TWI772240B - Mixed-voltage output buffer - Google Patents

Mixed-voltage output buffer Download PDF

Info

Publication number
TWI772240B
TWI772240B TW110149747A TW110149747A TWI772240B TW I772240 B TWI772240 B TW I772240B TW 110149747 A TW110149747 A TW 110149747A TW 110149747 A TW110149747 A TW 110149747A TW I772240 B TWI772240 B TW I772240B
Authority
TW
Taiwan
Prior art keywords
voltage
signal
transistor
circuit
type
Prior art date
Application number
TW110149747A
Other languages
Chinese (zh)
Other versions
TW202326728A (en
Inventor
王朝欽
凱霖 童
李宗哲
蘇文健
Original Assignee
國立中山大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學 filed Critical 國立中山大學
Priority to TW110149747A priority Critical patent/TWI772240B/en
Application granted granted Critical
Publication of TWI772240B publication Critical patent/TWI772240B/en
Publication of TW202326728A publication Critical patent/TW202326728A/en

Links

Images

Landscapes

  • Logic Circuits (AREA)
  • Amplifiers (AREA)

Abstract

A mixed-voltage output buffer includes a VDDIO voltage detector, a voltage-level converter, a non-overlap circuit, a process detector, an output stage, a voltage slew rate feedback circuit, and a digital logic circuit. The voltage slew rate feedback circuit detects the voltage slew rate of an output voltage of the output stage and controls the compensation control signal output by the digital logic circuit so that the voltage slew rate of the output voltage of the output stage can meet the requirements.

Description

多重電壓輸出緩衝器Multiple Voltage Output Buffers

本發明是關於一種輸出緩衝器,特別是關於一種多重電壓輸出緩衝器。The present invention relates to an output buffer, particularly to a multiple voltage output buffer.

輸出緩衝器是用以在兩個不同電壓位準的電路之間進行訊號傳遞,使輸入緩衝器的內部電路可能會接收到不同電壓位準之電壓,而須透過電路設計來避內部免電路過壓。此外,不同規格下之輸出緩衝器輸出之訊號的相關參數有所規定,例如記憶體的主流規格DDR4就對輸出訊號的迴轉率及責任週期有著限制,因此,為使輸出緩衝器能夠適用於DDR4之規格,必須在電路中設置電壓迴轉率、責任週期及系統電壓控制之相關電路。The output buffer is used to transmit signals between two circuits with different voltage levels, so that the internal circuit of the input buffer may receive voltages of different voltage levels. pressure. In addition, the relevant parameters of the signal output by the output buffer under different specifications are specified. For example, DDR4, the mainstream specification of memory, has restrictions on the slew rate and duty cycle of the output signal. Therefore, in order to make the output buffer suitable for DDR4 Specifications, the voltage slew rate, duty cycle and related circuits for system voltage control must be set in the circuit.

本發明的主要目的在於提供一種能夠符合DDR4規格之多重電壓輸出緩衝器。The main purpose of the present invention is to provide a multiple voltage output buffer that can meet the DDR4 specification.

本發明之一種多重電壓輸出緩衝器,其包含一外部電壓偵測器、一電壓位準轉換器、一非交疊電路、一製程飄移偵測器、一輸出級、一電壓迴轉率迴授電路及一數位邏輯電路,該外部電壓偵測器接收一電源電壓及一外部電壓,該外部電壓偵測器用以偵測該電源電壓與該外部電壓的電壓大小並輸出一偵測電壓,該電壓位準轉換器電性連接該外部電壓偵測器,該電壓位準轉換器接收該偵測電壓及一資料訊號,該電壓位準轉換器根據偵測電壓轉換該資料訊號的電壓位準為一高位準資料訊號及一低位準資料訊號,該非交疊電路電性連接該電壓位準轉換器以接收該高位準資料訊號及該低位準資料訊號,該非交疊電路用以將該高位準資料訊號及該低位準資料訊號轉換為非交疊的一第一非交疊訊號及一第二非交疊訊號,該製程飄移偵測器接收一時脈訊號及複數個參考訊號,該製程飄移偵測器根據該時脈訊號及該些參考訊號輸出一P型製程偵測訊號及一N型製程偵測訊號,該輸出級電性連接該外部電壓偵測器以接收該偵測電壓,且該輸出級輸出一輸出電壓,該電壓迴轉率迴授電路電性連接該輸出級以接收該輸出電壓,該電壓迴轉率迴授電路並接收一第一迴轉率參考電壓及一第二迴轉率參考電壓,該電壓迴轉率迴授電路依據該第一迴轉率參考電壓及該第二迴轉率參考電壓判斷該輸出電壓的迴轉率大小並輸出一迴轉率控制訊號,該數位邏輯電路電性連接該非交疊電路、該製程飄移偵測器、該電壓迴轉率迴授電路及該輸出級,該數位邏輯電路接收該第一非交疊訊號、該第二非交疊訊號、該P型製程偵測訊號、該N型製程偵測訊號及該迴轉率控制訊號,該數位邏輯電路輸出複數個補償控制訊號至該輸出級,以控制該輸出電壓的電壓迴轉率。A multiple voltage output buffer of the present invention includes an external voltage detector, a voltage level converter, a non-overlapping circuit, a process drift detector, an output stage, and a voltage slew rate feedback circuit and a digital logic circuit, the external voltage detector receives a power supply voltage and an external voltage, the external voltage detector is used to detect the voltage level of the power supply voltage and the external voltage and output a detection voltage, the voltage level The quasi converter is electrically connected to the external voltage detector, the voltage level converter receives the detection voltage and a data signal, and the voltage level converter converts the voltage level of the data signal to a high level according to the detection voltage high-level data signal and a low-level data signal, the non-overlapping circuit is electrically connected to the voltage level converter to receive the high-level data signal and the low-level data signal, the non-overlapping circuit is used for the high-level data signal and the low-level data signal The low-level data signal is converted into a non-overlapping first non-overlapping signal and a second non-overlapping signal, the process drift detector receives a clock signal and a plurality of reference signals, and the process drift detector is based on The clock signal and the reference signals output a P-type process detection signal and an N-type process detection signal, the output stage is electrically connected to the external voltage detector to receive the detection voltage, and the output stage outputs an output voltage, the voltage slew rate feedback circuit is electrically connected to the output stage to receive the output voltage, the voltage slew rate feedback circuit receives a first slew rate reference voltage and a second slew rate reference voltage, the voltage The slew rate feedback circuit judges the slew rate of the output voltage according to the first slew rate reference voltage and the second slew rate reference voltage and outputs a slew rate control signal, the digital logic circuit is electrically connected to the non-overlapping circuit, the Process drift detector, the voltage slew rate feedback circuit and the output stage, the digital logic circuit receives the first non-overlapping signal, the second non-overlapping signal, the P-type process detection signal, the N-type For the process detection signal and the slew rate control signal, the digital logic circuit outputs a plurality of compensation control signals to the output stage to control the voltage slew rate of the output voltage.

本發明藉由該電壓迴轉率回授電路對於該輸出電壓的電壓迴轉率進行偵測,而可得知該輸出電壓的電壓迴轉率是否符合規定並輸出該迴轉率控制訊號至該數位邏輯電路,以調整該數位邏輯電路輸出之該補償控制訊號,讓該輸出級輸出之該輸出電壓的電壓迴轉率能夠符合規定。The present invention uses the voltage slew rate feedback circuit to detect the voltage slew rate of the output voltage, so as to know whether the voltage slew rate of the output voltage meets the requirements and output the slew rate control signal to the digital logic circuit, The compensation control signal output by the digital logic circuit is adjusted so that the voltage slew rate of the output voltage output by the output stage can meet the requirements.

請參閱第1圖,其為本發明之一實施例,一種多重電壓輸出緩衝器100的電路圖,該多重電壓輸出緩衝器100包含一外部電壓偵測器110、一電壓位準轉換器120、一非交疊電路130、一責任週期校正器140、一製程飄移偵測器150、一輸出級160、一電壓迴轉率迴授電路170、一數位邏輯電路180及一浮動N型井190。Please refer to FIG. 1 , which is a circuit diagram of a multiple voltage output buffer 100 according to an embodiment of the present invention. The multiple voltage output buffer 100 includes an external voltage detector 110 , a voltage level converter 120 , a Non-overlapping circuit 130 , a duty cycle corrector 140 , a process drift detector 150 , an output stage 160 , a voltage slew rate feedback circuit 170 , a digital logic circuit 180 and a floating N-well 190 .

請參閱第1圖,該外部電壓偵測器110接收一電源電壓VDD及一外部電壓VDDIO,該外部電壓偵測器110用以偵測該電源電壓VDD與該外部電壓VDDIO的電壓大小並輸出一偵測電壓V D。請參閱第2圖,為本實施例之該外部電壓偵測器110的電路圖,該外部電壓偵測器110具有一第一P型開關電晶體M P21、一第二P型開關電晶體M P24、一負載組111及一電晶體對112。該第一P型開關電晶體M P21接收該電源電壓VDD及該外部電壓VDDIO,且該第一P型開關電晶體M P21輸出一控制電壓V ctr,該第二P型開關電晶體M P24電性連接該第一P型開關電晶體M P21,且該第二P型開關電晶體M P24接收該電源電壓VDD及該控制電壓V ctr。該負載組111電性連接該第一P型開關電晶體M P21以接收該控制電壓V ctr,該負載組111具有兩個P型電晶體M P22、M P23及3個N型電晶體M N21、M N22、M N23,且該負載組111輸出該偵測電壓V D。該電晶體對112具有一第一N型電晶體M N24及一第二N型電晶體M N25,該第一N型電晶體M N24及該第二N型電晶體M N25電性連接該負載組111及該第二P型開關電晶體M P24Please refer to FIG. 1, the external voltage detector 110 receives a power supply voltage VDD and an external voltage VDDIO, the external voltage detector 110 is used for detecting the voltage levels of the power supply voltage VDD and the external voltage VDDIO and outputs a Detection voltage V D . Please refer to FIG. 2 , which is a circuit diagram of the external voltage detector 110 of this embodiment. The external voltage detector 110 has a first P-type switching transistor M P21 and a second P-type switching transistor M P24 , a load group 111 and a transistor pair 112 . The first P-type switching transistor MP21 receives the power supply voltage VDD and the external voltage VDDIO, and the first P-type switching transistor MP21 outputs a control voltage Vctr , and the second P-type switching transistor MP24 is electrically The first P-type switching transistor MP21 is electrically connected, and the second P-type switching transistor MP24 receives the power supply voltage VDD and the control voltage Vctr . The load group 111 is electrically connected to the first P-type switching transistor MP21 to receive the control voltage V ctr , and the load group 111 has two P-type transistors M P22 , M P23 and three N-type transistors M N21 , MN22 , MN23 , and the load group 111 outputs the detection voltage V D . The transistor pair 112 has a first N-type transistor MN24 and a second N-type transistor MN25 , the first N-type transistor MN24 and the second N-type transistor MN25 are electrically connected to the load The group 111 and the second P-type switching transistor M P24 .

請再參閱第2圖,當該外部電壓VDDIO的電位為該電源電壓VDD之電位的1.5倍時,該第一P型開關電晶體M P21導通,使該第二P型開關電晶體M P24截止,該負載組111的電壓上升,令該電晶體對112之該第二N型電晶體M N25導通,節點V2電位降至低電位,使得該電晶體對112之該第一N型電晶體M N24截止,此時,經由該負載組111的分壓,該第一P型開關電晶體M P21輸出之該控制電壓V ctr的電位與該電源電壓VDD的電位相同,該負載組111輸出之該偵測電壓V D的電位為該電源電壓VDD之電位的0.5倍。 Please refer to FIG. 2 again, when the potential of the external voltage VDDIO is 1.5 times the potential of the power supply voltage VDD, the first P-type switching transistor MP21 is turned on, and the second P-type switching transistor MP24 is turned off , the voltage of the load group 111 rises, so that the second N-type transistor M N25 of the transistor pair 112 is turned on, and the potential of the node V2 drops to a low potential, so that the first N-type transistor M of the transistor pair 112 is turned on. N24 is turned off, at this time, through the voltage division of the load group 111, the potential of the control voltage V ctr output by the first P-type switching transistor MP21 is the same as the potential of the power supply voltage VDD, and the voltage output by the load group 111 The potential of the detection voltage V D is 0.5 times the potential of the power supply voltage VDD.

