TWI768639B - Uric acid sensor and the method for manufacturing the same - Google Patents

Uric acid sensor and the method for manufacturing the same Download PDF

Info

Publication number
TWI768639B
TWI768639B TW110100243A TW110100243A TWI768639B TW I768639 B TWI768639 B TW I768639B TW 110100243 A TW110100243 A TW 110100243A TW 110100243 A TW110100243 A TW 110100243A TW I768639 B TWI768639 B TW I768639B
Authority
TW
Taiwan
Prior art keywords
layer
uric acid
electrode
working electrode
acid sensor
Prior art date
Application number
TW110100243A
Other languages
Chinese (zh)
Other versions
TW202227811A (en
Inventor
周榮泉
賴子揚
黃昱豪
賴志賢
粘譽薰
郭柏佑
Original Assignee
國立雲林科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立雲林科技大學 filed Critical 國立雲林科技大學
Priority to TW110100243A priority Critical patent/TWI768639B/en
Application granted granted Critical
Publication of TWI768639B publication Critical patent/TWI768639B/en
Publication of TW202227811A publication Critical patent/TW202227811A/en

Links

Images

Abstract

The present disclosure provides a uric acid sensor, including: a flexible substrate; a working electrode disposed on the flexible substrate, and the working electrode includes: a first metal layer disposed on the flexible substrate; a sensing electrode layer disposed on the first metal layer of a first portion of the working electrode; a silver nanowires layer disposed on the sensing electrode layer; and an enzyme composite layer disposed on the silver nanowires layer, wherein the enzyme composite layer includes a composite of silver nanoparticles and uricase; and a reference electrode disposed on the flexible substrate, and the reference electrode includes a second metal layer.

Description

尿酸感測器及其製造方法Uric acid sensor and method of making the same

本發明實施例是關於一種尿酸感測器,特別是關於一種包括奈米銀線與奈米銀粒子的尿酸感測器。 The embodiments of the present invention relate to a uric acid sensor, in particular, to a uric acid sensor including nanosilver wires and nanosilver particles.

嘌呤在人體新陳代謝中產生之代謝物為尿酸,而某些疾病可能導致尿酸升高以形成高尿酸血症,例如糖尿病、肥胖、高膽固醇、心臟病、和腎臟疾病,且高尿酸血症可能會導致痛風。因此在人體血液或尿液中之尿酸測定是臨床診斷的重要指標,特別是關於肝、腎功能。時至今日,量測尿酸的含量有許多方式,主要包含比色法(colorimetry)及電化學法(electrochemical method)兩大類。在這些方法中,以比色定量出尿酸濃度的方法易受到人體內干擾物,例如維生素C、膽紅素以及溶血等影響,進而造成不可避免之誤差。此外傳統分析方法之缺點,尚有偵測時間長、操作複雜、設備昂貴、及無法得到即時輸出的檢驗數據等。近年來許多研究者,針對傳統分析方法之缺點發展出新的分析技術,並且利用電化學法進行相關研究。 The metabolite of purines produced in human metabolism is uric acid, and certain diseases may lead to elevated uric acid to form hyperuricemia, such as diabetes, obesity, high cholesterol, heart disease, and kidney disease, and hyperuricemia may cause cause gout. Therefore, the determination of uric acid in human blood or urine is an important indicator for clinical diagnosis, especially regarding liver and kidney functions. Today, there are many ways to measure the content of uric acid, mainly including colorimetry and electrochemical methods. Among these methods, the method of quantifying the concentration of uric acid by colorimetry is easily affected by interfering substances in the human body, such as vitamin C, bilirubin, and hemolysis, and thus causes inevitable errors. In addition, the disadvantages of traditional analysis methods include long detection time, complicated operation, expensive equipment, and inability to obtain inspection data that can be output in real time. In recent years, many researchers have developed new analytical techniques in view of the shortcomings of traditional analytical methods, and used electrochemical methods to conduct related research.

許多文獻指出尿酸氧化酶尤其適合電化學法量測。酵素式尿酸生醫感測器是以尿酸氧化酶(uricase)作為電極的組成成分,經由尿酸與尿酸氧化酶反應後,將尿酸氧化成尿囊素(allantoin)、二氧化碳(CO2)與過氧化氫(H2O2),而過氧化氫再水解成氫離子(H+)與氧氣(O2),因此可藉由監測產生之氫離子濃度變化,感測出尿酸濃度之差異。 Many literatures point out that urate oxidase is especially suitable for electrochemical measurement. The enzyme-based uric acid biomedical sensor uses uric acid oxidase (uricase) as the electrode composition. After uric acid reacts with uric acid oxidase, uric acid is oxidized to allantoin, carbon dioxide (CO 2 ) and peroxide. Hydrogen (H 2 O 2 ), and hydrogen peroxide is then hydrolyzed into hydrogen ions (H + ) and oxygen (O 2 ), so the difference in uric acid concentration can be sensed by monitoring the change in the concentration of the generated hydrogen ions.

然而,儘管近年來文獻相繼報導一些使用電化學方式量測尿酸含量的感測器,但現有之尿酸感測器的感測度與穩定性等性質仍有待改善。若能改善尿酸酵素感測器的感測度、穩定性、抗干擾能力等性質,將有助於進行血液中所含尿酸濃度之檢測,並且促進醫學診斷與日常保健的發展。 However, although some sensors using electrochemical methods to measure uric acid content have been reported in the literature in recent years, the sensitivity and stability of the existing uric acid sensors still need to be improved. If the sensitivity, stability, anti-interference ability and other properties of the uric acid enzyme sensor can be improved, it will be helpful to detect the concentration of uric acid in the blood, and promote the development of medical diagnosis and daily health care.

本發明實施例提供一種尿酸感測器,包括:可撓性基板;工作電極,設置於可撓性基板上,且工作電極包括:第一金屬層,設置於可撓性基板上;感測電極層,設置於工作電極中位於第一端部的第一金屬層上;奈米銀線層,設置於感測電極層上;以及酵素複合層,設置於奈米銀線層上,其中酵素複合層包括奈米銀粒子與尿酸氧化酶的複合物;以及參考電極,設置於可撓性基板上,且參考電極包括第二金屬層。 An embodiment of the present invention provides a uric acid sensor, including: a flexible substrate; a working electrode, disposed on the flexible substrate, and the working electrode includes: a first metal layer, disposed on the flexible substrate; a sensing electrode The layer is arranged on the first metal layer at the first end of the working electrode; the nano-silver wire layer is arranged on the sensing electrode layer; and the enzyme compound layer is arranged on the nano-silver wire layer, wherein the enzyme is compounded The layer includes a complex of nano-silver particles and urate oxidase; and a reference electrode is disposed on the flexible substrate, and the reference electrode includes a second metal layer.

