TWI766118B - Video decoding apparatus and video decoding method - Google Patents

Video decoding apparatus and video decoding method Download PDF

Info

Publication number
TWI766118B
TWI766118B TW107137267A TW107137267A TWI766118B TW I766118 B TWI766118 B TW I766118B TW 107137267 A TW107137267 A TW 107137267A TW 107137267 A TW107137267 A TW 107137267A TW I766118 B TWI766118 B TW I766118B
Authority
TW
Taiwan
Prior art keywords
bit depth
bitstream
quantization parameter
video
quantization
Prior art date
Application number
TW107137267A
Other languages
Chinese (zh)
Other versions
TW201926993A (en
Inventor
鄭泳凡
楊政燁
張爀在
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201926993A publication Critical patent/TW201926993A/en
Application granted granted Critical
Publication of TWI766118B publication Critical patent/TWI766118B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • H04N19/45Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder performing compensation of the inverse transform mismatch, e.g. Inverse Discrete Cosine Transform [IDCT] mismatch
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • H04N19/82Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

A video decoding apparatus, a computing system including the same, and a video decoding method. The video decoding apparatus may include an entropy decoder and a video decoder. The entropy decoder may be configured to obtain encoding information of a bitstream of an encoded video from a header of the bitstream, the encoding information of the bitstream including a bit depth of the bitstream, and convert a first quantization parameter of the bitstream into a second quantization parameter when the bit depth of the bitstream is different from a reference bit depth. The video decoder may be configured to decode the bitstream based on the second quantization parameter.

Description

視訊解碼裝置及視訊解碼方法Video decoding device and video decoding method

本發明概念的示例性實施例是有關於視訊解碼裝置、包括其的計算系統及/或視訊解碼方法。Exemplary embodiments of the inventive concept relate to a video decoding apparatus, a computing system including the same, and/or a video decoding method.

隨著能夠再現及儲存高解析度或高清晰度視訊內容的硬體的開發及傳播,越來越需要對高解析度或高清晰度視訊內容進行有效地編碼或解碼的視訊編解碼器。With the development and dissemination of hardware capable of reproducing and storing high-resolution or high-definition video content, there is an increasing need for video codecs that efficiently encode or decode high-resolution or high-definition video content.

例如H.264先進視訊編碼(Advanced Video Coding,AVC)及H.265/高效率視訊編碼(High Efficiency Video Coding,HEVC)等標準已建立並積極地用於視訊編解碼器中以獲得高壓縮效率及高影像品質,從而將對於每一顏色通道而言位元深度為8位元的視訊進行編碼及解碼。然而,傳統上,可能難以將對於每一顏色通道而言位元深度為10位元或12位元的視訊進行編碼及解碼。Standards such as H.264 Advanced Video Coding (AVC) and H.265/High Efficiency Video Coding (HEVC) have been established and actively used in video codecs to achieve high compression efficiency and high image quality to encode and decode video with a bit depth of 8 bits for each color channel. Traditionally, however, it may be difficult to encode and decode video with a bit depth of 10 or 12 bits for each color channel.

本發明概念的示例性實施例提供一種視訊解碼裝置及/或方法,用於將位元深度大於可由所述裝置解碼的位元深度的視訊內容解碼。Exemplary embodiments of the present inventive concept provide a video decoding apparatus and/or method for decoding video content having a bit depth greater than that decodable by the apparatus.

本發明概念的示例性實施例亦提供一種包括視訊解碼裝置的計算系統,所述視訊解碼裝置能夠將位元深度大於可由所述裝置解碼的位元深度的視訊內容解碼。Exemplary embodiments of the present inventive concept also provide a computing system including a video decoding device capable of decoding video content having a bit depth greater than that decodable by the device.

然而,本發明概念的示例性實施例並非僅限於本文中所述者。藉由參照下文給出的詳細說明,本發明概念的示例性實施例的以上及其他態樣對本發明概念的示例性實施例所屬技術中具有通常知識者將變得更顯而易見。However, exemplary embodiments of the inventive concept are not limited to those described herein. The above and other aspects of the exemplary embodiments of the inventive concepts will become more apparent to those having ordinary skill in the art to which exemplary embodiments of the inventive concepts pertain by referencing the detailed description given hereinafter.

根據本發明概念的示例性實施例,提供一種視訊解碼裝置。所述視訊解碼裝置可包括:熵解碼器,被配置成自經編碼視訊的位元串流的標頭獲得所述位元串流的編碼資訊,所述位元串流的所述編碼資訊包括所述位元串流的位元深度,並且當所述位元串流的所述位元深度不同於參考位元深度時,將所述位元串流的第一量化參數轉換成第二量化參數;以及視訊解碼器,被配置成基於所述第二量化參數將所述位元串流解碼。According to an exemplary embodiment of the inventive concept, a video decoding apparatus is provided. The video decoding device may include an entropy decoder configured to obtain encoding information of a bitstream of encoded video from a header of the bitstream, the encoding information of the bitstream including the bit depth of the bit stream, and when the bit depth of the bit stream is different from a reference bit depth, converting the first quantization parameter of the bit stream to a second quantization parameters; and a video decoder configured to decode the bitstream based on the second quantization parameter.

根據本發明概念的另一示例性實施例,提供一種視訊解碼裝置。所述視訊解碼裝置可包括:熵解碼器,被配置成自經編碼視訊的位元串流的標頭獲得所述位元串流的編碼資訊,所述編碼資訊包括所述位元串流的位元深度,並且當所述位元串流的所述位元深度大於參考位元深度時,將所述位元串流的第一量化參數轉換成第二量化參數;加法器,被配置成基於殘餘資料產生空間域的資料,所述殘餘資料是利用量化步長以及自所述位元串流進行畫框內預測(intra-predicted)或畫框間預測(inter-predicted)得到的資料進行恢復得到,當所述位元串流的所述位元深度大於所述參考位元深度時,所述量化步長對應於所述第二量化參數;以及樣本自適應性偏移(sample adaptive offset,SAO)濾波器,被配置成藉由基於所述第二量化參數及解碼偏移對所述空間域的所述資料執行樣本自適應性偏移濾波來產生視訊輸出。According to another exemplary embodiment of the inventive concept, a video decoding apparatus is provided. The video decoding device may include an entropy decoder configured to obtain encoding information of a bitstream of encoded video from a header of the bitstream, the encoding information including an a bit depth, and when the bit depth of the bit stream is greater than a reference bit depth, converting the first quantization parameter of the bit stream into a second quantization parameter; an adder configured to Spatial domain data is generated based on residual data using quantization step sizes and data obtained from intra-predicted or inter-predicted data from the bitstream It is recovered that, when the bit depth of the bit stream is greater than the reference bit depth, the quantization step size corresponds to the second quantization parameter; and a sample adaptive offset (sample adaptive offset) , SAO) filter configured to generate a video output by performing sample adaptive offset filtering on the data in the spatial domain based on the second quantization parameter and a decoding offset.

根據本發明概念的另一示例性實施例,提供一種視訊解碼方法。所述視訊解碼方法可包括:接收經編碼視訊的位元串流;自所述位元串流的標頭中所包括的編碼資訊獲得所述位元串流的位元深度;基於所述經編碼視訊的所述位元串流的所述位元深度及參考位元深度將所述位元串流的第一量化參數轉換成第二量化參數;以及基於所述第二量化參數將所述經編碼視訊的所述位元串流解碼。According to another exemplary embodiment of the inventive concept, a video decoding method is provided. The video decoding method may include: receiving a bitstream of encoded video; obtaining a bit depth of the bitstream from encoding information included in a header of the bitstream; encoding the bit depth and reference bit depth of the bitstream of video, converting a first quantization parameter of the bitstream into a second quantization parameter; and converting the bitstream based on the second quantization parameter The bitstream of encoded video is decoded.

根據本發明概念的另一示例性實施例,提供一種計算系統。所述計算系統可包括:記憶體,被配置成對視訊輸出進行緩衝;以及處理器,被配置成編解碼器,以自經編碼視訊資料的位元串流的標頭獲得所述位元串流的編碼資訊,所述編碼資訊包括所述位元串流的位元深度,當所述位元串流的所述位元深度大於參考位元深度時,將所述位元串流的第一量化參數轉換成第二量化參數,基於殘餘資料產生空間域的資料,所述殘餘資料是利用量化步長以及自所述位元串流進行畫框內預測或畫框間預測得到的資料進行恢復得到,當所述位元串流的所述位元深度大於所述參考位元深度時,所述量化步長對應於所述第二量化參數,藉由基於所述第二量化參數及解碼偏移對所述空間域的所述資料執行樣本自適應性偏移濾波來產生視訊輸出,並且將所述視訊輸出儲存於所述記憶體中。According to another exemplary embodiment of the inventive concept, a computing system is provided. The computing system may include: a memory configured to buffer video output; and a processor configured as a codec to obtain the bitstring from a header of a bitstream of encoded video data encoding information of the stream, the encoding information includes the bit depth of the bit stream, when the bit depth of the bit stream is greater than the reference bit depth, the first bit depth of the bit stream is A quantization parameter is converted into a second quantization parameter to generate spatial domain data based on residual data using quantization steps and data obtained from intra-frame prediction or inter-frame prediction from the bitstream It is recovered that when the bit depth of the bit stream is greater than the reference bit depth, the quantization step size corresponds to the second quantization parameter, by decoding and decoding based on the second quantization parameter Offset performs sample adaptive offset filtering on the data in the spatial domain to generate a video output, and stores the video output in the memory.

