TWI773034B - 監測設備之系統及方法 - Google Patents
監測設備之系統及方法 Download PDFInfo
- Publication number
- TWI773034B TWI773034B TW109145181A TW109145181A TWI773034B TW I773034 B TWI773034 B TW I773034B TW 109145181 A TW109145181 A TW 109145181A TW 109145181 A TW109145181 A TW 109145181A TW I773034 B TWI773034 B TW I773034B
- Authority
- TW
- Taiwan
- Prior art keywords
- module
- principal component
- real
- features
- feature
- Prior art date
Links
Images
Landscapes
- Alarm Systems (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
本揭露之一實施例係關於一種監測一設備之系統,其包含:一分析模組及一訓練模組。該分析模組經組態以基於複數個特徵之至少一者產生至少一個主成分特徵。該訓練模組經組態以根據該至少一個主成分特徵決定一決策邊界。本揭露之另一實施例係關於一種監測一設備之方法。
Description
本發明係關於一種監測設備之系統及方法。
工廠自動化的趨勢使得檢測工廠中設備之工作狀況相當重要。傳統檢測方法依靠檢測人員至工廠中設備進行確認,然而檢測設備之週期往往不符經濟效應,週期過長將容易導致設備異常而造成的產能下滑,週期過短則提高時間人力成本。
本揭露之一實施例係關於一種監測一設備之系統,其包含:一分析模組及一訓練模組。該分析模組經組態以基於複數個特徵之至少一者產生至少一個主成分特徵。該訓練模組經組態以根據該至少一個主成分特徵決定一決策邊界。
本揭露之另一實施例係關於一種監測一設備之方法。該方法包含基於複數個特徵之至少一者產生至少一個主成分特徵。該方法進一步包含根據該至少一個主成分特徵決定一決策邊界。
參照圖1,圖1所示為根據本案之某些實施例之監測設備之一系統1之示意圖。系統1包括擷取模組11、特徵模組12、分析模組13、訓練模組14及決策模組15。系統1可以監測一或多個相同類型的設備,例如具有馬達之設備、具有壓縮機之設備、具有旋轉機械之設備等等。在某些實施例中,系統1可以監測多個不同類型的設備。
擷取模組11與特徵模組12可以彼此連接。擷取模組11與特徵模組12可藉由有線或無線之方式進行連接或通訊。資訊、訊號、資料或指令可以在擷取模組11及特徵模組12之間傳遞。特徵模組12與分析模組13可以彼此連接。特徵模組12與分析模組13可藉由有線連結或無線之方式進行連接或通訊。資訊、訊號、資料或指令可以在特徵模組12及分析模組13之間傳遞。分析模組13與訓練模組14可以彼此連接。分析模組13與訓練模組14可藉由有線連結或無線之方式進行連接或通訊。資訊、訊號、資料或指令可以在分析模組13及訓練模組14之間傳遞。分析模組13與決策模組15可以彼此連接。分析模組13與決策模組15可藉由有線連結或無線之方式進行連接或通訊。資訊、訊號、資料或指令可以在分析模組13及決策模組15之間傳遞。訓練模組14與決策模組15可以電性連接。訓練模組14與決策模組15可藉由有線連結或無線之方式進行連接或通訊。資訊、訊號、資料或指令可以在訓練模組14及決策模組15之間傳遞。
擷取模組11可以包含一或多個感測器。擷取模組11(例如一或多個感測器)可以經實體地附著於設備上,亦可不與該設備接觸。擷取模組11可以接收與該設備相關之至少一個訓練數據S11、S12…S1n,其中n為正整數。訓練數據S11、S12…S1n與設備之物理參數相關聯。例如,訓練數據S11、S12…S1n可以與設備之振動相關聯。訓練數據S11、S12…S1n可以包含設備之振動數據。設備之振動包含設備內之至少一個元件(如旋轉機械)之振動。
在某些實施例中,擷取模組11可以一預定周期取樣訓練數據S11、S12…S1n中之複數個子集,擷取模組11可以經組態以針對訓練數據S11、S12…S1n中之複數個子集進行移動式平均(moving average, MA)產生經前處理數據S21、S22…S2m,其中m為正整數且n大於或等於m。n可以是m的倍數。舉例而言,擷取模組11可每30秒對設備蒐集8秒之振動數據,並將10分鐘內之20個振動數據進行移動式平均,以10分鐘為一個預定周期將每10分鐘所產生的訓練數據S11、S12…S1n中之複數個子集各自進行移動平均以產生複數個經前處理數據S21、S22…S2m,透過移動式平均可以消除可能之環境雜訊。在某些實施例中,可由使用者輸入訓練數據S11、S12…S1n至擷取模組11。
在某些實施例中,擷取模組11可以包含儲存器,其儲存一或多個指令、儲存訓練數據S11、S12…S1n及經前處理數據S21、S22…S2m。在某些實施例中,擷取模組11可以包含處理器執行一或多個指令以完成上述功能。
