TWI768222B - Semiconductor device and manufacturing method of the same - Google Patents

Semiconductor device and manufacturing method of the same Download PDF

Info

Publication number
TWI768222B
TWI768222B TW108125152A TW108125152A TWI768222B TW I768222 B TWI768222 B TW I768222B TW 108125152 A TW108125152 A TW 108125152A TW 108125152 A TW108125152 A TW 108125152A TW I768222 B TWI768222 B TW I768222B
Authority
TW
Taiwan
Prior art keywords
substrate
iii
compound layer
semiconductor device
plane
Prior art date
Application number
TW108125152A
Other languages
Chinese (zh)
Other versions
TW202105739A (en
Inventor
陳志諺
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW108125152A priority Critical patent/TWI768222B/en
Publication of TW202105739A publication Critical patent/TW202105739A/en
Application granted granted Critical
Publication of TWI768222B publication Critical patent/TWI768222B/en

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

A semiconductor device includes a substrate and a first III-V compound layer disposed on the substrate. The first III-V compound layer includes a plurality of crystal lattices and each of the crystal lattices has a prism plane. The semiconductor device further includes a second III-V compound layer disposed on the first III-V compound layer. The semiconductor device includes a source electrode, a drain electrode and a gate electrode disposed on the second III-V compound layer. The source electrode and the drain electrode define a channel region that has a plurality of channels of charge carriers in the first III-V compound layer. The normal direction of the prism plane defines an m-axis, and each of the channels of the charge carriers is parallel with the m-axis.

Description

半導體裝置及其製造方法Semiconductor device and method of manufacturing the same

本揭露實施例係有關於一種半導體裝置,且特別有關於一種用於高電子遷移率電晶體(high electron mobility transistors, HEMT)元件的半導體裝置。Embodiments of the present disclosure relate to a semiconductor device, and more particularly, to a semiconductor device for high electron mobility transistors (HEMT) devices.

在半導體工業中,氮化鎵(gallium nitride, GaN)由於其特性常被用來形成各種積體電路元件,例如:高電子遷移率電晶體(HEMT)元件。高電子遷移率電晶體又稱為異質結構場效電晶體(heterostructure FET, HFET)或調變摻雜場效電晶體(modulation-doped FET, MODFET),其由具有不同能隙(energy gap)的半導體材料組成。在鄰近不同半導體材料的所形成界面處會產生二維電子氣(two dimensional electron gas, 2 DEG)層。由於二維電子氣的高電子移動性,高電子遷移率電晶體可以具有高崩潰電壓、高電子遷移率與低輸入電容等優點,因而適合用於高功率元件上。In the semiconductor industry, gallium nitride (GaN) is often used to form various integrated circuit components due to its characteristics, such as high electron mobility transistor (HEMT) components. High electron mobility transistors, also known as heterostructure FETs (HFETs) or modulation-doped FETs (MODFETs), are composed of different energy gaps. The composition of semiconductor materials. A two dimensional electron gas (2 DEG) layer is created adjacent to the formed interface of different semiconductor materials. Due to the high electron mobility of the two-dimensional electron gas, high electron mobility transistors can have the advantages of high breakdown voltage, high electron mobility, and low input capacitance, so they are suitable for high-power components.

然而,現有的高電子遷移率電晶體雖大致符合需求,但並非在每個方面皆令人滿意,仍需進一步改良,以提升效能並具有更廣泛的應用。However, although the existing high electron mobility transistors generally meet the requirements, they are not satisfactory in every aspect, and further improvements are still required to improve performance and have wider applications.

本揭露實施例包括一種半導體裝置。半導體裝置包括一基板及一第一III-V族化合物層,第一III-V族化合物層設置於基板上。第一III-V族化合物層包括複數晶格且每個晶格具有一稜鏡面。半導體裝置更包括一第二III-V族化合物層,第二III-V族化合物層設置於第一III-V族化合物層上。半導體裝置包括一源極電極、一汲極電極及一閘極電極,其設置於第二III-V族化合物層上。源極電極與汲極電極在第一III-V族化合物層界定一通道區,通道區中具有複數個載子通道。稜鏡面的法線方向定義一m軸,且每個載子通道平行於m軸。Embodiments of the present disclosure include a semiconductor device. The semiconductor device includes a substrate and a first III-V group compound layer, and the first III-V group compound layer is disposed on the substrate. The first group III-V compound layer includes a plurality of crystal lattices and each crystal lattice has an apex face. The semiconductor device further includes a second III-V group compound layer, and the second III-V group compound layer is disposed on the first III-V group compound layer. The semiconductor device includes a source electrode, a drain electrode and a gate electrode, which are arranged on the second III-V group compound layer. The source electrode and the drain electrode define a channel region in the first III-V group compound layer, and the channel region has a plurality of carrier channels. The direction of the normal line of the plane defines an m-axis, and each carrier channel is parallel to the m-axis.

本揭露實施例包括一種半導體裝置。半導體裝置包括一基板及一第一III-V族化合物層,第一III-V族化合物層設置於基板上。第一III-V族化合物層包括複數晶格且每個晶格具有一m平面。半導體裝置更包括一第二III-V族化合物層,第二III-V族化合物層設置於第一III-V族化合物層上。半導體裝置包括一源極電極、一汲極電極及一閘極電極,其設置於第二III-V族化合物層上。源極電極與汲極電極在第一III-V族化合物層界定一通道區,通道區中具有複數個載子通道。每個載子通道平行於m平面的法線方向。Embodiments of the present disclosure include a semiconductor device. The semiconductor device includes a substrate and a first III-V group compound layer, and the first III-V group compound layer is disposed on the substrate. The first III-V compound layer includes a plurality of lattices and each lattice has an m-plane. The semiconductor device further includes a second III-V group compound layer, and the second III-V group compound layer is disposed on the first III-V group compound layer. The semiconductor device includes a source electrode, a drain electrode and a gate electrode, which are arranged on the second III-V group compound layer. The source electrode and the drain electrode define a channel region in the first III-V group compound layer, and the channel region has a plurality of carrier channels. Each carrier channel is parallel to the normal direction of the m-plane.

本揭露實施例包括一種半導體裝置的製造方法。此製造方法包括形成並提供一基板。此製造方法還包括在基板上形成一第一III-V族化合物層。第一III-V族化合物層包括複數晶格且每個晶格具有一稜鏡面。此製造方法包括在第一III-V族化合物層上形成一第二III-V族化合物層。此製造方法進一步包括在第二III-V族化合物層上形成一源極電極、一汲極電極及一閘極電極。源極電極與汲極電極在第一III-V族化合物層界定一通道區,通道區中具有複數個載子通道。稜鏡面的法線方向定義一m軸,且每個載子通道平行於m軸。Embodiments of the present disclosure include a method for fabricating a semiconductor device. The manufacturing method includes forming and providing a substrate. The manufacturing method further includes forming a first III-V compound layer on the substrate. The first group III-V compound layer includes a plurality of crystal lattices and each crystal lattice has an apex face. The manufacturing method includes forming a second III-V compound layer on the first III-V compound layer. The manufacturing method further includes forming a source electrode, a drain electrode and a gate electrode on the second III-V compound layer. The source electrode and the drain electrode define a channel region in the first III-V group compound layer, and the channel region has a plurality of carrier channels. The direction of the normal line of the plane defines an m-axis, and each carrier channel is parallel to the m-axis.

以下的揭露內容提供許多不同的實施例或範例以實施本案的不同特徵。以下的揭露內容敘述各個構件及其排列方式的特定範例,以簡化說明。當然,這些特定的範例並非用以限定。例如,若是本揭露實施例敘述了一第一特徵部件形成於一第二特徵部件之上或上方,即表示其可能包含上述第一特徵部件與上述第二特徵部件是直接接觸的實施例,亦可能包含了有附加特徵部件形成於上述第一特徵部件與上述第二特徵部件之間,而使上述第一特徵部件與第二特徵部件可能未直接接觸的實施例。The following disclosure provides many different embodiments or examples for implementing different features of the present invention. The following disclosure describes specific examples of various components and their arrangements to simplify the description. Of course, these specific examples are not intended to be limiting. For example, if the embodiment of the present disclosure describes that a first feature part is formed on or above a second feature part, it means that it may include an embodiment in which the first feature part and the second feature part are in direct contact. Embodiments may be included in which additional features are formed between the first and second features, such that the first and second features may not be in direct contact.