相反的,當該外部電壓VDDIO的電位與該電源電壓VDD之電位相同時,該第一P型開關電晶體M P21截止,使該第二P型開關電晶體M P24導通,節點V2的電位提高,該電晶體對112之該第一N型電晶體M N24導通,節點V1的電位降至低電位,該電晶體對112之該第二N型電晶體M N25截止。此時,該負載組111經由該第一N型電晶體M N24接地,使得該控制電壓V ctr及該偵測電壓V D的電位皆為低電位。 On the contrary, when the potential of the external voltage VDDIO is the same as the potential of the power supply voltage VDD, the first P-type switching transistor MP21 is turned off, the second P-type switching transistor MP24 is turned on, and the potential of the node V2 is increased , the first N-type transistor MN24 of the transistor pair 112 is turned on, the potential of the node V1 drops to a low potential, and the second N-type transistor MN25 of the transistor pair 112 is turned off. At this time, the load group 111 is grounded via the first N-type transistor MN24 , so that the control voltage V ctr and the detection voltage V D are both low potentials.

請參閱第1圖,該電壓位準轉換器120電性連接該外部電壓偵測器110,該電壓位準轉換器120接收該偵測電壓V D、該控制電壓V ctr及一資料訊號Data,該電壓位準轉換器120根據偵測電壓V D及該控制電壓V ctr轉換該資料訊號的電壓位準為一高位準資料訊號DP1及一低位準資料訊號DN1。在本實施例中,當該外部電壓VDDIO的電位為該電源電壓VDD之電位時,該電壓位準轉換器120將該資料訊號Data的低電位及高電位轉換為該高位準資料訊號DP1及該低位準資料訊號DN1的電位皆為0及該電源電壓VDD。當該外部電壓VDDIO的電位為該電源電壓VDD之電位的1.5倍時,該電壓位準轉換器120將該資料訊號Data的低電位及高電位轉換為該高位準資料訊號DP1的電位分別為該電源電壓VDD及該外部電壓VDDIO,該電壓位準轉換器120將該資料訊號Data的低電位及高電位轉換為該低位準資料訊號DN1的電位則分別為0及該電源電壓VDD。 Please refer to FIG. 1, the voltage level converter 120 is electrically connected to the external voltage detector 110, the voltage level converter 120 receives the detection voltage V D , the control voltage V ctr and a data signal Data, The voltage level converter 120 converts the voltage level of the data signal into a high-level data signal DP1 and a low-level data signal DN1 according to the detection voltage V D and the control voltage V ctr . In this embodiment, when the potential of the external voltage VDDIO is the potential of the power supply voltage VDD, the voltage level converter 120 converts the low level and the high level of the data signal Data into the high level data signal DP1 and the high level data signal DP1 and the The potentials of the low-level data signal DN1 are both 0 and the power supply voltage VDD. When the potential of the external voltage VDDIO is 1.5 times the potential of the power supply voltage VDD, the voltage level converter 120 converts the low potential and the high potential of the data signal Data into the potentials of the high level data signal DP1 which are respectively the For the power voltage VDD and the external voltage VDDIO, the voltage level converter 120 converts the low level and the high level of the data signal Data into the low level data signal DN1. The levels are 0 and the power supply voltage VDD, respectively.

本實施例為了避免該輸出級160之該些電晶體在轉態時發生短路而過壓,藉由該非交疊電路130將兩路控制訊號的切換時間錯開,在本實施例中,該非交疊電路130電性連接該電壓位準轉換器120以接收該高位準資料訊號DP1及該低位準資料訊號DN1,該非交疊電路130用以將該高位準資料訊號DP1及該低位準資料訊號DN1轉換為非交疊的一第一非交疊訊號DP2及一第二非交疊訊號DN2。其中,由於該高位準資料訊號DP1及該低位準資料訊號DN1的電壓位準可能不同,因此,該非交疊電路130具有一高位準非交疊電路131及一低位準非交疊電路132,以分別對該高位準資料訊號DP1及該低位準資料訊號DN1進行處理。In this embodiment, in order to prevent the transistors of the output stage 160 from being short-circuited and overvoltage during the transition state, the switching time of the two control signals is staggered by the non-overlapping circuit 130. In this embodiment, the non-overlapping circuit 130 The circuit 130 is electrically connected to the voltage level converter 120 to receive the high level data signal DP1 and the low level data signal DN1, and the non-overlapping circuit 130 is used for converting the high level data signal DP1 and the low level data signal DN1 are a non-overlapping first non-overlapping signal DP2 and a second non-overlapping signal DN2. Wherein, since the voltage levels of the high-level data signal DP1 and the low-level data signal DN1 may be different, the non-overlapping circuit 130 has a high-level non-overlapping circuit 131 and a low-level non-overlapping circuit 132 to The high-level data signal DP1 and the low-level data signal DN1 are processed respectively.

請參閱第1圖,該責任週期校正器140電性連接該非交疊電路130以接收該第一非交疊訊號DP2及該第二非交疊訊號DN2,該責任週期校正器140用以校正該第一非交疊訊號DP2及該第二非交疊訊號DN2的責任週期。由於該第一非交疊訊號DP2及該第二非交疊訊號DN2的電壓位準可能不相同,因此,在本實施例中,該責任週期校正器140具有一高位準責任週期校正電路141及一低位準責任週期校正電路142,該高位準責任週期校正電路141電性連接該高位準非交疊電路131以接收該第一非交疊訊號DP2,該高位準責任週期校正電路141用以校正該第一非交疊訊號DP2的責任週期而輸出一第一責任週期校正訊號DP3,該低位準責任週期校正電路142電性連接該低位準非交疊電路132以接收該第二非交疊訊號DN2,該低位準責任週期校正電路142用以校正該第二非交疊訊號DN2的責任週期而輸出一第二責任週期校正訊號DN3。Please refer to FIG. 1, the duty cycle corrector 140 is electrically connected to the non-overlapping circuit 130 to receive the first non-overlapping signal DP2 and the second non-overlapping signal DN2, and the duty cycle corrector 140 is used for correcting the The duty cycle of the first non-overlapping signal DP2 and the second non-overlapping signal DN2. Since the voltage levels of the first non-overlapping signal DP2 and the second non-overlapping signal DN2 may be different, in this embodiment, the duty cycle corrector 140 has a high-level duty cycle correction circuit 141 and A low-level duty cycle correction circuit 142, the high-level duty cycle correction circuit 141 is electrically connected to the high-level non-overlapping circuit 131 to receive the first non-overlapping signal DP2, and the high-level duty cycle correction circuit 141 is used for correction The duty cycle of the first non-overlapping signal DP2 outputs a first duty cycle calibration signal DP3. The low-level duty cycle calibration circuit 142 is electrically connected to the low-level non-overlapping circuit 132 to receive the second non-overlapping signal. DN2, the low-level duty period correction circuit 142 is used for correcting the duty period of the second non-overlapping signal DN2 to output a second duty period correction signal DN3.

請參閱第3圖,為本實施例之該高位準責任週期校正電路141的電路圖,該高位準責任週期校正電路141具有一第一反向器141a、一第一充電電容141b、一第二反向器141c、一第三反向器141d、一分壓電路141e、一第二充電電容141f及一電流鏡電路141g。在本實施例中,該第一反向器141a具有一P型電晶體M P61及一N型電晶體M N61,該P型電晶體M P61及該N型電晶體M N61的閘極接收該第一非交疊訊號DP2。該第一充電電容141b及該第二反向器141c電性連接該第一反向器141a,且該第二反向器141c輸出該第一責任週期校正訊號DP3至該數位邏輯電路180,在本實施例中,該第一充電電容141b電性連接該P型電晶體M P61及該N型電晶體M N61的汲極,該第二反向器141c具有一P型電晶體M P62及一N型電晶體M N62,該P型電晶體M P62及該N型電晶體M N62的閘極電性連接該P型電晶體M P61及該N型電晶體M N61的汲極,該P型電晶體M P62之源極接收該外部電壓VDDIO,該N型電晶體M N62的源極連接至一低電位端,且該P型電晶體M P62及該N型電晶體M N62的汲極輸出該第一責任週期校正訊號DP3。在本實施例中,該低電位端為該偵測電壓V DPlease refer to FIG. 3 , which is a circuit diagram of the high-level duty cycle correction circuit 141 of this embodiment. The high-level duty cycle correction circuit 141 has a first inverter 141 a , a first charging capacitor 141 b , a second inverter The inverter 141c, a third inverter 141d, a voltage divider circuit 141e, a second charging capacitor 141f and a current mirror circuit 141g. In this embodiment, the first inverter 141a has a P-type transistor MP61 and an N-type transistor MN61 , and the gates of the P-type transistor MP61 and the N-type transistor MN61 receive the the first non-overlapping signal DP2. The first charging capacitor 141b and the second inverter 141c are electrically connected to the first inverter 141a, and the second inverter 141c outputs the first duty cycle correction signal DP3 to the digital logic circuit 180. In this embodiment, the first charging capacitor 141b is electrically connected to the drains of the P-type transistor MP61 and the N-type transistor MN61 , and the second inverter 141c has a P-type transistor MP62 and a N-type transistor M N62 , the P-type transistor M P62 and the gate of the N-type transistor M N62 are electrically connected to the drain of the P-type transistor M P61 and the N-type transistor M N61 , the P-type transistor M P62 The source of the transistor M P62 receives the external voltage VDDIO, the source of the N-type transistor M N62 is connected to a low potential terminal, and the drains of the P-type transistor M P62 and the N-type transistor M N62 output The first duty cycle correction signal DP3. In this embodiment, the low potential terminal is the detection voltage V D .

該第三反向器141d具有一P型電晶體M P63及一N型電晶體M N63,該P型電晶體M P63及該N型電晶體M N63的閘極接收該第一非交疊訊號DP2,該P型電晶體M P63之源極接收該外部電壓VDDIO,該N型電晶體M N63的源極連接該低電位端。該分壓電路141e電性連接該第三反向器141d,該分壓電路141e具有一P型電晶體M P64、一第一分壓電阻R 1及一第二分壓電阻R 2,該P型電晶體M P64之閘極電性連接該P型電晶體M P63及該N型電晶體M N63的汲極,該第一分壓電阻R 1的兩端分別接收該外部電壓VDDIO及電性連接該P型電晶體M P64的源極,該第二分壓電阻R 2的兩端分別電性連接該P型電晶體M P64的汲極及該低電位端。該第二充電電容141f電性連接該分壓電路141e之該第二分壓電阻R 2及該P型電晶體M P64的汲極。 The third inverter 141d has a P-type transistor M P63 and an N-type transistor M N63 , and the gates of the P-type transistor M P63 and the N-type transistor M N63 receive the first non-overlapping signal DP2, the source of the P-type transistor M P63 receives the external voltage VDDIO, and the source of the N-type transistor M N63 is connected to the low potential terminal. The voltage dividing circuit 141e is electrically connected to the third inverter 141d, and the voltage dividing circuit 141e has a P-type transistor MP64 , a first voltage dividing resistor R1 and a second voltage dividing resistor R2, The gate of the P-type transistor M P64 is electrically connected to the drains of the P-type transistor M P63 and the N-type transistor M N63 , and both ends of the first voltage dividing resistor R 1 respectively receive the external voltage VDDIO and The source of the P-type transistor M P64 is electrically connected, and both ends of the second voltage dividing resistor R 2 are electrically connected to the drain of the P-type transistor M P64 and the low-potential terminal, respectively. The second charging capacitor 141f is electrically connected to the second voltage dividing resistor R2 of the voltage dividing circuit 141e and the drain of the P-type transistor MP64 .