本發明實施例另外提供一種尿酸感測器的製造方法,包括:提供可撓性基板;於可撓性基板上形成工作電極的第一 金屬層與參考電極的第二金屬層;於工作電極位於第一端部的第一金屬層上,形成工作電極的感測電極層;於感測電極層上形成工作電極的奈米銀線層;以及於奈米銀線層上形成工作電極的酵素複合層,其中酵素複合層包括奈米銀粒子與尿酸氧化酶的複合物。 An embodiment of the present invention further provides a method for manufacturing a uric acid sensor, including: providing a flexible substrate; forming a first working electrode on the flexible substrate a metal layer and a second metal layer of the reference electrode; on the first metal layer of the working electrode at the first end, a sensing electrode layer of the working electrode is formed; on the sensing electrode layer, a nano-silver wire layer of the working electrode is formed ; and an enzyme composite layer that forms a working electrode on the nano-silver wire layer, wherein the enzyme composite layer includes a composite of nano-silver particles and urate oxidase.

110:可撓性基板 110: Flexible substrate

120:工作電極 120: Working electrode

121:第一金屬層 121: first metal layer

121a,131a:第一端部 121a, 131a: first end

121b,132b:第二端部 121b, 132b: second end

121c,131c:端部 121c, 131c: end

122:感測電極層 122: Sensing electrode layer

123:奈米銀線層 123: Nano silver wire layer

124:酵素複合層 124: Enzyme complex layer

130:參考電極 130: Reference electrode

131:第二金屬層 131: Second metal layer

140:銀陣列電極圖樣 140: Silver Array Electrode Pattern

150:絕緣層 150: Insulation layer

150a:第一開口 150a: First opening

150b:第二開口 150b: Second opening

以下將配合所附圖式詳述本發明實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可任意地放大或縮小元件的尺寸,以清楚地表現出本發明實施例的特徵。 The embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that, in accordance with standard practice in the industry, the various features are not drawn to scale and are illustrative only. In fact, the dimensions of elements may be arbitrarily enlarged or reduced to clearly characterize the embodiments of the invention.

第1A至1E圖是根據本揭露的一些實施例,繪示出尿酸感測器在製程各階段的俯視圖。 FIGS. 1A to 1E are top views of the uric acid sensor at various stages of the manufacturing process according to some embodiments of the present disclosure.

第2圖是根據本揭露的一些實施例,繪示出尿酸感測器的分層結構圖。 FIG. 2 is a diagram illustrating a layered structure of a uric acid sensor according to some embodiments of the present disclosure.

第3圖是根據本揭露的一些實施例,繪示出尿酸感測器對尿酸濃度的平均感測度及線性度之關係圖。 FIG. 3 is a graph showing the relationship between the average sensitivity and linearity of the uric acid sensor for uric acid concentration according to some embodiments of the present disclosure.

第4圖是根據本揭露的一些實施例,繪示出在特定尿酸濃度下尿酸感測器的響應電壓隨時間變化的曲線圖。 FIG. 4 is a graph showing the response voltage of a uric acid sensor with time at a specific uric acid concentration, according to some embodiments of the present disclosure.

第5圖是根據本揭露的一些實施例,繪示出在尿酸待測溶液中添加各種化學物質時,尿酸感測器的響應電壓隨時間變化的曲線圖。 FIG. 5 is a graph showing the change of the response voltage of the uric acid sensor with time when various chemical substances are added to the solution to be tested for uric acid according to some embodiments of the present disclosure.

以下的揭示內容提供許多不同的實施例或範例,以展示本發明實施例的不同部件。以下將揭示本說明書各部件及其排列方式之特定範例,用以簡化本揭露敘述。當然,這些特定範例並非用於限定本揭露。例如,若是本說明書以下的發明內容敘述了將形成第一部件於第二部件之上或上方,即表示其包括了所形成之第一及第二部件是直接接觸的實施例,亦包括了尚可將附加的部件形成於上述第一及第二部件之間,則第一及第二部件為未直接接觸的實施例。此外,本揭露說明中的各式範例可能使用重複的參照符號及/或用字。這些重複符號或用字的目的在於簡化與清晰,並非用以限定各式實施例及/或所述配置之間的關係。 The following disclosure provides many different embodiments or examples to illustrate different components of embodiments of the invention. The following will disclose specific examples of the components and their arrangement of the present specification, so as to simplify the description of the present disclosure. Of course, these specific examples are not intended to limit the present disclosure. For example, if the following summary of the present specification describes that the first part is formed on or above the second part, it means that it includes the embodiment in which the first and second parts are formed in direct contact, and also includes further Additional components may be formed between the first and second components described above, the first and second components being embodiments that are not in direct contact. In addition, the various examples in this disclosure may use repeated reference symbols and/or wording. These repeated symbols or words are used for simplicity and clarity, and are not used to limit the relationships between the various embodiments and/or the configurations.

再者,為了方便描述圖式中一元件或部件與另一(些)元件或部件的關係,可使用空間相對用語,例如「在…之下」、「下方」、「下部」、「上方」、「上部」及諸如此類用語。除了圖式所繪示之方位外,空間相對用語亦涵蓋使用或操作中之裝置的不同方位。當裝置被轉向不同方位時(例如,旋轉90度或者其他方位),則其中所使用的空間相對形容詞亦將依轉向後的方位來解釋。 Furthermore, for convenience in describing the relationship of one element or component to another element or component(s) in the drawings, spatially relative terms such as "below", "below", "lower", "above" may be used , "upper" and similar terms. In addition to the orientation shown in the drawings, spatially relative terms also encompass different orientations of the device in use or operation. When the device is turned in a different orientation (eg, rotated 90 degrees or other orientations), the spatially relative adjectives used therein will also be interpreted according to the turned orientation.

在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。 Here, the terms "about", "approximately" and "approximately" generally mean within 20%, preferably within 10%, and more preferably within 5% of a given value or range, or within 3% Within %, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantities provided in the specification are approximate quantities, that is to say, “about”, “approximately” and “approximately” can still be implied without the specific description of “about”, “approximately” and “approximately”. probably” meaning.

第1A至1E是根據本揭露的一些實施例,繪示出尿酸 感測器在製程各階段的俯視圖。參照第1A圖,首先提供可撓性基板110,並且在可撓性基板110上形成作為工作電極120的第一金屬層121以及作為參考電極130的第二金屬層131。 1A to 1E are according to some embodiments of the present disclosure, depicting uric acid Top view of the sensor at various stages of the process. Referring to FIG. 1A , a flexible substrate 110 is first provided, and a first metal layer 121 serving as a working electrode 120 and a second metal layer 131 serving as a reference electrode 130 are formed on the flexible substrate 110 .