特徵模組12可以經組態以接收經前處理數據S21、S22…S2m。特徵模組12可以經組態以自經前處理數據S21、S22…S2m擷取複數個特徵S31、S32…S3k,其中k為正整數。在其他實施例中,特徵模組12可以經組態以直接接收訓練數據S11、S12…S1n。特徵模組12可以經組態以自訓練數據S11、S12…S1n擷取複數個特徵S31,S32…S3k。複數個特徵S31、S32…S3k可以包含至少一個時域特徵及/或至少一個頻域特徵。時域特徵可以包含加速度、速度均方根、位移峰至峰、峰值因素、峰值、峰度或偏度等等。頻域特徵可以包含尖峰頻率或尖峰頻率幅值等等。特徵模組12可以經組態以對經前處理數據S21、S22…S2m進行傅立葉轉換。特徵模組12可以經組態以對訓練數據S11、S12…S1n進行傅立葉轉換。特徵模組12可以經組態以基於複數個特徵S31、S32…S3k形成一列高維特徵列表,此列高維特徵列表如下表1。其中Y11、Y12…Ykx為複數個特徵S31、S32…S3k在不同時間點之實際值。
表1
時間點 (單位:分鐘) | 特徵 S31 | 特徵 S32 | 特徵 S33 | 特徵 S34 | 特徵 S35 | … | 特徵 S3k |
10 | Y11 | Y21 | Y31 | Y41 | Y51 | … | Yk1 |
20 | Y12 | Y22 | Y32 | Y42 | Y52 | … | Yk2 |
… | … | … | … | … | … | … | … |
x | Y1x | Y2x | Y3x | Y4x | Y5x | … | Ykx |
在某些實施例中,特徵模組12可以包含儲存器,其儲存一或多個指令、複數個特徵S31、S32…S3k。在某些實施例中,特徵模組12可以包含處理器執行一或多個指令以完成上述功能。
分析模組13可經組態以接收複數個特徵S31、S32…S3k。分析模組13可經組態以基於複數個特徵S31、S32…S3k之至少一者產生至少一個主成分特徵PCA1、PCA2…PCAj,其中j為正整數,例如j可以為但不限於1、2、3、4、5等等。在某些實施例中,j小於或等於k,換言之,至少一個主成分特徵PCA1、PCA2…PCAj之數量少於該複數個特徵S31、S32…S3k之數量。下表2展示至少一個主成分特徵所形成之特徵列表之一例示。其中Z11、Z12…Zjx為主成分特徵PCA1、PCA2…PCAj在不同時間點之實際值。
表2
時間點 (單位:分鐘) | 主成分特徵 PCA1 | 主成分特徵 PCA2 | 主成分特徵 PCA3 | … | 主成分特徵 PCAj |
10 | Z11 | Z21 | Z31 | … | Zj1 |
20 | Z12 | Z22 | Z32 | … | Zj2 |
… | … | … | … | … | … |
x | Z1x | Z2x | Z3x | … | Zjx |
在某些實施例中,分析模組13可以經組態以將複數個特徵S31、S32…S3k標準化(normalization)。分析模組13可以經組態以針對經標準化之複數個特徵S31、S32…S3k進行主成分分析(Principal Component Analysis, PCA)而產生至少一個主成分特徵PCA1、PCA2…PCAj。主成分分析可以將複數個特徵S31、S32…S3k降維至小於複數個特徵數量之有限維度,例如五個維度(即五個主成分特徵PCA1、PCA2…PCA5)。在某些實施例中,主成分特徵PCA1可以包含複數個特徵S31、S32…S3k中之一或多者。主成分特徵PCA1可以為複數個特徵S31、S32…S3k中之一或多者之組合。
主成分分析包含建立及解析共變異數矩陣產生至少一個主成分特徵PCA1、PCA2…PCAj。主成分分析包含根據複數個特徵S31、S32…S3k各者之變異量產生至少一個主成分特徵PCA1、PCA2…PCAj。所產生之主成分特徵PCA1、PCA2…PCAj之變異量彼此不同,例如主成分特徵PCA1可以具有相對於主成分特徵PCA2較大的變異量。分析模組13可以進一步經組態以根據分解共變異數矩陣之結果(例如選定特徵向量)建立投影矩陣。分析模組13可以進一步經組態以將訓練數據S11、S12…S1n或經前處理數據S21、S22…S2m投影至由至少一個主成分特徵PCA1、PCA2…PCAj形成的空間中。換言之,經投影之訓練數據S11、S12…S1n或經前處理數據S21、S22…S2m可以各自具有包含至少一個主成分特徵PCA1、PCA2…PCAj之座標值。
在某些實施例中,分析模組13可以包含儲存器,其儲存一或多個指令、複數個特徵S31、S32…S3k及至少一個主成分特徵PCA1、PCA2…PCAj。在某些實施例中,分析模組13可以包含處理器執行一或多個指令以完成上述功能。
訓練模組14可以經組態以接收至少一個主成分特徵PCA1、PCA2…PCAj。訓練模組14可以經組態以根據至少一個主成分特徵PCA1、PCA2…PCAj決定一決策邊界(decision boundary)DB1。訓練模組14可經由非監督式學習(unsupervised learning)根據至少一個主成分特徵PCA1、PCA2…PCAj決定決策邊界DB1。在某些實施例中,訓練模組14將至少一個主成分特徵PCA1、PCA2…PCAj輸入一類支持向量機(one class support vector machine)以產生一訓練模組而決定決策邊界DB1。在其他實施例中,訓練模組14可將至少一個主成分特徵PCA1、PCA2…PCAj輸入其他異常檢測模型(例如:k-平均演算法(k-means clustering)、孤立森林(Isolation Forest))以產生一訓練模組而決定決策邊界DB1。