該電流鏡電路141g電性連接該第二充電電容141f及該第一反向器141a,該電流鏡電路141g受該第二充電電容141f的一充電電壓V12控制而改變其對於該第一充電電容141b的一充放電電流大小。在本實施例中,該電流鏡電路141g具有一第四反向器141h、一第一電流鏡開關M P67、一第一電流鏡參考電晶體M P66、一第一電流鏡鏡射電晶體M P68、一第二電流鏡開關M N66、一第二電流鏡參考電晶體M N65及一第二電流鏡鏡射電晶體M N67。該第四反向器141h電性連接該第二充電電容141f以接收該充電電壓V12,在本實施例中,該第四反向器141h具有一P型電晶體M P65及一N型電晶體M N64,該P型電晶體M P65及該N型電晶體M N64的閘極電性連接該第二充電電容141f,該第一電流鏡開關M P67之閘極電性連接該第二充電電容141f,該第一電流鏡開關M P67之源極電性連接該P型電晶體M P65及該N型電晶體M N64的汲極,該第一電流鏡開關M P67之汲極連接該低電位端,且該第一電流鏡開關M P67受該第二充電電容141f之該充電電壓V12控制其導通或截止。該第一電流鏡參考電晶體M P66之閘極及汲極電性連接該P型電晶體M P65之該源極,該第一電流鏡參考電晶體M P66之源極接收該外部電壓VDDIO。該第一電流鏡鏡射電晶體M P68之閘極電性連接該第一電流鏡參考電晶體M P66之閘極及汲極,該第一電流鏡鏡射電晶體M P68之源極接收該外部電壓VDDIO,該第一電流鏡鏡射電晶體M P68之汲極電性連接該P型電晶體M P61之源極。該第二電流鏡開關M N66之閘極電性連接該第二充電電容141f,該第二電流鏡開關M N66之源極電性連接該P型電晶體M P65及該N型電晶體M N64的汲極,該第二電流鏡開關M P66之汲極接收該外部電壓VDDIO,且該第二電流鏡開關M P66受該第二充電電容141f之該充電電壓V12控制其導通或截止。該第二電流鏡參考電晶體M N65之閘極及汲極電性連接該N型電晶體M P65之該源極,該第二電流鏡參考電晶體M N65之源極連接該低電位端。該第二電流鏡鏡射電晶體M N67之閘極電性連接該第二電流鏡參考電晶體M N65之閘極及汲極,該第二電流鏡鏡射電晶體M N67之源極連接該低電位端,該第二電流鏡鏡射電晶體M N67之汲極電性連接該N型電晶體M N61之源極。 The current mirror circuit 141g is electrically connected to the second charging capacitor 141f and the first inverter 141a. The current mirror circuit 141g is controlled by a charging voltage V12 of the second charging capacitor 141f to change its effect on the first charging capacitor A charge and discharge current size of 141b. In this embodiment, the current mirror circuit 141g has a fourth inverter 141h, a first current mirror switch MP67 , a first current mirror reference transistor MP66 , and a first current mirror radio transistor MP68 , a second current mirror switch MN66 , a second current mirror reference transistor MN65 and a second current mirror radio transistor MN67 . The fourth inverter 141h is electrically connected to the second charging capacitor 141f to receive the charging voltage V12. In this embodiment, the fourth inverter 141h has a P-type transistor MP65 and an N-type transistor M N64 , the gates of the P-type transistor M P65 and the N-type transistor M N64 are electrically connected to the second charging capacitor 141f , and the gate of the first current mirror switch M P67 is electrically connected to the second charging capacitor 141f, the source of the first current mirror switch MP67 is electrically connected to the drains of the P-type transistor MP65 and the N-type transistor MN64, and the drain of the first current mirror switch MP67 is connected to the low potential terminal, and the first current mirror switch MP67 is controlled to be turned on or off by the charging voltage V12 of the second charging capacitor 141f. The gate and drain of the first current mirror reference transistor MP66 are electrically connected to the source of the P-type transistor MP65 , and the source of the first current mirror reference transistor MP66 receives the external voltage VDDIO. The gate of the first current mirror-radio transistor MP68 is electrically connected to the gate and drain of the first current-mirror reference transistor MP66 , and the source of the first current-mirror-radio transistor MP68 receives the external voltage VDDIO, the drain of the first current mirror-radio transistor M P68 is electrically connected to the source of the P-type transistor M P61 . The gate of the second current mirror switch MN66 is electrically connected to the second charging capacitor 141f, and the source of the second current mirror switch MN66 is electrically connected to the P-type transistor M P65 and the N-type transistor M N64 The drain of the second current mirror switch MP66 receives the external voltage VDDIO, and the second current mirror switch MP66 is controlled to be turned on or off by the charging voltage V12 of the second charging capacitor 141f. The gate and drain of the second current mirror reference transistor MN65 are electrically connected to the source of the N-type transistor MP65 , and the source of the second current mirror reference transistor MN65 is connected to the low potential terminal. The gate of the second current mirror radio transistor MN67 is electrically connected to the gate and drain of the second current mirror reference transistor MN65 , and the source of the second current mirror radio transistor MN67 is connected to the low potential At the terminal, the drain of the second current mirror-mirror transistor MN67 is electrically connected to the source of the N-type transistor MN61 .

該高位準責任週期校正電路141校正該第一非交疊訊號DP2之電路作動為:該高位準責任週期校正電路141之該第一反向器141a及該第三反向器141d接收該第一非交疊訊號DP2,其中該第一非交疊訊號DP2為高電位時,N型電晶體M N63導通,使該P型電晶體M P64連接至該低電位端而導通,該外部電壓VDDIO經由該第一分壓電阻R 1及該P型電晶體M P64對該第二充電電容141f充電。當該第一非交疊訊號DP2的責任週期較小時,因為充電時間較短,該第二充電電容141f的該充電電壓V12較小,此時,該些P型電晶體M P65、M P67及M P66導通的時間較長,一第一電流鏡電流由該外部電壓VDDIO經由該些P型電晶體M P66、M P65及M P67流向低電壓端,該第一電流鏡電流並鏡射至該第一電流鏡鏡射電晶體M P68,且經由該P型電晶體M P61傳送至該第一充電電容141b進行充電而產生充電電壓V11,以藉由充電速度較快使該充電電壓V11上升較快,即可讓該第二反向器141c輸出之第一責任週期校正訊號DP3具有較大的責任週期。相對地,當該第一非交疊訊號DP2的責任週期較大時,因為充電時間較長,該第二充電電容141f的該充電電壓V12較大,此時,該些N型電晶體M N64、M N66及M N65導通時間較長,一第二電流鏡電流由該外部電壓VDDIO經由該些P型電晶體M N66、M N64及M N65流向低電壓端,該第二電流鏡電流並經由電流鏡鏡射至該第二電流鏡鏡射電晶體M N67並與該N型電晶體M N61構成該第一充電電容141b的放電路徑使充電電壓V11下降。當放電速度較快使該充電電壓V11下降較快時,即可讓該第二反向器141c輸出之第一責任週期校正訊號DP3具有較小的責任週期。 The circuit operation of the high-level duty cycle correction circuit 141 for correcting the first non-overlapping signal DP2 is as follows: the first inverter 141a and the third inverter 141d of the high-level duty cycle correction circuit 141 receive the first The non-overlapping signal DP2, wherein when the first non-overlapping signal DP2 is at a high level, the N-type transistor MN63 is turned on, so that the P-type transistor M P64 is connected to the low-level terminal to be turned on, and the external voltage VDDIO passes through The first voltage dividing resistor R1 and the P-type transistor M P64 charge the second charging capacitor 141f. When the duty cycle of the first non-overlapping signal DP2 is small, the charging voltage V12 of the second charging capacitor 141f is small because the charging time is short. At this time, the P-type transistors M P65 and M P67 And M P66 is turned on for a long time, a first current mirror current flows from the external voltage VDDIO to the low voltage terminal through the P-type transistors M P66 , M P65 and M P67 , and the first current mirror current is mirrored to The first current mirror mirror radio transistor M P68 is transmitted to the first charging capacitor 141b through the P-type transistor M P61 for charging to generate a charging voltage V11 , so that the charging voltage V11 is increased by a faster charging speed. Faster, the first duty cycle correction signal DP3 output by the second inverter 141c can have a larger duty cycle. Conversely, when the duty cycle of the first non-overlapping signal DP2 is larger, the charging voltage V12 of the second charging capacitor 141f is larger due to the longer charging time. At this time, the N-type transistors MN64 , MN66 and MN65 are turned on for a long time, a second current mirror current flows from the external voltage VDDIO to the low voltage terminal through the P-type transistors MN66 , MN64 and MN65 , and the second current mirror current flows through the P-type transistors MN66, MN64 and MN65 The current mirror radiates to the second current mirror radio transistor MN67 and forms the discharge path of the first charging capacitor 141b together with the N-type transistor MN61 so that the charging voltage V11 decreases. When the charging voltage V11 drops faster due to the faster discharging speed, the first duty period correction signal DP3 output by the second inverter 141c can have a smaller duty period.

請參閱第1圖,該低位準責任週期校正電路142與該高位準責任週期校正電路141的差異僅在該低位準責任週期校正電路142所接收的高電位為該電源電壓VDD及接收的低電位為0,其餘電路及作動皆相同,因此不再贅述。Please refer to FIG. 1 , the difference between the low-level duty cycle correction circuit 142 and the high-level duty cycle correction circuit 141 is only that the high level received by the low-level duty cycle correction circuit 142 is the power supply voltage VDD and the received low level If it is 0, the other circuits and actions are the same, so they are not repeated here.

請參閱第1圖,該製程飄移偵測器150接收一時脈訊號Clk及複數個參考訊號V ref1-4,且該製程飄移偵測器150根據該時脈訊號Clk及該些參考訊號V ref1-4輸出一P型製程偵測訊號P code[2:1]及一N型製程偵測訊號N code[2:1]。請參閱第4及5圖,在本實施例中,該製程飄移偵測器150具有一P型電晶體製程飄移偵測電路151及一N型電晶體製程飄移偵測電路152,以分別對電路中的P型電晶體及N型電晶體之製程飄移進行偵測。 Please refer to FIG. 1, the process drift detector 150 receives a clock signal Clk and a plurality of reference signals V ref1-4 , and the process drift detector 150 receives the clock signal Clk and the reference signals V ref1-4 according to the process drift detector 150 4. Output a P-type process detection signal P code [2:1] and an N-type process detection signal N code [2:1]. Please refer to FIGS. 4 and 5. In this embodiment, the process drift detector 150 has a P-type transistor process drift detection circuit 151 and an N-type transistor process drift detection circuit 152, which are used to detect the circuit drift respectively. Process drift of P-type transistors and N-type transistors is detected.

請參閱第4圖,該P型電晶體製程飄移偵測電路151具有一PMOS反向器151a、一充電電容151b、一第一比較器151c、一第一暫存器151d、一第二比較器151e及一第二暫存器151f。該PMOS反向器151a具有一P型電晶體M P41及一N型電晶體M N41,該P型電晶體M P41及該N型電晶體M N41的閘極接收該時脈訊號Clk,該P型電晶體M P41的源極接收該電源電壓VDD,該P型電晶體M P41的汲極電性連接該N型電晶體M N41的汲極,該N型電晶體M N41的源極接地。該充電電容151b之一端電性連接該P型電晶體M P41及該N型電晶體M N41的汲極,該充電電容151b之另一端接地,且該充電電容151b產生一充電電壓V C1,該第一比較器151c電性連接該充電電容151b以接收該充電電壓V C1及該第一參考訊號V ref1,且該第一比較器151c輸出之一第一比較訊號經由一反向器傳送至該第一暫存器151d,該第一暫存器151d輸出該P型製程偵測訊號P code[2:1]的一第一位元P code[1],該第二比較器151e電性連接該充電電容151b以接收該充電電壓及該第二參考訊號V ref2,且該第二比較器151e輸出之一第二比較訊號經由一反向器傳送至該第二暫存器151f,該第二暫存器151f輸出該P型製程偵測訊號P code[2:1]的一第二位元P code[2]。 Please refer to FIG. 4, the P-type transistor process drift detection circuit 151 has a PMOS inverter 151a, a charging capacitor 151b, a first comparator 151c, a first register 151d, and a second comparator 151e and a second register 151f. The PMOS inverter 151a has a P-type transistor M P41 and an N-type transistor M N41 . The gates of the P-type transistor M P41 and the N-type transistor M N41 receive the clock signal Clk, and the P The source of the P-type transistor M P41 receives the power supply voltage VDD, the drain of the P-type transistor M P41 is electrically connected to the drain of the N-type transistor MN41 , and the source of the N-type transistor MN41 is grounded. One end of the charging capacitor 151b is electrically connected to the drains of the P-type transistor MP41 and the N-type transistor MN41 , the other end of the charging capacitor 151b is grounded, and the charging capacitor 151b generates a charging voltage V C1 , the The first comparator 151c is electrically connected to the charging capacitor 151b to receive the charging voltage V C1 and the first reference signal V ref1 , and a first comparison signal output by the first comparator 151c is transmitted to the charging voltage V ref1 through an inverter The first register 151d, the first register 151d outputs a first bit P code [1] of the P-type process detection signal P code [2:1], the second comparator 151e is electrically connected The charging capacitor 151b receives the charging voltage and the second reference signal V ref2 , and a second comparison signal output by the second comparator 151e is transmitted to the second register 151f through an inverter. The register 151f outputs a second bit P code [2] of the P-type process detection signal P code [2:1].