在一些實施例中,可撓性基板110的材料可包括聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚醚碸(polysulfone,PES)、聚萘二甲酸乙二醇酯(polythylene naphtalate,PEN)、聚醯亞胺(polyimide,PI)、聚碳酸酯(polycarbonate,PC)或其他合適的軟性材料。在一些實施例中,第一金屬層121與第二金屬層131可包含銀、金、鉑、鈀或其他合適的金屬材料。在一個特定的實施例中,第一金屬層121與第二金屬層131為銀陣列電極圖樣(如第2圖中的銀陣列電極圖樣140)的一部分。在一些實施例中,可以利用如網版印刷(screen printing)、噴墨印刷(ink-jet printing)或其他合適的技術形成第一金屬層121與第二金屬層131。 In some embodiments, the material of the flexible substrate 110 may include polyethylene terephthalate (PET), polysulfone (PES), polyethylene naphthalate (polythylene naphtalate) , PEN), polyimide (polyimide, PI), polycarbonate (polycarbonate, PC) or other suitable soft materials. In some embodiments, the first metal layer 121 and the second metal layer 131 may include silver, gold, platinum, palladium or other suitable metal materials. In a specific embodiment, the first metal layer 121 and the second metal layer 131 are part of a silver array electrode pattern (eg, the silver array electrode pattern 140 in FIG. 2 ). In some embodiments, the first metal layer 121 and the second metal layer 131 may be formed using, for example, screen printing, ink-jet printing, or other suitable techniques.

如第1A圖所繪示,作為工作電極120的第一金屬層121可以具有第一端部121a、第二端部121b和連接第一端部121a與第二端部121b的頸部121c。作為參考電極130的第二金屬層131可以具有第一端部131a、第二端部131b和連接第一端部131a與第二端部131b的頸部131c,其中工作電極120與參考電極130實體分隔。在一些實施例中,第一端部121a和第二端部121b在Y軸方向的長度小於頸部121c在Y軸方向的長度,第一端部121a和第二端部121b在X軸方向的寬度大於頸部121c在X軸方向的寬度,第一端部 131a和第二端部131b的在Y軸方向長度小於頸部131c在Y軸方向的長度,第一端部131a和第二端部131b在X軸方向的寬度大於頸部131c在X軸方向的寬度。然而,本揭露並非以此為限,本發明領域中具有通常知識者可以根據設計需求而調整作為工作電極120的第一金屬層121與作為參考電極130的第二金屬層131的第一端部121a和131a、第二端部121b和131b與頸部121c和131c在Y軸方向之長度以及在X軸方向之寬度。 As shown in FIG. 1A , the first metal layer 121 serving as the working electrode 120 may have a first end portion 121 a , a second end portion 121 b and a neck portion 121 c connecting the first end portion 121 a and the second end portion 121 b . The second metal layer 131 serving as the reference electrode 130 may have a first end portion 131a, a second end portion 131b, and a neck portion 131c connecting the first end portion 131a and the second end portion 131b, wherein the working electrode 120 and the reference electrode 130 are solid separated. In some embodiments, the length of the first end 121a and the second end 121b in the Y-axis direction is smaller than the length of the neck 121c in the Y-axis direction, and the length of the first end 121a and the second end 121b in the X-axis direction The width is greater than the width of the neck 121c in the X-axis direction, the first end 131a and the second end portion 131b in the Y-axis direction are smaller than the length of the neck portion 131c in the Y-axis direction, and the width of the first end portion 131a and the second end portion 131b in the X-axis direction is greater than that of the neck portion 131c in the X-axis direction. width. However, the present disclosure is not limited thereto, and those skilled in the art can adjust the first end portions of the first metal layer 121 serving as the working electrode 120 and the second metal layer 131 serving as the reference electrode 130 according to design requirements 121a and 131a, the second ends 121b and 131b, and the necks 121c and 131c have lengths in the Y-axis direction and widths in the X-axis direction.

儘管第1A至1E圖中所繪示的可撓性基板110上具有六個作為工作電極120的第一金屬層121和兩個作為參考電極130的第二金屬層131,但本揭露並非以此為限,本發明領域中具有通常知識者可以根據設計需求而調整作為工作電極120的第一金屬層121與作為參考電極130的第二金屬層131的數量。多個工作電極120和多個參考電極130配置而成的陣列,可減少尿酸感測器的量測誤差。 Although the flexible substrate 110 shown in FIGS. 1A to 1E has six first metal layers 121 serving as working electrodes 120 and two second metal layers 131 serving as reference electrodes 130 , the present disclosure is not based on this As a limitation, those with ordinary knowledge in the field of the present invention can adjust the number of the first metal layer 121 serving as the working electrode 120 and the number of the second metal layer 131 serving as the reference electrode 130 according to design requirements. The array formed by the plurality of working electrodes 120 and the plurality of reference electrodes 130 can reduce the measurement error of the uric acid sensor.

接著,參照第1B圖,於第一金屬層121的第一端部121a上,形成工作電極120的感測電極層122。在一些實施例中,感測電極層122可以包括金屬氧化層。在一些實施例中,感測電極層122的金屬氧化層可以包括氧化鎳(NiO)、氧化鋅(ZnO)、二氧化鈦(TiO2)、二氧化釕(RuO2)、氧化銦鎵鋅(indium gallium zinc oxide,IGZO)、氧化銅(CuO)、氧化銦錫(Indium-tin oxide,ITO)或其他合適的金屬氧化物。在一個特定的實施例中,可以使用氧化鎳作為感測電極層122的金屬氧化層的材料。氧化鎳是一種p 型半導體,因為具有高化學穩定性、生物相容性、高電子轉移特性、無毒、高等電點、以及高電催化特性等性質,被廣泛地用作尿酸感測器之感測材料。在一些實施例中,感測電極層122的金屬氧化層具有約100nm至約110nm之厚度。 Next, referring to FIG. 1B , a sensing electrode layer 122 of the working electrode 120 is formed on the first end portion 121 a of the first metal layer 121 . In some embodiments, the sensing electrode layer 122 may include a metal oxide layer. In some embodiments, the metal oxide layer of the sensing electrode layer 122 may include nickel oxide (NiO), zinc oxide (ZnO), titanium dioxide (TiO 2 ), ruthenium dioxide (RuO 2 ), indium gallium oxide (indium gallium oxide) zinc oxide (IGZO), copper oxide (CuO), indium-tin oxide (ITO) or other suitable metal oxides. In a specific embodiment, nickel oxide may be used as the material of the metal oxide layer of the sensing electrode layer 122 . Nickel oxide is a p-type semiconductor that is widely used as a uric acid sensor due to its high chemical stability, biocompatibility, high electron transfer properties, non-toxicity, high electrical point, and high electrocatalytic properties. test material. In some embodiments, the metal oxide layer of the sensing electrode layer 122 has a thickness of about 100 nm to about 110 nm.

在其他實施例中,感測電極層122可更包括第三金屬層(未顯示),設置於第一金屬層121與金屬氧化層之間。在一些實施例中,感測電極層122的第三金屬層可包括鋁薄膜、銀薄膜、白金薄膜或其他合適的金屬薄膜。第三金屬層可以增進感測電極層122的導電性。 In other embodiments, the sensing electrode layer 122 may further include a third metal layer (not shown) disposed between the first metal layer 121 and the metal oxide layer. In some embodiments, the third metal layer of the sensing electrode layer 122 may include an aluminum thin film, a silver thin film, a platinum thin film, or other suitable metal thin films. The third metal layer can improve the conductivity of the sensing electrode layer 122 .