應理解的是,額外的操作步驟可實施於所述方法之前、之間或之後,且在所述方法的其他實施例中,部分的操作步驟可被取代或省略。It should be understood that additional operational steps may be performed before, during, or after the method, and in other embodiments of the method, some of the operational steps may be substituted or omitted.

此外,其中可能用到與空間相關用詞,例如「在… 下方」、「下方」、「較低的」、「在… 上方」、「上方」、「較高的」及類似的用詞,這些空間相關用詞係為了便於描述圖示中一個(些)元件或特徵部件與另一個(些)元件或特徵部件之間的關係,這些空間相關用詞包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),則其中所使用的空間相關形容詞也將依轉向後的方位來解釋。In addition, it may use spatially related terms such as "below", "below", "lower", "above", "above", "higher" and similar terms, These spatially relative terms are used for convenience in describing the relationship between one element(s) or feature(s) and another element(s) or feature(s) in the figures, and these spatially relative terms include differences between devices in use or operation Orientation, and the orientation depicted in the drawings. When the device is turned in a different orientation (rotated 90 degrees or otherwise), the spatially relative adjectives used therein will also be interpreted according to the turned orientation.

在說明書中,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,或10%之內,或5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。在此給定的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。In the specification, the terms "about", "approximately" and "approximately" usually mean within 20%, or within 10%, or within 5%, or within 3% of a given value or range, or within 2%, or within 1%, or within 0.5%. The quantity given here is an approximate quantity, that is, the meanings of "about", "approximately" and "approximately" can still be implied without the specific description of "about", "approximately" and "approximately".

除非另外定義,在此使用的全部用語(包括技術及科學用語)具有與此篇揭露所屬之一般技藝者所通常理解的相同涵義。能理解的是,這些用語,例如在通常使用的字典中定義的用語,應被解讀成具有與相關技術及本揭露的背景或上下文一致的意思,而不應以一理想化或過度正式的方式解讀,除非在本揭露實施例有特別定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It is understood that these terms, such as those defined in commonly used dictionaries, should be construed to have meanings consistent with the relevant art and the context or context of the present disclosure, and not in an idealized or overly formal manner interpretation, unless there is a special definition in the embodiments of the present disclosure.

以下所揭露之不同實施例可能重複使用相同的參考符號及/或標記。這些重複係為了簡化與清晰的目的,並非用以限定所討論的不同實施例及/或結構之間有特定的關係。Different embodiments disclosed below may reuse the same reference symbols and/or labels. These repetitions are for the purpose of simplicity and clarity and are not intended to limit the specific relationship between the various embodiments and/or structures discussed.

導通電阻(Ron )為影響半導體裝置之耗電量的重要因素,其電阻值正比於半導體裝置的耗電量。本揭露實施例提供了半導體裝置及其製造方法,特別適用於高電子遷移率電晶體(HEMT)元件。在本揭露實施例之半導體裝置中,透過將半導體裝置的載子(charge carrier)通道(或源極電極與汲極電極)相對於III-V族化合物層(例如,氮化鎵(GaN))的晶格以特定方向設置,能有效降低半導體裝置的導通電阻。以下將參考圖式所示的實施例進行說明。The on-resistance (R on ) is an important factor affecting the power consumption of the semiconductor device, and its resistance value is proportional to the power consumption of the semiconductor device. Embodiments of the present disclosure provide a semiconductor device and a manufacturing method thereof, which are particularly suitable for high electron mobility transistor (HEMT) devices. In the semiconductor device of the disclosed embodiment, the charge carrier channel (or the source electrode and the drain electrode) of the semiconductor device is relatively opposite to the III-V compound layer (eg, gallium nitride (GaN)) The lattice is arranged in a specific direction, which can effectively reduce the on-resistance of the semiconductor device. The following description will be made with reference to the embodiments shown in the drawings.

第1圖至第4圖是根據本揭露的一些實施例,說明形成第4圖所示之半導體裝置1在各個不同製程階段的部分剖面示意圖。要注意的是,為了更清楚顯示本揭露實施例的特徵,第1圖至第4圖中可能省略部分元件。FIGS. 1 to 4 are partial cross-sectional views illustrating different process stages of forming the semiconductor device 1 shown in FIG. 4 according to some embodiments of the present disclosure. It should be noted that, in order to show the features of the embodiments of the present disclosure more clearly, some elements may be omitted in FIGS. 1 to 4 .

參照第1圖,提供一基板10。在一些實施例中,基板10可為半導體基板,例如矽基板、矽鍺基板、砷化鎵基板、或類似的半導體基板。在一些實施例中,基板10可為半導體位於絕緣體之上的基板,例如絕緣層上的矽(silicon on insulator, SOI)基板。在一些實施例中,基板10可為玻璃基板或陶瓷基板,例如碳化矽(silicon carbide, SiC)基板、氮化鋁(aluminium nitride, AlN)基板、或藍寶石(Sapphire)基板。然而,本揭露實施例並非此為限。Referring to FIG. 1, a substrate 10 is provided. In some embodiments, the substrate 10 may be a semiconductor substrate, such as a silicon substrate, a silicon germanium substrate, a gallium arsenide substrate, or a similar semiconductor substrate. In some embodiments, the substrate 10 may be a semiconductor-on-insulator substrate, such as a silicon on insulator (SOI) substrate. In some embodiments, the substrate 10 may be a glass substrate or a ceramic substrate, such as a silicon carbide (SiC) substrate, an aluminum nitride (AlN) substrate, or a sapphire (Sapphire) substrate. However, the embodiments of the present disclosure are not limited thereto.

在一些實施例中,基板10為一QST基板。在此,QST基板是指美國Qromis Technology, Inc.所生產的基板。舉例來說,QST基板可包括一核心(core)、一阻障層(barrier layer)、一接合層(bonding layer)及一生長層(single crystalline layer)。在一些實施例中,阻障層可封裝核心,接合層可設置於阻障層之上,生長層可設置於接合層之上,但本揭露實施例並非此為限。In some embodiments, the substrate 10 is a QST substrate. Here, the QST substrate refers to a substrate produced by Qromis Technology, Inc. in the United States. For example, the QST substrate may include a core, a barrier layer, a bonding layer and a single crystalline layer. In some embodiments, the barrier layer may encapsulate the core, the bonding layer may be disposed on the barrier layer, and the growth layer may be disposed on the bonding layer, but the embodiments of the present disclosure are not limited thereto.

在一些實施例中,核心的材料可包括多晶陶瓷材料,例如多晶氮化鋁(aluminium nitride, AlN)、多晶氮化鎵(GaN)、多晶氮化鎵鋁(aluminium gallium nitride, AlGaN)、多晶碳化矽(SiC)、多晶氧化鋅(zinc oxide, ZnO)、多晶三氧化鎵(gallium(III) trioxide, Ga2 O3 )、其他適合之材料或前述之組合所形成,但本揭露實施例並非以此為限。在一些實施例中,多晶陶瓷材料可包括諸如氧化釔(yttrium oxide,即,yttria)之黏合材料。In some embodiments, the material of the core may include a polycrystalline ceramic material, such as polycrystalline aluminum nitride (AlN), polycrystalline gallium nitride (GaN), polycrystalline gallium nitride (AlGaN) ), polycrystalline silicon carbide (SiC), polycrystalline zinc oxide (zinc oxide, ZnO), polycrystalline gallium trioxide (gallium(III) trioxide, Ga 2 O 3 ), other suitable materials or a combination of the foregoing, but The embodiments of the present disclosure are not limited thereto. In some embodiments, the polycrystalline ceramic material may include a bonding material such as yttrium oxide (ie, yttria).