請參閱第5圖,該N型電晶體製程飄移偵測電路152具有一NMOS反向器152a、一充電電容152b、一第一比較器152c、一第一暫存器152d、一第二比較器152e及一第二暫存器152f。該NMOS反向器152a具有一反向單元Inv及兩個N型電晶體M N51 52,該N型電晶體M N51的閘極經由該反向單元Inv接收反向之該時脈訊號Clk,該N型電晶體M N52的閘極接收該時脈訊號Clk,該N型電晶體M N51的汲極接收該電源電壓VDD,該N型電晶體M P51的源極電性連接該N型電晶體M N52的汲極,該N型電晶體M N52的源極接地。該充電電容152b電性連接該N型電晶體M N51的源極及該N型電晶體M N52的汲極,且該充電電容152b產生一充電電壓V C2,該第一比較器152c電性連接該充電電容152b以接收該充電電壓V C2及該第三參考訊號V ref3,且該第一比較器152c輸出之一第一比較訊號經由一反向器傳送至該第一暫存器152d,該第一暫存器152d輸出該N型製程偵測訊號N code[2:1]的一第一位元N code[1],該第二比較器152e電性連接該充電電容152b以接收該充電電壓V C2及一第四製程飄移參考電壓V ref4,且該第二比較器152e輸出之一第二比較訊號經由一反向器傳送至該第二暫存器152f,該第二暫存器152f輸出該N型製程偵測訊號N code[2:1]的一第二位元N code[2]。 Please refer to FIG. 5, the N-type transistor process drift detection circuit 152 has an NMOS inverter 152a, a charging capacitor 152b, a first comparator 152c, a first register 152d, and a second comparator 152e and a second register 152f. The NMOS inverter 152a has an inversion unit Inv and two N-type transistors MN51 and 52. The gate of the N-type transistor MN51 receives the inverted clock signal Clk through the inversion unit Inv, The gate of the N-type transistor MN52 receives the clock signal Clk, the drain of the N-type transistor MN51 receives the power supply voltage VDD, and the source of the N-type transistor M P51 is electrically connected to the N-type transistor The drain of the crystal MN52 , and the source of the N-type transistor MN52 is grounded. The charging capacitor 152b is electrically connected to the source of the N-type transistor MN51 and the drain of the N-type transistor MN52 , and the charging capacitor 152b generates a charging voltage V C2 , and the first comparator 152c is electrically connected The charging capacitor 152b receives the charging voltage V C2 and the third reference signal V ref3 , and a first comparison signal output by the first comparator 152c is transmitted to the first register 152d through an inverter. The first register 152d outputs a first bit Ncode [1] of the N-type process detection signal Ncode [2:1], and the second comparator 152e is electrically connected to the charging capacitor 152b to receive the charging The voltage V C2 and a fourth process drift reference voltage V ref4 , and a second comparison signal output by the second comparator 152e is transmitted to the second register 152f through an inverter, and the second register 152f A second bit N code [2] of the N-type process detection signal N code [2:1] is output.

該製程飄移偵測器150是藉由時脈訊號Clk之負緣分別觸發該P型電晶體製程飄移偵測電路151及該N型電晶體製程飄移偵測電路152之該P型電晶體M P41及該N型電晶體M N51,使該充電電容151、152充電而提高其充電電壓V C1、V C2。當製程位於較快的角落時,該P型電晶體M P41及該N型電晶體M N51對該充電電容151、152的充電速度較快,反之,當製程位於較快的角落時,該P型電晶體M P41及該N型電晶體M N51對該充電電容151、152的充電速度較慢,因此,透過該兩個比較器與該些參考訊號V ref1-4的比較後,即可藉由該P型製程偵測訊號P code[2:1]及該N型製程偵測訊號N code[2:1]的4個位元得知電路中之PMOS電晶體及NMOS電晶體的製程角落。 The process drift detector 150 triggers the P-type transistor M P41 of the P-type transistor process drift detection circuit 151 and the N-type transistor process drift detection circuit 152 respectively by the negative edge of the clock signal Clk and the N-type transistor MN51 to charge the charging capacitors 151 and 152 to increase the charging voltages V C1 and V C2 . When the process is located in a fast corner, the P-type transistor M P41 and the N-type transistor M N51 charge the charging capacitors 151 and 152 faster, on the contrary, when the process is located in a fast corner, the P The charging speed of the charging capacitors 151 and 152 is relatively slow by the N-type transistor M P41 and the N-type transistor M N51 . Therefore, after the comparison between the two comparators and the reference signals V ref1-4 , the The process corners of the PMOS transistor and the NMOS transistor in the circuit are known from the 4 bits of the P-type process detection signal P code [2:1] and the N-type process detection signal N code [2:1] .

請參閱第1圖,該數位邏輯電路180電性連接該責任週期校正器140、該製程飄移偵測器150及該電壓迴轉率迴授電路170,以接收該責任週期校正器140輸出之該第一責任週期校正訊號DP3及該第二責任週期校正訊號DN3、該製程飄移偵測器150輸出之該P型製程偵測訊號P code[2:1]及該N型製程偵測訊號N code[2:1]以及該電壓迴轉率迴授電路170輸出之一第一迴轉率控制訊號Ctr1及一第二迴轉率控制訊號Ctr2,且該數位邏輯電路180藉由該些訊號輸出複數個補償控制訊號Vgp[5:1]、Vgn[5:1]至該輸出級160,以控制該輸出級160之一輸出電壓V PAD的電壓迴轉率的由於該數位邏輯電路180對該輸出級160之該些補償電晶體的控制並非本案之限制,因此本案並不詳述。在本實施例中,該些補償控制訊號Vgp[5:1]、Vgn[5:1]是分別經由兩個閘極驅動電路181、182傳送至該輸出級160。 Please refer to FIG. 1 , the digital logic circuit 180 is electrically connected to the duty cycle corrector 140 , the process drift detector 150 and the voltage slew rate feedback circuit 170 to receive the first output from the duty cycle corrector 140 A duty cycle calibration signal DP3 and the second duty cycle calibration signal DN3, the P-type process detection signal P code [2:1] and the N-type process detection signal N code [ output by the process drift detector 150 2:1] and the voltage slew rate feedback circuit 170 outputs a first slew rate control signal Ctr1 and a second slew rate control signal Ctr2, and the digital logic circuit 180 outputs a plurality of compensation control signals by these signals Vgp[5:1], Vgn[5:1] to the output stage 160 to control the voltage slew rate of an output voltage V PAD of the output stage 160 due to the digital logic circuit 180 to the output stage 160 The control of the compensation transistor is not a limitation of this case, so it is not described in detail in this case. In this embodiment, the compensation control signals Vgp[5:1] and Vgn[5:1] are respectively transmitted to the output stage 160 through the two gate driving circuits 181 and 182 .

在另一實施例中,若使用之系統規格對於訊號之責任週期的大小沒有規定時,則不需設置該責任週期校正器140,該數位邏輯電路180直接由該非交疊電路130接收該第一非交疊訊號DP2及該第二非交疊訊號DN2。In another embodiment, if the system specification used does not specify the size of the duty cycle of the signal, the duty cycle corrector 140 does not need to be set, and the digital logic circuit 180 directly receives the first signal from the non-overlapping circuit 130 The non-overlapping signal DP2 and the second non-overlapping signal DN2.

請參閱第1圖,該輸出級160電性連接該外部電壓偵測器110及該兩個閘極驅動電路181、182,以接收該偵測電壓V D及該些補償控制訊號Vgp[5:1]、Vgn[5:1],且該輸出級160輸出該輸出電壓V PAD。在本實施例中,該輸出級160具有一P型輸出電晶體M P11、複數個P型補償電晶體M P12-16、一N型輸出電晶體M N11及複數個N型補償電晶體M N12-16。該P型輸出電晶體M P11之閘極電性連接該外部電壓偵測器110以接收該偵測電壓V D,該P型輸出電晶體M P11之汲極電性連接該N型輸出電晶體M N11之汲極,該P型輸出電晶體M P11之源極電性連接該些P型補償電晶體M P12-16之汲極,該些P型補償電晶體M P12-16之源極接收該外部電壓VDDIO,該些P型補償電晶體M P12-16之閘極由該閘極驅動電路181接收該些補償控制訊號Vgp[5:1]。該N型輸出電晶體M N11之閘極接收該電源電壓VDD,該N型輸出電晶體M N11之源極電性連接該些N型補償電晶體M N12-16之汲極,該些N型補償電晶體M N12-16之源極接地,該些N型補償電晶體M N12-16之閘極由該閘極驅動電路182接收該些補償控制訊號Vgn[5:1],該P型輸出電晶體M P11及該N型輸出電晶體M N11之汲極輸出該輸出電壓V PAD。其中,該些P型補償電晶體M P12-16及該些N型補償電晶體M N12-16的開啟數量用以提高輸出電流的大小,以調整輸出電壓V PAD的電壓迴轉率。 Please refer to FIG. 1, the output stage 160 is electrically connected to the external voltage detector 110 and the two gate driving circuits 181, 182 to receive the detection voltage V D and the compensation control signals Vgp[5: 1], Vgn[5:1], and the output stage 160 outputs the output voltage V PAD . In this embodiment, the output stage 160 has a P-type output transistor M P11 , a plurality of P-type compensation transistors M P12-16 , an N-type output transistor MN11 and a plurality of N -type compensation transistors M N12 -16 . The gate of the P-type output transistor M P11 is electrically connected to the external voltage detector 110 to receive the detection voltage V D , and the drain of the P-type output transistor M P11 is electrically connected to the N-type output transistor The drain of M N11 , the source of the P-type output transistor M P11 is electrically connected to the drains of the P-type compensation transistors M P12-16 , and the sources of the P-type compensation transistors M P12-16 receive For the external voltage VDDIO, the gates of the P-type compensation transistors M P12-16 receive the compensation control signals Vgp[5:1] from the gate driving circuit 181 . The gate of the N-type output transistor MN11 receives the power supply voltage VDD, the source of the N-type output transistor MN11 is electrically connected to the drains of the N-type compensation transistors MN12-16 , and the N-type The sources of the compensation transistors MN12-16 are grounded, and the gates of the N-type compensation transistors MN12-16 receive the compensation control signals Vgn[5:1] from the gate driving circuit 182, and the P-type output The transistor M P11 and the drain of the N-type output transistor M N11 output the output voltage VPAD . The turn-on numbers of the P-type compensation transistors M P12-16 and the N-type compensation transistors MN12-16 are used to increase the magnitude of the output current to adjust the voltage slew rate of the output voltage VPAD .

