TWI772167B - 超音波傳感器 - Google Patents

超音波傳感器 Download PDF

Info

Publication number
TWI772167B
TWI772167B TW110132451A TW110132451A TWI772167B TW I772167 B TWI772167 B TW I772167B TW 110132451 A TW110132451 A TW 110132451A TW 110132451 A TW110132451 A TW 110132451A TW I772167 B TWI772167 B TW I772167B
Authority
TW
Taiwan
Prior art keywords
layer
ultrasonic sensor
piezoelectric body
barrel
stress balance
Prior art date
Application number
TW110132451A
Other languages
English (en)
Other versions
TW202312666A (zh
Inventor
陳隆
吳瑋仁
楊松儒
蘇益廷
Original Assignee
詠業科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 詠業科技股份有限公司 filed Critical 詠業科技股份有限公司
Priority to TW110132451A priority Critical patent/TWI772167B/zh
Priority to CN202111095552.1A priority patent/CN115728757A/zh
Application granted granted Critical
Publication of TWI772167B publication Critical patent/TWI772167B/zh
Publication of TW202312666A publication Critical patent/TW202312666A/zh

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Surgical Instruments (AREA)

Abstract

一種超音波傳感器,包含一壓電體、一聲阻匹配層、一應力平衡層及一減震體,該應力平衡層與壓電體相接,且該應力平衡層的硬度大於該減震體的硬度,且該應力平衡層的聲阻小於5MRayl。