在某些實施例中,訓練模組14可以包含儲存器,其儲存一或多個指令、至少一個主成分特徵PCA1、PCA2…PCAj及決策邊界DB1。在某些實施例中,訓練模組14可以包含處理器執行一或多個指令以完成上述功能。
如圖1所示,擷取模組11可經組態以擷取該設備之一或多個即時數據RS11、RS12…RS1n,其中n為正整數。即時數據RS11、RS12…RS1n可以與設備之振動相關聯。即時數據RS11、RS12…RS1n可以包含設備之振動數據。設備之振動包含至少一個旋轉機械之振動。在某些實施例中,擷取模組可以一預定周期取樣即時數據RS11、RS12…RS1n中之複數個子集,擷取模組11可以經組態以針對即時數據RS11、RS12…RS1n中之複數個子集進行移動式平均(moving average, MA)產生即時經前處理數據RS21、RS22…RS2m,其中m為正整數且n大於或等於m。n可以是m的倍數。
特徵模組12可以經組態以接收即時經前處理數據RS21、RS22…RS2m。特徵模組12可以經組態以自即時經前處理數據RS21、RS22…RS2m擷取複數個即時特徵RS31、RS32…RS3k,其中k為正整數。在其他實施例中,特徵模組12可以經組態以直接接收即時數據RS11、RS12…RS1n。特徵模組12可以經組態以自即時數據RS11、RS12…RS1n擷取複數個即時特徵RS31、RS32…RS3k。複數個特徵RS31、RS32…RS3k可以包含至少一個時域特徵及/或至少一個頻域特徵。時域特徵可以包含加速度、速度均方根、位移峰至峰、峰值因素、峰值、峰度或偏度等等。頻域特徵可以包含尖峰頻率或尖峰頻率幅值等等。
分析模組13可經組態以接收複數個即時特徵RS31、RS32…RS3k。分析模組13可經組態以基於複數個即時特徵RS31、RS32…RS3k之至少一者產生至少一個即時主成分特徵RPCA1、RPCA2…RPCAj,其中j為正整數,例如j可以為但不限於1、2、3、4、5等等。在某些實施例中,j小於或等於k,換言之,至少一個即時主成分特徵RPCA1、RPCA2…RPCAj之數量少於該複數個即時特徵RS31、RS32…RS3k之數量。
決策模組15可以接收至少一個即時主成分特徵RPCA1、RPCA2…RPCAj。決策模組15可以儲存決策邊界DB1。決策模組15可以儲存訓練模組,其包含決策邊界DB1。決策模組15可以經組態以判定至少一個即時主成分特徵RPCA1是否落在決策邊界DB1之外。當決策模組15判定落在決策邊界DB1之外時,決策模組15輸出表示設備異常之第一訊號OS1。當決策模組15判定至少一個即時主成分特徵RPCA1、RPCA2…RPCAj落在決策邊界DB1之內時,決策模組15輸出表示設備正常之第二訊號OS2。決策模組15可以將第一訊號OS1輸出至中央系統,中央系統可通知值班人員根據此第一訊號OS1進行設備之檢查流程,可即時地處理工作異常的設備進而提升產能及其工作表現。透過決策模組15可判定即時主成分特徵RPCA1、RPCA2…RPCAj中之至少一者是否落入異常區域,能迅速判定設備之狀況。再者,分析模組14所產生之降維特徵(例如:主成分特徵PCA1、PCA2…PCAj或即時主成分特徵RPCA1、RPCA2…RPCAj)可有效降低系統處理的數據量。
在某些實施例中,決策模組15經組態以判定複數個即時主成分特徵RPCA1、RPCA2…RPCAj之間的多個交集是否落在決策邊界DB1之外。當落在決策邊界DB1之外之交集之數量超過一臨限值時,決策模組15輸出第一訊號OS1。當落在決策邊界DB1之外之交集之數量小於一臨限值時,決策模組15輸出第二訊號OS2。藉由判定複數個即時主成分特徵RPCA1、RPCA2…RPCAj之間的多個交集落在決策邊界DB1外之數量是否超出一臨限值可有助於過濾誤警事件(false alarm event),減少值班人員之工作負擔。
在某些實施例中,決策模組15可以包含儲存器,其儲存一或多個指令及決策邊界DB1。在某些實施例中,決策模組15可以包含處理器執行一或多個指令以完成上述功能。
特徵模組12、分析模組13、訓練模組14及決策模組15可以整合於一積體電路中。在某些實施例中,單一處理器可透過設計演算法使其執行特徵模組12、分析模組13、訓練模組14及/或決策模組15之功能。
參照圖2,圖2所示為根據本案之某些實施例之監測設備之系統2之示意圖。系統2與圖1之系統1相似,其不同在於系統2進一步包含標籤模組16。標籤模組16可以經組態以經由監督式學習(supervised learning)產生至少一個標籤L1、L2…Ln並傳送至訓練模組14。標籤模組16可以收集機台運作資訊並將其指定為至少一個標籤L1、L2…Ln中之一或多者。更進一步地,標籤模組16可以收集機台故障資訊並將其指定為至少一個標籤L1、L2…Ln中之一或多者。