請參閱第1及6圖,由於該外部電壓VDDIO之電位可能為1倍之電源電壓VDD或1.5倍之電源電壓VDD,使得該P型輸出電晶體M P11會因P+/N Well之寄生二極體導通而超過最大臨界電壓,造成漏電流路徑的產生,因此,較佳的,該P型輸出電晶體M P11之基極電性連接該浮動N型井190,該浮動N型井190接收該電源電壓VDD及該輸出電壓V PAD,且該浮動N型井190輸出一基極電壓V NW至該P型輸出電晶體M P11的該基極。請參閱第5圖,該浮動N型井190具有一第一P型電晶體M P31、一第二P型電晶體M P32及一M型電晶體M N31,該第一P型電晶體M P31之源極及該第二P型電晶體M P32之閘極接收該輸出電壓V PAD,該第一P型電晶體M P31之閘極及該第二P型電晶體M P32之源極接收該電源電壓VDD,該N型電晶體M N31之閘極及汲極接收該輸出電壓V PAD,該第一P型電晶體M P31之汲極、該第二P型電晶體M P32之汲極及該N型電晶體M N31輸出該基極電壓V NW。其中,當該輸出電壓V PAD為該電源電壓VDD之電位時,該第一P型電晶體M P31及該第二P型電晶體M P32截止,該N型電晶體M N31導通,此時,該基極電壓V NW的電位為VDD-V th,而關閉該P型輸出電晶體M P11的漏電流路徑。當該輸出電壓V PAD為該電源電壓VDD之電位的1.5倍時,該第一P型電晶體M P31導通,此時該基極電壓V NW的電位為1.5倍VDD,該P型輸出電晶體M P11的寄生二極體截止,同樣也可關閉該P型輸出電晶體M P11的漏電流路徑,以降低功率之消耗。 Please refer to Figures 1 and 6, since the potential of the external voltage VDDIO may be 1 times the power supply voltage VDD or 1.5 times the power supply voltage VDD, the P-type output transistor M P11 will be caused by the parasitic diode of P+/N Well The body is turned on and exceeds the maximum threshold voltage, resulting in the generation of a leakage current path. Therefore, preferably, the base of the P-type output transistor M P11 is electrically connected to the floating N-type well 190, and the floating N-type well 190 receives the The power supply voltage VDD and the output voltage V PAD , and the floating N-type well 190 outputs a base voltage V NW to the base of the P-type output transistor MP11 . Please refer to FIG. 5 , the floating N-type well 190 has a first P-type transistor M P31 , a second P-type transistor M P32 and an M-type transistor M N31 , the first P-type transistor M P31 The source of the first P-type transistor MP32 and the gate of the second P-type transistor MP32 receive the output voltage V PAD , the gate of the first P-type transistor MP31 and the source of the second P-type transistor MP32 receive the output voltage VPAD The power supply voltage VDD, the gate and drain of the N-type transistor MN31 receive the output voltage V PAD , the drain of the first P-type transistor M P31 , the drain of the second P-type transistor M P32 and The N-type transistor MN31 outputs the base voltage V NW . Wherein, when the output voltage V PAD is the potential of the power supply voltage VDD, the first P-type transistor M P31 and the second P-type transistor M P32 are turned off, and the N-type transistor M N31 is turned on. At this time, The potential of the base voltage V NW is VDD-V th , and the leakage current path of the P-type output transistor MP11 is closed. When the output voltage V PAD is 1.5 times the potential of the power supply voltage VDD, the first P-type transistor M P31 is turned on, and the base voltage V NW has a potential of 1.5 times VDD, and the P-type output transistor The parasitic diode of M P11 is turned off, which can also close the leakage current path of the P-type output transistor M P11 to reduce power consumption.

請參閱第1圖,由於該輸出級160對於該輸出電壓V PAD之電壓迴轉率的補償可能過多或過少而不符規定,因此,本實施例藉由該電壓迴轉率迴授電路170偵測該輸出電壓V PAD的電壓迴轉率並回授該些轉率控制訊號Ctr1、Ctr2至該數位邏輯電路180調整其輸出之補償控制訊號。該電壓迴轉率迴授電路170電性連接該輸出級160以接收該輸出電壓V PAD,該電壓迴轉率迴授電路170並接收一第一迴轉率參考電壓SR r1及一第二迴轉率參考電壓SR r2,該電壓迴轉率迴授電路170依據該第一迴轉率參考電壓SR r1及該第二迴轉率參考電壓SR r2判斷該輸出電壓的迴轉率大小並輸出該些迴轉率控制訊號Ctr1、Ctr2。 Please refer to FIG. 1 , since the compensation of the voltage slew rate of the output voltage V PAD by the output stage 160 may be too much or too little, which may not meet the requirements, therefore, in this embodiment, the voltage slew rate feedback circuit 170 is used to detect the output The voltage slew rate of the voltage V PAD is fed back to the slew rate control signals Ctr1 and Ctr2 to the digital logic circuit 180 to adjust the output compensation control signal. The voltage slew rate feedback circuit 170 is electrically connected to the output stage 160 to receive the output voltage VPAD , and the voltage slew rate feedback circuit 170 receives a first slew rate reference voltage SR r1 and a second slew rate reference voltage SR r2 , the voltage slew rate feedback circuit 170 determines the slew rate of the output voltage according to the first slew rate reference voltage SR r1 and the second slew rate reference voltage SR r2 and outputs the slew rate control signals Ctr1 and Ctr2 .

請參閱第1及7圖,在本實施例中,該電壓迴轉率迴授電路170具有一第一比較器171、一第二比較器172、一XOR閘173、一第一延遲單元174、一第二延遲單元175、一第三延遲單元176及一邏輯閘電路177。該第一比較器171電性該輸出級160,該第一比較器171接收該輸出電壓V PAD及該第一迴轉率參考電壓SR r1,且該第一比較器171輸出一第一比較訊號Cmp1,該第二比較器172電性該輸出級160,該第二比較器172接收該輸出電壓V PAD及該第二迴轉率參考電壓SR r2,且該第二比較器172輸出一第二比較訊號Cmp2。該XOR閘173電性連接該第一比較器171及該第二比較器172以接收該第一比較訊號Cmp1及該第二比較訊號Cmp2,該XOR閘173輸出一XOR訊號Dxor。 Referring to FIGS. 1 and 7, in this embodiment, the voltage slew rate feedback circuit 170 has a first comparator 171, a second comparator 172, an XOR gate 173, a first delay unit 174, a The second delay unit 175 , a third delay unit 176 and a logic gate circuit 177 . The first comparator 171 electrically connects the output stage 160, the first comparator 171 receives the output voltage V PAD and the first slew rate reference voltage SR r1 , and the first comparator 171 outputs a first comparison signal Cmp1 , the second comparator 172 electrically connects the output stage 160 , the second comparator 172 receives the output voltage V PAD and the second slew rate reference voltage SR r2 , and the second comparator 172 outputs a second comparison signal Cmp2. The XOR gate 173 is electrically connected to the first comparator 171 and the second comparator 172 to receive the first comparison signal Cmp1 and the second comparison signal Cmp2, and the XOR gate 173 outputs an XOR signal Dxor.

請參閱第8圖,其為該電壓迴轉率迴授電路170之電路作動的時序圖,在本實施例中,該第一迴轉率參考電壓SR r1之電位為0.8倍的該外部電壓VDDIO,該第二迴轉率參考電壓SR r2之電位為0.2倍的該外部電壓VDDIO。該輸出電壓V PAD分別經由該第一比較器171及該第二比較器172與0.8VDDIO及0.2VDDIO比較後輸出該第一比較訊號Cmp1及該第二比較訊號Cmp2至該XOR閘173,該XOR閘173則根據該第一比較訊號Cmp1及該第二比較訊號Cmp2輸出該XOR訊號Dxor。由第8圖可以看到當該輸出電壓V PAD的電壓迴轉率越高,也就是其上升、下降緣越陡峭時,該XOR訊號Dxor的兩個脈波寬度會越窄,而該輸出電壓V PAD的電壓迴轉率越低,也就是其上升、下降緣越平緩時,該XOR訊號Dxor的兩個脈波寬度會越寬,藉此測得該輸出電壓V PAD的電壓迴轉率。 Please refer to FIG. 8, which is a timing diagram of the circuit operation of the voltage slew rate feedback circuit 170. In this embodiment, the potential of the first slew rate reference voltage SR r1 is 0.8 times the external voltage VDDIO, the The potential of the second slew rate reference voltage SR r2 is 0.2 times the external voltage VDDIO. The output voltage VPAD is compared with 0.8VDDIO and 0.2VDDIO through the first comparator 171 and the second comparator 172 respectively, and then outputs the first comparison signal Cmp1 and the second comparison signal Cmp2 to the XOR gate 173, the XOR The gate 173 outputs the XOR signal Dxor according to the first comparison signal Cmp1 and the second comparison signal Cmp2. It can be seen from Figure 8 that when the voltage slew rate of the output voltage V PAD is higher, that is, when the rising and falling edges are steeper, the two pulse widths of the XOR signal Dxor will be narrower, and the output voltage V The lower the voltage slew rate of the PAD , that is, the smoother the rising and falling edges of the PAD, the wider the two pulse widths of the XOR signal Dxor, thereby measuring the voltage slew rate of the output voltage V PAD .

接著,請參閱第7圖,該第一延遲單元174接收該第一責任週期校正訊號DP3並輸出一第一延遲訊號Ddy1,該第二延遲單元175接收該第一責任週期校正訊號DP3並輸出一第二延遲訊號Ddy2,該第三延遲單元175接收反向之該第一責任週期校正訊號DP3b並輸出一第三延遲訊號Ddy3,該邏輯閘電路177電性連接第一延遲單元174、該第二延遲單元175及該第三延遲單元176以接收該第一延遲訊號Ddy1、該第二延遲訊號Ddy2及該第三延遲訊號Ddy3,且該邏輯閘電路177輸出一第一迴轉率控制訊號Ctr1及一第二迴轉率控制訊號Ctr2至該數位邏輯電路180,其中該第一延遲單元174、該第二延遲單元175及該第三延遲單元176各自的延遲量並不相同。Next, please refer to FIG. 7, the first delay unit 174 receives the first duty cycle correction signal DP3 and outputs a first delay signal Ddy1, and the second delay unit 175 receives the first duty cycle correction signal DP3 and outputs a For the second delay signal Ddy2, the third delay unit 175 receives the reversed first duty cycle correction signal DP3b and outputs a third delay signal Ddy3. The logic gate circuit 177 is electrically connected to the first delay unit 174 and the second delay unit 174. The delay unit 175 and the third delay unit 176 receive the first delay signal Ddy1, the second delay signal Ddy2 and the third delay signal Ddy3, and the logic gate circuit 177 outputs a first slew rate control signal Ctr1 and a The second slew rate control signal Ctr2 is sent to the digital logic circuit 180, wherein the respective delay amounts of the first delay unit 174, the second delay unit 175 and the third delay unit 176 are different.

在本實施例中,該邏輯閘電路177具有一第一及閘177a、一第二及閘177b、一第三及閘177c、一第四及閘177d、一第一閂鎖器177e及一第二閂鎖器177f,該第一及閘177a接收該XOR訊號Dxor及該第一延遲訊號Ddy1並輸出一第一邏輯訊號DG1,該第二及閘177b接收該XOR訊號Dxor及該第二延遲訊號Ddy2並輸出一第二邏輯訊號DG2,該第三及閘177c接收該第一邏輯訊號DG1及該第三延遲訊號Ddy3並輸出一第三邏輯訊號DG3,該第四及閘177d接收該第二邏輯訊號DG2及該第三延遲訊號Ddy3並輸出一第四邏輯訊號DG4,該第一閂鎖器177e接收該第一責任週期校正訊號DP3及該第三邏輯訊號DG3並輸出該第一迴轉率控制訊號Ctr1,該第二閂鎖器177f接收該第一責任週期校正訊號DP3及該第四邏輯訊號DG3並輸出該第二迴轉率控制訊號Ctr2。In this embodiment, the logic gate circuit 177 has a first and gate 177a, a second and gate 177b, a third and gate 177c, a fourth and gate 177d, a first latch 177e and a first Two latches 177f, the first and gate 177a receive the XOR signal Dxor and the first delay signal Ddy1 and output a first logic signal DG1, the second and gate 177b receive the XOR signal Dxor and the second delay signal Ddy2 outputs a second logic signal DG2, the third gate 177c receives the first logic signal DG1 and the third delay signal Ddy3 and outputs a third logic signal DG3, and the fourth gate 177d receives the second logic The signal DG2 and the third delay signal Ddy3 output a fourth logic signal DG4, the first latch 177e receives the first duty cycle correction signal DP3 and the third logic signal DG3 and outputs the first slew rate control signal Ctr1, the second latch 177f receives the first duty cycle correction signal DP3 and the fourth logic signal DG3 and outputs the second slew rate control signal Ctr2.

請參閱第9圖,此為該輸出電壓V PAD之電壓迴轉率符合規定的時序圖,其中該XOR訊號Dxor的脈波寬度正常,使得該XOR訊號Dxor與該第一延遲訊號Ddy1交集得到之該第一邏輯訊號DG1具有2個脈波,但與該第二延遲訊號Ddy2交集得到之該第二邏輯訊號DG2僅具有1個脈波。因此,該第一邏輯訊號DG1及該第二邏輯訊號DG2與該第三延遲訊號Ddy3交集後得到之該第三邏輯訊號DG3及該第四邏輯訊號DG4分別具有1個脈波及0個脈波,而表示該輸出電壓V PAD之電壓迴轉率符合規定。 Please refer to FIG. 9, which is a timing diagram showing that the voltage slew rate of the output voltage V PAD meets the requirements, wherein the pulse width of the XOR signal Dxor is normal, so that the intersection of the XOR signal Dxor and the first delay signal Ddy1 obtains the The first logic signal DG1 has two pulses, but the second logic signal DG2 obtained by intersecting the second delay signal Ddy2 has only one pulse. Therefore, the third logic signal DG3 and the fourth logic signal DG4 obtained after the intersection of the first logic signal DG1 and the second logic signal DG2 and the third delay signal Ddy3 have 1 pulse and 0 pulses, respectively. And it means that the voltage slew rate of the output voltage VPAD meets the requirements.