本文所使用的用語‘單元’或‘模組’意指但不限於執行某些任務的軟體組件或硬體組件,例如現場可程式化閘陣列(Field Programmable Gate Array,FPGA)或應用專用積體電路(Application Specific Integrated Circuit,ASIC)。單元或模組可有利地被配置成常駐於可定址非暫時性儲存媒體中並被配置成在一或多個處理器上執行。因此,舉例而言,單元或模組可包括組件(例如,軟體組件、物件導向的軟體組件、類別組件及任務組件)、過程、功能、屬性、程序、次常式(subroutine)、程式碼段、驅動器、韌體、微碼、電路系統、資料、資料庫、資料結構、表格、陣列及變數。提供用於所述組件及單元或模組中的功能可被組合成更少的組件及單元或模組,或者可被進一步分成額外的組件及單元或模組。As used herein, the term 'unit' or 'module' means, but is not limited to, a software component or a hardware component that performs certain tasks, such as a Field Programmable Gate Array (FPGA) or an application-specific integrated circuit Circuit (Application Specific Integrated Circuit, ASIC). A unit or module may advantageously be configured to reside in an addressable non-transitory storage medium and configured to execute on one or more processors. Thus, for example, a unit or module may include components (eg, software components, object-oriented software components, class components, and task components), procedures, functions, properties, procedures, subroutines, code segments , drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays and variables. The functionality provided for use in the components and units or modules may be combined into fewer components and units or modules, or may be further divided into additional components and units or modules.

結合本文所揭露的態樣闡述的方法或演算法的步驟可直接在硬體中、在由處理器執行的軟體模組中或在硬體與軟體模組的組合中實施。軟體模組可常駐於隨機存取記憶體(Random Access Memory,RAM)、快閃記憶體、唯讀記憶體(Read Only Memory,ROM)、電可程式化ROM(Electrically Programmable ROM,EPROM)、電可擦可程式化ROM(Electrically Erasable Programmable ROM,EEPROM)、暫存器、硬碟、可移動磁碟、光碟(compact disk,CD)-ROM或此項技術中已知的非暫時性儲存媒體的任何其他形式中。示例性儲存媒體耦合至處理器,使得處理器可自儲存媒體讀取資訊以及將資訊寫入至儲存媒體。或者,儲存媒體可與處理器整合。處理器及儲存媒體可常駐於應用專用積體電路(ASIC)中。ASIC可常駐於使用者終端中。The steps of a method or algorithm described in connection with aspects disclosed herein may be implemented directly in hardware, in a software module executed by a processor, or in a combination of hardware and software modules. Software modules can reside in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), electrical Electrically Erasable Programmable ROM (EEPROM), scratchpad, hard disk, removable disk, compact disk (CD)-ROM, or non-transitory storage media known in the art in any other form. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. Alternatively, the storage medium may be integrated with the processor. The processor and storage medium may reside in an application specific integrated circuit (ASIC). The ASIC may reside in the user terminal.

圖1為根據示例性實施例的視訊解碼裝置的方塊圖。FIG. 1 is a block diagram of a video decoding apparatus according to an exemplary embodiment.

參照圖1,根據示例性實施例的視訊解碼裝置可包括熵解碼器100及視訊解碼器200。Referring to FIG. 1 , a video decoding apparatus according to an exemplary embodiment may include an entropy decoder 100 and a video decoder 200 .

熵解碼器100可接收經編碼視訊資料的位元串流。經編碼視訊資料的位元串流可包括例如包含經編碼視訊資料的屬性資訊的標頭以及包含經編碼視訊資料的內容資訊的資料部分。Entropy decoder 100 may receive a bitstream of encoded video data. The bitstream of encoded video data may include, for example, a header that includes attribute information for the encoded video data and a data portion that includes content information for the encoded video data.

此處,由熵解碼器100接收的視訊資料可為藉由H.264先進視訊編碼(AVC)協定或H.265高效率視訊編碼(HEVC)協定進行編碼的視訊資料。然而,示例性實施例並非僅限於此種情形,由熵解碼器100接收的視訊資料亦可為藉由例如H.261或H.263等其他視訊壓縮標準或藉由例如WebM或VP9等格式進行編碼的視訊資料。Here, the video data received by the entropy decoder 100 may be video data encoded by the H.264 Advanced Video Coding (AVC) protocol or the H.265 High Efficiency Video Coding (HEVC) protocol. However, the exemplary embodiment is not limited to this case, and the video data received by the entropy decoder 100 may also be processed by other video compression standards such as H.261 or H.263, or by formats such as WebM or VP9. Encoded video data.

另外,由熵解碼器100接收的視訊資料可為具有例如位元深度為第一大小的位元的視訊資料。第一大小的位元可包括例如8位元、10位元、12位元或16位元。若由熵解碼器100接收的視訊資料是對於每一RGB顏色通道而言具有位元深度為8位元的視訊資料,則所述視訊資料可具有總計24位元的位元深度。視訊資料並非僅限於RGB格式,而是亦可為包括色差訊號(例如YCbCr或YUV)的視訊資料。Additionally, the video data received by the entropy decoder 100 may be video data having, for example, bits with a bit depth of a first size. The bits of the first size may include, for example, 8 bits, 10 bits, 12 bits, or 16 bits. If the video data received by the entropy decoder 100 is video data having a bit depth of 8 bits for each RGB color channel, the video data may have a total bit depth of 24 bits. The video data is not limited to RGB format, but can also be video data including color-difference signals such as YCbCr or YUV.

熵解碼器100可將經編碼視訊資料的位元串流進行熵解碼,且對經編碼視訊資料的位元串流中所包括的標頭進行剖析。熵解碼器100可自所剖析的標頭提取屬性資訊(例如經編碼視訊資料的位元深度),且接著對所提取的屬性資訊進行處理或將所提取的屬性資訊提供給視訊解碼器200。隨後將參照圖3更詳細地闡述熵解碼器100的操作。Entropy decoder 100 may entropy decode the bitstream of encoded video data and parse headers included in the bitstream of encoded video data. Entropy decoder 100 may extract attribute information (eg, the bit depth of the encoded video data) from the parsed header, and then process or provide the extracted attribute information to video decoder 200 . The operation of the entropy decoder 100 will be explained in more detail later with reference to FIG. 3 .

視訊解碼器200可基於自熵解碼器100接收的屬性資訊將所接收的經編碼視訊資料的位元串流解碼。視訊解碼器200可將藉由例如上述視訊壓縮標準進行編碼的視訊資料解碼。在一些示例性實施例中,視訊解碼器200可將與多個視訊壓縮標準對應的視訊資料解碼。亦即,視訊解碼器200可包括例如可將不同的視訊壓縮標準解碼的多個功能區塊。舉例而言,視訊解碼器可包括可將藉由H.264 AVC進行編碼的視訊資料解碼的功能區塊以及可將藉由H.265 HEVC進行編碼的視訊資料解碼的功能區塊二者。Video decoder 200 may decode the received bitstream of encoded video data based on the attribute information received from entropy decoder 100 . The video decoder 200 can decode video data encoded by, for example, the above-mentioned video compression standards. In some exemplary embodiments, video decoder 200 may decode video data corresponding to multiple video compression standards. That is, the video decoder 200 may include, for example, a plurality of functional blocks capable of decoding different video compression standards. For example, a video decoder may include both functional blocks that can decode video data encoded by H.264 AVC and functional blocks that can decode video data encoded by H.265 HEVC.

視訊解碼器200可包括逆量化單元205、逆變換單元210、加法器215、運動補償單元220、畫框內預測單元225、模式選擇單元230、解塊濾波器(deblocking filter)235、樣本自適應性偏移(SAO)濾波器240及圖像緩衝器245。隨後將給出各單元的詳細說明。The video decoder 200 may include an inverse quantization unit 205, an inverse transform unit 210, an adder 215, a motion compensation unit 220, an intra-frame prediction unit 225, a mode selection unit 230, a deblocking filter 235, sample adaptation Sexual Offset (SAO) filter 240 and image buffer 245. A detailed description of each unit will be given later.

可由視訊解碼器200解碼的視訊資料的位元深度可不同於由熵解碼器100接收的經編碼視訊資料的位元深度。亦即,由熵解碼器100接收的經編碼視訊資料可為具有位元深度為第一大小的位元的視訊資料,且可由視訊解碼器200解碼的視訊資料可為具有位元深度為第二大小的位元的視訊資料。The bit depth of the video data that can be decoded by the video decoder 200 may be different from the bit depth of the encoded video data received by the entropy decoder 100 . That is, the encoded video data received by the entropy decoder 100 may be video data having a bit depth of a first size, and the video data decoded by the video decoder 200 may be video data having a bit depth of a second size size of video data in bits.

當視訊解碼器200將具有位元深度為第二大小的位元的視訊資料解碼時,意味著視訊解碼器200中所包括的運算子可對位元大小為第二大小的資料執行運算,及/或視訊解碼器200中所包括的資料路徑或暫存器可對具有位元深度為第二大小的位元的視訊資料進行處理。第二大小的位元可包括例如8位元、10位元、12位元或16位元。When the video decoder 200 decodes the video data having the bits whose bit depth is the second size, it means that the operators included in the video decoder 200 can perform operations on the data whose bit size is the second size, and /or data paths or registers included in the video decoder 200 may process video data having bits with a bit depth of the second size. Bits of the second size may include, for example, 8 bits, 10 bits, 12 bits, or 16 bits.