在一些實施例中,阻障層的材料可為非晶材料,例如氮化矽、碳氮化矽(silicon carbonitride, SiCN)、氮氧化矽(silicon oxynitride, SiON)、氮化鋁(aluminum nitride, AlN)、碳化矽(silicon carbide, SiC)、其他適合之材料或前述之組合,但本揭露實施例並非以此為限。在一些實施例中,阻障層可透過低壓化學氣相沉積(low-pressure chemical vapor deposition, LPCVD)製程所形成,但本揭露實施例並非以此為限。在一些實施例中,阻障層可為一或多層結構,其包含以複合方式層疊之一或多種材料,但本揭露實施例並非以此為限。In some embodiments, the material of the barrier layer may be an amorphous material, such as silicon nitride, silicon carbonitride (SiCN), silicon oxynitride (SiON), aluminum nitride (aluminum nitride, AlN), silicon carbide (SiC), other suitable materials, or a combination of the foregoing, but the embodiments of the present disclosure are not limited thereto. In some embodiments, the barrier layer may be formed by a low-pressure chemical vapor deposition (LPCVD) process, but the embodiments of the present disclosure are not limited thereto. In some embodiments, the barrier layer may be one or more layers including one or more materials laminated in a composite manner, but the embodiments of the present disclosure are not limited thereto.

在一些實施例中,阻障層可用於防止核心中之成分(例如,氧化釔、氧、金屬雜質、其他微量元素等)擴散及/或釋放進入半導體處理腔室之環境中。在半導體處理腔室中,QST基板可例如在高溫(例如,1,000°C)下磊晶生長。In some embodiments, the barrier layer may be used to prevent diffusion and/or release of components in the core (eg, yttrium oxide, oxygen, metal impurities, other trace elements, etc.) into the environment of the semiconductor processing chamber. In a semiconductor processing chamber, QST substrates may be epitaxially grown, for example, at high temperatures (eg, 1,000°C).

在一些實施例中,接合層的材料可包括氧化矽、氮化矽、氮氧化矽、其他適合之材料或前述之組合。在一些實施例中,接合層可藉由化學氣相沉積法(CVD)、原子層沉積法(atomic layer deposition, ALD)或旋轉塗佈法形成於阻障層之(部分)頂表面。舉例而言,前述化學氣相沉積法可為低壓化學氣相沉積法(LPCVD)、低溫化學氣相沉積法(low temperature chemical vapor deposition, LTCVD)、快速升溫化學氣相沉積法(rapid thermal chemical vapor deposition, RTCVD)或電漿輔助化學氣相沉積法(plasma enhanced chemical vapor deposition, PECVD)。In some embodiments, the material of the bonding layer may include silicon oxide, silicon nitride, silicon oxynitride, other suitable materials, or a combination of the foregoing. In some embodiments, the bonding layer may be formed on (part of) the top surface of the barrier layer by chemical vapor deposition (CVD), atomic layer deposition (ALD), or spin coating. For example, the aforementioned chemical vapor deposition method may be low pressure chemical vapor deposition (LPCVD), low temperature chemical vapor deposition (LTCVD), rapid thermal chemical vapor deposition (rapid thermal chemical vapor deposition) deposition, RTCVD) or plasma-assisted chemical vapor deposition (plasma enhanced chemical vapor deposition, PECVD).

在一些實施例中,生長層的材料可包括矽(Si)、氮化鋁(AlN)、氮化鎵(GaN)、氮化鋁鎵(AlGaN)、碳化矽(SiC)、其他適合之材料或前述之組合所形成,但本揭露實施例並非以此為限。生長層可以是單層或多層結構。在一些實施例中,生長層可由磊晶成長製程形成,例如金屬有機化學氣相沉積(metal organic chemical vapor deposition,MOCVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)、分子束磊晶法(molecular beam epitaxy,MBE)、其他適合之方法或前述之組合所形成,但本揭露實施例並非以此為限。In some embodiments, the material of the growth layer may include silicon (Si), aluminum nitride (AlN), gallium nitride (GaN), aluminum gallium nitride (AlGaN), silicon carbide (SiC), other suitable materials or The aforementioned combinations are formed, but the embodiments of the present disclosure are not limited thereto. The growth layer can be a single-layer or multi-layer structure. In some embodiments, the growth layer may be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam It is formed by epitaxy (molecular beam epitaxy, MBE), other suitable methods, or a combination of the foregoing, but the embodiment of the present disclosure is not limited thereto.

在一些實施例中,基板10可進一步包括複數黏合層(adhesion layer)及一導電層。黏合層及導電層可設置於核心與阻障層之間。舉例來說,黏合層可設置於核心與導電層之間,且黏合層可設置於導電層與阻障層之間,但本揭露實施例並非以此為限。In some embodiments, the substrate 10 may further include a plurality of adhesion layers and a conductive layer. The adhesive layer and the conductive layer can be disposed between the core and the barrier layer. For example, the adhesive layer may be disposed between the core and the conductive layer, and the adhesive layer may be disposed between the conductive layer and the barrier layer, but the embodiment of the present disclosure is not limited thereto.

在一些實施例中,黏合層的材料可包括正矽酸四乙酯(tetraethyl orthosiliate, TEOS)、氧化矽(Six Oy )、其他適合之材料或前述之組合,但本揭露實施例並非以此為限。在一些實施例中,黏合層可藉由化學氣相沉積法(CVD)、原子層沉積法(ALD)或旋轉塗佈法形成核心的周圍。In some embodiments, the material of the adhesive layer may include tetraethyl orthosiliate (TEOS), silicon oxide (Six O y ) , other suitable materials, or a combination of the foregoing, but the embodiments of the present disclosure are not limited to This is limited. In some embodiments, the adhesion layer may be formed around the core by chemical vapor deposition (CVD), atomic layer deposition (ALD), or spin coating.

在一些實施例中,導電層可包括經摻雜(例如,摻雜硼)的高導電材料。在一些實施例中,摻雜濃度可介於1x1019 cm-3 至1x1020 cm-3 ,以提供高導電性。不同摻雜濃度之其他摻雜劑(例如,摻雜濃度在1x1016 cm-3 至5x1018 cm-3 之間的磷、砷、鉍等等)也可用於提供適於在導電層中使用之N型或者P型半導體材料,但本創作實施例並非以此為限。In some embodiments, the conductive layer may include a doped (eg, boron doped) highly conductive material. In some embodiments, the doping concentration may be between 1×10 19 cm −3 to 1×10 20 cm −3 to provide high conductivity. Other dopants of different doping concentrations (eg, phosphorous, arsenic, bismuth, etc., with doping concentrations between 1x1016 cm -3 and 5x1018 cm -3 ) can also be used to provide materials suitable for use in conductive layers. N-type or P-type semiconductor materials, but the embodiments of the present invention are not limited thereto.

QST基板的詳細結構可參考在2017年6月13日提交之美國專利申請案第15/621,335號及在2017年6月13日提交之美國專利申請案第15/621,335號,在此不多加贅述。然而,本揭露實施例並非以此為限。For the detailed structure of the QST substrate, please refer to US Patent Application No. 15/621,335 filed on June 13, 2017 and US Patent Application No. 15/621,335 filed on June 13, 2017, which will not be repeated here. . However, the embodiments of the present disclosure are not limited thereto.