請參閱第10圖,此為該輸出電壓V PAD之電壓迴轉率過小的時序圖,其中該XOR訊號Dxor的脈波寬度過寬,使得該XOR訊號Dxor與該第一延遲訊號Ddy1交集得到之該第一邏輯訊號DG1具有2個脈波,與該第二延遲訊號Ddy2交集得到之該第二邏輯訊號DG2亦具有2個脈波。因此,該第一邏輯訊號DG1及該第二邏輯訊號DG2與該第三延遲訊號Ddy3交集後得到之該第三邏輯訊號DG3及該第四邏輯訊號DG4都分別具有1個脈波,而表示該輸出電壓V PAD之電壓迴轉率過小。 Please refer to FIG. 10, which is a timing diagram of the voltage slew rate of the output voltage V PAD being too small, wherein the pulse width of the XOR signal Dxor is too wide, so that the XOR signal Dxor and the first delay signal Ddy1 are intersected to obtain the The first logic signal DG1 has two pulses, and the second logic signal DG2 obtained by intersecting the second delay signal Ddy2 also has two pulses. Therefore, the third logic signal DG3 and the fourth logic signal DG4 obtained after the intersection of the first logic signal DG1 and the second logic signal DG2 and the third delay signal Ddy3 have one pulse respectively, indicating that the The voltage slew rate of the output voltage VPAD is too small.

請參閱第11圖,此為該輸出電壓V PAD之電壓迴轉率過大的時序圖,其中該XOR訊號Dxor的脈波寬度過窄,使得該XOR訊號Dxor與該第一延遲訊號Ddy1及該第二延遲訊號Ddy2交集皆只能得到1個脈波。因此,該第一邏輯訊號DG1及該第二邏輯訊號DG2與該第三延遲訊號Ddy3交集後得到之該第三邏輯訊號DG3及該第四邏輯訊號DG4都不具有脈波,而表示該輸出電壓V PAD之電壓迴轉率過大。 Please refer to FIG. 11, which is a timing diagram of the voltage slew rate of the output voltage V PAD being too large, wherein the pulse width of the XOR signal Dxor is too narrow, so that the XOR signal Dxor and the first delay signal Ddy1 and the second delay signal Ddy1 The intersection of the delayed signal Ddy2 can only get one pulse. Therefore, the third logic signal DG3 and the fourth logic signal DG4 obtained after the intersection of the first logic signal DG1 and the second logic signal DG2 and the third delay signal Ddy3 do not have a pulse, which indicates the output voltage The voltage slew rate of V PAD is too large.

請參閱第7圖,該第三邏輯訊號DG3及該第四邏輯訊號DG4經由該第一閂鎖器177e及該第二閂鎖器177f儲存後輸出之該該第一迴轉率控制訊號Ctr1及該第二迴轉率控制訊號Ctr2的電位大小即可供該數位邏輯電路180控制該輸出級160之該些補償電晶體的開啟數量,令該輸出電壓V PAD的電壓迴轉率能符合規定。 Please refer to FIG. 7, the third logic signal DG3 and the fourth logic signal DG4 are stored by the first latch 177e and the second latch 177f and output the first slew rate control signal Ctr1 and the first slew rate control signal Ctr1 The potential of the second slew rate control signal Ctr2 can be used by the digital logic circuit 180 to control the turn-on number of the compensation transistors of the output stage 160, so that the voltage slew rate of the output voltage VPAD can meet the requirements.

本發明藉由該電壓迴轉率回授電路對於該輸出電壓的電壓迴轉率進行偵測,而可得知該輸出電壓V PAD的電壓迴轉率是否符合規定並輸出該迴轉率控制訊號至該數位邏輯電路,以調整該數位邏輯電路180輸出之該補償控制訊號,讓該輸出級160輸出之該輸出電壓V PAD的電壓迴轉率能夠符合規定。 In the present invention, the voltage slew rate of the output voltage is detected by the voltage slew rate feedback circuit, so as to know whether the voltage slew rate of the output voltage VPAD meets the requirements and output the slew rate control signal to the digital logic The circuit is used to adjust the compensation control signal output by the digital logic circuit 180 so that the voltage slew rate of the output voltage VPAD output by the output stage 160 can meet the requirements.

本發明之保護範圍當視後附之申請專利範圍所界定者為準,任何熟知此項技藝者,在不脫離本發明之精神和範圍內所作之任何變化與修改,均屬於本發明之保護範圍。The protection scope of the present invention shall be determined by the scope of the appended patent application. Any changes and modifications made by anyone who is familiar with the art without departing from the spirit and scope of the present invention shall fall within the protection scope of the present invention. .

100:多重電壓輸出緩衝器 110:外部電壓偵測器 M P21:第一P型開關電晶體 M P24:第二P型開關電晶體 111:負載組 M P22、M P23:P型電晶體 M N21、M N22、M N23:N型電晶體 112:電晶體對 M N24:第一N型電晶體 M N25:第二N型電晶體 120:電壓位準轉換器 130:非交疊電路 131:高位準非交疊電路 132:低位準非交疊電路 140:責任週期校正器 141:高位準責任週期校正電路 141a:第一反向器 M P61:P型電晶體 M N61:N型電晶體 141b:第一充電電容 141c:第二反向器 M P62:P型電晶體 M N62:N型電晶體 141d:第三反向器 M P63:P型電晶體 M N63:N型電晶體 141e:分壓電路 M P64:P型電晶體 R 1:第一分壓電阻 R 2:第二分壓電阻 141f:第二充電電容 141g:電流鏡電路 141h:第四反向器 M P65:P型電晶體 M N64:N型電晶體 M P67:第一電流鏡開關 M P66:第一電流鏡參考電晶體 M P68:第一電流鏡鏡射電晶體 M N66:第二電流鏡開關 M N65:第二電流鏡參考電晶體 M N67:第二電流鏡鏡射電晶體 142:低位準責任週期校正電路 150:製程飄移偵測器 151:P型電晶體製程飄移偵測電路 151a:PMOS反向器 M P41:P型電晶體 M N41:N型電晶體 151b:充電電容 151c:第一比較器 151d:第一暫存器 151e:第二比較器 151f:第二暫存器 152:N型電晶體製程飄移偵測電路 152a:NMOS反向器 M N51 52:N型電晶體 Inv:反向單元 152b:充電電容 152c:第一比較器 152d:第一暫存器 152e:第二比較器 152f:第二暫存器 160:輸出級 M P11:P型輸出電晶體 M P12-16:P型補償電晶體 M N11:N型輸出電晶體 M N12-16:N型補償電晶體 170:電壓迴轉率迴授電路 171:第一比較器 172:第二比較器 173:XOR閘 174:第一延遲單元 175:第二延遲單元 176:第三延遲單元 177:邏輯閘電路 177a:第一及閘 177b:第二及閘 177c:第三及閘 177d:第四及閘 177e:第一閂鎖器 177f:第二閂鎖器 180:數位邏輯電路 181、182:閘極驅動電路 190:浮動N型井 M P31:第一P型電晶體 M P32:第二P型電晶體 M N31:第一N型電晶體 VDD:電源電壓 VDDIO:外部電壓 V D:偵測電壓 Data:資料訊號 DP1:高位準資料訊號 DN1:低位準資料訊號 DP2:第一非交疊訊號 DN2:第二非交疊訊號 DP3:第一責任週期校正訊號 DN3:第二責任週期校正訊號 Clk:時脈訊號 V ref1-4:參考訊號 P code[2:1]:P型製程偵測訊號 P code[1]:第一位元 P code[2]:第二位元 N code[2:1]:N型製程偵測訊號 N code[1]:第一位元 N code[2]:第二位元 V PAD:輸出電壓 SR r1:第一迴轉率參考電壓 SR r2:第二迴轉率參考電壓 Vgp[5:1]、Vgn[5:1]:補償控制訊號 Ctr1:第一迴轉率控制訊號 Ctr2:第二迴轉率控制訊號 Cmp1:第一比較訊號 Cmp2:第二比較訊號 V ctr:控制電壓 V NW:基極電壓 Dxor:XOR訊號 Ddy1:第一延遲訊號 Ddy2:第二延遲訊號 Ddy3:第三延遲訊號 DG1:第一邏輯訊號 DG2:第二邏輯訊號 DG3:第三邏輯訊號 DG4:第四邏輯訊號 V1、V2:節點 V11、V12:充電電壓 V C1、V C2:充電電壓 DP3b:反向之第一責任週期校正訊號100: Multiple voltage output buffers 110: External voltage detector M P21 : First P-type switching transistor M P24 : Second P-type switching transistor 111: Load group M P22 , M P23 : P-type transistor M N21 , MN22 , MN23 : N-type transistor 112: transistor pair MN24 : first N-type transistor MN25 : second N-type transistor 120: voltage level converter 130: non-overlapping circuit 131: high Quasi-non-overlapping circuit 132: low-level non-overlapping circuit 140: duty cycle corrector 141: high-level duty cycle correction circuit 141a: first inverter M P61 : P-type transistor M N61 : N-type transistor 141b: The first charging capacitor 141c: the second inverter M P62 : the P-type transistor M N62 : the N-type transistor 141d: the third inverter M P63 : the P-type transistor M N63 : the N-type transistor 141e: the voltage divider Circuit M P64 : P-type transistor R 1 : First voltage dividing resistor R 2 : Second voltage dividing resistor 141f : Second charging capacitor 141g : Current mirror circuit 141h : Fourth inverter M P65 : P-type transistor M N64 : N-type transistor M P67 : The first current mirror switch M P66 : The first current mirror reference transistor M P68 : The first current mirror radio transistor M N66 : The second current mirror switch M N65 : The second current mirror Reference transistor MN67 : second current mirror mirror radio transistor 142: low level duty cycle correction circuit 150: process drift detector 151: P-type transistor process drift detection circuit 151a: PMOS inverter M P41 : P-type Transistor MN41 : N-type transistor 151b: Charging capacitor 151c: First comparator 151d: First register 151e: Second comparator 151f: Second register 152: N-type transistor process drift detection circuit 152a: NMOS inverter MN51 , 52 : N-type transistor Inv: inverter unit 152b: charging capacitor 152c: first comparator 152d: first register 152e: second comparator 152f: second register 160: Output stage M P11 : P-type output transistor M P12-16 : P-type compensation transistor M N11 : N-type output transistor M N12-16 : N-type compensation transistor 170: Voltage slew rate feedback circuit 171: first comparator 172: second comparator 173: XOR gate 174: first delay unit 175: second delay unit 176: third delay unit 177: logic gate circuit 177a: first and gate 177b: second and gate 177c : third and gate 177d: fourth and gate 177e: first latch 177f: second latch 180: digital logic circuit 181, 182: gate driver circuit 190: floating N-well MP31 : first P Type electricity Crystal M P32 : Second P-type transistor MN31 : First N-type transistor VDD: Power supply voltage VDDIO: External voltage V D : Detection voltage Data: Data signal DP1: High level data signal DN1: Low level data signal DP2 : The first non-overlapping signal DN2: The second non-overlapping signal DP3: The first duty cycle calibration signal DN3: The second duty cycle calibration signal Clk: The clock signal V ref1-4 : The reference signal P code [2:1] : P-type process detection signal P code [1]: The first bit P code [2]: The second bit N code [2:1]: N-type process detection signal N code [1]: The first bit Element N code [2]: second bit VPAD : output voltage SR r1 : first slew rate reference voltage SR r2 : second slew rate reference voltage Vgp[5:1], Vgn[5:1]: compensation control Signal Ctr1: First slew rate control signal Ctr2: Second slew rate control signal Cmp1: First comparison signal Cmp2: Second comparison signal V ctr : Control voltage V NW : Base voltage Dxor: XOR signal Ddy1: First delay signal Ddy2: Second delay signal Ddy3: Third delay signal DG1: First logic signal DG2: Second logic signal DG3: Third logic signal DG4: Fourth logic signal V1, V2: Nodes V11, V12: Charging voltage V C1 , V C2 : Charging voltage DP3b : Reverse first duty cycle correction signal