如圖2所示,訓練模組14經組態以基於至少一個標籤L1、L2…Ln修改決策邊界DB1。舉例而言,訓練模組14可將至少一個標籤L1、L2…Ln輸入一類支持向量機中以修改決策邊界DB1。一類支持向量機在處理主成分特徵PCA1、PCA2…PCAj時能將其分類為正類(positive class)或負類(negative class),惟一類支持向量機無法指出主成分特徵PCA1、PCA2…PCAj中何者為正常或異常數據。訓練模組14可以將表示機台故障之至少一個標籤L1、L2…Ln中之一或多者與主成分特徵PCA1、PCA2…PCAj的分類進行比對,進而修改決策邊界DB1。據此,藉由反饋標籤L1、L2…Ln至訓練模組14可以提升包含決策邊界DB1之訓練模組的準確度。
訓練模組14與標籤模組16可藉由有線連結或無線之方式進行連接或通訊。資訊、訊號、資料或指令可以在訓練模組14及標籤模組16之間傳遞。特徵模組12、分析模組13、訓練模組14、決策模組15及標籤模組16可以整合於一積體電路中。在某些實施例中,單一處理器可透過設計演算法使其執行特徵模組12、分析模組13、訓練模組14、決策模組15及/或標籤模組16之功能。
參照圖3,圖3所示為根據本案之某些實施例之監測設備之方法100之示意圖。方法100包含步驟101至步驟119。圖3所示之步驟101至步驟119可以在圖1中所示的系統1中進行。
在步驟101中,擷取模組11擷取訓練數據S11、S12…S1n。在步驟103中,擷取模組11擷取即時數據RS11、RS12…RS1n。訓練數據S11、S12…S1n或即時數據RS11、RS12…RS1n與所監測設備之振動相關聯。在某些實施例中,擷取模組11在不同時間點擷取訓練數據S11、S12…S1n及即時數據RS11、RS12…RS1n。
在步驟105中,擷取模組11針對訓練數據S11、S12…S1n中之複數個子集進行移動式平均產生經前處理數據S21、S22…S2m。擷取模組11針對即時數據RS11、RS12…RS1n中之複數個子集進行移動式平均產生即時經前處理數據RS21、RS22…RS2m。透過移動式平均可以消除可能之環境雜訊。
在步驟107中,特徵模組12自經前處理數據S21、S22…S2m或即時經前處理數據RS21、RS22…RS2m擷取複數個時域特徵。在步驟109中,特徵模組12自經前處理數據S21、S22…S2m或即時經前處理數據RS21、RS22…RS2m擷取複數個頻域特徵。根據經前處理數據S21、S22…S2m在步驟107所產生之時域特徵及步驟109所產生之頻域特徵可合稱為為複數個特徵S31、S32…S3k。根據即時經前處理數據RS21、RS22…RS2m在步驟107所產生之時域特徵及步驟109所產生之頻域特徵可合稱為複數個即時特徵RS31、RS32…RS3k。
在步驟111中,分析模組13將複數個特徵S31、S32…S3k或複數個即時特徵RS31、RS32…RS3k標準化。
在步驟113中,分析模組13針對經標準化之複數個特徵S31、S32…S3k進行主成分分析而產生至少一個主成分特徵PCA1、PCA2…PCAj。在步驟113中,分析模組13針對經標準化之複數個即時特徵RS31、RS32…RS3k進行主成分分析而產生至少一個即時主成分特徵RPCA1、RPCA2…RPCAj。主成分分析可以將複數個特徵S31、S32…S3k或即時特徵RS31、RS32…RS3k降維至有限維度。
在步驟115中,訓練模組14根據至少一個主成分特徵PCA1、PCA2…PCAj產生訓練模組,其包含決策邊界DB1。在某些實施例中,訓練模組14將至少一個主成分特徵PCA1、PCA2…PCAj輸入一類支持向量機以決定決策邊界DB1。
在步驟117中,決策模組15判定至少一個即時主成分特徵RPCA1是否落在決策邊界DB1之外。在步驟119中,當決策模組15判定落在決策邊界DB1之外時,決策模組15輸出表示設備異常之第一訊號OS1。另一方面,在步驟119中,當決策模組15判定至少一個即時主成分特徵RPCA1、RPCA2…RPCAj落在決策邊界DB1之內時,決策模組15輸出表示設備正常之第二訊號OS2。
在某些實施例中,在步驟117中,決策模組15判定複數個即時主成分特徵RPCA1、RPCA2…RPCAj之間的多個交集是否落在決策邊界DB1之外。在步驟119中,當落在決策邊界DB1之外之交集之數量超過一臨限值時,決策模組15輸出第一訊號OS1。另一方面,在步驟119中,當落在決策邊界DB1之外之交集之數量小於一臨限值時,決策模組15輸出第二訊號OS2。
參照圖4,圖4所示為根據本案之某些實施例之監測設備之方法200之示意圖。方法200與圖3之方法100相似,其不同在於方法200進一步包含步驟121。圖4所示之步驟101至步驟121可以在圖2中所示的系統2中進行。
在步驟121中,標籤模組16可以經組態以經由監督式學習產生至少一個標籤L1、L2…Ln。因此,在步驟119,訓練模組14進一步基於至少一個標籤L1、L2…Ln修改決策邊界DB1。