Description

超音波傳感器
本創作大體上為一種超音波傳感器,更具體言之,其係關於一種包含應力平衡層的超音波傳感器。
超音波傳感器(ultrasonic transducer)可用於短距離的物件偵測,其藉由發出的超音波碰撞到物體之後反射回來的飛行時間差(time of flight;ToF),可以計算出超音波傳感器與待偵測物體之間的距離。對於超音波偵測而言,待偵測物體的類型與性質並不會受到太多的限制,包括各種表面顏色、透明度、硬度的固體、液體、或粉體等,其都可以用超音波傳感器來進行偵測。故此,現今超音波傳感器已廣泛應用在倒車雷達(parking sensor)、位高偵測(level sensor)、薄片層數偵測(multiple sheet detection)及流量偵測(flow meter)等範疇。
超音波傳感器的主要組成元件為壓電陶瓷(piezoceramics),例如以鋯鈦酸鉛(lead zirconate titanate,PZT)材料製作的陶瓷,其雙面會塗佈導電層。在運作中施加高頻交流電訊號會讓壓電陶瓷產生高頻率振動,該高頻率震動是一種聲波,如果此聲波的頻率落在超音波範圍,即為超音波振動。為了讓所產生的超音波能從壓電陶瓷傳遞到空氣中,會在壓電陶瓷與空氣之間設置聲阻匹配層,使得兩者的聲阻得以匹配,從而可有效地將超音波傳遞到空氣中。一般業 界常用的匹配層材料為高分子樹脂與空心玻璃球混合成的複合材料,來達到較低的聲阻特性,同時也具有較佳的耐候性及可靠度。然而,壓電陶瓷所產生的振動是同時朝向前端(發射端)及背面傳遞的,若無法將朝向背面發射的超音波消除,在使用此超音波傳感器時,會有較大的殘響,殘響會使訊號判別失效,故此,減震體(damping layer)就成了超音波傳感器中必要的部件,其會設置環繞在壓電陶瓷和/或聲阻匹配層周圍,使得壓電陶瓷震動的餘波能被快速的消除。用於超音波傳感器的減震體,一般業界常用之減震體材料為高分子樹脂與金屬或陶瓷粒子混合之複合材料,其聲阻抗與壓電陶瓷較相近,以吸收較多背向傳遞的超音波,讓超音波傳感器之餘震降低。
為了讓閱者對本創作之面向有基本的了解,以下段落提出了本創作的簡要說明。此概要並非是本發明內容詳盡的綜覽,並未意欲要表明本發明的所有關鍵或必要元件或是要限定本發明之範疇,其訴求僅在於對後續所將探討的本發明細節描述先以簡化的形式提出其中的某些概念。
本發明的目的即在於提出一種新穎的超音波傳感器,其特點為在壓電陶瓷與減震體之間增加一應力平衡層,以改善壓電陶瓷與聲阻匹配層在高低溫環境下,由於熱膨脹係數的差異,聲阻匹配層會對壓電陶瓷產生熱應力,進而導致壓電陶瓷破裂。其次,此應力平衡層的材料與業界常用之高密度、高聲阻抗的減震體材料不同,其密度相對較小且聲阻抗也相對較低,所以能減少超音波從壓電陶瓷背面的傳遞,從而提升整體傳感器的發射感度。此具有應力平衡層結構的超音波傳感器,可以提升超音波傳感器的可靠度,還提供了超音波傳感器在減震材料配置的靈活性。
本發明的面向之一在於提出一種超音波傳感器,其包含一壓電體,具有隔著該壓電體相對的第一表面與第二表面,及連接該第一表面與該第二表面之側表面。一聲阻匹配層,該聲阻匹配層具有隔著該聲阻匹配層相對的第三表面與第四表面,且該第三表面與壓電體的第二表面相接。一應力平衡層,該應力平衡層具有隔著該應力平衡層相對的第五表面與第六表面,該第六表面與壓電體的第一表面相接。該應力平衡層的硬度大於減震體的硬度,且該應力平衡層的聲阻小於5MRayl。一減震體,包覆該應力平衡層,和/或該壓電體,和/或該聲阻匹配層。
本發明的另一面向在於提出一種超音波傳感器,其應力平衡層具有貫穿該應力平衡層的第五表面與第六表面的貫穿孔。
本發明的另一面向在於提出一種超音波傳感器,其應力平衡層的該第六表面外緣可向前包覆延伸與該壓電體的側表面相連接。
本發明的另一面向在於提出一種超音波傳感器,其具有桶狀承載體容納壓電體、聲阻匹配層、應力平衡層與減震體。
本發明的又一面向在於提出一種超音波傳感器,其具有管狀承載體容納壓電體、聲阻匹配層、應力平衡層與減震體。
本發明的這類目的與其他目的,在閱者讀過下文中以多種圖形與繪圖來描述的較佳實施例細節說明後,必然可變得更為明瞭顯見。
1、2、3、4、5、6、7、8、9、10:超音波傳感器