在一些示例性實施例中,第一大小可大於第二大小。將基於第一大小的位元大於第二大小的位元的假設作出以下說明。舉例而言,此可為熵解碼器100接收具有位元深度為10位元的視訊資料的位元串流且視訊解碼器200能夠將具有位元深度最大值為8位元的視訊資料解碼的情形。傳統上,當第一大小的位元深度大於第二大小的位元深度時,能夠將第二大小的位元深度解碼的視訊解碼器可能無法將具有位元深度為第一大小的所接收視訊資料解碼。In some exemplary embodiments, the first size may be larger than the second size. The following explanation will be made based on the assumption that the bits of the first size are larger than the bits of the second size. For example, this may be such that entropy decoder 100 receives a bitstream with video data with a bit depth of 10 bits and video decoder 200 is able to decode video data with a maximum bit depth of 8 bits situation. Conventionally, when the bit depth of the first size is greater than the bit depth of the second size, a video decoder capable of decoding the bit depth of the second size may not be able to decode the received video with the bit depth of the first size. Data decoding.

然而,根據示例性實施例的視訊解碼裝置可藉由對例如經編碼視訊資料的量化係數進行轉換來將具有位元深度為第一大小的經編碼視訊資料正常地解碼,而無需對內部硬體結構作出很大改變。以下將可由視訊解碼器200解碼的第二大小的位元深度稱為參考位元深度BDO。關於參考位元深度BDO的資訊可儲存於記憶體中以作為視訊解碼器200的設定檔資訊。However, the video decoding device according to the exemplary embodiment can normally decode the encoded video data having the bit depth of the first size by converting, for example, quantization coefficients of the encoded video data, without requiring internal hardware The structure has changed a lot. The bit depth of the second size that can be decoded by the video decoder 200 is hereinafter referred to as the reference bit depth BDO. Information about the reference bit depth BDO may be stored in memory as profile information for the video decoder 200 .

圖2為示出根據實施例的一種視訊解碼方法的流程圖。FIG. 2 is a flowchart illustrating a video decoding method according to an embodiment.

參照圖2,視訊解碼裝置可執行視訊解碼方法。Referring to FIG. 2, a video decoding apparatus may perform a video decoding method.

在操作S100中,熵解碼器100接收經編碼視訊的位元串流。In operation S100, the entropy decoder 100 receives a bitstream of encoded video.

在操作S110中,熵解碼器100可獲得經編碼視訊的位元串流的標頭中所包括的視訊資料的位元深度。In operation S110, the entropy decoder 100 may obtain the bit depth of the video data included in the header of the bitstream of the encoded video.

在操作S120中,熵解碼器100可將經編碼視訊的位元串流的位元深度BDI與參考位元深度BDO比較,且在操作S130中,熵解碼器100可判斷經編碼視訊的位元串流的位元深度BDI是否等於參考位元深度BDO。In operation S120, the entropy decoder 100 may compare the bit depth BDI of the bitstream of the encoded video with the reference bit depth BDO, and in operation S130, the entropy decoder 100 may determine the bit depth of the encoded video Whether the bit depth BDI of the stream is equal to the reference bit depth BDO.

在操作S140中,熵解碼器100可將經編碼視訊的位元串流的第一量化參數轉換成第二量化參數,且當經編碼視訊的位元串流的位元深度BDI不同於參考位元深度BDO時,在操作S150中,熵解碼器100可基於經編碼視訊資料的位元串流的第二量化參數將經編碼視訊的位元串流解碼。或者,當經編碼視訊串流的位元深度BDI等於參考位元深度BDO時,在操作S160中,熵解碼器100可基於第一量化參數將經編碼位元串流解碼。In operation S140, the entropy decoder 100 may convert the first quantization parameter of the bitstream of the encoded video into the second quantization parameter, and when the bit depth BDI of the bitstream of the encoded video is different from the reference bit In the case of meta-depth BDO, in operation S150, the entropy decoder 100 may decode the bitstream of the encoded video data based on the second quantization parameter of the bitstream of the encoded video data. Alternatively, when the bit depth BDI of the encoded video stream is equal to the reference bit depth BDO, in operation S160, the entropy decoder 100 may decode the encoded bit stream based on the first quantization parameter.

現在將參照圖3更詳細地闡述熵解碼器100的操作。The operation of the entropy decoder 100 will now be explained in more detail with reference to FIG. 3 .

圖3為圖1所示視訊解碼裝置中所包括的熵解碼器100的方塊圖。FIG. 3 is a block diagram of the entropy decoder 100 included in the video decoding apparatus shown in FIG. 1 .

參照圖3,熵解碼器100包括剖析單元110及參數轉換單元120。儘管圖3中未示出,熵解碼器100可更包括用於將經編碼視訊資料的位元串流進行熵解碼的區塊。Referring to FIG. 3 , the entropy decoder 100 includes a parsing unit 110 and a parameter converting unit 120 . Although not shown in FIG. 3, the entropy decoder 100 may further include a block for entropy decoding the bitstream of encoded video data.

剖析單元110可對經編碼視訊的位元串流中所包括的標頭進行剖析,以獲得關於經編碼視訊串流的位元深度BDI、第一量化參數QPI、第一變換係數Iij及用於進行SAO濾波的第一偏移SAO_OFFSETI的資訊。Parsing unit 110 may parse a header included in a bitstream of the encoded video to obtain a bit depth BDI, a first quantization parameter QPI, a first transform coefficient Iij, and a Information of the first offset SAO_OFFSETI for SAO filtering.

在一些實施例中,若視訊解碼器200不將藉由H.265 HEVC標準進行編碼的視訊資料解碼,則可省略對用於進行SAO濾波的偏移資訊的獲得。In some embodiments, obtaining offset information for SAO filtering may be omitted if video decoder 200 does not decode video data encoded by the H.265 HEVC standard.

由剖析單元110藉由剖析所獲得的資訊中,經編碼視訊串流的位元深度BDI指示經編碼視訊串流具有第一大小的位元深度。Among the information obtained by parsing by the parsing unit 110, the bit depth BDI of the encoded video stream indicates that the encoded video stream has a bit depth of a first size.

第一量化參數QPI可具有對應的第一量化步長QSI。第一量化參數QPI指示經編碼視訊串流已藉由與第一量化參數QPI對應的第一量化步長QSI得到編碼,且可藉由利用第一量化步長QSI對經編碼視訊的位元串流進行逆量化來將視訊資料解碼。The first quantization parameter QPI may have a corresponding first quantization step size QSI. The first quantization parameter QPI indicates that the encoded video stream has been encoded by a first quantization step size QSI corresponding to the first quantization parameter QPI, and the bit string of the encoded video may be coded by using the first quantization step size QSI The stream is inverse quantized to decode the video data.

現在將參照圖4更詳細地闡述第一量化參數QPI與第一量化步長QSI之間的對應關係。The correspondence between the first quantization parameter QPI and the first quantization step size QSI will now be explained in more detail with reference to FIG. 4 .

圖4示出根據實施例的視訊解碼方法中所使用的量化參數及量化步長。4 illustrates quantization parameters and quantization step sizes used in a video decoding method according to an embodiment.

參照圖4,第一量化參數QPI與第一量化步長QSI之間的對應關係記錄於表格中。所述表格可為例如查找表(lookup table,LUT)。Referring to FIG. 4 , the correspondence between the first quantization parameter QPI and the first quantization step size QSI is recorded in a table. The table may be, for example, a lookup table (LUT).

在圖4所示表中,第一量化參數QPI記錄於左欄中。舉例而言,當經編碼視訊資料的位元串流中具有10位元的位元深度時,第一量化參數QPI可具有0至63的範圍。In the table shown in FIG. 4, the first quantization parameter QPI is recorded in the left column. For example, the first quantization parameter QPI may have a range of 0-63 when the bitstream of the encoded video data has a bit depth of 10 bits.

第一量化步長QSI記錄於表格的右欄中。具體而言,當第一量化參數QPI為零時,第一量化步長QSI為QSI0。另外,當第一量化參數QPI為63時,第一量化步長QSI為QSI63。The first quantization step size QSI is recorded in the right column of the table. Specifically, when the first quantization parameter QPI is zero, the first quantization step size QSI is QSI0. In addition, when the first quantization parameter QPI is 63, the first quantization step size QSI is QSI63.

舉例而言,可在第一量化參數QPI與第一量化步長QSI之間建立以下近似關係: QSI=2QPI/6 (1)。For example, the following approximate relationship can be established between the first quantization parameter QPI and the first quantization step size QSI: QSI=2QPI/6 (1).

亦即,如圖4所示,可例如在與差值為12的第一量化參數10及第一量化參數22對應的第一量化步長QSI10及第一量化步長QSI22之間建立4倍的比例關係。可利用此種關係將第一量化參數QPI轉換成第二量化參數QPO,此將在隨後進行闡述。That is, as shown in FIG. 4 , for example, a 4-fold difference can be established between the first quantization step size QSI10 and the first quantization step size QSI22 corresponding to the first quantization parameter 10 and the first quantization parameter 22 with a difference of 12. ratio. This relationship can be used to convert the first quantization parameter QPI into the second quantization parameter QPO, which will be explained later.