參照第2圖,在基板10上形成一第一III-V族化合物層20。在一些實施例中,第一III-V族化合物層20的材料可包含一或多種III-V族化合物半導體材料,例如,III族氮化物。在一些實施例中,第一III-V族化合物層20的材料可包括氮化鎵(GaN)、氮化鋁鎵(AlGaN)、氮化銦鎵(indium gallium nitride, InGaN)、氮化銦鎵鋁(indium gallium aluminium nitride, InGaAlN)、類似的材料或前述之組合。在一些實施例中,第一III-V族化合物層20的厚度可介於0.01 μm至10 μm之間。在一些實施例中,第一III-V族化合物層20可具有摻雜物,例如n型摻雜物或p型摻雜物。第一III-V族化合物層20可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、其他適合之方法或前述之組合所形成。舉例來說,第一III-V族化合物層20可使用含鎵的前驅物以及含氮的前驅物,藉由金屬有機化學氣相沉積(MOCVD)磊晶長成。含鎵的前驅物可包括三甲基鎵(trimethylgallium, TMG)、三乙基鎵(triethylgallium, TEG)、或其他合適的化學品;含氮的前驅物包括氨(ammonia, NH3)、叔丁胺(tertiarybutylamine, TBAm)、苯肼(phenyl hydrazine)或其他合適的化學品。然而,本揭露實施例並非以此為限。Referring to FIG. 2 , a first III-V group compound layer 20 is formed on the substrate 10 . In some embodiments, the material of the first group III-V compound layer 20 may include one or more group III-V compound semiconductor materials, eg, group III nitrides. In some embodiments, the material of the first III-V group compound layer 20 may include gallium nitride (GaN), aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), indium gallium nitride (InGaN), Aluminum (indium gallium aluminium nitride, InGaAlN), similar materials or a combination of the foregoing. In some embodiments, the thickness of the first III-V compound layer 20 may be between 0.01 μm and 10 μm. In some embodiments, the first III-V compound layer 20 may have dopants, such as n-type dopants or p-type dopants. The first III-V compound layer 20 can be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), and other suitable method or a combination of the foregoing. For example, the first III-V compound layer 20 may be epitaxially grown by metal organic chemical vapor deposition (MOCVD) using a gallium-containing precursor and a nitrogen-containing precursor. Gallium-containing precursors may include trimethylgallium (TMG), triethylgallium (TEG), or other suitable chemicals; nitrogen-containing precursors include ammonia (NH3), tertiarybutylamine (tertiarybutylamine) , TBAm), phenyl hydrazine or other suitable chemicals. However, the embodiments of the present disclosure are not limited thereto.

參照第3圖,在第一III-V族化合物層20上形成一第二III-V族化合物層30。在一些實施例中,第二III-V族化合物層30的材料可包含一或多種III-V族化合物半導體,例如,III族氮化物。在一些實施例中,第二III-V族化合物層30的材料可包括氮化鋁鎵(AlGaN)、氮化鋁銦(aluminium indium nitride, AlInN)、氮化銦鎵鋁(InGaAlN)、類似的材料或前述之組合。在一些實施例中,第二III-V族化合物層30的厚度可介於1 nm至500 nm之間。在一些實施例中,第二III-V族化合物層30可具有摻雜物,例如n型摻雜物或p型摻雜物。第二III-V族化合物層30可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、其他適合之方法或前述之組合所形成。舉例來說,第二III-V族化合物層30可使用含鋁的前驅物、含鎵的前驅物以及含氮的前驅物,藉由有機金屬氣相磊晶法(MOCVD)磊晶長成。含鋁的前驅物包含三甲基鋁(trimethylaluminum, TMA)、三乙基鋁(triethylaluminum, TEA)、或其他合適的化學品;含鎵的前驅物包含三甲基鎵(TMG)、三乙基鎵(TEG)或其他合適的化學品;含氮的前驅物包含氨(NH3)、叔丁胺(TBAm)、苯肼(phenyl hydrazine)或其他合適的化學品。然而,本揭露實施例並非以此為限。Referring to FIG. 3 , a second III-V group compound layer 30 is formed on the first III-V group compound layer 20 . In some embodiments, the material of the second group III-V compound layer 30 may include one or more group III-V compound semiconductors, eg, group III nitrides. In some embodiments, the material of the second III-V compound layer 30 may include aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), indium gallium aluminum nitride (InGaAlN), and the like material or a combination of the foregoing. In some embodiments, the thickness of the second III-V compound layer 30 may be between 1 nm and 500 nm. In some embodiments, the second III-V compound layer 30 may have dopants, such as n-type dopants or p-type dopants. The second III-V compound layer 30 can be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), and other suitable method or a combination of the foregoing. For example, the second III-V compound layer 30 may be epitaxially grown by metal organometallic vapor phase epitaxy (MOCVD) using an aluminum-containing precursor, a gallium-containing precursor, and a nitrogen-containing precursor. Aluminum-containing precursors include trimethylaluminum (TMA), triethylaluminum (TEA), or other suitable chemicals; gallium-containing precursors include trimethylgallium (TMG), triethyl Gallium (TEG) or other suitable chemicals; nitrogen containing precursors include ammonia (NH3), tert-butylamine (TBAm), phenyl hydrazine or other suitable chemicals. However, the embodiments of the present disclosure are not limited thereto.

參照第4圖,在第二III-V族化合物層30上形成一源極電極41、一汲極電極43及一閘極電極45,以形成半導體裝置1。在本揭露實施例中,源極電極41、汲極電極43及閘極電極45可以特定方式排列,後方將參照圖式進行詳細說明。Referring to FIG. 4 , a source electrode 41 , a drain electrode 43 and a gate electrode 45 are formed on the second III-V group compound layer 30 to form the semiconductor device 1 . In the disclosed embodiment, the source electrode 41 , the drain electrode 43 and the gate electrode 45 may be arranged in a specific manner, which will be described in detail later with reference to the drawings.

在一些實施例中,源極電極41的材料可包含導電材料,例如金屬、金屬矽化物、半導體材料、其他合適的材料或前述材料之組合。金屬可以是金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、前述之組合、前述之合金或前述之多層。半導體材料可以是多晶矽或多晶鍺。然而,本揭露實施例並非以此為限。在一些實施例中,汲極電極43的材料可與源極電極41的材料相同或相似,在此不多加贅述。In some embodiments, the material of the source electrode 41 may include a conductive material, such as a metal, a metal silicide, a semiconductor material, other suitable materials, or a combination of the foregoing. The metal can be gold (Au), nickel (Ni), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al), copper ( Cu), a combination of the foregoing, an alloy of the foregoing, or a multilayer of the foregoing. The semiconductor material may be polycrystalline silicon or polycrystalline germanium. However, the embodiments of the present disclosure are not limited thereto. In some embodiments, the material of the drain electrode 43 may be the same as or similar to the material of the source electrode 41 , and details are not repeated here.

形成源極電極41與汲極電極43的步驟可包含將導電材料沉積於第二III-V族化合物層30之上,並對此導電材料執行圖案化製程,以形成源極電極41與汲極電極43於第二III-V族化合物層30的頂表面30T之上。形成導電材料的沉積製程可包括原子層沉積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(physical vapor deposition, PVD)(例如,濺鍍)、其他合適的製程或前述之組合。要特別注意的是。雖然第4圖顯示源極電極41與汲極電極43形成於第二III-V族化合物層30的頂表面30T之上,但本揭露實施例並非以此為限。在一些實施例中,部分的源極電極41與部分的汲極電極43也可形成於第二III-V族化合物層30內,或者可連接至第一III-V族化合物層20,可依實際需求調整。The steps of forming the source electrode 41 and the drain electrode 43 may include depositing a conductive material on the second III-V compound layer 30 and performing a patterning process on the conductive material to form the source electrode 41 and the drain electrode The electrode 43 is on the top surface 30T of the second III-V compound layer 30 . Deposition processes for forming the conductive material may include atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD) (eg, sputtering), other suitable processes, or combinations thereof. Pay special attention. Although FIG. 4 shows that the source electrode 41 and the drain electrode 43 are formed on the top surface 30T of the second III-V group compound layer 30 , the embodiment of the present disclosure is not limited thereto. In some embodiments, part of the source electrode 41 and part of the drain electrode 43 may also be formed in the second III-V group compound layer 30, or may be connected to the first III-V group compound layer 20, depending on the actual demand adjustment.