第1圖:依據本發明之一實施例,一多重電壓輸出緩衝器的功能方塊圖。 第2圖:依據本發明之一實施例,一外部電壓偵測器的電路圖。 第3圖:依據本發明之一實施例,一高位準責任週期校正電路的電路圖。 第4圖:依據本發明之一實施例,一P型電晶體製程飄移偵測電路的電路圖。 第5圖:依據本發明之一實施例,一N型電晶體製程飄移偵測電路的電路圖。 第6圖:依據本發明之一實施例,一浮動N型井的電路圖。 第7圖:依據本發明之一實施例,一電壓迴轉率迴授電路的電路圖。 第8圖:依據本發明之一實施例,該電壓迴轉率迴授電路之電路作動的時序圖。 第9圖:依據本發明之一實施例,該電壓迴轉率迴授電路之電路作動的時序圖。 第10圖:依據本發明之一實施例,該電壓迴轉率迴授電路之電路作動的時序圖。 第11圖:依據本發明之一實施例,該電壓迴轉率迴授電路之電路作動的時序圖。 FIG. 1 is a functional block diagram of a multiple voltage output buffer according to an embodiment of the present invention. Figure 2: A circuit diagram of an external voltage detector according to an embodiment of the present invention. Figure 3: A circuit diagram of a high-level duty cycle correction circuit according to an embodiment of the present invention. FIG. 4 is a circuit diagram of a P-type transistor process drift detection circuit according to an embodiment of the present invention. FIG. 5 is a circuit diagram of an N-type transistor process drift detection circuit according to an embodiment of the present invention. Figure 6: A circuit diagram of a floating N-well in accordance with one embodiment of the present invention. Figure 7: A circuit diagram of a voltage slew rate feedback circuit according to an embodiment of the present invention. Fig. 8 is a timing diagram of the circuit operation of the voltage slew rate feedback circuit according to an embodiment of the present invention. Fig. 9 is a timing diagram of circuit operation of the voltage slew rate feedback circuit according to an embodiment of the present invention. Fig. 10 is a timing diagram of the circuit operation of the voltage slew rate feedback circuit according to an embodiment of the present invention. FIG. 11 is a timing diagram of the circuit operation of the voltage slew rate feedback circuit according to an embodiment of the present invention.

100:多重電壓輸出緩衝器 100: Multiple voltage output buffers

110:外部電壓偵測器 110: External voltage detector

120:電壓位準轉換器 120: Voltage level converter

130:非交疊電路 130: Non-overlapping circuits

131:高位準非交疊電路 131: High-level non-overlapping circuit

132:低位準非交疊電路 132: Low-level non-overlapping circuit

140:責任週期校正器 140: Duty Cycle Corrector

141:高位準責任週期校正電路 141: High level duty cycle correction circuit

142:低位準責任週期校正電路 142: Low level duty cycle correction circuit

150:製程飄移偵測器 150: Process Drift Detector

160:輸出級 160: output stage

MP11:P型輸出電晶體 M P11 : P-type output transistor

MP12-16:P型補償電晶體 M P12-16 : P-type compensation transistor

MN11:N型輸出電晶體 M N11 : N-type output transistor

MN12-16:N型補償電晶體 M N12-16 : N-type compensation transistor

170:電壓迴轉率迴授電路 170: Voltage slew rate feedback circuit

180:數位邏輯電路 180: Digital Logic Circuits

181、182:閘極驅動電路 181, 182: Gate drive circuit

190:浮動N型井 190: Floating N-well

VNW:基極電壓 V NW : base voltage

VDD:電源電壓 VDD: Power supply voltage

VDDIO:外部電壓 VDDIO: External voltage

VD:偵測電壓 V D : Detection voltage

Data:資料訊號 Data: data signal

DP1:高位準資料訊號 DP1: High level data signal

DN1:低位準資料訊號 DN1: low level data signal

DP2:第一非交疊訊號 DP2: The first non-overlapping signal

DN2:第二非交疊訊號 DN2: Second non-overlapping signal

DP3:第一責任週期校正訊號 DP3: The first duty cycle correction signal

DN3:第二責任週期校正訊號 DN3: Second duty cycle correction signal

Clk:時脈訊號 Clk: Clock signal

Vref1-4:參考訊號 V ref1-4 : Reference signal

Pcode[2:1]:P型製程偵測訊號 P code [2:1]: P-type process detection signal

Ncode[2:1]:N型製程偵測訊號 N code [2:1]: N-type process detection signal

VPAD:輸出電壓 V PAD : output voltage

SRr1:第一迴轉率參考電壓 SR r1 : first slew rate reference voltage

SRr2:第二迴轉率參考電壓 SR r2 : second slew rate reference voltage

Vgp[5:1]、Vgn[5:1]:補償控制訊號 Vgp[5:1], Vgn[5:1]: Compensation control signal

Ctr1:第一迴轉率控制訊號 Ctr1: The first slew rate control signal

Ctr2:第二迴轉率控制訊號 Ctr2: The second slew rate control signal

Vctr:控制電壓 V ctr : Control voltage

Claims (10)