10:壓電體
10A:第一表面
10B:第二表面
10C:側表面
10D:側表面
20:聲阻匹配層
20A:第三表面
20B:第四表面
30:應力平衡層
30A:第五表面
30B:第六表面
32:貫穿孔
40:減震體
50:桶狀承載體
50A:第七表面
50B:第八表面
51:桶底
52:桶身
60:管狀承載體
61:內表面
62:外表面
63:第一開口
64:第二開口
70:承載體
70A:第三表面
70B:第四表面
本說明書含有附圖併於文中構成了本說明書之一部分,俾使閱者對本發明實施例有進一步的瞭解。該些圖示係描繪了本創作的一些實施例並連同本文描述一起說明了其原理。在該些圖示中:第1圖繪示根據本發明第一實施例的超音波傳感器的剖面結構示意圖;第2圖繪示根據本發明第二實施例的超音波傳感器的剖面結構示意圖;第3圖繪示根據本發明第三實施例的超音波傳感器的剖面結構示意圖;第4圖繪示根據本發明第四實施例的超音波傳感器的剖面結構示意圖;第5圖繪示根據本發明第五實施例的超音波傳感器的剖面結構示意圖;第6圖繪示根據本發明第六實施例的超音波傳感器的剖面結構示意圖;第7圖繪示根據本發明第七實施例的超音波傳感器的剖面結構示意圖;第8圖繪示根據本發明第八實施例的超音波傳感器的剖面結構示意圖;第9圖繪示根據本發明第九實施例的超音波傳感器的剖面結構示意圖;以及第10圖繪示根據本發明第十實施例的超音波傳感器的剖面結構示意圖。
在下文的本發明細節描述中,元件符號會標示在隨附的圖示中成為其中的一部份,並且以可實行該實施例之特例描述方式來表示。這類的實施例會說明足夠的細節俾使該領域之一般技藝人士得以具以實施。為了圖例清楚之故,圖示中可能有部分元件的尺寸會加以誇大。閱者須瞭解到本發明中亦可利用其他的實施例或是在不悖離所述實施例的前提下,作出結構性、邏輯性、及電性上的改變。因此,下文之細節描述不可被視為是一種限定,反之,其中所包含的實施例將由隨附的申請專利範圍來加以界定。
請參考第1圖,第1圖繪示根據本發明第一實施例的超音波傳感器的剖面結構示意圖。如第1圖所示,本實施例中的超音波傳感器1包含有一壓電體10,一聲阻匹配層20、一應力平衡層30以及一減震體40。其中壓電體10位於聲阻匹配層20與應力平衡層30之間,而減震體40又包覆應力平衡層30,和/或包覆壓電體10,和/或包覆聲阻匹配層20。
更詳細而言,本實施例中壓電體10具有一第一表面10A、以及隔著壓電體10相對於第一表面10A的一第二表面10B,另外具有連接第一表面10A與第二表面10B之側表面10C、側表面10D。聲阻匹配層20具有一第三表面20A、以及隔著聲阻匹配層20相對於第三表面20A的一第四表面20B,且聲阻匹配層20的第三表面20A與壓電體10的第二表面10B相接。應力平衡層30具有一第五表面30A、以及隔著應力平衡層30相對於第五表面30A的一第六表面30B,其中應力平衡層30的第六表面30B與壓電體10的第一表面10A相接。另外減震體40與應力平衡層30的第五表面30A相接,且包覆應力平衡層30的側壁,此外本實施例中,減震體40還包覆了壓電體10的側壁、以及部份包覆聲阻匹配層20的側壁。但值得注意的是,減震體40的包覆範圍可能依照實際需求而調整,也就是說,在本發明的其他實施例中,減震體40可能包覆更多/或更少層的表面或側壁,本發明並不以此為限制。
本實施例中,壓電體10的材質包含壓電陶瓷,例如包含鈦酸鋇(BaTiO3)、鈦酸鉛(PbTiO3)和鋯鈦酸鉛(Pb(ZrTi)O3,PZT)等,但不限於此。聲阻匹配層20的材質包含有機高分子材料或是由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,例如有機高分子材料包括環氧樹脂(epoxy)、乙烯基酯樹 脂(vinyl ester resin)、紫外線硬化膠(UV膠)、聚氨脂(polyurethane)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin),但不限於此。應力平衡層30的材質包含有機高分子材料或是由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,例如有機高分子材料包括環氧樹脂(epoxy)、乙烯基酯樹脂(vinyl ester resin)、紫外線硬化膠(UV膠)、聚氨脂(polyurethane)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin),但不限於此。減震體40的材質包含有機高分子材料或是由有機高分子材料與金屬或陶瓷粒子混合而成的複合材料,該有機高分子材料包括環氧樹脂(epoxy)、聚氨脂(polyurethane)、或是矽膠(silicone),但不限於此。