在一些實施例中,可利用沉積製程如射頻濺鍍沉積(radio frequency sputtering deposition)製程、化學氣相沉積(chemical vapor deposition,CVD)、原子層沉積(atomic layer deposition,ALD)、電漿輔助化學氣相沉積(plasma enhanced CVD,PECVD)、高密度電漿化學氣相沉積(high density CVD,HDCVD)、物理氣相沉積(physical vapor deposition,PVD)、旋轉塗佈(spin-on coating)沉積、一或多種其他適當的製程或前述之組合形成感測電極層122的金屬氧化層與第三金屬層。在一個特定的實施例中,可以利用射頻濺鍍沉積以形成厚度均勻度較佳之感測電極層122的金屬氧化層。另外,在一些實施例中,也可以利用熱蒸鍍(thermal evaporation)製程形成感測電極層122的第三金屬層。 In some embodiments, deposition processes such as radio frequency sputtering deposition, chemical vapor deposition (CVD), atomic layer deposition (ALD), plasma assisted chemical deposition may be utilized Vapor deposition (plasma enhanced CVD, PECVD), high density plasma chemical vapor deposition (high density CVD, HDCVD), physical vapor deposition (physical vapor deposition, PVD), spin-on coating (spin-on coating) deposition, One or more other suitable processes or a combination of the foregoing form the metal oxide layer and the third metal layer of the sensing electrode layer 122 . In a specific embodiment, the metal oxide layer of the sensing electrode layer 122 with better thickness uniformity may be deposited by radio frequency sputtering. In addition, in some embodiments, the third metal layer of the sensing electrode layer 122 may also be formed by a thermal evaporation process.

接著,參照第1C圖,形成奈米銀線(silver nanowires)層123,其設置於感測電極層122上,且覆蓋感測電極層122的一部分。奈米銀線層123包括奈米銀線,且在本揭露的一些實施例中,奈米銀線可以使用各種合成方法進行合成。在一個特定的實施例中,可以使用多元醇法(polyol process)製備包括奈米銀線的溶液(以下稱為奈米銀線溶液),然後利用滴塗法(drop-coating method)將奈米銀線溶液塗佈於感測電極層122上,進而形成奈米銀線層123。在一個特定的實施例中,可以利用滴塗法將例如約2μL的奈米銀線溶液塗佈於感測電極層122上以形成奈米銀線層123。 Next, referring to FIG. 1C, nano-silver wires (silver) are formed. The nanowires) layer 123 is disposed on the sensing electrode layer 122 and covers a part of the sensing electrode layer 122 . The nano-silver wire layer 123 includes nano-silver wires, and in some embodiments of the present disclosure, the nano-silver wires can be synthesized using various synthesis methods. In a specific embodiment, a solution including silver nanowires (hereinafter referred to as silver nanowires solution) can be prepared using a polyol process, and then the nanowires can be coated by a drop-coating method. The silver wire solution is coated on the sensing electrode layer 122 to form the nano-silver wire layer 123 . In a specific embodiment, for example, about 2 μL of the nano-silver wire solution can be coated on the sensing electrode layer 122 by a drop coating method to form the nano-silver wire layer 123 .

在本揭露中,藉由將奈米銀線層123形成於感測電極層122的金屬氧化層(例如氧化鎳層)上,可以增加工作電極120上之酵素的吸附面積,此外銀具有良好的導電性,能夠減少電子轉移阻抗,增加電子傳輸率,因此可提升尿酸感測器的感測度。 In the present disclosure, by forming the nano-silver wire layer 123 on the metal oxide layer (eg, nickel oxide layer) of the sensing electrode layer 122 , the adsorption area of the enzyme on the working electrode 120 can be increased. The conductivity can reduce the electron transfer resistance and increase the electron transfer rate, thus improving the sensitivity of the uric acid sensor.

接著,參照第1D圖,形成絕緣層150,其覆蓋可撓性基板110、第一金屬層121的第一端部121a與頸部121c以及第二金屬層131的第一端部131a與頸部131c。絕緣層150具有第一開口150a露出位於感測電極層122上的奈米銀線層123之至少一部分,且具有第二開口150b露出位於第二金屬層131之第一端部131a。如第1D圖所繪示,絕緣層150並未覆蓋第一金屬層121的第二端部121b和第二金屬層131的第二端部131b,且絕緣層150也並未覆蓋第二端部121b和131b左右側和下側的可撓性基板110。在一些實施例中,絕緣層150具有約20μm至約30μm的厚度,例如26μm。然而, 在本揭露中的絕緣層150的厚度並未特別限定,只要絕緣層150能夠在電極(工作電極、參考電極等)之間具有絕緣的功能即可。 Next, referring to FIG. 1D , an insulating layer 150 is formed, which covers the flexible substrate 110 , the first end portion 121 a and the neck portion 121 c of the first metal layer 121 , and the first end portion 131 a and the neck portion of the second metal layer 131 131c. The insulating layer 150 has a first opening 150 a to expose at least a part of the silver nanowire layer 123 on the sensing electrode layer 122 , and a second opening 150 b to expose the first end 131 a of the second metal layer 131 . As shown in FIG. 1D, the insulating layer 150 does not cover the second end portion 121b of the first metal layer 121 and the second end portion 131b of the second metal layer 131, and the insulating layer 150 also does not cover the second end portion 121b and 131b on the left and right sides and the lower side of the flexible substrate 110 . In some embodiments, insulating layer 150 has a thickness of about 20 μm to about 30 μm, eg, 26 μm. However, The thickness of the insulating layer 150 in the present disclosure is not particularly limited, as long as the insulating layer 150 can have an insulating function between electrodes (working electrode, reference electrode, etc.).

在一些實施例中,絕緣層150可包括環氧樹脂(epoxy)、聚醯亞胺樹脂(polyimide)或其他合適的絕緣樹脂。在一些實施例中,可利用網版印刷、噴墨印刷或其他合適的製程於可撓性基板110、第一金屬層121的第一端部121a與頸部121c以及第二金屬層131的第一端部131a與頸部131c上形成絕緣層150。在一些實施例中,第一開口150a的尺寸在約8mm2至約10mm2的範圍內。 In some embodiments, the insulating layer 150 may include epoxy, polyimide, or other suitable insulating resins. In some embodiments, screen printing, inkjet printing or other suitable processes may be used on the flexible substrate 110 , the first end portion 121 a and the neck portion 121 c of the first metal layer 121 , and the second metal layer 131 . An insulating layer 150 is formed on the one end portion 131a and the neck portion 131c. In some embodiments, the size of the first opening 150a is in the range of about 8 mm 2 to about 10 mm 2 .

參照第1E圖與第2圖,第2圖是根據本揭露的一些實施例所繪示出的尿酸感測器的分層結構圖。形成絕緣層150後,接著在位於第一開口150a中的奈米銀線層123上,形成工作電極120的酵素複合層124,其中酵素複合層124包括奈米銀粒子(silver nanoparticles)與尿酸氧化酶的複合物。 Referring to FIG. 1E and FIG. 2 , FIG. 2 is a layered structure diagram of a uric acid sensor according to some embodiments of the present disclosure. After the insulating layer 150 is formed, the enzyme composite layer 124 of the working electrode 120 is then formed on the nano-silver wire layer 123 located in the first opening 150a, wherein the enzyme composite layer 124 includes silver nanoparticles and uric acid oxidation. enzyme complex.