參照圖5A及圖5B,圖5A及5B所示為根據本案之某些實施例之決策邊界DB1之示意圖。決策邊界DB1係可經由將訓練數據(例如:至少一個主成分特徵PCA1、PCA2…PCAj)輸入一類支持向量機而決定。決策邊界DB1包含第一層級(level)LV1、第二層級LV2…第p層LVp,其中p為正整數。第一層級LV1所界定之區域小於第二層級LV2所界定之區域。依此類推,第p-1層級LVp-1所界定之區域小於第p層級LVp所界定之區域。可以根據所監測設備之工作表現或特性決定使用決策邊界DB1第一層級LV1、第二層級LV2…第p層LVp中之一者。層級越高則設備異常的容忍度越高,較不易受到誤警的影響。另一方面,層級越低則設備異常的容忍度越低,可使設備工作品質穩定。
如圖5A所示,點A1可表示即時數據(例如:至少一個即時主成分特徵RPCA1、RPCA2…RPCAj)投影至主成分二維平面(例如:x軸為PCA1、y軸為PCA2)的座標點。點A1落在決策邊界DB1之內,因此點A1表示設備工作正常,系統1將輸出表示設備正常之第二訊號OS2。在某些實施例中,落在決策邊界DB1之外之交集之數量小於一臨限值時(例如:臨限值為1,而圖5A並未存在落在決策邊界DB1之外之交集),系統1將輸出表示設備正常之第二訊號OS2。
如圖5B所示,點B1、B2可表示即時數據(例如:至少一個即時主成分特徵RPCA1、RPCA2…RPCAj)投影至主成分二維平面(例如:x軸為PCA1、y軸為PCA2)。點B1落在決策邊界DB1之內,因此點B1表示設備工作正常。點B2落在決策邊界DB1之外(例如第一層級LV1、第二層級LV2之外),因此點B2表示設備工作異常,系統1將輸出表示設備異常之第一訊號OS1。在某些實施例中,落在決策邊界DB1之外之交集之數量大於一臨限值時(例如:臨限值為1、2…N,而圖5B落在決策邊界DB1之外之交集大於此臨限值),系統1將輸出表示設備異常之第一訊號OS1。系統1可以將第一訊號OS1輸出至中央系統,中央系統可通知值班人員根據此第一訊號OS1進行設備之檢查流程,可即時地處理工作異常的設備進而提升產能及其工作表現。
將瞭解,本文討論之方法及裝置之實施例在應用中不限於在下列描述中提出或在隨附圖式中繪示之組件之構造及配置之細節。方法及裝置能夠實現於其他實施例中且可以各種方式實踐或執行。特定實施方案之實例在本文中僅用於繪示之目的而提供且不意在限制。特定言之,結合任何一或多項實施例討論之動作、元件及特徵不意在從任何其他實施例中之一類似角色排除。
而且,在本文中使用之措辭及術語出於描述之目的且不應視為限制。對以單數形式指涉之本文之系統及方法之實施例或元件或動作之任何參考亦可包括包含複數個此等元件之實施例,且以複數形式對本文之任何實施例或元件或動作之任何參考亦可包括僅包含一單一元件之實施例。單數形式或複數形式之參考不意在限制當前所揭示之系統或方法、其等組件、動作或元件。本文中「包含」、「包括」、「具有」、「含有」、「涉及」及其等之變形之使用意欲涵蓋在其後列出之項目及其等之等效物以及額外項目。對「或」之參考可視為包含性的使得使用「或」之任何項可指示所描述之項之一單一、一個以上及所有之任一者。對前部及後部、左側及右側、頂部及底部、上部及下部及垂直及水平之任何參考意在為方便描述,而不將本系統及方法或其等組件限於任何一個位置或空間定向。
因此,在已描述至少一項實施例之若干態樣之情況下,應瞭解,熟習此項技術者容易想到各種更改、修改及改良。此等更改、修改及改良意在係本發明之部分且意在處於本發明之範疇內。因此,以上描述及圖式僅係藉由實例,且應從隨附申請專利範圍及其等之等效物之正確建構來判定本發明之範疇。
1:系統
2:系統
11:擷取模組
12:特徵模組
13:分析模組
14:訓練模組
15:決策模組
16:標籤模組
100:方法
101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121:步驟
200:方法
A1:點
B1, B2:點
DB1:決策邊界
L1, L2…Li:標籤
LV1:第一層級
LV2:第二層級
LVp:第p層級
OS1:第一訊號
OS2:第二訊號
PCA1, PCA2…PCAj:主成分特徵
RS11, RS12…RS1n:即時數據
RS21, RS22…RS2m:即時經處理數據
RS31, RS32…RS3k:即時特徵
RPCA1, RPCA2…RPCAj:即時主成分特徵
S11, S12…S1n:數據
S21, S22…S2m:經處理數據
S31, S32…S3k:特徵
在下文中參考隨附圖式討論至少一項實施例之各種態樣,該等圖式並不意在按比例繪製。在圖、實施方式或任何請求項中之技術特徵伴隨元件符號之處,已出於增大圖、實施方式或申請專利範圍中之可理解性之唯一目的而包含該等元件符號。因此,元件符號之存在與否皆不意在具有對任何申請專利範圍元素之範疇之限制效應。在圖中,在各種圖中繪示之各相同或幾乎相同之組件藉由一相同數字表示。為清晰起見,並非每一組件皆在每一圖中標記。該等圖出於繪示及解釋之目的提供且不視為本發明之限制之一定義。在圖中:
圖1所示為根據本案之某些實施例之監測設備之一系統之示意圖。
圖2所示為根據本案之某些實施例之監測設備之一系統之示意圖。
圖3所示為根據本案之某些實施例之監測設備之一方法之示意圖。
圖4所示為根據本案之某些實施例之監測設備之一方法之示意圖。
圖5A及5B所示為根據本案之某些實施例之決策邊界之示意圖。
1:系統
11:擷取模組
12:特徵模組
13:分析模組
14:訓練模組
15:決策模組
DB1:決策邊界
OS1:第一訊號
OS2:第二訊號