返回參照圖3,第一變換參數Iij為經量化變換係數,且可由逆量化單元205及逆變換單元210恢復至殘餘資料。Referring back to FIG. 3 , the first transform parameters Iij are quantized transform coefficients and can be recovered by inverse quantization unit 205 and inverse transform unit 210 to residual data.

舉例而言,當對具有大小為4 × 4畫素的區塊執行根據示例性實施例的視訊解碼方法時,可在一個巨集區塊中包括16個第一變換係數Iij。For example, when the video decoding method according to an exemplary embodiment is performed on a block having a size of 4×4 pixels, 16 first transform coefficients Iij may be included in one macroblock.

可由SAO濾波器240使用用於進行SAO濾波的第一偏移SAO_OFFSETI對已通過解塊濾波器235的視訊資料執行SAO濾波。SAO filtering may be performed by SAO filter 240 on the video data that has passed deblocking filter 235 using the first offset SAO_OFFSETI for SAO filtering.

剖析單元110將經編碼視訊串流的位元深度BDI、第一量化參數QPI、第一變換係數Iij及用於進行SAO濾波的第一偏移SAO_OFFSETI提供給參數轉換單元120。The parsing unit 110 provides the bit depth BDI of the encoded video stream, the first quantization parameter QPI, the first transform coefficients Iij, and the first offset SAO_OFFSETI for SAO filtering to the parameter conversion unit 120 .

參數轉換單元120將經編碼視訊串流的位元深度BDI與參考位元深度BDO進行比較,且判斷經編碼視訊串流的位元深度BDI是否等於參考位元深度BDO(操作S120及操作S130)。當經編碼視訊的位元串流的位元深度BDI不等於參考位元深度BDO時,參數轉換單元120分別將經編碼視訊串流的第一量化參數QPI及用於進行SAO濾波的第一偏移SAO_OFFSETI轉換成第二量化參數QPO及用於進行SAO濾波的第二偏移SAO_OFFSETO(操作S140)。The parameter conversion unit 120 compares the bit depth BDI of the encoded video stream with the reference bit depth BDO, and determines whether the bit depth BDI of the encoded video stream is equal to the reference bit depth BDO (operation S120 and operation S130 ) . When the bit depth BDI of the encoded video stream is not equal to the reference bit depth BDO, the parameter conversion unit 120 respectively converts the first quantization parameter QPI of the encoded video stream and the first offset used for SAO filtering The shift SAO_OFFSETI is converted into a second quantization parameter QPO and a second offset SAO_OFFSETO for SAO filtering (operation S140).

參數轉換單元120可判斷自剖析單元110接收的經編碼視訊串流的位元深度BDI是否等於作為視訊解碼器200的設定檔資訊而儲存於記憶體中的參考位元深度BDO。The parameter conversion unit 120 can determine whether the bit depth BDI of the encoded video stream received from the parsing unit 110 is equal to the reference bit depth BDO stored in the memory as the profile information of the video decoder 200 .

圖5為用於闡釋由根據實施例的視訊解碼裝置執行的量化參數轉換的圖。FIG. 5 is a diagram for explaining quantization parameter conversion performed by a video decoding apparatus according to an embodiment.

在圖5中,示出用於闡釋由參數轉換單元120將第一量化參數QPI轉換成第二量化參數QPO的表格。In FIG. 5, a table for explaining the conversion of the first quantization parameter QPI into the second quantization parameter QPO by the parameter conversion unit 120 is shown.

圖5左側的表格相同於與示出在經編碼視訊串流具有10位元的位元深度的情形中第一量化參數QPI與第一量化步長QSI之間的關係的圖4的表格。亦即,第一量化參數QPI具有0至63的範圍,且與第一量化參數QPI對應的第一量化步長QSI亦被分成64階。The table on the left side of FIG. 5 is identical to the table of FIG. 4 showing the relationship between the first quantization parameter QPI and the first quantization step size QSI in the case where the encoded video stream has a bit depth of 10 bits. That is, the first quantization parameter QPI has a range of 0 to 63, and the first quantization step size QSI corresponding to the first quantization parameter QPI is also divided into 64 steps.

圖5右側的表格是示出第二量化參數QPO與對應於參考位元深度BDO的第二量化步長QSO之間的關係的表格。若參考位元深度BDO的大小為8位元,則第二量化參數QPO可具有0至51的範圍。因此,第二量化步長QSO可被分成52階以對應於第二量化參數QPO。The table on the right side of FIG. 5 is a table showing the relationship between the second quantization parameter QPO and the second quantization step size QSO corresponding to the reference bit depth BDO. If the size of the reference bit depth BDO is 8 bits, the second quantization parameter QPO may have a range of 0-51. Therefore, the second quantization step size QSO may be divided into 52 steps to correspond to the second quantization parameter QPO.

與相同值的量化參數對應的第一量化步長QSI與第二量化步長QSO可彼此相等。亦即,分別與為10的第一量化參數QPI及為10的第二量化參數QPO對應的第一量化步長QSI10與第二量化步長QSO10可彼此相等。The first quantization step size QSI and the second quantization step size QSO corresponding to quantization parameters of the same value may be equal to each other. That is, the first quantization step size QSI10 and the second quantization step size QSO10 corresponding to the first quantization parameter QPI of 10 and the second quantization parameter QPO of 10, respectively, may be equal to each other.

參數轉換單元120可根據以下方程式將第一量化參數QPI轉換成第二量化參數QPO。 QPO = QPI + 6 × (BDO-BDI) (QPI + 6 × (BDO - BDI) ≥ 0) = QPI(QPI + 6× (BDO - BDI) < 0) (2)The parameter conversion unit 120 may convert the first quantization parameter QPI into the second quantization parameter QPO according to the following equation. QPO = QPI + 6 × (BDO-BDI) (QPI + 6 × (BDO - BDI) ≥ 0) = QPI(QPI + 6 × (BDO - BDI) < 0) (2)

舉例而言,當經編碼視訊資料的位元串流的位元深度BDI及第一量化參數QPI分別為10及22且參考位元深度BDO為8位元時,參數轉換單元120可確定出第二量化參數QPO為10。For example, when the bit depth BDI and the first quantization parameter QPI of the bitstream of encoded video data are 10 and 22, respectively, and the reference bit depth BDO is 8 bits, the parameter conversion unit 120 may determine the first The binary quantization parameter QPO is 10.

若(QPI + 6 × (BDO-BDI))的值小於零,則參數轉換單元120可將第二量化參數QPO維持為與第一量化參數QPI相同的值,以使得第二量化參數QPO的值應維持為零或大於零。If the value of (QPI + 6 × (BDO-BDI)) is less than zero, the parameter conversion unit 120 may maintain the second quantization parameter QPO at the same value as the first quantization parameter QPI, so that the value of the second quantization parameter QPO Should remain zero or greater.

當將第二量化參數QPO的值維持為第一量化參數QPI的值時,可能需要對第一變換係數Iij進行轉換以將經編碼視訊串流解碼。此將在隨後進行詳細闡述。When maintaining the value of the second quantization parameter QPO as the value of the first quantization parameter QPI, the first transform coefficients Iij may need to be transformed to decode the encoded video stream. This will be explained in detail later.

為了與第二量化參數QPO對應,第二量化步長QSO亦具有自QSI22轉換得到的新的值QSO10。In order to correspond to the second quantization parameter QPO, the second quantization step size QSO also has a new value QSO10 converted from QSI22.

圖6為用於闡釋由根據實施例的視訊解碼裝置執行的變換係數轉換的圖,且圖7為用於闡釋由根據實施例的視訊解碼裝置執行的變換係數轉換及偏移轉換的圖。FIG. 6 is a diagram for explaining transform coefficient conversion performed by the video decoding apparatus according to an embodiment, and FIG. 7 is a diagram for explaining transform coefficient conversion and offset conversion performed by the video decoding apparatus according to an embodiment.

參照圖6,示出當將具有大小為例如4 × 4畫素的巨集區塊解碼時將第一變換係數Iij轉換成第二變換係數Oij。此處,i及j為1至4的自然數。圖6所示具有大小為4 × 4畫素的巨集區塊僅為實例,且亦可具有8 × 8、16 × 16等的畫素大小。Referring to FIG. 6 , it is shown that the first transform coefficients Iij are converted into second transform coefficients Oij when decoding a macroblock having a size of, for example, 4×4 pixels. Here, i and j are natural numbers from 1 to 4. The macroblock shown in FIG. 6 with a size of 4×4 pixels is merely an example, and may also have pixel sizes of 8×8, 16×16, etc.

當每一畫素具有對應的第一變換係數Iij、經編碼視訊的位元串流的位元深度BDI不等於參考位元深度BDO、且在方程式2中第二量化參數QPO的值保持等於第一量化參數QPI的值時,參數轉換單元120可將每一畫素的第一變換係數Iij轉換成第二變換係數Oij以將經編碼視訊的位元串流解碼。可利用圖7所示位元移位操作將經編碼視訊的位元串流的第一變換係數Iij轉換成第二變換係數Oij。When each pixel has a corresponding first transform coefficient Iij, the bit depth BDI of the encoded video bitstream is not equal to the reference bit depth BDO, and the value of the second quantization parameter QPO in Equation 2 remains equal to the first When a value of the parameter QPI is quantized, the parameter conversion unit 120 may convert the first transform coefficients Iij of each pixel into the second transform coefficients Oij to decode the bitstream of the encoded video. The first transform coefficients Iij of the bitstream of encoded video may be transformed into second transform coefficients Oij using the bit-shift operation shown in FIG. 7 .