在一些實施例中,在奈米銀線層123上形成酵素複合層124的過程包括透過第一鍵結材料使奈米銀粒子與尿酸氧化酶結合以形成用於酵素複合層124的奈米銀粒子與尿酸氧化酶的複合物。在一些實施例中,第一鍵結材料可包括碳二亞胺(carbodiimide)鹽酸、海藻膠鈣(calcium alginate)或其他合適的偶合材料。在一些實施例中,奈米銀粒子具有約5nm至約15nm的尺寸,例如10nm。在一些實施例中,酵素複合層124中所使用的尿酸氧化酶之活性介於約15U/mL至約30U/mL。在一個特定的實 施例中,首先用例如11-氫硫基十一烷酸(11-mercaptoundecanoic acid,MUA)的化合物在奈米銀粒子的表面產生羧基,接著使用包括碳二亞胺鹽酸的材料(例如1-乙基-3-(3-二甲基氨基丙基)碳醯二亞胺(1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride,EDC))作為第一鍵結材料,對奈米銀粒子表面的羧基進行活化,產生不穩定的氧-乙醯化異尿素(O-acylisourea)中間產物,其能夠與尿酸氧化酶的胺基進行反應。最後將奈米銀粒子與尿酸氧化酶相互混合,使得奈米銀粒子與尿酸氧化酶之間以共價鍵結合,並且形成奈米銀粒子與尿酸氧化酶的複合物。在一些實施例中,所使用的第一鍵結材料與奈米銀粒子的比例為例如莫耳數比1:1。 In some embodiments, the process of forming the enzyme composite layer 124 on the nano-silver wire layer 123 includes combining the nano-silver particles with urate oxidase through a first bonding material to form the nano-silver for the enzyme composite layer 124 A complex of particles with urate oxidase. In some embodiments, the first bonding material may include carbodiimide hydrochloric acid, calcium alginate, or other suitable coupling materials. In some embodiments, the nanosilver particles have a size of about 5 nm to about 15 nm, eg, 10 nm. In some embodiments, the activity of the uricase used in the enzyme composite layer 124 ranges from about 15 U/mL to about 30 U/mL. in a specific real In the examples, a compound such as 11-mercaptoundecanoic acid (MUA) was first used to generate carboxyl groups on the surface of the silver nanoparticles, and then a material including carbodiimide hydrochloride (such as 1- Ethyl-3-(3-dimethylaminopropyl) carbodiimide (1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, EDC)) as the first bonding material, on the surface of silver nanoparticles The carboxyl group of urea is activated to produce an unstable oxy-acetylated isourea (O-acylisourea) intermediate, which is capable of reacting with the amine group of urate oxidase. Finally, the silver nanoparticles and the urate oxidase are mixed with each other, so that the silver nanoparticles and the urate oxidase are bound by covalent bonds, and a complex of the silver nanoparticles and the urate oxidase is formed. In some embodiments, the ratio of the first bonding material to the nanosilver particles used is, for example, a molar ratio of 1:1.

在一些實施例中,在奈米銀線層123上形成酵素複合層124的過程更包括透過第二鍵結材料使奈米銀粒子與尿酸氧化酶的複合物和奈米銀線層123結合。在一些實施例中,第二鍵結材料可以包括戊二醛(glutaraldehyde)、3-縮水甘油氧基丙基三甲氧基矽烷(3-Glycidoxypropyl-trimethoxysilane,GPTS)、3-氨基丙基三乙氧基矽烷(γ-APTES)或其他合適的鍵結材料。上述第二鍵結材料可以在奈米銀線層123上產生官能基,例如羥基,使得奈米銀粒子與尿酸氧化酶的複合物能夠藉由共價鍵結固定於奈米銀線層123上。此處使用的第二鍵結材料是針對酵素複合層124中的尿酸氧化酶與銀奈米粒子及奈米銀線層123中的奈米銀線進行鍵結,且特別是與酵素複合層124和奈米銀線層123中的羥基進行共價鍵 結。 In some embodiments, the process of forming the enzyme composite layer 124 on the nano-silver wire layer 123 further includes combining the nano-silver particles with the urate oxidase complex and the nano-silver wire layer 123 through a second bonding material. In some embodiments, the second bonding material may include glutaraldehyde, 3-Glycidoxypropyl-trimethoxysilane (GPTS), 3-aminopropyltrimethoxysilane silane (γ-APTES) or other suitable bonding materials. The above-mentioned second bonding material can generate functional groups, such as hydroxyl groups, on the silver nanowire layer 123, so that the complex of the silver nanoparticle and urate oxidase can be fixed on the silver nanowire layer 123 by covalent bonding. . The second bonding material used here is for bonding the urate oxidase in the enzyme composite layer 124 with the silver nanoparticles and the nanosilver wires in the nanosilver wire layer 123 , and especially with the enzyme composite layer 124 . Covalent bond with the hydroxyl group in the nanosilver wire layer 123 Knot.

在一個特定的實施例中,在使奈米銀粒子與尿酸氧化酶的複合物結合至奈米銀線層123之前,首先將第二鍵結材料(例如戊二醛)以例如1:4的體積比溶於甲苯,再將含有第二鍵結材料的溶液滴附於奈米銀線層123上且置於4℃冰箱中乾燥12小時,其中含有第二鍵結材料的溶液體積介於約2μL至約5μL。接著利用滴塗法將包含奈米銀粒子與尿酸氧化酶的複合物的溶液填充至絕緣層150的第一開口150a中的奈米銀線層123上,且置於4℃冰箱中乾燥12小時以形成酵素複合層124,其中包含奈米銀粒子與尿酸氧化酶的複合物的溶液之體積介於約2μL至約5μL。 In a specific embodiment, before binding the nanosilver particle and urate oxidase complex to the nanosilver wire layer 123, the second binding material (eg, glutaraldehyde) is firstly combined with, eg, 1:4 The volume ratio was dissolved in toluene, and then the solution containing the second bonding material was dropped on the nano-silver wire layer 123 and placed in a refrigerator at 4° C. to dry for 12 hours. The volume of the solution containing the second bonding material was between about 2 μL to about 5 μL. Then, the solution containing the complex of nano-silver particles and urate oxidase is filled on the nano-silver wire layer 123 in the first opening 150a of the insulating layer 150 by the drop coating method, and is placed in a refrigerator at 4° C. to dry for 12 hours To form the enzyme complex layer 124, the volume of the solution containing the complex of the silver nanoparticles and the uricase is between about 2 μL and about 5 μL.