本實施例中,壓電體10的作用是藉由高頻率震動產生超音波,因壓電體10的聲阻(約為35MRayl,35*106公斤/平方公尺.秒左右)與空氣的聲阻(約為4*10-4MRayl),二者聲阻差距為5個級數,因此需要設置聲阻匹配層20位於壓電體10與空氣之間,使得壓電體10與空氣的聲阻得以匹配,從而可有效地將超音波傳遞到空氣中。另外,減震體40的設置目的則是降低使用超音波傳感器時產生的殘響。上述壓電體10、聲阻匹配層20與減震體40都屬於習知超音波傳感器的常見元件,其詳細原理與材料屬於本領域的習知技術,在此不多加贅述。
然而,習知的超音波傳感器有一缺陷存在,就是習知的超音波傳感器,聲阻匹配層僅位於壓電體的單邊表面,因此容易在溫度循環試驗之下,因壓電體的熱膨脹係數與聲阻匹配層的熱膨脹係數差異大而產生碎裂。更詳細而言,一般的超音波傳感器在出廠時通常會先經過溫度循環試驗(例如在攝氏負40度至攝氏正85度左右進行循環測試),以測試超音波傳感器在環境溫度變化之下的可靠性。申請人發現習知的超音波傳感器中(也就是僅包含壓電體、聲阻匹配 層與減震體的超音波傳感器),由於聲阻匹配層僅位於壓電體的單邊表面,再加上壓電體與聲阻匹配層的熱膨脹係數差異較大(一般來說壓電體的熱膨脹係數約5PPM,而聲阻匹配層的熱膨脹係數則約50PPM,兩者差距近10倍),因此在溫度循環測試時,壓電體的單邊表面,也就是與聲阻匹配層相鄰的該表面,易受到較明顯的壓縮/拉伸力,進而使得壓電體產生碎裂。
上述壓電體產生碎裂的原因,主要來自聲阻匹配層僅設置在壓電體的單面表面,而壓電體的另一表面則直接連接減震體,因此當熱漲冷縮發生時,壓電體受到來自單面(也就是聲阻匹配層)較為明顯的應力,進而產生碎裂情況。因此,本實施例的特徵在於,在壓電體10的另一面(也就是相對於聲阻匹配層20的對面表面)額外設置應力平衡層30。在一些實施例中,應力平衡層30的材質可與聲阻匹配層20相同,且應力平衡層30與聲阻匹配層20分別設置在壓電體10的雙面,因此在進行溫度循環測試時,壓電體10所承受的應力將會平均分散至雙面,達到應力雙邊平衡的效果,不容易讓壓電體10承受來自單一面的應力而產生碎裂情況。
值得注意的是,本發明中應力平衡層30與減震體40屬於不同層,兩者也較佳包含有不同的材質,因減震體40的材質與用途均與應力平衡層30不同,所以本發明較佳不以全部或是一部分的減震體40,來代替作為應力平衡層30使用。本實施例中,應力平衡層30的硬度大於減震體40的硬度,且應力平衡層30的聲阻小於5MRayl。本發明中增設應力平衡層30於壓電體10與減震體40之間,比起習知技術(也就是不包含有應力平衡層的結構)可以有效地提高超音波傳感器的可靠性與耐用性。根據申請人的實際測試結果,習知的超音波傳感器在進行約10次溫度循環測試後可能即會產生壓電體碎裂的情況,然而本發明在增設 應力平衡層30之後,超音波傳感器1可在進行50次以上的溫度循環測試後仍未碎裂,故超音波傳感器的可靠性大幅度提升。
此外,本發明的超音波傳感器除了具有提高可靠性的優點之外,還可調整應力平衡層30的參數,例如調整厚度或是材質,以降低壓電體10產生的超音波從背面傳遞的效率,進而提高超音波傳感器1的正面發射效能。
下文將針對本發明之超音波傳感器的不同實施樣態進行說明,且為簡化說明,以下說明主要針對各實施例不同之處進行詳述,而不再對相同之處作重覆贅述。此外,本發明之各實施例中相同之元件係以相同之標號進行標示,以利於各實施例間互相對照。