更具體而言,可藉由將第一變換係數Iij位元移位達與經編碼視訊的位元串流的位元深度BDI與參考位元深度BDO之差對應的位元數,將第一變換係數Iij轉換成第二變換係數Oij。More specifically, the first transform coefficient Iij can be shifted by a number of bits corresponding to the difference between the bit depth BDI and the reference bit depth BDO of the bitstream of the encoded video. The transform coefficients Iij are converted into second transform coefficients Oij.

假設在如上所述的當前實施例中經編碼視訊的位元串流的位元深度BDI大於參考位元深度BDO,可藉由將第一變換係數Iij位元左移位達與經編碼視訊的位元串流的位元深度BDI與參考位元深度BDO之差對應的位元數來產生第二變換係數Oij。Assuming that the bit-depth BDI of the bitstream of the encoded video is greater than the reference bit-depth BDO in the current embodiment as described above, the bit-depth BDO of the encoded video can be obtained by bit-shifting the first transform coefficient Iij to the left by The second transform coefficient Oij is generated by the number of bits corresponding to the difference between the bit depth BDI of the bit stream and the reference bit depth BDO.

類似地,可藉由將用於進行SAO濾波的第一偏移SAO_OFFSETI位元移位達與經編碼視訊的位元串流的位元深度BDI與參考位元深度BDO之差對應的位元數,將用於進行SAO濾波的第一偏移SAO_OFFSETI轉換成用於進行SAO濾波的第二偏移SAO_OFFSETO。Similarly, the first offset SAO_OFFSETI used for SAO filtering can be shifted by the number of bits corresponding to the difference between the bit depth BDI and the reference bit depth BDO of the bitstream of the encoded video , convert the first offset SAO_OFFSETI for SAO filtering into a second offset SAO_OFFSETO for SAO filtering.

假設在如上所述的示例性實施例中經編碼視訊的位元串流的位元深度BDI大於參考位元深度BDO,可藉由將用於進行SAO濾波的第一偏移SAO_OFFSETI位元左移位達與經編碼視訊的位元串流的位元深度BDI與參考位元深度BDO之差對應的位元數來產生用於進行SAO濾波的第二偏移SAO_OFFSETO。Assuming that the bit-depth BDI of the bitstream of the encoded video is greater than the reference bit-depth BDO in the exemplary embodiment described above, the first offset SAO_OFFSETI used for SAO filtering can be left-shifted by bits A second offset SAO_OFFSETO for SAO filtering is generated by the number of bits corresponding to the difference between the bit depth BDI of the encoded video bitstream and the reference bit depth BDO.

若如上所述視訊解碼器200不將藉由H.265 HEVC標準進行編碼的視訊資料解碼,則可省略將用於進行SAO濾波的第一偏移SAO_OFFSETI轉換成第二偏移SAO_OFFSETO。If the video decoder 200 does not decode the video data encoded by the H.265 HEVC standard as described above, the conversion of the first offset SAO_OFFSETI for SAO filtering into the second offset SAO_OFFSETO may be omitted.

熵解碼器100可為視訊解碼器200提供第二量化參數QPO、第二變換係數Oij及用於進行SAO濾波的第二偏移SAO_OFFSETO以及經編碼視訊的位元串流。The entropy decoder 100 may provide the video decoder 200 with a second quantization parameter QPO, a second transform coefficient Oij and a second offset SAO_OFFSETO for SAO filtering and a bitstream of the encoded video.

現在將再次參照圖1及圖3來闡述使用視訊解碼器200將經編碼視訊的位元串流解碼。Decoding a bitstream of encoded video using the video decoder 200 will now be described with reference again to FIGS. 1 and 3 .

視訊解碼器200利用經編碼視訊的位元串流的第二量化參數QPO將經編碼視訊的位元串流解碼。The video decoder 200 decodes the encoded video bitstream using the second quantization parameter QPO of the encoded video bitstream.

逆量化單元205可自熵解碼器100接收經熵解碼的位元串流,且利用第二量化參數QPO對位元串流進行逆量化。逆量化單元205將經逆量化的視訊資料提供給逆變換單元210。Inverse quantization unit 205 may receive the entropy decoded bitstream from entropy decoder 100 and inverse quantize the bitstream using a second quantization parameter QPO. Inverse quantization unit 205 provides inverse quantized video data to inverse transform unit 210 .

逆變換單元210藉由對經逆量化的視訊資料進行逆變換來恢復並輸出殘餘資料。若如上所述由參數轉換單元120將第一變換係數Iij轉換成第二變換係數Oij,則逆變換單元210可利用第二變換係數Oij對經逆量化的視訊資料進行逆變換。The inverse transform unit 210 recovers and outputs residual data by inversely transforming the inversely quantized video data. If the first transform coefficient Iij is converted into the second transform coefficient Oij by the parameter transform unit 120 as described above, the inverse transform unit 210 may use the second transform coefficient Oij to inverse transform the inversely quantized video data.

由於逆量化單元205及逆變換單元210利用與參考位元深度BDO對應的第二量化參數QPO將經編碼視訊的位元串流解碼,因此可由視訊解碼器200將具有位元深度為第一大小的經編碼視訊資料解碼。亦即,視訊解碼器200不需要包括用於具有位元深度為第一大小的經編碼視訊資料的解碼模組。因此,可降低視訊解碼器200的電路配置的複雜性。Since the inverse quantization unit 205 and the inverse transform unit 210 decode the bitstream of the encoded video using the second quantization parameter QPO corresponding to the reference bit depth BDO, the video decoder 200 can convert the bit depth having the first size to the bit depth. decodes the encoded video data. That is, the video decoder 200 need not include a decoding module for encoded video data having a bit depth of the first size. Therefore, the complexity of the circuit configuration of the video decoder 200 can be reduced.

當經編碼視訊的位元串流的位元深度BDI的大小等於參考位元深度BDO的大小時,可基於第一量化參數QPI及第一變換係數Iij來將經編碼視訊資料的位元串流解碼。When the size of the bit-depth BDI of the encoded video data is equal to the size of the reference bit-depth BDO, the bit-stream of the encoded video data may be divided based on the first quantization parameter QPI and the first transform coefficients Iij decoding.

現在將參照圖8來闡述在由逆量化單元205及逆變換單元210恢復殘餘資料之後對視訊資料的處理。The processing of the video data after the residual data is recovered by the inverse quantization unit 205 and the inverse transform unit 210 will now be described with reference to FIG. 8 .

圖8為示出根據示例性實施例的一種視訊解碼方法的流程圖。FIG. 8 is a flowchart illustrating a video decoding method according to an exemplary embodiment.

參照圖8,視訊解碼裝置可執行根據示例性實施例的視訊解碼方法。Referring to FIG. 8, a video decoding apparatus may perform a video decoding method according to an exemplary embodiment.

在操作S200中,視訊解碼器200可利用經編碼視訊的位元串流的第二量化參數QPO而自第二變換係數Oij恢復殘餘資料。In operation S200, the video decoder 200 may recover residual data from the second transform coefficients Oij using the second quantization parameter QPO of the bitstream of the encoded video.

在操作S210中,視訊解碼器200可藉由執行畫框內預測或畫框間預測而自經編碼視訊串流產生所預測資料。In operation S210, the video decoder 200 may generate predicted data from the encoded video stream by performing intra-frame prediction or inter-frame prediction.

舉例而言,畫框內預測單元225逐一預測單元地對畫框內模式編碼單元執行畫框內預測。畫框內預測單元225可向模式選擇單元230提供經畫框內預測區塊。由於畫框內預測單元225接收由加法器215恢復的視訊資料,因此畫框內預測單元225可為模式選擇單元提供在同一畫框內利用已編碼的區塊而預測的區塊。For example, intra-prediction unit 225 performs intra-prediction on intra-mode coding units on a prediction-unit-by-prediction unit basis. In-frame prediction unit 225 may provide intra-frame predicted blocks to mode selection unit 230. Since the intra-frame prediction unit 225 receives the video data recovered by the adder 215, the intra-frame prediction unit 225 can provide the mode selection unit with blocks that are predicted using the encoded blocks within the same frame.

運動補償單元220可接收儲存於圖像緩衝器245中的前一畫框中所包括的前面的區塊中與空間域中的當前區塊最匹配的區塊的位置資訊,且自畫框緩衝器讀取與所述位置資訊對應的區塊。運動補償單元220可將所讀取區塊提供給模式選擇單元230。The motion compensation unit 220 may receive the position information of the block that best matches the current block in the spatial domain among the previous blocks included in the previous frame stored in the image buffer 245, and buffer from the frame The processor reads the block corresponding to the location information. The motion compensation unit 220 may provide the read block to the mode selection unit 230 .

模式選擇單元230可自畫框內預測單元225接收經畫框內預測區塊以及自運動補償單元220接收所讀取區塊。模式選擇單元230可藉由對所述兩個區塊中的任一者進行選擇來產生所預測資料。Mode selection unit 230 may receive the intra-frame predicted block from intra-frame prediction unit 225 and the read block from motion compensation unit 220 . Mode selection unit 230 may generate the predicted data by selecting either of the two blocks.