藉由將奈米銀粒子結合至尿酸氧化酶,可以使奈米銀粒子作為尿酸氧化酶的載體,有利於尿酸氧化酶的保存。此外,在本揭露的尿酸感測器中,奈米銀粒子可以增加酵素複合層124的比表面積,使電子傳遞的介面面積變大,進而增加尿酸氧化酶的催化特性,因此可以提升尿酸感測器的感測度。 By binding the nano-silver particles to urate oxidase, the nano-silver particles can be used as a carrier of urate oxidase, which is beneficial to the preservation of urate oxidase. In addition, in the uric acid sensor of the present disclosure, the nano-silver particles can increase the specific surface area of the enzyme composite layer 124, so that the interface area for electron transfer becomes larger, thereby increasing the catalytic properties of uric acid oxidase, thereby improving uric acid sensing. Sensitivity of the device.

此外,根據本揭露的一些實施例,藉由使用滴塗法形成工作電極120中的奈米銀線層123以及酵素複合層124,可以在製造尿酸感測器的過程中避免繁瑣的製程步驟,減少尿酸感測器的製造時間和成本。 In addition, according to some embodiments of the present disclosure, by using the drop coating method to form the nano-silver wire layer 123 and the enzyme composite layer 124 in the working electrode 120, the tedious process steps can be avoided in the process of manufacturing the uric acid sensor, Reduce manufacturing time and cost of uric acid sensors.

本揭露中所製造的尿酸感測器,是透過酵素複合層124中的尿酸氧化酶與待測樣品中的尿酸反應而進行量測。尿酸氧化酶的催化反應會產生氫離子,改變感測電極層周遭環境的pH值, 進而影響感測電極層的表面電位。透過量測不同尿酸濃度的標準樣品,可計算出尿酸濃度對響應電壓的關係之迴歸曲線,進而求出待測樣品中尿酸的濃度。 The uric acid sensor manufactured in the present disclosure performs measurement through the reaction between the uric acid oxidase in the enzyme composite layer 124 and the uric acid in the sample to be measured. The catalytic reaction of urate oxidase generates hydrogen ions, which changes the pH value of the environment around the sensing electrode layer. In turn, the surface potential of the sensing electrode layer is affected. By measuring standard samples with different uric acid concentrations, the regression curve of the relationship between the uric acid concentration and the response voltage can be calculated, and then the concentration of uric acid in the sample to be tested can be obtained.

第3圖是根據本揭露的一些實施例,繪示出尿酸感測器對尿酸濃度的平均感測度及線性度之關係圖,其中響應電壓是利用本揭露中所製造的尿酸感測器在含有尿酸的磷酸鹽緩衝溶液所測得。在此所述的平均感測度是定義為每1mg/dL的尿酸濃度變化所導致的響應電壓變化(mV/(mg/dL))。如第3圖所示,根據本揭露的實施例所製造的尿酸感測器可偵測到2mg/dL至10mg/dL的範圍的尿酸濃度,其中尿酸感測器的平均感測度為49.322mV/(mg/dL)而線性度為0.980,尿酸感測器的量測線性度趨近於1,表示其具有準確的感測性能。 FIG. 3 is a graph showing the relationship between the average sensitivity and linearity of the uric acid sensor to the uric acid concentration according to some embodiments of the present disclosure, wherein the response voltage is obtained by using the uric acid sensor manufactured in the present disclosure in the presence of Uric acid in phosphate buffered solution. The average sensitivity described herein is defined as the change in response voltage (mV/(mg/dL)) per 1 mg/dL change in uric acid concentration. As shown in FIG. 3, the uric acid sensor manufactured according to the embodiment of the present disclosure can detect the uric acid concentration in the range of 2 mg/dL to 10 mg/dL, wherein the average sensitivity of the uric acid sensor is 49.322 mV/ (mg/dL) and the linearity is 0.980, the measurement linearity of the uric acid sensor is close to 1, indicating that it has accurate sensing performance.

第4圖是根據本揭露的一些實施例,繪示出在特定尿酸濃度下尿酸感測器的響應電壓隨時間變化的曲線圖,其中上述響應電壓是利用本揭露中所製造的尿酸感測器在含有尿酸的磷酸鹽緩衝溶液所測得。結果顯示磷酸鹽緩衝溶液在加入6mg/dL的尿酸後,根據本揭露的實施例所製造的尿酸感測器的響應電壓驟升,顯示其快速的響應時間,且在尿酸加入後的響應電壓具有1.023mV/hr的低時飄率(drift rate),代表本揭露中的尿酸感測器具有穩定的響應電壓。 FIG. 4 is a graph illustrating a response voltage of a uric acid sensor with time at a specific uric acid concentration according to some embodiments of the present disclosure, wherein the above-mentioned response voltage is a uric acid sensor fabricated in the present disclosure. Measured in phosphate buffered solution containing uric acid. The results show that after adding 6 mg/dL of uric acid to the phosphate buffer solution, the response voltage of the uric acid sensor manufactured according to the embodiments of the present disclosure rises sharply, showing its fast response time, and the response voltage after the addition of uric acid has The low drift rate of 1.023mV/hr indicates that the uric acid sensor in the present disclosure has a stable response voltage.

第5圖是根據本揭露的一些實施例,繪示出在尿酸待測溶液中添加各種化學物質時,尿酸感測器的響應電壓隨時間變化 的曲線圖,藉此評估根據本揭露的實施例所製造的尿酸感測器的抗干擾性質,其中上述響應電壓是在磷酸鹽緩衝溶液中測得。如第5圖所示,首先在步驟(1)時將0.3mM的尿酸加入磷酸鹽緩衝溶液,造成響應電壓驟升。待其響應電壓穩定後,分別在步驟(2)、(3)、(4)、(5)、(6)將尿素(5mM)、葡萄糖(6mM)、抗壞血酸(0.02mM)、多巴胺(0.065mM)、及乳酸(0.8mM)加入磷酸鹽緩衝溶液以驗證根據本揭露的實施例所製造的尿酸感測器的抗干擾效果。在分別加入尿素、葡萄糖、抗壞血酸、多巴胺、及乳酸期間,響應電壓並無明顯的變化,然而接著再加入0.6mM的尿酸溶液時,響應電壓再次驟升,表示尿酸感測器對尿酸具有專一性,且對尿酸溶液的濃度變化具有高敏感度。 FIG. 5 is a graph showing the change of the response voltage of the uric acid sensor with time when various chemical substances are added to the solution to be tested for uric acid according to some embodiments of the present disclosure. , to evaluate the anti-jamming properties of the uric acid sensor fabricated according to the embodiments of the present disclosure, wherein the above-mentioned response voltage is measured in a phosphate buffer solution. As shown in Fig. 5, 0.3 mM uric acid was first added to the phosphate buffer solution in step (1), resulting in a sudden increase in the response voltage. After the response voltage is stable, in steps (2), (3), (4), (5), (6), urea (5 mM), glucose (6 mM), ascorbic acid (0.02 mM), dopamine (0.065 mM) ), and lactic acid (0.8 mM) were added to phosphate buffer solution to verify the anti-interference effect of the uric acid sensor fabricated according to the embodiments of the present disclosure. When urea, glucose, ascorbic acid, dopamine, and lactate were added respectively, the response voltage did not change significantly. However, when 0.6mM uric acid solution was added, the response voltage suddenly increased again, indicating that the uric acid sensor has specificity for uric acid. , and has high sensitivity to the concentration change of uric acid solution.

