniae antibodies and methods to treat klebsiella pneumoniae infections
EP3897718A1 (en) Clazakizumab in the treatment of chronic antibody-mediated rejection of organ transplant
US10882899B2 (en) Anti Francisella tularensis (FT) antibodies
CN118146362A (en) Antibody for resisting staphylococcus aureus manganese ion transporter C and application thereof
RU2808018C2 (en) Antibodies to surface determinants of s. aureus
BR112012002892A2 (en) monoclonal antibody specific for s alpha-toxin. aureus, hybridoma, nucleic acid, vector, host cell, method for producing the monoclonal antibody, pharmaceutical composition, use of a monoclonal antibody and test kit for the diagnosis of a s infection. aureus