在操作S220中,視訊解碼器200可藉由將殘餘資料與所預測資料相加來產生空間域的資料。In operation S220, the video decoder 200 may generate data in the spatial domain by adding the residual data to the predicted data.

舉例而言,加法器215可藉由將自逆變換單元210接收的殘餘資料與自模式選擇單元230接收的所預測資料相加來產生空間域的資料。可將由加法器215產生的空間域的資料提供給畫框內預測單元225及解塊濾波器235。For example, summer 215 may generate data in the spatial domain by adding residual data received from inverse transform unit 210 to the predicted data received from mode selection unit 230 . The spatial domain data produced by adder 215 may be provided to intra-frame prediction unit 225 and deblocking filter 235.

在操作S230中,視訊解碼器200可利用第二量化參數QPO及用於進行SAO濾波的第二偏移SAO_OFFSETO而自空間域的資料產生視訊輸出。In operation S230, the video decoder 200 may generate a video output from the spatial domain data using the second quantization parameter QPO and the second offset SAO_OFFSETO for SAO filtering.

舉例而言,解塊濾波器235可對空間域的所接收資料進行解塊。解塊濾波器235可將經解塊資料傳送至SAO濾波器240。For example, deblocking filter 235 may deblock received data in the spatial domain. Deblocking filter 235 may transmit the deblocked data to SAO filter 240.

SAO濾波器240可利用第二量化參數QPO及用於進行SAO濾波的第二偏移SAO_OFFSETO來執行SAO濾波。The SAO filter 240 may perform SAO filtering using the second quantization parameter QPO and the second offset SAO_OFFSETO for SAO filtering.

由於第一量化參數QPI及用於進行SAO濾波的第一偏移SAO_OFFSETI已藉由熵解碼器100分別被轉換成第二量化參數QPO及用於進行SAO濾波的第二偏移SAO_OFFSETO,因此SAO濾波器240可對藉由將位元深度為第一大小的視訊資料解碼而形成的空間域的資料執行SAO濾波。Since the first quantization parameter QPI and the first offset SAO_OFFSETI for SAO filtering have been converted into the second quantization parameter QPO and the second offset SAO_OFFSETO for SAO filtering by the entropy decoder 100, respectively, the SAO filtering The processor 240 may perform SAO filtering on the spatial domain data formed by decoding the video data with a bit depth of the first size.

在操作S240中,視訊解碼器200可將視訊輸出儲存於緩衝器中。In operation S240, the video decoder 200 may store the video output in a buffer.

舉例而言,若如上所述視訊解碼器200不將藉由H.265 HEVC標準進行編碼的視訊資料解碼,則可省略SAO濾波器240,且解塊濾波器235可將經解塊視訊資料直接傳送至圖像緩衝器245。For example, if video decoder 200 does not decode video data encoded by the H.265 HEVC standard as described above, SAO filter 240 may be omitted, and deblocking filter 235 may directly convert the deblocked video data to the image buffer 245.

或者,若如上所述視訊解碼器200是將藉由H.265 HEVC標準進行編碼的視訊資料解碼,則SAO濾波器240可輸出經SAO濾波的視訊資料且將經SAO濾波的視訊資料儲存於圖像緩衝器245中。Alternatively, if the video decoder 200 decodes video data encoded by the H.265 HEVC standard as described above, the SAO filter 240 may output the SAO filtered video data and store the SAO filtered video data in the like buffer 245.

在運動補償單元220請求時,可讀取儲存於圖像緩衝器245中的視訊資料且將所述視訊資料傳送至運動補償單元220。The video data stored in the image buffer 245 may be read and passed to the motion compensation unit 220 when requested by the motion compensation unit 220 .

圖9為用於闡釋由根據示例性實施例的視訊解碼裝置執行的變換係數轉換及偏移轉換的圖,且圖10為用於闡釋由根據示例性實施例的視訊解碼裝置執行的變換係數轉換及偏移轉換的圖。FIG. 9 is a diagram for explaining transform coefficient conversion and offset conversion performed by a video decoding apparatus according to an exemplary embodiment, and FIG. 10 is a diagram for explaining transform coefficient conversion performed by a video decoding apparatus according to an exemplary embodiment and a graph of the offset transformation.

參照圖9及圖10,儘管已闡述了輸入視訊資料的位元深度BDI大於參考位元深度BDO的情形,然而亦可在輸入視訊資料的位元深度BDI小於參考位元深度BDO的情形中執行量化參數、變換係數及用於進行SAO濾波的偏移的轉換。9 and 10 , although the case where the bit depth BDI of the input video data is greater than the reference bit depth BDO has been described, it can also be executed in the case where the bit depth BDI of the input video data is smaller than the reference bit depth BDO Transformation of quantization parameters, transform coefficients, and offsets for SAO filtering.

舉例而言,一般,當輸入視訊資料的位元深度BDI小於參考位元深度BDO時,視訊解碼器200可直接將輸入視訊資料的位元串流解碼。For example, in general, when the bit depth BDI of the input video data is smaller than the reference bit depth BDO, the video decoder 200 can directly decode the bit stream of the input video data.

然而,可能存在由於視訊解碼器200支援HEVC的範圍擴展(RExt)而使視訊解碼器200無法直接將輸入視訊資料解碼的情形,但輸入視訊資料的設定檔為不支援RExt的基線設定檔或主設定檔。However, there may be situations in which the video decoder 200 cannot directly decode the input video data because the video decoder 200 supports the range extension (RExt) of HEVC, but the profile of the input video data is a baseline profile or a main profile that does not support RExt. profile.

為解決此問題,可將經編碼視訊資料的第一量化參數QPI、第一變換係數Iij及用於進行SAO濾波的第一偏移SAO_OFFSETI轉換成第二量化參數QPO、第二變換係數Oij及用於進行SAO濾波的第二偏移SAO_OFFSETO。To solve this problem, the first quantization parameter QPI, the first transform coefficient Iij and the first offset SAO_OFFSETI for SAO filtering of the encoded video data can be converted into the second quantization parameter QPO, the second transform coefficient Oij and the The second offset SAO_OFFSETO for SAO filtering.

圖9及圖10示出經編碼視訊資料的位元深度為8位元且小於為10位元的參考位元深度BDO的實例。9 and 10 illustrate examples of reference bit depth BDOs where the bit depth of encoded video data is 8 bits and less than 10 bits.

圖9左側的表格與示出在經編碼視訊串流具有8位元的位元深度的情形中第一量化參數QPI與第一量化步長QSI之間的關係的表格相同。亦即,第一量化參數QPI具有0至51的範圍,且與第一量化參數QPI對應的第一量化步長QSI亦被分成52階。The table on the left side of FIG. 9 is the same as the table showing the relationship between the first quantization parameter QPI and the first quantization step size QSI in the case where the encoded video stream has a bit depth of 8 bits. That is, the first quantization parameter QPI has a range of 0 to 51, and the first quantization step size QSI corresponding to the first quantization parameter QPI is also divided into 52 steps.

圖9右側的表格是示出第二量化參數QPO與對應於參考位元深度BDO的第二量化步長QSO之間的關係的表格。若參考位元深度BDO的大小為10位元,則第二量化參數QPO可具有0至63的範圍。因此,第二量化步長QSO可被分成64步以對應於第二量化參數QPO。The table on the right side of FIG. 9 is a table showing the relationship between the second quantization parameter QPO and the second quantization step size QSO corresponding to the reference bit depth BDO. If the size of the reference bit depth BDO is 10 bits, the second quantization parameter QPO may have a range of 0-63. Therefore, the second quantization step size QSO may be divided into 64 steps to correspond to the second quantization parameter QPO.

參數轉換單元120可根據以上方程式2將第一量化參數QPI轉換成第二量化參數QPO。為了與第二量化參數QPO對應,第二量化步長QSO亦具有自QSI10轉換得到的新的值QSO22。The parameter conversion unit 120 may convert the first quantization parameter QPI into the second quantization parameter QPO according to Equation 2 above. In order to correspond to the second quantization parameter QPO, the second quantization step size QSO also has a new value QSO22 converted from QSI10.

假設如在當前實施例中所述經編碼視訊的位元串流的位元深度BDI小於參考位元深度BDO,可藉由將第一變換係數Iij位元右移位達與經編碼視訊的位元串流的位元深度BDI與參考位元深度BDO之差對應的位元數來產生第二變換係數Oij。Assuming that the bit-depth BDI of the bitstream of the encoded video as described in the current embodiment is less than the reference bit-depth BDO, the bit-depth BDI of the encoded video can be obtained by bit-shifting the first transform coefficient Iij to the right by the bit-depth of the encoded video The second transform coefficient Oij is generated by the number of bits corresponding to the difference between the bit depth BDI of the metastream and the reference bit depth BDO.