第2圖繪示根據本發明第二實施例的超音波傳感器的剖面結構示意圖。如第2圖所示,本實施例的超音波傳感器與上述第一實施例所述的超音波傳感器(請見第1圖)相似,而主要的差別在於,本實施例中超音波傳感器2中的應力平衡層30中更包含有多個貫穿孔32,其中貫穿孔32為貫穿應力平衡層30的第五表面30A與第六表面30B的中空孔狀結構。從其切面來看,其形狀包含但不限於圓形、矩形、三角形、不規則形或其他形狀。本實施例中貫穿孔32具有降低應力平衡層30的整體密度的功效,以達到低聲阻的優點,從而可提高超音波從前方聲阻匹配層發射的感度。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述第一實施例所述相同,在此不重複贅述。
第3圖繪示根據本發明第三實施例的超音波傳感器的剖面結構示意圖。如第3圖所示,本實施例的超音波傳感器與上述第一實施例所述的超音波傳 感器(請見第1圖)相似,而主要的差別在於,本實施例中超音波傳感器3中的應力平衡層30不僅覆蓋於壓電體10的第一表面10A,且同時部分延展而包覆壓電體10的側面10C、10D。也就是說,應力平衡層30的第六表面30B外緣可向前包覆延伸與壓電體10的側表面10C、10D相連接。如此一來可以更有效地保護壓電體10,使壓電體10的側壁也不易碎裂。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述第一實施例所述相同,在此不重複贅述。
第4圖繪示根據本發明第四實施例的超音波傳感器的剖面結構示意圖。如第4圖所示,本實施例的超音波傳感器4與上述第一實施例所述的超音波傳感器(請見第1圖)相似,而主要的差別在於,本實施例中超音波傳感器4更包含有一桶狀承載體50,其中上述壓電體10、聲阻匹配層20、應力平衡層30以及減震體40位於桶狀承載體50內。更詳細而言,桶狀承載體50具有一桶底51與桶身52,且桶狀承載體50具有隔著桶底51相對的第七表面50A與第八表面50B,其中壓電體10、聲阻匹配層20、應力平衡層30以及減震體40設置於桶狀承載體50內,且桶狀承載體50的桶底51的第七表面50A與聲阻匹配層20的第四表面20B相接。桶狀承載體50可以作為超音波傳感器4的外殼,保護其他內部的元件。其中,桶狀承載體50的材質可包含金屬、塑膠、高分子材料等,但不限於此。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述第一實施例所述相同,在此不重複贅述。
第5圖繪示根據本發明第五實施例的超音波傳感器的剖面結構示意圖。如第5圖所示,本實施例的超音波傳感器5與上述第一實施例所述的超音波傳感器(請見第1圖)相似,而主要的差別在於,本實施例中超音波傳感器5更包含有一管狀承載體60,其中壓電體10、聲阻匹配層20、應力平衡層30以及減震體40 位於管狀承載體60內。更詳細而言,管狀承載體60具有隔著管狀承載體60相對的內表面61與外表面62以及相對的第一開口63與第二開口64,以及減震體40包覆壓電體10與應力平衡層30,其中管狀承載體60的內表面61圍繞減震體40並與減震體40相接,且聲阻匹配層20的第四表面20B從管狀承載體60的第一開口63露出。管狀承載體60同樣可以保護其他內部的元件。另外管狀承載體60可以較容易控制超音波的發射方向。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述第一實施例所述相同,在此不重複贅述。
除了以上所述的桶狀承載體或是管狀承載體之外,在一些實施例中,還可以包含有其他形狀的承載體,例如板狀的承載體。另外一些其他的實施例中,可能使用板狀的承載體來替代聲阻匹配層。第6圖繪示根據本發明第六實施例的超音波傳感器的剖面結構示意圖。如第6圖所示。本實施例的超音波傳感器6與上述第一實施例所述的超音波傳感器(請見第1圖)相似,本實施例中同樣包含有壓電體10、應力平衡層30以及減震體40。但是本實施例中以承載體70替代上述第一實施例中的聲阻匹配層20。更詳細而言,本實施例中包含有:一壓電體10,具有隔著壓電體10相對的第一表面10A與第二表面10B,與連接第一表面10A與第二表面10B之側表面10C、側表面10D;一承載體70,承載體70具有隔著承載體70相對的第三表面70A與第四表面70B,且第三表面70A與壓電體10的第二表面10B相接;一應力平衡層30,應力平衡層30具有隔著應力平衡層30相對的第五表面30A與第六表面30B,第六表面30B與壓電體10的第一表面10A相接,且應力平衡層的聲阻小於5MRayl;以及一減震體40,包覆應力平衡層30,和/或壓電體10,和/或承載體70,且應力平衡層30的硬度大於減震體40的硬度。