在一些實施例中,閘極電極45的材料可包含導電材料,例如金屬、金屬矽化物、半導體材料、其他合適的材料或前述材料之組合。金屬可以是金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、前述之組合、前述之合金或前述之多層。半導體材料可以是多晶矽或多晶鍺。然而,本揭露實施例並非以此為限。In some embodiments, the material of the gate electrode 45 may include a conductive material, such as a metal, a metal silicide, a semiconductor material, other suitable materials, or a combination of the foregoing. The metal can be gold (Au), nickel (Ni), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al), copper ( Cu), a combination of the foregoing, an alloy of the foregoing, or a multilayer of the foregoing. The semiconductor material may be polycrystalline silicon or polycrystalline germanium. However, the embodiments of the present disclosure are not limited thereto.

形成閘極電極45的步驟可包含將導電材料沉積於第二III-V族化合物層30之上,並對此導電材料執行圖案化製程,以形成閘極電極45於第二III-V族化合物層30的頂表面30T之上。形成導電材料的沉積製程可包括原子層沉積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(PVD)(例如,濺鍍)、其他合適的製程或前述之組合。The step of forming the gate electrode 45 may include depositing a conductive material on the second III-V compound layer 30 and performing a patterning process on the conductive material to form the gate electrode 45 on the second III-V compound layer on top surface 30T of layer 30 . The deposition process to form the conductive material may include atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD) (eg, sputtering), other suitable processes, or a combination of the foregoing.

在一些實施例中,半導體裝置1可進一步包括一摻雜的化合物半導體層(未繪示),摻雜的化合物半導體層可形成於第二III-V族化合物層30與閘極電極45之間。在一些實施例中,摻雜的化合物半導體層可包括p型摻雜III-V族化合物,例如:p型摻雜氮化鎵。p型摻雜氮化鎵可至少以鎂(Mg)、鈣(Ca)、鋅(Zn)、鈹(Be)、及碳(C)的其中之一進行摻雜,且更額外添加其他摻質(例如,選自於由鍶(Sr)、鋇(Ba)、及鐳(Ra)所組成之群組),但本揭露實施例並非以此為限。在一些實施例中,摻雜的化合物半導體層可藉由金屬有機化學氣相沉積法(MOCVD)或其他合適的沉積製程、微影圖案化製程及蝕刻製程所形成。在一些實施例中,摻雜的化合物半導體層的厚度可介於約1 nm至約100 nm之間,但本揭露實施例並非以此為限。In some embodiments, the semiconductor device 1 may further include a doped compound semiconductor layer (not shown), and the doped compound semiconductor layer may be formed between the second III-V group compound layer 30 and the gate electrode 45 . In some embodiments, the doped compound semiconductor layer may include a p-type doped III-V compound, eg, p-type doped gallium nitride. The p-type doped gallium nitride can be doped with at least one of magnesium (Mg), calcium (Ca), zinc (Zn), beryllium (Be), and carbon (C), and other dopants are additionally added. (For example, selected from the group consisting of strontium (Sr), barium (Ba), and radium (Ra)), but the embodiment of the present disclosure is not limited thereto. In some embodiments, the doped compound semiconductor layer may be formed by metal organic chemical vapor deposition (MOCVD) or other suitable deposition processes, lithography patterning processes, and etching processes. In some embodiments, the thickness of the doped compound semiconductor layer may be between about 1 nm and about 100 nm, but the embodiments of the present disclosure are not limited thereto.

參照第4圖,第一III-V族化合物層20與第二III-V族化合物層30之間的能帶差異(band gap discontinuity)與壓電效應(piezo-electric effect)在第一III-V族化合物層20與第二III-V族化合物層30之間的界面附近產生具有高移動傳導電子的載子通道,稱為二維電子氣(two-dimensional electron gas, 2-DEG),如第4圖之虛線所示。如第4圖所示之半導體裝置1可為利用二維電子氣(2DEG)作為導電載子的高電子遷移率電晶體(high electron mobility transistors, HEMT)。Referring to FIG. 4, the band gap discontinuity and the piezoelectric effect between the first III-V compound layer 20 and the second III-V compound layer 30 are in the first III- A carrier channel with highly mobile conduction electrons, called a two-dimensional electron gas (2-DEG), is generated near the interface between the group V compound layer 20 and the second group III-V compound layer 30, such as This is shown by the dotted line in Figure 4. The semiconductor device 1 shown in FIG. 4 may be high electron mobility transistors (HEMT) using two-dimensional electron gas (2DEG) as conductive carriers.

第5A圖顯示基板10與第一III-V族化合物層20的部分俯視示意圖。在第5A圖中,以複數晶格21排列呈現第一III-V族化合物層20,但第5A圖中所示的每個晶格21的尺寸僅為示意,晶格21相對於基板10的實際大小並非如第5A圖所示。在第5A圖所示之實施例中,是以第一III-V族化合物層20的材料是氮化鎵(GaN)進行說明,氮化鎵的晶格21屬於六方晶系(hexagonal crystal system)。第5B圖顯示單一晶格21的放大俯視示意圖。第6圖顯示單一晶格21的立體示意圖。第7圖繪示本揭露一實施例之半導體裝置1的部分俯視示意圖。FIG. 5A shows a partial top view of the substrate 10 and the first III-V compound layer 20 . In FIG. 5A , the first III-V compound layer 20 is arranged in a plurality of lattices 21 , but the size of each lattice 21 shown in FIG. 5A is only for illustration, and the size of the lattice 21 relative to the substrate 10 Actual size is not as shown in Figure 5A. In the embodiment shown in FIG. 5A , the material of the first III-V group compound layer 20 is gallium nitride (GaN), and the crystal lattice 21 of gallium nitride belongs to the hexagonal crystal system. . FIG. 5B shows an enlarged schematic top view of the single crystal lattice 21 . FIG. 6 shows a schematic perspective view of a single crystal lattice 21 . FIG. 7 is a schematic top view of a part of the semiconductor device 1 according to an embodiment of the present disclosure.

要注意的是,為了更清楚顯示本揭露實施例的特徵,第5A圖至第7圖中可能省略部分元件。舉例來說,第7圖中僅顯示半導體裝置1的源極電極41、汲極電極43、閘極電極45以及源極電極41與汲極電極43所定義之通道區47。此外,第4圖可例如為第7圖中的線A-A’所切的剖面圖,但本揭露實施例並非以此為限。It should be noted that, in order to show the features of the embodiments of the present disclosure more clearly, some elements may be omitted in FIGS. 5A to 7 . For example, FIG. 7 only shows the source electrode 41 , the drain electrode 43 , the gate electrode 45 and the channel region 47 defined by the source electrode 41 and the drain electrode 43 of the semiconductor device 1 . In addition, FIG. 4 can be, for example, a cross-sectional view taken along the line A-A' in FIG. 7, but the embodiment of the present disclosure is not limited thereto.

同時參照第5A圖、第5B圖與第6圖,晶格21具有一稜鏡面(prism plane)。在本揭露中,稜鏡面是指六方晶系之晶格21的六角柱側面的長方形平面,即晶格21的m平面(m-plane)21m,其為本發明所屬技術領域中具有通常知識者可以理解。稜鏡面(m平面21m)屬於平面族{1-100},舉例來說,稜鏡面可表示為平面(10-10),但本揭露實施例並非以此為限。在其他實施例中,稜鏡面也可表示為平面(-1010)、平面(1-100)、平面(-1100)、平面(01-10)或平面(0-110)。Referring to FIGS. 5A , 5B and 6 simultaneously, the lattice 21 has a prism plane. In the present disclosure, the H-plane refers to the rectangular plane on the side of the hexagonal column of the lattice 21 of the hexagonal crystal system, that is, the m-plane (m-plane) 21m of the lattice 21, which is a person with ordinary knowledge in the technical field to which the present invention pertains. Understandable. The high plane (m plane 21 m) belongs to the plane family {1-100}. For example, the high plane may be represented as a plane (10-10), but the embodiment of the present disclosure is not limited to this. In other embodiments, the plane may also be represented as Plane(-1010), Plane(1-100), Plane(-1100), Plane(01-10), or Plane(0-110).