類似地,假設如在當前實施例中所述經編碼視訊的位元串流的位元深度BDI小於參考位元深度BDO,可藉由將用於進行SAO濾波的第一偏移SAO_OFFSETI位元右移位達與經編碼視訊的位元串流的位元深度BDI與參考位元深度BDO之差對應的位元數來產生用於進行SAO濾波的第二偏移SAO_OFFSETO。Similarly, assuming that the bit-depth BDI of the bitstream of the encoded video as described in the current embodiment is less than the reference bit-depth BDO, the first offset SAO_OFFSETI bits used for SAO filtering can be adjusted to the right A second offset SAO_OFFSETO for SAO filtering is generated by shifting by a number of bits corresponding to the difference between the bit-depth BDI of the encoded video bitstream and the reference bit-depth BDO.

圖11為根據實施例的包括視訊解碼裝置的計算系統1000的方塊圖。11 is a block diagram of a computing system 1000 including a video decoding device, according to an embodiment.

參照圖11,計算系統1000可包括處理器1010、記憶體元件1020、儲存元件1030、輸入/輸出(input/output,I/O)元件1040、電源供應器1050及感測器900。計算系統1000可更包括可與視訊卡、音效卡、記憶卡、通用串列匯流排(universal serial bus,USB)元件或其他電子元件進行通訊的埠。11 , a computing system 1000 may include a processor 1010 , a memory element 1020 , a storage element 1030 , an input/output (I/O) element 1040 , a power supply 1050 and a sensor 900 . Computing system 1000 may further include ports for communicating with video cards, sound cards, memory cards, universal serial bus (USB) components, or other electronic components.

處理器1010可執行某些計算或任務。處理器1010可包括視訊編解碼器1011。視訊編解碼器1011可包括以上參照圖1至圖10所述的視訊解碼裝置。另外,視訊編解碼器1011可更包括用於對可由視訊解碼裝置解碼的視訊資料進行編碼的視訊編碼裝置。視訊編碼裝置及視訊解碼裝置可彼此整合於一起。The processor 1010 may perform certain calculations or tasks. The processor 1010 may include a video codec 1011 . The video codec 1011 may include the video decoding device described above with reference to FIGS. 1 to 10 . In addition, the video codec 1011 may further include a video encoding device for encoding video data that can be decoded by the video decoding device. The video encoding device and the video decoding device can be integrated with each other.

根據示例性實施例,處理器1010可為微處理器或中央處理單元(central processing unit,CPU)。或者,處理器1010可為圖形處理單元(graphic processing unit,GPU)或影像訊號處理器(image signal processor,ISP)。According to an exemplary embodiment, the processor 1010 may be a microprocessor or a central processing unit (CPU). Alternatively, the processor 1010 may be a graphics processing unit (GPU) or an image signal processor (ISP).

處理器1010可藉由位址匯流排、控制匯流排及資料匯流排與記憶體元件1020、儲存元件1030、感測器900及I/O元件1040進行通訊。The processor 1010 can communicate with the memory element 1020, the storage element 1030, the sensor 900 and the I/O element 1040 through the address bus, the control bus and the data bus.

根據一些示例性實施例,處理器1010亦可連接至例如周邊組件互連(peripheral component interconnect,PCI)匯流排等擴展匯流排。According to some exemplary embodiments, the processor 1010 may also be connected to an expansion bus such as a peripheral component interconnect (PCI) bus.

記憶體元件1020可儲存計算系統1000的操作所需要的資料。舉例而言,記憶體元件1020可實作為動態隨機存取記憶體(dynamic random access memory,DRAM)、行動DRAM、靜態隨機存取記憶體(static random access memory,SRAM)、相變隨機存取記憶體(phase change random access memory,PRAM)、鐵電隨機存取記憶體(ferroelectric random access memory,FRAM)、電阻式隨機存取記憶體(resistive random access memory,RRAM)及/或磁性隨機存取記憶體(magnetic random access memory,MRAM)。舉例而言,記憶體元件1020可包括被分配給上述圖像緩衝器245的記憶體空間。The memory element 1020 may store data required for the operation of the computing system 1000 . For example, the memory device 1020 can be implemented as dynamic random access memory (DRAM), mobile DRAM, static random access memory (SRAM), phase change random access memory phase change random access memory (PRAM), ferroelectric random access memory (FRAM), resistive random access memory (RRAM) and/or magnetic random access memory body (magnetic random access memory, MRAM). For example, memory element 1020 may include memory space allocated to image buffer 245 described above.

處理器1010可對將儲存於記憶體元件1020中被分配作為圖像緩衝器245的記憶體空間中的所恢復視訊資料進行控制。The processor 1010 can control the recovered video data to be stored in the memory space allocated as the image buffer 245 in the memory element 1020 .

儲存元件1030可包括固態驅動機、硬碟驅動機、CD-ROM等。I/O元件1040可包括例如鍵盤、小鍵盤及滑鼠等輸入單元以及例如列印機及顯示器等輸出單元。Storage element 1030 may include solid state drives, hard disk drives, CD-ROMs, and the like. I/O elements 1040 may include input units such as keyboards, keypads, and mice, and output units such as printers and displays.

電源供應器1050可施加計算系統1000的操作所需要的操作電壓。The power supply 1050 may apply the operating voltage required for the operation of the computing system 1000 .

感測器900可為藉由執行通訊的匯流排或其他通訊鏈路連接至處理器1010的攝影元件。感測器900可與處理器1010一起整合於單一晶片上。或者,感測器900與處理器1010可分別整合於不同的晶片上。The sensor 900 may be a photographic element connected to the processor 1010 by a bus or other communication link that performs communication. The sensor 900 can be integrated with the processor 1010 on a single chip. Alternatively, the sensor 900 and the processor 1010 may be integrated on different chips respectively.

計算系統1000可實作為各種形式的封裝。舉例而言,計算系統1000的至少一些部件可使用例如以下封裝等封裝來安裝:疊層封裝(package on package,PoP)、球柵陣列(ball grid array,BGA)、晶片級封裝(chip scale package,CSP)、塑膠帶引線晶片載體(plastic leaded chip carrier,PLCC)、塑膠雙列直插式封裝(plastic dual in-line package,PDIP)、疊片內晶粒包裝(die in waffle pack)、晶圓內晶粒形式(die in wafer form)、板上晶片(chip on board,COB)、陶瓷雙列直插式封裝(ceramic dual in-line package,CERDIP)、塑膠公制方形扁平包裝(metric quad flat pack,MQFP)、薄方形扁平包裝(thin quad flat pack,TQFP)、小輪廓積體電路(small outline integrated circuit,SOIC)、收縮型小輪廓封裝(shrink small outline package,SSOP)、薄小輪廓封裝(thin small outline package,TSOP)、系統內封裝(system in package,SIP)、多晶片封裝(multi-chip package,MCP)、晶圓級製作封裝(wafer-level fabricated package,WFP)及晶圓級處理堆疊封裝(wafer-level processed stack package,WSP)。Computing system 1000 may be implemented as various forms of packaging. For example, at least some components of computing system 1000 may be mounted using packages such as: package on package (PoP), ball grid array (BGA), chip scale package , CSP), plastic leaded chip carrier (plastic leaded chip carrier, PLCC), plastic dual in-line package (plastic dual in-line package, PDIP), die in waffle pack (die in waffle pack), die Die in wafer form, chip on board (COB), ceramic dual in-line package (CERDIP), plastic metric quad flat pack, MQFP), thin quad flat pack (TQFP), small outline integrated circuit (SOIC), shrink small outline package (shrink small outline package, SSOP), thin small outline package (thin small outline package, TSOP), system in package (system in package, SIP), multi-chip package (multi-chip package, MCP), wafer-level fabrication package (wafer-level fabricated package, WFP) and wafer level Processed stack package (wafer-level processed stack package, WSP).

計算系統1000可被解釋為執行根據示例性實施例的視訊解碼方法的任何計算系統。計算系統1000的實例包括數位照相機、智慧型電話、行動電話及個人數位助理(personal digital assistant,PDA)。Computing system 1000 may be construed as any computing system that performs the video decoding method according to the exemplary embodiment. Examples of computing system 1000 include digital cameras, smart phones, mobile phones, and personal digital assistants (PDAs).

儘管已參照本發明概念的一些示例性實施例具體示出並闡述了本發明概念的示例性實施例,然而此項技術中具有通常知識者應理解,可在不背離以下申請專利範圍所界定的本發明概念的示例性實施例的精神及範圍的條件下對其作出各種形式及細節上的變化。所述示例性實施例應被視為僅具有闡述性意義而非用於限制目的。While exemplary embodiments of the inventive concept have been specifically shown and described with reference to some exemplary embodiments of the inventive concept, it will be understood by those of ordinary skill in the art that the invention can be Various changes in form and details may be made therein without departing from the spirit and scope of the exemplary embodiments of the inventive concept. The exemplary embodiments are to be considered in an illustrative sense only and not in a limiting sense.

根據一或多個示例性實施例,例如包括熵解碼器100及視訊解碼器200的解碼裝置的組件以及上述中的每一者的子組件等上述單元及/或元件可使用硬體、硬體與軟體的組合或儲存可執行以便執行其功能的軟體的非暫時性儲存媒體來實作。熵解碼器100及視訊解碼器200可實施於同一硬體平台中或實施於單獨的硬體平台中。According to one or more exemplary embodiments, the above-described units and/or elements, such as components of a decoding device including entropy decoder 100 and video decoder 200 and subcomponents of each of the above, may use hardware, hardware Implemented in combination with software or a non-transitory storage medium storing software executable in order to perform its functions. The entropy decoder 100 and the video decoder 200 may be implemented in the same hardware platform or in separate hardware platforms.