本實施例中,以承載體70當作原先第一實施例中的聲阻匹配層,可以節省一部份的元件空間以及簡化製程。其中,承載體70也可以選用類似聲阻匹配層的材質,例如包含有 機高分子材料或是由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,該有機高分子材料包括環氧樹脂(epoxy)、乙烯基酯樹脂(vinyl ester resin)、紫外線硬化膠(UV膠)、聚氨脂(polyurethane)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin),但不限於此。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述第一實施例所述相同,在此不重複贅述。
第7圖繪示根據本發明第七實施例的超音波傳感器的剖面結構示意圖、第8圖繪示根據本發明第八實施例的超音波傳感器的剖面結構示意圖、第9圖繪示根據本發明第九實施例的超音波傳感器的剖面結構示意圖。在這些實施例中,可以將上述第六實施例中,以承載體來替代聲阻匹配層的概念應用於此。如第7圖所示,第七實施例所述的超音波傳感器7與第二實施例所述的超音波傳感器(請見第2圖)相似,差別在於本實施例中超音波傳感器7不包含有聲阻匹配層,而是以承載體70來替代聲阻匹配層。承載體70的材質與特性已經於上述實施例說明,在此不重複贅述。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述實施例所述相同,在此不重複贅述。
同樣地,如第8圖所示,第八實施例所述的超音波傳感器8與第三實施例所述的超音波傳感器(請見第3圖)相似,差別在於本實施例中超音波傳感器8不包含有聲阻匹配層,而是以承載體70來替代聲阻匹配層。承載體70的材質與特性已經於上述實施例說明,在此不重複贅述。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述實施例所述相同,在此不重複贅述。
同理,如第9圖所示,第九實施例所述的超音波傳感器9與第四實施例所述的超音波傳感器(請見第4圖)相似,差別在於本實施例中超音波傳感器9不 包含有聲阻匹配層,而是以桶狀承載體50來替代聲阻匹配層。桶狀承載體50的材質與特性已經於上述實施例說明,在此不重複贅述。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述實施例所述相同,在此不重複贅述。
第10圖繪示根據本發明第十實施例的超音波傳感器的剖面結構示意圖。在本實施例中,超音波傳感器10的結構類似第四實施例所述的超音波傳感器4的結構,但差別在於本實施例中聲阻匹配層20被設置在桶狀承載體50的外部,也就是說聲阻匹配層20的第三表面20A與桶狀承載體50的第八表面50B相連。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述實施例所述相同,在此不重複贅述。
綜上所述,本發明的目的即在於提出一種新穎的超音波傳感器,其特點為在壓電陶瓷與減震體之間增加一應力平衡層,以改善壓電陶瓷與聲阻匹配層在高低溫環境下,由於熱膨脹係數的差異,聲阻匹配層會對壓電陶瓷產生熱應力,進而導致壓電陶瓷破裂。其次,此應力平衡層的材料與業界常用之高密度、高聲阻抗的減震體材料不同,其密度相對較小且聲阻抗也相對較低,所以能減少超音波從壓電陶瓷背面的傳遞,從而提升整體傳感器的發射感度。此具有應力平衡層結構的超音波傳感器,可以提升超音波傳感器的可靠度,還提供了超音波傳感器在減震材料配置的靈活性。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
1:超音波傳感器
10:壓電體
10A:第一表面
10B:第二表面
10C:側表面
10D:側表面
20:聲阻匹配層
20A:第三表面
20B:第四表面
30:應力平衡層
30A:第五表面
30B:第六表面
40:減震體