一種多重電壓輸出緩衝器,其包含: 一外部電壓偵測器,接收一電源電壓及一外部電壓,該外部電壓偵測器用以偵測該電源電壓與該外部電壓的電壓大小並輸出一偵測電壓; 一電壓位準轉換器,電性連接該外部電壓偵測器,該電壓位準轉換器接收該偵測電壓及一資料訊號,該電壓位準轉換器根據偵測電壓轉換該資料訊號的電壓位準為一高位準資料訊號及一低位準資料訊號; 一非交疊電路,電性連接該電壓位準轉換器以接收該高位準資料訊號及該低位準資料訊號,該非交疊電路用以將該高位準資料訊號及該低位準資料訊號轉換為非交疊的一第一非交疊訊號及一第二非交疊訊號; 一製程飄移偵測器,接收一時脈訊號及複數個參考訊號,該製程飄移偵測器根據該時脈訊號及該些參考訊號輸出一P型製程偵測訊號及一N型製程偵測訊號; 一輸出級,電性連接該外部電壓偵測器以接收該偵測電壓,且該輸出級輸出一輸出電壓; 一電壓迴轉率迴授電路,電性連接該輸出級以接收該輸出電壓,該電壓迴轉率迴授電路並接收一第一迴轉率參考電壓及一第二迴轉率參考電壓,該電壓迴轉率迴授電路依據該第一迴轉率參考電壓及該第二迴轉率參考電壓判斷該輸出電壓的迴轉率大小並輸出一迴轉率控制訊號;以及 一數位邏輯電路,電性連接該非交疊電路、該製程飄移偵測器、該電壓迴轉率迴授電路及該輸出級,該數位邏輯電路接收該第一非交疊訊號、該第二非交疊訊號、該P型製程偵測訊號、該N型製程偵測訊號及該迴轉率控制訊號,該數位邏輯電路輸出複數個補償控制訊號至該輸出級,以控制該輸出電壓的電壓迴轉率。 A multiple voltage output buffer comprising: an external voltage detector, receiving a power supply voltage and an external voltage, the external voltage detector is used for detecting the voltage magnitudes of the power supply voltage and the external voltage and outputting a detection voltage; A voltage level converter is electrically connected to the external voltage detector, the voltage level converter receives the detection voltage and a data signal, and the voltage level converter converts the voltage level of the data signal according to the detection voltage quasi is a high-level data signal and a low-level data signal; a non-overlapping circuit electrically connected to the voltage level converter to receive the high-level data signal and the low-level data signal, and the non-overlapping circuit is used for converting the high-level data signal and the low-level data signal into a non-overlapping circuit overlapping a first non-overlapping signal and a second non-overlapping signal; a process drift detector, receiving a clock signal and a plurality of reference signals, the process drift detector outputs a P-type process detection signal and an N-type process detection signal according to the clock signal and the reference signals; an output stage electrically connected to the external voltage detector to receive the detection voltage, and the output stage outputs an output voltage; A voltage slew rate feedback circuit is electrically connected to the output stage to receive the output voltage, the voltage slew rate feedback circuit receives a first slew rate reference voltage and a second slew rate reference voltage, the voltage slew rate feedback circuit The transmission circuit determines the slew rate of the output voltage according to the first slew rate reference voltage and the second slew rate reference voltage and outputs a slew rate control signal; and a digital logic circuit electrically connected to the non-overlapping circuit, the process drift detector, the voltage slew rate feedback circuit and the output stage, the digital logic circuit receives the first non-overlapping signal, the second non-overlapping signal The stack signal, the P-type process detection signal, the N-type process detection signal and the slew rate control signal, the digital logic circuit outputs a plurality of compensation control signals to the output stage to control the voltage slew rate of the output voltage. 如請求項1之多重電壓輸出緩衝器,其中該外部電壓偵測器具有一第一P型開關電晶體、一第二P型開關電晶體、一負載組及一電晶體對,該第一P型開關電晶體接收該電源電壓及該外部電壓,且該第一P型開關電晶體輸出一控制電壓,該第二P型開關電晶體電性連接該第一P型開關電晶體,該第二P型開關電晶體接收該電源電壓及該控制電壓,該負載組電性連接該第一P型開關電晶體以接收該控制電壓,且該負載組輸出該偵測電壓,該電晶體對電性連接該負載組及該第二P型開關電晶體。The multiple voltage output buffer of claim 1, wherein the external voltage detector has a first P-type switching transistor, a second P-type switching transistor, a load group and a transistor pair, the first P-type switching transistor The switching transistor receives the power supply voltage and the external voltage, and the first P-type switching transistor outputs a control voltage, the second P-type switching transistor is electrically connected to the first P-type switching transistor, and the second P-type switching transistor is electrically connected to the first P-type switching transistor. The P-type switching transistor receives the power supply voltage and the control voltage, the load group is electrically connected to the first P-type switching transistor to receive the control voltage, and the load group outputs the detection voltage, and the transistor pair is electrically connected the load group and the second P-type switching transistor. 如請求項2之多重電壓輸出緩衝器,其中該外部電壓大於該電源電壓時,該第一P型開關電晶體導通、該第二P型開關電晶體截止,該控制電壓的電位為該電源電壓的電位,該偵測電壓的電位為該電源電壓之電位的0.5倍,該外部電壓等於該電源電壓時,該第一P型開關電晶體截止、該第二P型開關電晶體導通,該控制電壓及該偵測電壓的電位為0。The multi-voltage output buffer of claim 2, wherein when the external voltage is greater than the power supply voltage, the first P-type switching transistor is turned on, the second P-type switching transistor is turned off, and the potential of the control voltage is the power supply voltage The potential of the detection voltage is 0.5 times the potential of the power supply voltage. When the external voltage is equal to the power supply voltage, the first P-type switching transistor is turned off, the second P-type switching transistor is turned on, and the control The potential of the voltage and the detection voltage is zero. 如請求項1之多重電壓輸出緩衝器,其中該輸出級具有一P型輸出電晶體、複數個P型補償電晶體、一N型輸出電晶體及複數個N型補償電晶體,該P型輸出電晶體電性連接該外部電壓偵測器、該N型輸出電晶體及該些P型補償電晶體,該P型輸出電晶體接收該偵測電壓,該N型輸出電晶體電性連接該些N型補償電晶體,該P型輸出電晶體及該N型輸出電晶體輸出該輸出電壓。The multiple voltage output buffer of claim 1, wherein the output stage has a P-type output transistor, a plurality of P-type compensation transistors, an N-type output transistor and a plurality of N-type compensation transistors, the P-type output transistor The transistor is electrically connected to the external voltage detector, the N-type output transistor and the P-type compensation transistors, the P-type output transistor receives the detection voltage, and the N-type output transistor is electrically connected to these The N-type compensation transistor, the P-type output transistor and the N-type output transistor output the output voltage. 如請求項4之多重電壓輸出緩衝器,其包含有一浮動N型井,該浮動N型井電性連接該P型輸出電晶體的一基極,該浮動N型井接收該電源電壓VDD及該輸出電壓,且該浮動N型井輸出一基極電壓至該P型輸出電晶體的該基極。The multiple voltage output buffer of claim 4, comprising a floating N-type well electrically connected to a base of the P-type output transistor, the floating N-type well receiving the power supply voltage VDD and the output voltage, and the floating N-type well outputs a base voltage to the base of the P-type output transistor. 如請求項1之多重電壓輸出緩衝器,其中該製程飄移偵測器具有一P型電晶體製程飄移偵測電路,該P型電晶體製程飄移偵測電路具有一PMOS反向器、一充電電容、一第一比較器、一第一暫存器、一第二比較器及一第二暫存器,該PMOS反向器接收該時脈訊號,該充電電容電性連接該PMOS反向器,且該充電電容產生一充電電壓,該第一比較器電性連接該充電電容以接收該充電電壓及一第一參考訊號,且該第一比較器輸出一第一比較訊號至該第一暫存器,該第一暫存器輸出該P型製程偵測訊號的一第一位元,該第二比較器電性連接該充電電容以接收該充電電壓及一第二參考訊號,且該第二比較器輸出一第二比較訊號至該第二暫存器,該第二暫存器輸出該P型製程偵測訊號的一第二位元。The multiple voltage output buffer of claim 1, wherein the process drift detector has a P-type transistor process drift detection circuit, and the P-type transistor process drift detection circuit has a PMOS inverter, a charging capacitor, a first comparator, a first register, a second comparator and a second register, the PMOS inverter receives the clock signal, the charging capacitor is electrically connected to the PMOS inverter, and The charging capacitor generates a charging voltage, the first comparator is electrically connected to the charging capacitor to receive the charging voltage and a first reference signal, and the first comparator outputs a first comparison signal to the first register , the first register outputs a first bit of the P-type process detection signal, the second comparator is electrically connected to the charging capacitor to receive the charging voltage and a second reference signal, and the second comparator The device outputs a second comparison signal to the second register, and the second register outputs a second bit of the P-type process detection signal. 如請求項1之多重電壓輸出緩衝器,其具有一高位準責任週期校正電路及一低位準責任週期校正電路,該高位準責任週期校正電路電性連接該非交疊電路以接收該第一非交疊訊號,該高位準責任週期校正電路用以校正該第一非交疊訊號的責任週期而輸出一第一責任週期校正訊號至該數位邏輯電路,該低位準責任週期校正電路用以校正該第二非交疊訊號的責任週期而輸出一第二責任週期校正訊號至該數位邏輯電路。The multiple voltage output buffer of claim 1, which has a high-level duty cycle correction circuit and a low-level duty cycle correction circuit, the high-level duty cycle correction circuit is electrically connected to the non-overlapping circuit to receive the first non-overlapping circuit an overlapping signal, the high-level duty cycle correction circuit is used for correcting the duty cycle of the first non-overlapping signal and outputs a first duty-cycle correction signal to the digital logic circuit, and the low-level duty-cycle correction circuit is used for correcting the first duty cycle correction circuit The duty cycle of the two non-overlapping signals outputs a second duty cycle correction signal to the digital logic circuit. 如請求項7之多重電壓輸出緩衝器,其中該高位準責任週期校正電路具有一第一反向器、一第一充電電容、一第二反向器、一第三反向器、一分壓電路、一第二充電電容及一電流鏡電路,該第一反向器接收該第一非交疊訊號,該第一充電電容及該第二反向器電性連接該第一反向器,且該第二反向器輸出該第一責任週期校正訊號至該數位邏輯電路,該第三反向器接收該第一非交疊訊號,該分壓電路電性連接該第三反向器,該第二充電電容電性連接該分壓電路,該電流鏡電路電性連接該第二充電電容及該第一反向器,其中該電流鏡電路受該第二充電電容的一充電電壓控制而改變其對於該第一充電電容的一充放電電流大小。The multiple voltage output buffer of claim 7, wherein the high-level duty cycle correction circuit has a first inverter, a first charging capacitor, a second inverter, a third inverter, and a voltage divider circuit, a second charging capacitor and a current mirror circuit, the first inverter receives the first non-overlapping signal, the first charging capacitor and the second inverter are electrically connected to the first inverter , and the second inverter outputs the first duty cycle correction signal to the digital logic circuit, the third inverter receives the first non-overlapping signal, and the voltage divider circuit is electrically connected to the third inverter The second charging capacitor is electrically connected to the voltage divider circuit, the current mirror circuit is electrically connected to the second charging capacitor and the first inverter, wherein the current mirror circuit is charged by the second charging capacitor The voltage is controlled to change the magnitude of a charging and discharging current for the first charging capacitor. 如請求項8之多重電壓輸出緩衝器,其中該電流鏡電路具有一第四反向器、一第一電流鏡開關、一第一電流鏡參考電晶體、一第一電流鏡鏡射電晶體、一第二電流鏡開關、一第二電流鏡參考電晶體及一第二電流鏡鏡射電晶體,該第四反向器電性連接該第二充電電容以接收該充電電壓,該第一電流鏡開關電性連接該第二充電電容及該第四反向器,且該第一電流鏡開關受該充電電壓控制其導通或截止,該第一電流鏡參考電晶體電性連接該第四反向器,該第一電流鏡鏡射電晶體電性連接該第一電流鏡參考電晶體及該第一反向器,該第二電流鏡開關電性連接該第二充電電容及該第四反向器,且該第二電流鏡開關受該充電電壓控制其導通或截止,該第二電流鏡參考電晶體電性連接該第四反向器,該第二電流鏡鏡射電晶體電性連接該第二電流鏡參考電晶體及該第一反向器。The multiple voltage output buffer of claim 8, wherein the current mirror circuit has a fourth inverter, a first current mirror switch, a first current mirror reference transistor, a first current mirror radio transistor, a A second current mirror switch, a second current mirror reference transistor and a second current mirror radio transistor, the fourth inverter is electrically connected to the second charging capacitor to receive the charging voltage, the first current mirror switch The second charging capacitor and the fourth inverter are electrically connected, and the first current mirror switch is controlled by the charging voltage to be turned on or off, and the first current mirror reference transistor is electrically connected to the fourth inverter , the first current mirror radio transistor is electrically connected to the first current mirror reference transistor and the first inverter, the second current mirror switch is electrically connected to the second charging capacitor and the fourth inverter, And the second current mirror switch is controlled by the charging voltage to be turned on or off, the second current mirror reference transistor is electrically connected to the fourth inverter, and the second current mirror radio transistor is electrically connected to the second current A mirror reference transistor and the first inverter. 如請求項7之多重電壓輸出緩衝器,其中該電壓迴轉率迴授電路具有一第一比較器、一第二比較器、一XOR閘、一第一延遲單元、一第二延遲單元、一第三延遲單元及一邏輯閘電路,該第一比較器電性該輸出級,該第一比較器接收該輸出電壓及該第一迴轉率參考電壓,且該第一比較器輸出一第一比較訊號,該第二比較器電性該輸出級,該第二比較器接收該輸出電壓及該第二迴轉率參考電壓,且該第二比較器輸出一第二比較訊號,該XOR閘電性連接該第一比較器及該第二比較器以接收該第一比較訊號及該第二比較訊號,該XOR閘輸出一XOR訊號,該第一延遲單元接收該第一責任週期校正訊號並輸出一第一延遲訊號,該第二延遲單元接收該第一責任週期校正訊號並輸出一第二延遲訊號,該第三延遲單元接收反向之該第一責任週期校正訊號並輸出一第三延遲訊號,該邏輯閘電路電性連接第一延遲單元、該第二延遲單元及該第三延遲單元以接收該第一延遲訊號、該第二延遲訊號及該第三延遲訊號,且該邏輯閘電路輸出一第一迴轉率控制訊號及一第二迴轉率控制訊號至該數位邏輯電路。The multiple voltage output buffer of claim 7, wherein the voltage slew rate feedback circuit has a first comparator, a second comparator, an XOR gate, a first delay unit, a second delay unit, a first Three delay units and a logic gate circuit, the first comparator electrically connects the output stage, the first comparator receives the output voltage and the first slew rate reference voltage, and the first comparator outputs a first comparison signal , the second comparator is electrically connected to the output stage, the second comparator receives the output voltage and the second slew rate reference voltage, and the second comparator outputs a second comparison signal, and the XOR gate is electrically connected to the The first comparator and the second comparator receive the first comparison signal and the second comparison signal, the XOR gate outputs an XOR signal, and the first delay unit receives the first duty cycle correction signal and outputs a first delay signal, the second delay unit receives the first duty cycle correction signal and outputs a second delay signal, the third delay unit receives the reversed first duty cycle correction signal and outputs a third delay signal, the logic The gate circuit is electrically connected to the first delay unit, the second delay unit and the third delay unit to receive the first delay signal, the second delay signal and the third delay signal, and the logic gate circuit outputs a first delay signal The slew rate control signal and a second slew rate control signal are sent to the digital logic circuit.
TW110149747A 2021-12-30 2021-12-30 Mixed-voltage output buffer TWI772240B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110149747A TWI772240B (en) 2021-12-30 2021-12-30 Mixed-voltage output buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110149747A TWI772240B (en) 2021-12-30 2021-12-30 Mixed-voltage output buffer

Publications (2)

Publication Number Publication Date
TWI772240B true TWI772240B (en) 2022-07-21
TW202326728A TW202326728A (en) 2023-07-01

Family

ID=83439837

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110149747A TWI772240B (en) 2021-12-30 2021-12-30 Mixed-voltage output buffer

Country Status (1)

Country Link
TW (1) TWI772240B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154309B1 (en) * 2005-01-13 2006-12-26 Advanced Micro Devices, Inc. Dual-mode output driver configured for outputting a signal according to either a selected high voltage/low speed mode or a low voltage/high speed mode
TW200816205A (en) * 2006-08-09 2008-04-01 Atmel Corp Apparatus and method for charge pump slew rate control
US7839174B2 (en) * 2008-12-09 2010-11-23 Himax Technologies Limited Mixed-voltage tolerant I/O buffer and output buffer circuit thereof
TWI346855B (en) * 2007-06-01 2011-08-11 Holtek Semiconductor Inc Gate driving circuit and the driving method thereof
US8421506B2 (en) * 2010-05-27 2013-04-16 National Sun Yat-Sen University Output buffer with process and temperature compensation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154309B1 (en) * 2005-01-13 2006-12-26 Advanced Micro Devices, Inc. Dual-mode output driver configured for outputting a signal according to either a selected high voltage/low speed mode or a low voltage/high speed mode
TW200816205A (en) * 2006-08-09 2008-04-01 Atmel Corp Apparatus and method for charge pump slew rate control
TWI346855B (en) * 2007-06-01 2011-08-11 Holtek Semiconductor Inc Gate driving circuit and the driving method thereof
US7839174B2 (en) * 2008-12-09 2010-11-23 Himax Technologies Limited Mixed-voltage tolerant I/O buffer and output buffer circuit thereof
US8421506B2 (en) * 2010-05-27 2013-04-16 National Sun Yat-Sen University Output buffer with process and temperature compensation

Also Published As

Publication number Publication date
TW202326728A (en) 2023-07-01

Similar Documents

Publication Publication Date Title
US9484922B2 (en) Voltage level shifter module
US7772883B2 (en) Level shifter
KR102103019B1 (en) Impedance calibration circuit
US10502781B2 (en) Detection circuits, detection method, and electronic systems for I/O output status
US8736305B2 (en) Input and output buffer including a dynamic driver reference generator
US6992511B2 (en) Output buffer circuit
US9419616B2 (en) LVDS driver
WO2018171249A1 (en) Level shift circuit and method
WO2014138033A1 (en) Voltage level shifter with a low-latency voltage boost circuit
US10560084B2 (en) Level shift circuit
US7737748B2 (en) Level shifter of semiconductor device and method for controlling duty ratio in the device
US7830181B1 (en) Deglitch circuit
TWI772240B (en) Mixed-voltage output buffer
CN113271083A (en) Pulse signal transmitting circuit
US8504320B2 (en) Differential SR flip-flop
KR100583097B1 (en) Apparatus for detecting power up
US7847591B2 (en) Low jitter CMOS to CML converter
US10355683B2 (en) Correcting duty cycle and compensating for active clock edge shift
CN114095004B (en) Driving circuit
KR20130032702A (en) Comparision ciruit and impedance calibraion circuit
US9705490B2 (en) Driver circuit for single wire protocol slave unit
JP2018082226A (en) Data communication system and semiconductor device
TWI603584B (en) Output buffer with process and voltage compensation
TWI436584B (en) Output circuit with reducing overshoot function
US20100219869A1 (en) Semiconductor intergrated circuit and signal adjusting method