PCA1, PCA2…PCAj:主成分特徵
RS11, RS12…RS1n:即時數據
RS21, RS22…RS2m:即時經處理數據
RS31, RS32…RS3k:即時特徵
RPCA1, RPCA2…RPCAj:即時主成分特徵
S11, S12…S1n:數據
S21, S22…S2m:經處理數據
S31, S32…S3k:特徵
Claims (36)
- 一種監測一設備之系統(1),其包含:一分析模組(13),其經組態以基於複數個特徵之至少一者(S31、S32…S3k)產生至少一個主成分特徵(PCA1、PCA2…PCAKj);及一訓練模組(14),其經組態以經由非監督式學習根據該至少一個主成分特徵決定一決策邊界(DB1),其中該分析模組與該訓練模組彼此連接。
- 如請求項1之系統,其進一步包含:一擷取模組(11),其經組態以擷取該設備之一訓練數據(S11、S12…S1n),其中該訓練數據(S11、S12…S1n)與該設備之振動相關聯;及一特徵模組(12),其經組態以自該訓練數據擷取該複數個特徵,其中該擷取模組與該特徵模組彼此連接且其中該特徵模組與該分析模組彼此連接。
- 如請求項2之系統,其中該特徵模組進一步經組態以擷取該訓練數據之一時域特徵及一頻域特徵。
- 如請求項2之系統,其中該擷取模組經組態以一預定周期取樣該訓練數據中之複數個子集且經組態以針對該複數個子集進行移動式平均產生一經前處理數據(S21,S22...S2m),其中該複數個子集之數量為m且該複數個經前處理數據為n,其中m為正整數且n大於或等於m,其中n為m的倍數。
- 如請求項1之系統,其中該複數個特徵包含以下之一或多者:加速度、速度均方根、位移峰至峰、峰值因素、峰值、峰度、偏度、尖峰頻率或尖峰頻率幅值。
- 如請求項1之系統,其中該訓練模組(14)將該至少一個主成分特徵輸入一類支持向量機(one class support vector machine)以決定該決策邊界(DB1),其中該決策邊界(DB1)包含多個層級(LV1,LV2...LVp),其中該訓練模組經組態以基於該設備之工作表現或特性決定使用該決策邊界(DB1)之該等層級中之一者。
- 如請求項1之系統,其中該決策邊界(DB1)包含一第一層級(level)(LV1)及一第二層級(LV2/LVn),其中該第一層級所界定之區域小於該第二層級所界定之區域。
- 如請求項1之系統,其中該分析模組(13)進一步經組態以將該複數個特徵(S31、S32…S3k)標準化及針對經標準化之該複數個特徵進行主成分分析(Principal Component Analysis,PCA)而產生該至少一個主成分特徵(PCA1、PCA2...PCAj)。
- 如請求項1之系統,其中該至少一個主成分特徵之數量少於該複數個特徵之數量。
- 如請求項1之系統,其中該至少一個主成分特徵中之一者係該複數個特徵之一組合。
- 如請求項1之系統,其進一步包括一標籤模組(16)中,經組態以經由監督式學習產生至少一個標籤(L1、L2…Ln)並傳送至該訓練模組(14),其中該訓練模組(14)經組態以基於該至少一個標籤(L1、L2…Ln)修改該決策邊界(DB1)。
- 如請求項1之系統,其進一步包含:一擷取模組,其經組態以擷取該設備之一即時數據(RS11),其中該擷取模組經實體地附著於該設備上;及一特徵模組,其經組態以自該即時數據(RS11)擷取複數個即時特徵(RS21、RS22…RS2m),其中該分析模組經組態以基於該複數個即時特徵之至少一者產生至少一個即時主成分特徵(RPCA1、RPCA2…RPCAj),其中該擷取模組與該特徵模組彼此連接且其中該特徵模組與該分析模組彼此連接。
- 如請求項12之系統,其進一步包含:一決策模組(15),其經組態以判定該至少一個即時主成分特徵(RPCA1)是否落在該決策邊界(DB1)之外,其中該決策邊界(DB1)包含一第一層級(level)(LV1)及一第二層級(LV2/LVn),其中該第一層級所界定之區域小於該第二層級所界定之區域,其中該決策模組經組態以判定該至少一個即時主成分特徵(RPCA1)是 否落在該第一層級所界定之區域之外,其中該分析模組與該決策模組彼此連接。
- 如請求項13之系統,其中當該決策模組(15)判定落在該決策邊界(DB1)之外時,該決策模組(15)輸出表示該設備異常之一第一訊號(OS1);且當該決策模組判定該至少一個即時主成分特徵(RPCA1)落在該決策邊界(DB1)之內時,該決策模組(15)輸出表示該設備正常之一第二訊號(OS2)。
- 如請求項14之系統,其中該分析模組經組態以基於該複數個即時特徵產生複數個即時主成分特徵;該決策模組經組態以判定該複數個即時主成分特徵之間的多個交集是否落在該決策邊界(DB1)之外。
- 如請求項15之系統,其中當落在該決策邊界之外之該等交集之數量超過一臨限值時,該決策模組輸出該第一訊號;且當落在該決策邊界之外之該等交集之數量小於該臨限值時,該決策模組輸出該第二訊號。
- 如請求項1之系統,其經組態以監測該設備之振動。
- 如請求項17之系統,其中該設備之該振動包含至少一個旋轉機械之振動。
- 一種監測一設備之方法(100),其包含:基於複數個特徵之至少一者產生至少一個主成分特徵(113);及經由非監督式學習根據該至少一個主成分特徵決定一決策邊界(117)。