Claims (17)

  1. 一種超音波傳感器,包含:一壓電體,具有隔著該壓電體相對的第一表面與第二表面,及連接該第一表面與該第二表面之側表面;一聲阻匹配層,該聲阻匹配層具有隔著該聲阻匹配層相對的第三表面與第四表面,且該第三表面與壓電體的第二表面相接;一應力平衡層,該應力平衡層具有隔著該應力平衡層相對的第五表面與第六表面,該第六表面與壓電體的第一表面相接,且該應力平衡層的聲阻小於5Mrayl,其中該壓電體的至少一部份的該側表面並未被該應力平衡層所覆蓋;以及一減震體,包覆該應力平衡層,和/或該壓電體,和/或該聲阻匹配層,其中該應力平衡層的硬度大於該減震體的硬度。
  2. 如專利申請範圍第1項所述之超音波傳感器,其中該應力平衡層更包含有機高分子材料或是由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,該有機高分子材料包括環氧樹脂(epoxy)、乙烯基酯樹脂(vinyl ester resin)、紫外線硬化膠(UV膠)、聚氨脂(polyurethane)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin)。
  3. 如申請專利範圍第1項所述之超音波傳感器,其中該應力平衡層具有貫穿該應力平衡層的第五表面與第六表面的貫穿孔。
  4. 如專利申請範圍第1項所述之超音波傳感器,其中該應力平衡層的該第六表面外緣可向前包覆延伸與該壓電體的側表面相連接。
  5. 如專利申請範圍第1項所述之超音波傳感器,更包含一桶狀承載體,具有一桶底與桶身,且該桶狀承載體具有隔著該桶底相對的第七表面與第八表面,其中該壓電體、該聲阻匹配層、該應力平衡層以及該減震體設置於該桶狀承載體內,且該桶狀承載體的該桶底的該第七表面與該聲阻匹配層的第四表面相接。
  6. 如專利申請範圍第1項所述之超音波傳感器,更包含一管狀承載體,具有隔著該管狀承載體相對的內表面與外表面以及相對的第一開口與第二開口,以及該減震體包覆該壓電體與該應力平衡層,其中該管狀承載體的該內表面圍繞該減震體並與該減震體相接,且該聲阻匹配層的該第四表面從該管狀承載體的第一開口露出。
  7. 如申請專利範圍第1項所述之超音波傳感器,其中該減震體包含有機高分子材料或是由有機高分子材料與金屬或陶瓷粒子混合而成的複合材料,該有機高分子材料包括環氧樹脂(epoxy)、聚氨脂(polyurethane)、或是矽膠(silicone)。
  8. 如申請專利範圍第1項所述之超音波傳感器,其中該聲阻匹配層包含有機高分子材料或是由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,該有機高分子材料包括環氧樹脂(epoxy)、乙烯基酯樹脂(vinyl ester resin)、紫外線硬化膠(UV膠)、聚氨脂(polyurethane)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin)。
  9. 一種超音波傳感器,包含:一壓電體,具有隔著該壓電體相對的第一表面與第二表面,與連接該第一表面與該第二表面之側表面;一承載體,該承載體具有隔著該承載體相對的第三表面與第四表面,且該第三表面與該壓電體的該第二表面相接;一應力平衡層,該應力平衡層具有隔著該應力平衡層相對的第五表面與第六表面,該第六表面與該壓電體的第一表面相接,且該應力平衡層的聲阻小於5MRayl,其中該壓電體的至少一部份的該側表面並未被該應力平衡層所覆蓋;以及一減震體,包覆該應力平衡層,和/或該壓電體,和/或該承載體,且該應力平衡層的硬度大於該減震體的硬度。
  10. 如專利申請範圍第9項所述之超音波傳感器,其中該應力平衡層更包含有機高分子材料或是由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,該有機高分子材料包括環氧樹脂(epoxy)、乙烯基酯樹脂(vinyl ester resin)、紫外線硬化膠(UV膠)、聚氨脂(polyurethane)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin)。
  11. 如申請專利範圍第9項所述之超音波傳感器,其中該應力平衡層具有貫穿該應力平衡層的該第五表面與第六表面的貫穿孔。
  12. 如專利申請範圍第9項所述之超音波傳感器,其中該應力平衡層的該第六表面外緣可向前包覆延伸與該壓電體的側表面相連接。
  13. 如專利申請範圍第9項所述之超音波傳感器,其中該承載體更包含一桶狀承載體,具有一桶底與桶身,且該桶狀承載體具有隔著該桶底相對的第三表面及第四表面,其中該壓電體、該應力平衡層以及該減震體設置於該桶狀承載體的桶內,且該桶狀承載體的該桶底的該第三表面與該壓電體的該第二表面相接。
  14. 如專利申請範圍第9項所述之超音波傳感器,其中該承載體的材料包含選自下列群組或其組合的金屬材質:鋁、鈦、銅、不鏽鋼,或是下列群組或其組合的的非金屬材質:玻璃、壓克力、鐵氟龍(PTFE)、聚二氟乙烯(PVDF)、聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚對苯二甲酸丁酯(PBT)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚苯硫醚(PPS)、液晶聚合物(LCP)、或是聚醚醚酮(PEEK)。
  15. 如申請專利範圍第9項所述之超音波傳感器,其中該減震體包含有機高分子材料或是由有機高分子材料與金屬或陶瓷粒子混合而成的複合材料,該有機高分子材料包括環氧樹脂(epoxy)、聚氨脂(polyurethane)、或是矽膠(silicone)。
  16. 如申請專利範圍第9項所述之超音波傳感器,更包含一聲阻匹配層,且該聲阻匹配層與該承載體的該第四表面相接。
  17. 如申請專利範圍第16項所述之聲阻匹配層,包含有機高分子材料或是由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,該有機高分子材料包括環氧樹脂(Epoxy)、乙烯基酯樹脂(vinyl ester resin)、紫外線硬化膠(UV 膠)、聚氨脂(polyurethane)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin)。
TW110132451A 2021-09-01 2021-09-01 超音波傳感器 TWI772167B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110132451A TWI772167B (zh) 2021-09-01 2021-09-01 超音波傳感器
CN202111095552.1A CN115728757A (zh) 2021-09-01 2021-09-17 超音波传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110132451A TWI772167B (zh) 2021-09-01 2021-09-01 超音波傳感器