如上所述,本揭露提供一種尿酸感測器及其製造方法,藉由在工作電極中包括奈米銀線及奈米銀粒子等材料,可以使尿酸感測器在涵蓋人體血液之尿酸濃度範圍(2mg/dL至10mg/dL)內具有高感測度,並且具有快速的響應時間、長期穩定性、以及良好的抗干擾能力。另外,本揭露所提供的製造方法還包括利用簡易的製程步驟(例如滴塗法等技術)以完成尿酸感測器,可以避免使用繁瑣的製程步驟並減少尿酸感測器的製造時間和成本,對於尿酸感測的領域具有相當的潛力。 As described above, the present disclosure provides a uric acid sensor and a method for manufacturing the same. By including materials such as nano-silver wires and nano-silver particles in the working electrode, the uric acid sensor can cover the uric acid concentration range of human blood. (2mg/dL to 10mg/dL) with high sensitivity, and has a fast response time, long-term stability, and good anti-interference ability. In addition, the manufacturing method provided by the present disclosure also includes the use of simple process steps (eg, techniques such as drop coating) to complete the uric acid sensor, which can avoid the use of tedious process steps and reduce the manufacturing time and cost of the uric acid sensor. There is considerable potential for the field of uric acid sensing.

雖然本發明以前述數個較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許之更動與潤飾。因此本發明之 保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention is disclosed in the foregoing several preferred embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention pertains may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be determined by the scope of the appended patent application.

110:可撓性基板 110: Flexible substrate

121:第一金屬層 121: first metal layer

122:感測電極層 122: Sensing electrode layer

123:奈米銀線層 123: Nano silver wire layer

124:酵素複合層 124: Enzyme complex layer

131:第二金屬層 131: Second metal layer

140:銀陣列電極圖樣 140: Silver Array Electrode Pattern

150:絕緣層 150: Insulation layer

Claims (15)

一種尿酸感測器,包括:一可撓性基板;一工作電極,設置於該可撓性基板上,且該工作電極包括:一第一金屬層,設置於該可撓性基板上;一感測電極層,設置於該工作電極中位於一第一端部的該第一金屬層上;一奈米銀線層,設置於該感測電極層上;以及一酵素複合層,設置於該奈米銀線層上,其中該酵素複合層包括奈米銀粒子與尿酸氧化酶的複合物;以及一參考電極,設置於該可撓性基板上,且該參考電極包括一第二金屬層,其中該工作電極與該參考電極實體分隔。 A uric acid sensor, comprising: a flexible substrate; a working electrode disposed on the flexible substrate, and the working electrode comprising: a first metal layer disposed on the flexible substrate; a sensor A measuring electrode layer is arranged on the first metal layer located at a first end of the working electrode; a nano-silver wire layer is arranged on the sensing electrode layer; and an enzyme compound layer is arranged on the nanometer on the silver wire layer, wherein the enzyme composite layer includes a composite of nano-silver particles and urate oxidase; and a reference electrode disposed on the flexible substrate, and the reference electrode includes a second metal layer, wherein The working electrode is physically separated from the reference electrode. 如請求項1之尿酸感測器,其中該第一金屬層與該第二金屬層為一銀陣列電極圖樣。 The uric acid sensor of claim 1, wherein the first metal layer and the second metal layer are a silver array electrode pattern. 如請求項1之尿酸感測器,其中該感測電極層包括一金屬氧化物。 The uric acid sensor of claim 1, wherein the sensing electrode layer comprises a metal oxide. 如請求項3之尿酸感測器,其中該金屬氧化物包括氧化鎳。 The uric acid sensor of claim 3, wherein the metal oxide comprises nickel oxide. 如請求項1之尿酸感測器,更包括一絕緣層,覆蓋該可撓性基板、該工作電極及該參考電極,其中該絕緣層具有一第一開口露出該工作電極的該第一端部的一部分,且具有一第二開口 露出該參考電極的一第一端部,其中該酵素複合層位於該第一開口中。 The uric acid sensor of claim 1, further comprising an insulating layer covering the flexible substrate, the working electrode and the reference electrode, wherein the insulating layer has a first opening to expose the first end of the working electrode part of , and has a second opening A first end of the reference electrode is exposed, wherein the enzyme compound layer is located in the first opening. 如請求項1之尿酸感測器,其中該絕緣層不覆蓋該工作電極的一第二端部與該參考電極的一第二端部。 The uric acid sensor of claim 1, wherein the insulating layer does not cover a second end of the working electrode and a second end of the reference electrode. 如請求項1之尿酸感測器,其中該酵素複合層中的奈米銀粒子與尿酸氧化酶的複合物是透過一第一鍵結材料使奈米銀粒子與尿酸氧化酶以共價鍵結合所形成,該第一鍵結材料包括碳二亞胺(carbodiimide)鹽酸。 The uric acid sensor of claim 1, wherein the complex of the nano-silver particles and the urate oxidase in the enzyme complex layer is covalently bonded to the nano-silver particles and the urate oxidase through a first bonding material Formed, the first bonding material includes carbodiimide hydrochloric acid. 如請求項1之尿酸感測器,其中該酵素複合層是透過一第二鍵結材料以固定於該奈米銀線層,該第二鍵結材料包括戊二醛(glutaraldehyde)。 The uric acid sensor of claim 1, wherein the enzyme composite layer is fixed to the silver nanowire layer through a second bonding material, and the second bonding material includes glutaraldehyde. 一種尿酸感測器的製造方法,包括:提供一可撓性基板;於該可撓性基板上形成一工作電極的一第一金屬層與一參考電極的一第二金屬層;於該工作電極位於一第一端部的該第一金屬層上,形成該工作電極的一感測電極層;於該感測電極層上形成該工作電極的一奈米銀線層;以及於該奈米銀線層上形成該工作電極的一酵素複合層,其中該酵素複合層包括奈米銀粒子與尿酸氧化酶的複合物。 A method of manufacturing a uric acid sensor, comprising: providing a flexible substrate; forming a first metal layer of a working electrode and a second metal layer of a reference electrode on the flexible substrate; A sensing electrode layer of the working electrode is formed on the first metal layer at a first end; a nano-silver wire layer of the working electrode is formed on the sensing electrode layer; and a nano-silver wire layer is formed on the sensing electrode layer An enzyme composite layer of the working electrode is formed on the wire layer, wherein the enzyme composite layer includes a composite of nano-silver particles and uric acid oxidase. 如請求項9之尿酸感測器的製造方法,其中形成該工作電極的該感測電極層的過程更包括利用射頻濺鍍沉積製程形成 該感測電極層。 The method for manufacturing a uric acid sensor as claimed in claim 9, wherein the process of forming the sensing electrode layer of the working electrode further comprises using a radio frequency sputtering deposition process to form the sensing electrode layer. 如請求項9之尿酸感測器的製造方法,其中該第一金屬層與該第二金屬層為一銀陣列電極圖樣之一部分,而該銀陣列電極圖樣是利用網版印刷技術(screen printing technique)所形成。 The method for manufacturing a uric acid sensor as claimed in claim 9, wherein the first metal layer and the second metal layer are part of a silver array electrode pattern, and the silver array electrode pattern is formed by a screen printing technique ) formed. 如請求項9之尿酸感測器的製造方法,其中在形成該工作電極的該酵素複合層之前,更包括形成一絕緣層,覆蓋該可撓性基板、該工作電極及該參考電極,其中該絕緣層具有一第一開口露出該工作電極的該第一端部的一部分,並具有一第二開口露出該參考電極的一第一端部。 The method for manufacturing a uric acid sensor as claimed in claim 9, before forming the enzyme composite layer of the working electrode, further comprising forming an insulating layer covering the flexible substrate, the working electrode and the reference electrode, wherein the The insulating layer has a first opening exposing a part of the first end of the working electrode, and has a second opening exposing a first end of the reference electrode. 如請求項12之尿酸感測器的製造方法,其中形成該絕緣層的過程更包括利用網版印刷技術於該可撓性基板、該工作電極與該參考電極之上形成該絕緣層。 The manufacturing method of the uric acid sensor according to claim 12, wherein the process of forming the insulating layer further comprises forming the insulating layer on the flexible substrate, the working electrode and the reference electrode by using a screen printing technique. 如請求項9之尿酸感測器的製造方法,其中形成該工作電極的該奈米銀線層之過程包括利用滴塗法(drop-coating method)將奈米銀線塗佈於該工作電極的該感測電極層上。 The method for manufacturing a uric acid sensor according to claim 9, wherein the process of forming the nanosilver wire layer of the working electrode comprises applying a drop-coating method to the nanosilver wire on the working electrode. on the sensing electrode layer. 如請求項12之尿酸感測器的製造方法,其中形成該工作電極的該酵素複合層之過程包括利用滴塗法將奈米銀粒子與尿酸氧化酶的複合物溶液填充至該絕緣層的該第一開口中的該奈米銀線層上。 The method for manufacturing a uric acid sensor as claimed in claim 12, wherein the process of forming the enzyme composite layer of the working electrode comprises filling the composite solution of nano-silver particles and urate oxidase on the insulating layer by a drop coating method. on the nanosilver wire layer in the first opening.
TW110100243A 2021-01-05 2021-01-05 Uric acid sensor and the method for manufacturing the same TWI768639B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110100243A TWI768639B (en) 2021-01-05 2021-01-05 Uric acid sensor and the method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110100243A TWI768639B (en) 2021-01-05 2021-01-05 Uric acid sensor and the method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI768639B true TWI768639B (en) 2022-06-21
TW202227811A TW202227811A (en) 2022-07-16