- 如請求項19之方法,其進一步包含:擷取該設備之一訓練數據(101),其中該訓練數據(S11、S12...S1n)與該設備之振動相關聯;及自該訓練數據擷取該複數個特徵(107/109)。
- 如請求項20之方法,其進一步包含:擷取該訓練數據之一時域特徵及一頻域特徵。
- 如請求項20之方法,其進一步包含:以一預定周期取樣該訓練數據中之複數個子集(105);及針對該複數個子集進行移動式平均產生一經前處理數據(105),其中該複數個子集之數量為m且該複數個經前處理數據為n,其中m為正整數且n大於或等於m,其中n為m的倍數。
- 如請求項19之方法,其中該複數個特徵包含以下之一或多者:加速度、速度均方根、位移峰至峰、峰值因素、峰值、峰度、偏度、尖峰頻率或尖峰頻率幅值。
- 如請求項19之方法,其進一步包含:將該至少一個主成分特徵輸入一類支持向量機以決定該決策邊界(115),其中該決策邊界(DB1)包含多個層級(LV1,LV2...LVp);及基於該設備之工作表現或特性決定使用該決策邊界(DB1)之該等層級中之一者。
- 如請求項19之方法,其中該決策邊界包含一第一層級及一第二層級,其中該第一層級所界定之範圍小於該第二層級所界定之範圍。
- 如請求項19之方法,其進一步包含:將該複數個特徵標準化(111);及針對經標準化之該複數個特徵進行主成分分析而產生該至少一個主成分特徵(113)。
- 如請求項19之方法,其中該至少一個主成分特徵之數量少於該複數個特徵之數量。
- 如請求項19之方法,其中該至少一個主成分特徵中之一者係該複數個特徵之一組合。
- 如請求項19之方法,其進一步包含:經由監督式學習產生至少一個標籤(121);及基於該至少一個標籤修改該決策邊界(117)。
- 如請求項19之方法,其進一步包含:藉由經實體地附著於該設備上之一擷取模組擷取該設備之一即時數據(103);及自該即時數據擷取複數個即時特徵(107/109);及基於該複數個即時特徵之至少一者產生至少一個即時主成分特徵(113)。
- 如請求項30之方法,其進一步包含:判定該至少一個即時主成分特徵是否落在該決策邊界之外(117),其中該決策邊界(DB1)包含一第一層級(level)(LV1)及一第二層級(LV2/LVn),其中該第一層級所界定之區域小於該第二層級所界定之區域;及判定該至少一個即時主成分特徵(RPCA1)是否落在該第一層級所界定之區域之外。
- 如請求項31之方法,其進一步包含:當判定該至少一個即時主成分特徵落在該決策邊界之外時輸出表示該設備異常之一第一訊號(119);及 當判定該至少一個即時主成分特徵落在該決策邊界之內時輸出表示該設備正常之一第二訊號(119)。
- 如請求項32之方法,其進一步包含:基於該複數個即時特徵產生複數個即時主成分特徵;判定該複數個即時主成分特徵之間的多個交集是否落在該決策邊界之外。
- 如請求項33之方法,其中當落在該決策邊界之外之該等交集之數量超過一臨限值時輸出該第一訊號;且當落在該決策邊界之外之該等交集之數量小於該臨限值時輸出該第二訊號。
- 如請求項19之方法,其用以監測該設備之振動。
- 如請求項35之方法,其中該設備之該振動包含至少一個旋轉機械之振動。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109145181A TWI773034B (zh) | 2020-12-18 | 2020-12-18 | 監測設備之系統及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109145181A TWI773034B (zh) | 2020-12-18 | 2020-12-18 | 監測設備之系統及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202226006A TW202226006A (zh) | 2022-07-01 |
TWI773034B true TWI773034B (zh) | 2022-08-01 |
Family
ID=83437054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109145181A TWI773034B (zh) | 2020-12-18 | 2020-12-18 | 監測設備之系統及方法 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI773034B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190155269A1 (en) * | 2017-11-17 | 2019-05-23 | Institute For Information Industry | Monitoring system and monitoring method |
TW201928285A (zh) * | 2017-09-06 | 2019-07-16 | 美商蘭姆研究公司 | 用以結合光學量測與質量量測之系統及方法 |