如第5A圖、第5B圖所示,稜鏡面的法線方向可定義一m軸(即第5A圖、第5B圖的標號m)。舉例來說,當稜鏡面為平面(10-10),m軸為[10-10];當稜鏡面為平面(-1010),m軸為[-1010];當稜鏡面為平面(1-100),m軸為[1-100];當稜鏡面為平面(-1100),m軸為[-1100];當稜鏡面為平面(01-10),m軸為[01-10];當稜鏡面為平面(0-110),m軸為[0-110]。As shown in Fig. 5A and Fig. 5B, the normal direction of the plane can define an m-axis (ie, the symbol m in Fig. 5A and Fig. 5B). For example, when the plane is a plane (10-10), the m-axis is [10-10]; when the plane is a plane (-1010), the m-axis is [-1010]; when the plane is a plane (1- 100), the m-axis is [1-100]; when the plane is a plane (-1100), the m-axis is [-1100]; when the plane is a plane (01-10), the m-axis is [01-10]; When the plane is the plane (0-110), the m-axis is [0-110].

同時參照第5A圖與第7圖,源極電極41與汲極電極43可在第一III-V族化合物層20界定一通道區47,通道區47中可具有複數個載子通道。在本揭露實施例中,每個載子通道平行於m軸。換言之,在本揭露實施例中,每個載子通道平行於晶格之m平面的法線方向。5A and 7 simultaneously, the source electrode 41 and the drain electrode 43 may define a channel region 47 in the first III-V group compound layer 20 , and the channel region 47 may have a plurality of carrier channels. In the disclosed embodiment, each carrier channel is parallel to the m-axis. In other words, in the disclosed embodiment, each carrier channel is parallel to the normal direction of the m-plane of the lattice.

在一些實施例中,源極電極41與汲極電極43的延伸方向可垂直於m軸(垂直於m平面的法線方向),即源極電極41與汲極電極43沿著第5A圖與第7圖中所示之a軸(標號a)的方向延伸。在一些實施例中,源極電極41與汲極電極43沿著m軸(m平面的法線方向)的方向彼此分離。更詳細而言,如第7圖所示,在一些實施例中,源極電極41與汲極電極43彼此相對且平行設置,源極電極41面對汲極電極43的一側壁在基板10上的投影為一側邊41S,側邊41S垂直於m軸(垂直於m平面的法線方向);或者,汲極電極43面對源極電極41的一側壁在基板10上的投影為一側邊43S,側邊43S垂直於m軸(垂直於m平面的法線方向)。In some embodiments, the extension direction of the source electrode 41 and the drain electrode 43 may be perpendicular to the m-axis (perpendicular to the normal direction of the m-plane), that is, the source electrode 41 and the drain electrode 43 are along the lines of FIG. 5A and FIG. 5A . The direction of the a-axis (symbol a) shown in Fig. 7 extends. In some embodiments, the source electrode 41 and the drain electrode 43 are separated from each other along the direction of the m-axis (the normal direction of the m-plane). In more detail, as shown in FIG. 7 , in some embodiments, the source electrode 41 and the drain electrode 43 are arranged opposite and parallel to each other, and a sidewall of the source electrode 41 facing the drain electrode 43 is on the substrate 10 The projection is one side 41S, and the side 41S is perpendicular to the m-axis (perpendicular to the normal direction of the m plane); or, the projection of the side wall of the drain electrode 43 facing the source electrode 41 on the substrate 10 is one side Side 43S, side 43S is perpendicular to the m-axis (perpendicular to the normal direction of the m-plane).

在本揭露的實施例中,於源極電極41與汲極電極43所界定之通道區47中移動的載子(carrier)(電子或電洞)相較於習知的半導體裝置可具有較高的載子移動率(carrier mobility),其可對半導體裝置1的導通電阻(on-resistance, Ron )產生有利的影響。In the embodiment of the present disclosure, the carriers (electrons or holes) moving in the channel region 47 defined by the source electrode 41 and the drain electrode 43 can have a higher value than that of the conventional semiconductor device. The carrier mobility can have a favorable effect on the on-resistance (R on ) of the semiconductor device 1 .

但要特別注意的是,本揭露之源極電極41、汲極電極43及閘極電極45的排列方式並非限定於第7圖所示的方式。只要通道區47中的每個載子(carrier)通道平行於m軸,便可使源極電極41與汲極電極43所界定之通道區47中移動的載子具有較高的載子移動率。However, it should be noted that the arrangement of the source electrode 41 , the drain electrode 43 and the gate electrode 45 in the present disclosure is not limited to that shown in FIG. 7 . As long as each carrier channel in the channel region 47 is parallel to the m-axis, the carriers moving in the channel region 47 defined by the source electrode 41 and the drain electrode 43 can have a higher carrier mobility. .

表一為本揭露實施例之半導體裝置1與一比較例之半導體裝置的性能(performance)比較結果。本揭露實施例之半導體裝置1的結構可參考第4圖至第7圖,且本揭露實施例之半導體裝置1的通道區47中的每個載子通道平行於m軸(例如[10-10])。比較例之半導體裝置具有與本揭露實施例之半導體裝置1類似的結構,其不同之處在於,比較例之半導體裝置的通道區中的每個載子通道平行於a軸(即晶格21的a平面(a-plane)21a的法線方向,例如[11-20])(參照第5A圖、第5B圖)。Table 1 is a performance comparison result of the semiconductor device 1 of the disclosed embodiment and a semiconductor device of a comparative example. The structure of the semiconductor device 1 of the disclosed embodiment can be referred to FIG. 4 to FIG. 7, and each carrier channel in the channel region 47 of the semiconductor device 1 of the disclosed embodiment is parallel to the m-axis (eg [10-10 ]). The semiconductor device of the comparative example has a structure similar to that of the semiconductor device 1 of the embodiment of the present disclosure, except that each carrier channel in the channel region of the semiconductor device of the comparative example is parallel to the a-axis (that is, the The normal direction of the a-plane (a-plane) 21a, for example, [11-20]) (refer to FIGS. 5A and 5B ).

表一 性能 實施例 比較例 Ron (mΩ) 20.5 115 面積 (mm2 ) 10.38 5.18 Ron,sp (mΩ) 2.13 5.96 Table I performance Example Comparative example R on (mΩ) 20.5 115 Area (mm 2 ) 10.38 5.18 R on,sp (mΩ) 2.13 5.96

在表一中,Ron 為導通電阻,Ron,sp 為特性導通電阻。特性導通電阻Ron,sp 定義為每平方單位上分佈的導通電阻。如表一所示,實施例之半導體裝置1的特性導通電阻Ron,sp 相較比較例之半導體裝置1的特性導通電阻Ron,sp 降低了64 %。亦即,透過將半導體裝置1之通道區47中的每個載子通道相對於第一III-V族化合物層20(GaN)之晶格21以特定方向設置,能有效降低半導體裝置1的導通電阻。In Table 1, R on is the on-resistance, and R on,sp is the characteristic on-resistance. The characteristic on-resistance R on,sp is defined as the on-resistance distributed per square unit. As shown in Table 1, the characteristic on-resistance R on,sp of the semiconductor device 1 of the embodiment is reduced by 64% compared to the characteristic on-resistance R on ,sp of the semiconductor device 1 of the comparative example. That is, by arranging each carrier channel in the channel region 47 of the semiconductor device 1 in a specific direction relative to the lattice 21 of the first III-V compound layer 20 (GaN), the conduction of the semiconductor device 1 can be effectively reduced resistance.