Family

ID=83103972

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110100243A TWI768639B (en) 2021-01-05 2021-01-05 Uric acid sensor and the method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI768639B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735375A (en) * 2001-01-02 2006-02-15 特拉森斯公司 Analyte monitoring device and methods of using the same
US20060076236A1 (en) * 2003-11-13 2006-04-13 Rajiv Shah Fabrication of multi-sensor arrays
TW200944790A (en) * 2008-01-18 2009-11-01 Lifescan Scotland Ltd Method and system of manufacturing test strip lots having a predetermined calibration characteristic
US20110000610A1 (en) * 2003-06-20 2011-01-06 Burke David W Test strip with slot vent opening
CN105755445A (en) * 2015-12-10 2016-07-13 银鸿科技股份有限公司 Reel-to-reel sputtering production process with composite target material and product of production process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735375A (en) * 2001-01-02 2006-02-15 特拉森斯公司 Analyte monitoring device and methods of using the same
US20110000610A1 (en) * 2003-06-20 2011-01-06 Burke David W Test strip with slot vent opening
US20060076236A1 (en) * 2003-11-13 2006-04-13 Rajiv Shah Fabrication of multi-sensor arrays
TW200944790A (en) * 2008-01-18 2009-11-01 Lifescan Scotland Ltd Method and system of manufacturing test strip lots having a predetermined calibration characteristic
CN105755445A (en) * 2015-12-10 2016-07-13 银鸿科技股份有限公司 Reel-to-reel sputtering production process with composite target material and product of production process

Also Published As

Publication number Publication date
TW202227811A (en) 2022-07-16

Similar Documents

Publication Publication Date Title
Dhara et al. Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials
US9588077B2 (en) Nanoelectronic electrochemical test device
Izyumskaya et al. Electrochemical biosensors based on ZnO nanostructures
Zhang et al. On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase
Naikoo et al. Recent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for diabetes management-a review
Lin et al. A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles
Huang et al. Determination of salivary uric acid by using poly (3, 4-ethylenedioxythipohene) and graphene oxide in a disposable paper-based analytical device
CN110023745B (en) Robust enzyme-based biosensor and droplet deposition immobilization method
Li et al. The impact of recent developments in electrochemical POC sensor for blood sugar care
Aroutiounian Properties of hydrogen peroxide sensors made from nanocrystalline materials
Wang et al. Sensitive non-invasive electrochemical sensing of glucose in saliva using amorphous SnOx decorated one-dimensional CuO nanorods rich in oxygen vacancy defects
Hashemi et al. Decorated graphene oxide flakes with integrated complex of 8-hydroxyquinoline/NiO toward accurate detection of glucose at physiological conditions
Shkotova et al. Amperometric biosensor modified with platinum and palladium nanoparticles for detection of lactate concentrations in wine
WO2009017911A1 (en) Nanoelectronic electrochemical test device
Chou et al. Enzymatic urea sensor based on graphene oxide/titanium dioxide films modified by urease-magnetic beads
Das et al. Screen-printed Ga2O3 thin film derived from liquid metal employed in highly sensitive pH and non-enzymatic glucose recognition
TWI768639B (en) Uric acid sensor and the method for manufacturing the same
Guati et al. Progress on the influence of non-enzymatic electrodes characteristics on the response to glucose detection: a review (2016–2022)
Kumar et al. Nanostructured zirconia embedded porous carbon based ultrasensitive electrochemical biosensor for SAA biomarker detection
Chou et al. Sensing characteristic of arrayed flexible indium gallium zinc oxide lactate biosensor modified by GO and magnetic beads
Jayanth Babu et al. Non-enzymatic detection of glucose in fruits using TiO 2–Mn 3 O 4 hybrid nano interface
TWI351435B (en) Separative extended gate field effect transistor b
US8172996B2 (en) Enzyme electrode and method for producing the same
Baruah et al. Effect of doping mediated oxygen vacancies on the charge transfer ability of zinc oxide nanosheets for electrochemical glucose sensing
TW202127019A (en) L-ascorbic acid sensor and the method for forming the same