TW202034051A (zh) * | 2018-08-15 | 2020-09-16 | 美商唯景公司 | 使用外部3d模型化及神經網路之控方法及系統 |
TW202044180A (zh) * | 2019-05-24 | 2020-12-01 | 國立臺北科技大學 | 沖壓模具壽命管理系統 |
-
2020
- 2020-12-18 TW TW109145181A patent/TWI773034B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201928285A (zh) * | 2017-09-06 | 2019-07-16 | 美商蘭姆研究公司 | 用以結合光學量測與質量量測之系統及方法 |
US20190155269A1 (en) * | 2017-11-17 | 2019-05-23 | Institute For Information Industry | Monitoring system and monitoring method |
TW202034051A (zh) * | 2018-08-15 | 2020-09-16 | 美商唯景公司 | 使用外部3d模型化及神經網路之控方法及系統 |
TW202044180A (zh) * | 2019-05-24 | 2020-12-01 | 國立臺北科技大學 | 沖壓模具壽命管理系統 |
Also Published As
Publication number | Publication date |
---|---|
TW202226006A (zh) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109397703B (zh) | 一种故障检测方法及装置 | |
US20150346066A1 (en) | Asset Condition Monitoring | |
US20190050747A1 (en) | Analysis apparatus, analysis method, and analysis program | |
US6802221B2 (en) | System and method for conditioned-based monitoring of a bearing assembly | |
JP6200833B2 (ja) | プラントと制御装置の診断装置 | |
US10796796B2 (en) | Fault diagnosis apparatus, fault diagnosis method, and fault diagnosis program | |
US10607470B2 (en) | Vibrational analysis systems and methods | |
CN114004306A (zh) | 一种基于物联网多维度数据的设备故障评估系统及其方法 | |
KR102265298B1 (ko) | 머신러닝에 의해 생성된 가상 데이터를 이용한 고장 진단 방법 및 장치 | |
EP3465509A1 (en) | Classification of log data | |
US20080147356A1 (en) | Apparatus and Method for Sensing Inappropriate Operational Behavior by Way of an Array of Acoustical Sensors | |
Szkilnyk et al. | Vision based fault detection of automated assembly equipment | |
CN117932322B (zh) | 一种面粉设备故障诊断方法及系统 | |
US20210310679A1 (en) | Abnormality cause estimation device, abnormality cause estimation method, and medium | |
JP2022160658A (ja) | 測定端末、測定システム、測定方法およびプログラム | |
TWI773034B (zh) | 監測設備之系統及方法 | |
KR20210006832A (ko) | 기계고장 진단 방법 및 장치 | |
US11079400B2 (en) | Monitoring a product build process via a smart tray | |
WO2020162425A1 (ja) | 解析装置、解析方法、およびプログラム | |
CN113110965A (zh) | 异常信息的监控方法及装置、计算机存储介质、终端 | |
CN109990803A (zh) | 检测系统异常的方法、装置及传感器处理的方法、装置 | |
CN109145609B (zh) | 一种数据处理方法和装置 | |
JP6781957B2 (ja) | 通知装置、通知方法、及びそのプログラム | |
CN110057588A (zh) | 基于奇异值与图论特征融合的轴承早期故障检测与诊断方法及系统 | |
CN107765123A (zh) | 检测规则更新方法及用电安全监测系统 |