Publications (2)

Publication Number Publication Date
TWI772167B true TWI772167B (zh) 2022-07-21
TW202312666A TW202312666A (zh) 2023-03-16

Family

ID=83439787

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110132451A TWI772167B (zh) 2021-09-01 2021-09-01 超音波傳感器

Country Status (2)

Country Link
CN (1) CN115728757A (zh)
TW (1) TWI772167B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5664456A (en) * 1995-09-28 1997-09-09 Endress+Hauser Gmbh+Co. Ultrasonic transducer
TWM583052U (zh) * 2019-05-30 2019-09-01 詠業科技股份有限公司 超音波傳感器
TWM585905U (zh) * 2019-08-16 2019-11-01 詠業科技股份有限公司 超音波傳感器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5664456A (en) * 1995-09-28 1997-09-09 Endress+Hauser Gmbh+Co. Ultrasonic transducer
TWM583052U (zh) * 2019-05-30 2019-09-01 詠業科技股份有限公司 超音波傳感器
TWM585905U (zh) * 2019-08-16 2019-11-01 詠業科技股份有限公司 超音波傳感器

Also Published As

Publication number Publication date
TW202312666A (zh) 2023-03-16
CN115728757A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US11433427B2 (en) Ultrasonic transducer
US11534796B2 (en) Ultrasonic transducer
US7513147B2 (en) Piezocomposite transducer for a downhole measurement tool
US7036363B2 (en) Acoustic sensor for downhole measurement tool
US4825116A (en) Transmitter-receiver of ultrasonic distance measuring device
US7075215B2 (en) Matching layer assembly for a downhole acoustic sensor
US6995500B2 (en) Composite backing layer for a downhole acoustic sensor
JP6552644B2 (ja) 金属性保護構造を有する超音波トランスデューサのためのインピーダンス整合層
CN211563576U (zh) 超声波传感器
TWM572267U (zh) 超音波傳感器
TWI772167B (zh) 超音波傳感器
TWM628506U (zh) 超聲波傳感器
TWI816239B (zh) 超聲波傳感器
CN219871774U (zh) 超声波传感器
TWI816253B (zh) 超聲波傳感器
JP3231470U (ja) 超音波トランスデューサー
CN108580241A (zh) 一种超声换能器声阻抗匹配层及其制造方法
CN219676284U (zh) 超声波传感器
TWM601817U (zh) 用於液體流量計的傳感器
JP3667426B2 (ja) センサ
CN114208211B (zh) 超声波传感器
CN114208211A (zh) 超声波传感器
Alkoy et al. Miniature piezoelectric hollow sphere transducers
KR20200082147A (ko) 차량용 초음파 센서