綜合上述,在本揭露實施例之半導體裝置中,透過將半導體裝置的通道區中的每個載子通道平行於m軸(即形成第一III-V族化合物層之晶格的稜鏡面的法線方向),能有效降低半導體裝置的導通電阻。To sum up the above, in the semiconductor device of the present disclosure, each carrier channel in the channel region of the semiconductor device is parallel to the m-axis (that is, the method of forming the high plane of the crystal lattice of the first group III-V compound layer) line direction), which can effectively reduce the on-resistance of the semiconductor device.

前述內文概述了許多實施例的特徵部件,使本技術領域中具有通常知識者可以從各個方面更佳地了解本揭露實施例。本技術領域中具有通常知識者應可理解,且可輕易地以本揭露實施例為基礎來設計或修飾其他製程及結構,並以此達到相同的目的及/或達到與在此介紹的實施例相同之優點。本技術領域中具有通常知識者也應了解這些相等的結構並未背離本揭露實施例的發明精神與範圍。在不背離本揭露實施例的發明精神與範圍之前提下,可對本揭露實施例進行各種改變、置換或修改,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。另外,雖然本揭露已以數個較佳實施例揭露如上,然其並非用以限定本揭露,且並非所有優點都已於此詳加說明。The foregoing summary outlines the features of many of the embodiments so that those skilled in the art may better understand various aspects of the disclosed embodiments. It should be understood by those skilled in the art that other processes and structures can be easily designed or modified based on the disclosed embodiments to achieve the same purpose and/or to achieve the embodiments described herein. the same advantages. Those skilled in the art should also understand that these equivalent structures do not depart from the spirit and scope of the disclosed embodiments. Various changes, substitutions or modifications can be made to the embodiments of the present disclosure without departing from the inventive spirit and scope of the embodiments of the present disclosure. Therefore, the protection scope of the present disclosure should be determined by the scope of the appended claims. In addition, although the present disclosure has been disclosed above with several preferred embodiments, it is not intended to limit the present disclosure, and not all advantages have been described in detail herein.

本揭露之每一請求項可為個別的實施例,且本揭露之範圍包括本揭露之每一請求項及每一實施例彼此之結合。Each claim of this disclosure may be a separate embodiment, and the scope of this disclosure includes each claim and each embodiment of this disclosure in combination with each other.

1:半導體裝置 10:基板 20:第一III-V族化合物層 21:晶格 21a:a平面 21m:m平面 30:第二III-V族化合物層 30T:頂表面 41:源極電極 41S:側邊 43:汲極電極 43S:側邊 45:閘極電極 47:通道區 A-A’:剖面線 a:a軸 m:m軸1: Semiconductor device 10: Substrate 20: The first III-V compound layer 21: Lattice 21a:a plane 21m:m plane 30: Second III-V compound layer 30T: Top surface 41: source electrode 41S: Side 43: drain electrode 43S: Side 45: Gate electrode 47: Passage area A-A’: hatch line a:a axis m:m axis

以下將配合所附圖式詳述本揭露實施例。應注意的是,各種特徵部件並未按照比例繪製且僅用以說明例示。事實上,元件的尺寸可能經放大或縮小,以清楚地表現出本揭露實施例的技術特徵。 第1圖至第4圖是根據本揭露的一些實施例,說明形成第4圖所示之半導體裝置在各個不同製程階段的部分剖面示意圖。 第5A圖顯示基板與第一III-V族化合物層的部分俯視示意圖。 第5B圖顯示單一晶格的放大俯視示意圖。 第6圖顯示單一晶格的立體示意圖。 第7圖繪示本揭露一實施例之半導體裝置的部分俯視示意圖。The embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. It should be noted that the various features are not drawn to scale and are for illustrative purposes only. In fact, the dimensions of the elements may be enlarged or reduced to clearly represent the technical features of the embodiments of the present disclosure. FIGS. 1 to 4 are partial cross-sectional views illustrating different process stages of forming the semiconductor device shown in FIG. 4 according to some embodiments of the present disclosure. FIG. 5A shows a partial top view of the substrate and the first III-V compound layer. Figure 5B shows an enlarged schematic top view of a single lattice. Figure 6 shows a schematic perspective view of a single crystal lattice. FIG. 7 is a schematic top view of a portion of the semiconductor device according to an embodiment of the present disclosure.

1:半導體裝置 1: Semiconductor device

10:基板 10: Substrate

20:第一III-V族化合物層 20: The first III-V compound layer

30:第二III-V族化合物層 30: Second III-V compound layer

30T:頂表面 30T: Top surface

41:源極電極 41: source electrode

43:汲極電極 43: drain electrode

45:閘極電極 45: Gate electrode

Claims (18)

一種半導體裝置,包括: 一基板; 一第一III-V族化合物層,設置於該基板上,該第一III-V族化合物層包括複數晶格且每該晶格具有一稜鏡面; 一第二III-V族化合物層,設置於該第一III-V族化合物層上;以及 一源極電極、一汲極電極及一閘極電極,設置於該第二III-V族化合物層上,該源極電極與汲極電極在該第一III-V族化合物層界定一通道區,該通道區中具有複數個載子通道; 其中該稜鏡面的法線方向定義一m軸,且每該載子通道平行於該m軸。A semiconductor device, comprising: a substrate; a first III-V group compound layer disposed on the substrate, the first III-V group compound layer includes a plurality of crystal lattices and each of the crystal lattices has a pyran face; a second III-V compound layer disposed on the first III-V compound layer; and A source electrode, a drain electrode and a gate electrode are disposed on the second III-V group compound layer, and the source electrode and the drain electrode define a channel region in the first III-V group compound layer , the channel region has a plurality of carrier channels; The direction of the normal line of the surface defines an m-axis, and each carrier channel is parallel to the m-axis. 如申請專利範圍第1項所述之半導體裝置,其中該基板為一半導體基板、一半導體位於絕緣體之上的基板、一玻璃基板或一陶瓷基板。The semiconductor device of claim 1, wherein the substrate is a semiconductor substrate, a substrate with a semiconductor on an insulator, a glass substrate or a ceramic substrate. 如申請專利範圍第1項所述之半導體裝置,其中該基板為一QST基板。The semiconductor device according to claim 1, wherein the substrate is a QST substrate. 如申請專利範圍第1項所述之半導體裝置,其中該m軸為[10-10]、[-1010]、[1-100]、[-1100]、[01-10]及[0-110]的其中之一。The semiconductor device of claim 1, wherein the m-axis is [10-10], [-1010], [1-100], [-1100], [01-10] and [0-110 ] one of them. 如申請專利範圍第1項所述之半導體裝置,其中該源極電極與汲極電極彼此相對,且該源極電極面對該汲極電極的一側壁在該基板上的投影垂直於該m軸。The semiconductor device as described in claim 1, wherein the source electrode and the drain electrode are opposite to each other, and the projection of a side wall of the source electrode facing the drain electrode on the substrate is perpendicular to the m-axis . 如申請專利範圍第1項所述之半導體裝置,其中該源極電極與該汲極電極沿著該m軸的方向彼此分離。The semiconductor device of claim 1, wherein the source electrode and the drain electrode are separated from each other along the m-axis direction. 一種半導體裝置,包括: 一基板; 一第一III-V族化合物層,設置於該基板上,該第一III-V族化合物層包括複數晶格且每該晶格具有一m平面; 一第二III-V族化合物層,設置於該第一III-V族化合物層上;以及 一源極電極、一汲極電極及一閘極電極,設置於該第二III-V族化合物層上,該源極電極與汲極電極在該第一III-V族化合物層界定一通道區,該通道區中具有複數個載子通道; 其中每該載子通道平行於該m平面的法線方向。A semiconductor device, comprising: a substrate; a first III-V group compound layer disposed on the substrate, the first III-V group compound layer includes a plurality of lattices and each lattice has an m-plane; a second III-V compound layer disposed on the first III-V compound layer; and A source electrode, a drain electrode and a gate electrode are disposed on the second III-V group compound layer, and the source electrode and the drain electrode define a channel region in the first III-V group compound layer , the channel region has a plurality of carrier channels; Each of the carrier channels is parallel to the normal direction of the m-plane. 如申請專利範圍第7項所述之半導體裝置,其中該基板為一半導體基板、一半導體位於絕緣體之上的基板、一玻璃基板或一陶瓷基板。The semiconductor device of claim 7, wherein the substrate is a semiconductor substrate, a substrate with a semiconductor on an insulator, a glass substrate or a ceramic substrate. 如申請專利範圍第7項所述之半導體裝置,其中該基板為一QST基板。The semiconductor device of claim 7, wherein the substrate is a QST substrate. 如申請專利範圍第7項所述之半導體裝置,其中該m平面為平面(10-10)、平面(-1010)、平面(1-100)、平面(-1100)、平面(01-10)及平面(0-110)的其中之一。The semiconductor device according to claim 7, wherein the m-plane is plane (10-10), plane (-1010), plane (1-100), plane (-1100), plane (01-10) and one of the planes (0-110). 如申請專利範圍第7項所述之半導體裝置,其中該源極電極與該汲極電極彼此相對,且該源極電極面對該汲極電極的一側壁在該基板上的投影垂直於該m平面的法線方向。The semiconductor device as described in claim 7, wherein the source electrode and the drain electrode are opposite to each other, and the projection of a side wall of the source electrode facing the drain electrode on the substrate is perpendicular to the m The normal direction of the plane. 如申請專利範圍第7項所述之半導體裝置,其中該源極電極與該汲極電極沿著該m平面的法線方向彼此分離。The semiconductor device of claim 7, wherein the source electrode and the drain electrode are separated from each other along a normal direction of the m-plane. 一種半導體裝置的製造方法,包括: 形成並提供一基板; 在該基板上形成一第一III-V族化合物層,其中該第一III-V族化合物層包括複數晶格且每該晶格具有一稜鏡面; 在該第一III-V族化合物層上形成一第二III-V族化合物層;及 在該第二III-V族化合物層上形成一源極電極、一汲極電極及一閘極電極,其中該源極電極與該汲極電極在該第一III-V族化合物層界定一通道區,該通道區中具有複數個載子通道; 其中該稜鏡面的法線方向定義一m軸,且每該載子通道平行於該m軸。A method of manufacturing a semiconductor device, comprising: forming and providing a substrate; forming a first III-V group compound layer on the substrate, wherein the first III-V group compound layer includes a plurality of crystal lattices and each of the crystal lattices has a plane; forming a second III-V compound layer on the first III-V compound layer; and A source electrode, a drain electrode and a gate electrode are formed on the second III-V compound layer, wherein the source electrode and the drain electrode define a channel in the first III-V compound layer area, there are a plurality of carrier channels in the channel area; The direction of the normal line of the surface defines an m-axis, and each carrier channel is parallel to the m-axis. 如申請專利範圍第13項所述之製造方法,其中該基板為一半導體基板、一半導體位於絕緣體之上的基板、一玻璃基板或一陶瓷基板。The manufacturing method according to claim 13, wherein the substrate is a semiconductor substrate, a substrate with a semiconductor on an insulator, a glass substrate or a ceramic substrate. 如申請專利範圍第13項所述之製造方法,其中該基板為一QST基板。The manufacturing method of claim 13, wherein the substrate is a QST substrate. 如申請專利範圍第13項所述之製造方法,其中該m軸為[10-10]、[-1010]、[1-100]、[-1100]、[01-10]及[0-110]的其中之一。The manufacturing method according to claim 13, wherein the m-axis is [10-10], [-1010], [1-100], [-1100], [01-10] and [0-110] ] one of them. 如申請專利範圍第13項所述之製造方法,其中該源極電極與汲極電極彼此相對,且該源極電極面對該汲極電極的一側壁在該基板上的投影垂直於該m軸。The manufacturing method as described in claim 13, wherein the source electrode and the drain electrode are opposite to each other, and the projection of a side wall of the source electrode facing the drain electrode on the substrate is perpendicular to the m-axis . 如申請專利範圍第13項所述之製造方法,其中該源極電極與該汲極電極沿著該m軸的方向彼此分離。The manufacturing method as described in claim 13, wherein the source electrode and the drain electrode are separated from each other along the m-axis direction.
TW108125152A 2019-07-17 2019-07-17 Semiconductor device and manufacturing method of the same TWI768222B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108125152A TWI768222B (en) 2019-07-17 2019-07-17 Semiconductor device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108125152A TWI768222B (en) 2019-07-17 2019-07-17 Semiconductor device and manufacturing method of the same

Publications (2)

Publication Number Publication Date
TW202105739A TW202105739A (en) 2021-02-01
TWI768222B true TWI768222B (en) 2022-06-21

Family

ID=75745172

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108125152A TWI768222B (en) 2019-07-17 2019-07-17 Semiconductor device and manufacturing method of the same

Country Status (1)

Country Link
TW (1) TWI768222B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020047113A1 (en) * 2000-09-01 2002-04-25 Nec Corporation Semiconductor device
US20020167023A1 (en) * 2001-05-11 2002-11-14 Cree Lighting Company And Regents Of The University Of California Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
US20090057684A1 (en) * 2007-08-09 2009-03-05 Rohm Co. Ltd. Nitride semiconductor device and method for producing nitride semiconductor device
CN104465741A (en) * 2013-09-13 2015-03-25 株式会社东芝 Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020047113A1 (en) * 2000-09-01 2002-04-25 Nec Corporation Semiconductor device
US20020167023A1 (en) * 2001-05-11 2002-11-14 Cree Lighting Company And Regents Of The University Of California Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
US20090057684A1 (en) * 2007-08-09 2009-03-05 Rohm Co. Ltd. Nitride semiconductor device and method for producing nitride semiconductor device
CN104465741A (en) * 2013-09-13 2015-03-25 株式会社东芝 Semiconductor device

Also Published As

Publication number Publication date
TW202105739A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
JP4530171B2 (en) Semiconductor device
US9343542B2 (en) Method for fabricating enhancement mode transistor
JP4449467B2 (en) Semiconductor device
JP4381380B2 (en) Semiconductor device and manufacturing method thereof
JP4525894B2 (en) Semiconductor device forming plate-like substrate, manufacturing method thereof, and semiconductor device using the same
TW552712B (en) Insulating gate AlGaN/GaN HEMT
CN102549716B (en) Dorsal part stress compensation for semiconductor device based on gallium nitride or other nitride
US8247796B2 (en) Semiconductor device
JP2003059948A (en) Semiconductor device and production method therefor
JPWO2006129553A1 (en) III-V nitride compound semiconductor device and electrode forming method
JP2010225979A (en) GaN-BASED FIELD-EFFECT TRANSISTOR
US10461159B2 (en) Method of manufacturing semiconductor device and the semiconductor device
US10629475B2 (en) Semiconductor device with two-part insulation structure within non-active region
WO2023019436A1 (en) Semiconductor device and method for manufacturing the same
TWI768222B (en) Semiconductor device and manufacturing method of the same
KR20130083198A (en) Nitride-based heterojuction semiconductor device
US11251264B2 (en) Semiconductor device and manufacturing method of the same
US11222968B2 (en) HEMT device structure and manufacturing method thereof
CN112310189A (en) Semiconductor device and method for manufacturing the same
TWI779979B (en) Semiconductor device and manufacturing method of the same
TWI798728B (en) Semiconductor structures and manufacturing methods thereof
TWI839628B (en) Semiconductor structures and manufacturing methods thereof
WO2024036486A1 (en) Nitride-based semiconductor device and method for manufacturing the same
JP6868389B2 (en) Semiconductor substrates and electronic devices
TW202310058A (en) Semiconductor structure and manufacturing method thereof