視訊解碼器200可包括視訊編解碼器。視訊編解碼器可實施於硬體、軟體、韌體、數位訊號處理器(digital signal processor,DSP)、微處理器、執行代碼以將處理器配置成專用處理器的處理器、應用專用積體電路(ASIC)、現場可程式化閘陣列(FPGA)、分立的硬體組件或其各種組合內。The video decoder 200 may include a video codec. Video codecs can be implemented in hardware, software, firmware, digital signal processors (DSPs), microprocessors, processors that execute code to configure the processor as a dedicated processor, application-specific integrated circuits circuits (ASICs), field programmable gate arrays (FPGAs), discrete hardware components, or various combinations thereof.

硬體可使用處理電路系統來實施,所述處理電路系統為例如但不限於一或多個處理器、一或多個中央處理單元(CPU)、一或多個控制器、一或多個算數邏輯單元(arithmetic logic unit,ALU)、一或多個數位訊號處理器(DSP)、一或多個微電腦、一或多個現場可程式化閘陣列(FPGA)、一或多個系統晶片(System-on-Chip,SoC)、一或多個可程式化邏輯單元(programmable logic units,PLU)、一或多個微處理器、一或多個應用專用積體電路(ASIC)或能夠以所界定的方式對指令作出響應並執行指令的任何其他元件。The hardware may be implemented using processing circuitry such as, but not limited to, one or more processors, one or more central processing units (CPUs), one or more controllers, one or more arithmetic Logic unit (arithmetic logic unit, ALU), one or more digital signal processors (DSP), one or more microcomputers, one or more field programmable gate arrays (FPGA), one or more system chips (System -on-Chip, SoC), one or more programmable logic units (programmable logic units, PLU), one or more microprocessors, one or more application specific integrated circuits (ASIC) or can be defined in any other element that responds to and executes the instruction in a manner.

軟體可包括電腦程式、程式碼、指令或其某種組合,以獨立地或集體地將硬體元件指令或配置成根據需要來操作。電腦程式及/或程式碼可包括能夠由例如上述硬體元件中的一或多者等一或多個硬體元件實施的程式或電腦可讀取指令、軟體組件、軟體模組、資料檔案、資料結構等。程式碼的實例包括由編譯器產生的機器碼及使用解釋器執行的更高層階程式碼。Software may include computer programs, code, instructions, or some combination thereof, to instruct or configure hardware elements, individually or collectively, to operate as desired. Computer programs and/or code may include programs or computer-readable instructions, software components, software modules, data files, data files, data structure, etc. Examples of code include machine code produced by a compiler and higher level code executed using an interpreter.

舉例而言,當硬體元件為電腦處理元件(例如,一或多個處理器、CPU、控制器、ALU、DSP、微電腦、微處理器等)時,電腦處理元件可被配置成藉由根據程式碼執行算數操作、邏輯操作及輸入/輸出操作來實施程式碼。一旦程式碼加載至電腦處理元件,電腦處理元件便可進行程式化以執行所述程式碼,藉此將電腦處理元件變換成專用電腦處理元件。在更具體實例中,當程式碼加載至處理器中時,處理器被程式化以執行所述程式碼及與程式碼對應的操作,藉此將處理器變換成專用處理器。在另一實例中,硬體元件可為被定製成專用處理電路系統的積體電路(例如,ASIC)。For example, when the hardware element is a computer processing element (eg, one or more processors, CPUs, controllers, ALUs, DSPs, microcomputers, microprocessors, etc.), the computer processing elements can be configured to The code performs arithmetic operations, logical operations, and input/output operations to implement the code. Once the code is loaded into the computer processing element, the computer processing element can be programmed to execute the code, thereby transforming the computer processing element into a dedicated computer processing element. In a more specific example, when code is loaded into a processor, the processor is programmed to execute the code and operations corresponding to the code, thereby transforming the processor into a special-purpose processor. In another example, the hardware elements may be integrated circuits (eg, ASICs) customized into dedicated processing circuitry.

例如電腦處理元件等硬體元件可運行作業系統(operating system,OS)及在作業系統上運行的一或多個軟體應用。電腦處理元件亦可因應於執行軟體而對資料進行存取、儲存、運用、處理及創建。為簡單起見,一或多個示例性實施例可被例示為一個電腦處理元件;然而,熟習此項技術者應理解硬體元件可包括多個處理部件及多種類型的處理部件。舉例而言,硬體元件可包括多個處理器或一個處理器及控制器。另外,可存在其他處理配置,例如並行處理器。Hardware elements, such as computer processing elements, may run an operating system (OS) and one or more software applications running on the operating system. Computer processing elements can also access, store, use, process, and create data in response to executing software. For simplicity, one or more exemplary embodiments may be illustrated as one computer processing element; however, those skilled in the art will understand that a hardware element may include multiple processing elements and types of processing elements. For example, a hardware element may include multiple processors or a processor and controller. Additionally, other processing configurations, such as parallel processors, may exist.

軟體及/或資料可永久性地或暫時地實施於能夠向硬體元件提供指令或資料或者能夠由硬體元件進行解釋的任何類型的儲存媒體中,所述儲存媒體包括但不限於任何機器、組件、物理或虛擬設備或者電腦儲存媒體或元件。軟體亦可分佈於網路耦合電腦系統上,以使得軟體以分佈方式進行儲存及執行。具體而言,例如,軟體及資料可由包括本文中所論述的有形或非暫時性電腦可讀取儲存媒體的一或多個電腦可讀取記錄媒體進行儲存。Software and/or data may be implemented permanently or temporarily in any type of storage medium that can provide instructions or data to or be interpreted by hardware elements, including but not limited to any machine, A component, physical or virtual device, or computer storage medium or element. The software can also be distributed over network coupled computer systems so that the software is stored and executed in a distributed fashion. In particular, for example, software and data may be stored by one or more computer-readable recording media including the tangible or non-transitory computer-readable storage media discussed herein.

根據一或多個示例性實施例,儲存媒體亦可以單元及/或元件包括一或多個儲存元件。所述一或多個儲存元件可為能夠儲存及記錄資料的有形或非暫時性電腦可讀取儲存媒體,例如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、永久性大容量儲存元件(例如磁碟驅動機)及/或任何其他類似的資料儲存機構。所述一或多個儲存元件可被配置成為一或多個作業系統及/或為實施本文所述的示例性實施例而儲存電腦程式、程式碼、指令或其某種組合。電腦程式、程式碼、指令或其某種組合亦可使用驅動機構自單獨的電腦可讀取儲存媒體加載至所述一或多個儲存元件及/或一或多個電腦處理元件。此種單獨的電腦可讀取儲存媒體可包括通用串列匯流排(USB)快閃驅動機、記憶棒、藍光(Blu-ray)/數位多功能碟(Digital Versatile Disc,DVD)/CD-ROM驅動機、記憶卡及/或其他類似電腦可讀取儲存媒體。電腦程式、程式碼、指令或其某種組合可自遠端資料儲存元件經由網路介面而非經由電腦可讀取儲存媒體加載至所述一或多個儲存元件及/或所述一或多個電腦處理元件中。另外,電腦程式、程式碼、指令或其某種組合可自被配置成對電腦程式、程式碼、指令或其某種組合進行傳輸及/或分佈的遠端計算系統藉由網路加載至所述一或多個儲存元件及/或所述一或多個處理器中。遠端計算系統可經由有線介面、空氣介面及/或任何其他類似媒體對電腦程式、程式碼、指令或其某種組合進行傳輸及/或分佈。According to one or more exemplary embodiments, the storage medium may also include one or more storage elements in units and/or elements. The one or more storage elements may be tangible or non-transitory computer-readable storage media capable of storing and recording data, such as random access memory (RAM), read only memory (ROM), permanent mass Storage components (such as disk drives) and/or any other similar data storage mechanism. The one or more storage elements may be configured as one or more operating systems and/or store computer programs, code, instructions, or some combination thereof, for implementing the exemplary embodiments described herein. Computer programs, code, instructions, or some combination thereof, may also be loaded into the one or more storage elements and/or one or more computer processing elements from a separate computer-readable storage medium using a drive mechanism. Such separate computer-readable storage media may include Universal Serial Bus (USB) flash drives, memory sticks, Blu-ray/Digital Versatile Disc (DVD)/CD-ROM Drives, memory cards and/or other similar computer-readable storage media. Computer programs, code, instructions, or some combination thereof, may be loaded into the one or more storage elements and/or the one or more storage elements from a remote data storage element through a network interface rather than through a computer-readable storage medium. a computer processing element. Additionally, computer programs, code, instructions, or some combination thereof may be loaded over a network from a remote computing system configured to transmit and/or distribute the computer program, code, instructions, or some combination thereof, to any in the one or more storage elements and/or the one or more processors. Remote computing systems may transmit and/or distribute computer programs, code, instructions, or some combination thereof, via wired interfaces, air interfaces, and/or any other similar medium.

所述一或多個硬體元件、儲存媒體、電腦程式、程式碼、指令或其某種組合可進行具體設計及構造以用於示例性實施例的目的,或者其可為經改變及/或經修改以用於示例性實施例的目的的已知元件。The one or more hardware elements, storage media, computer programs, code, instructions, or some combination thereof may be specifically designed and constructed for the purposes of the exemplary embodiments, or they may be altered and/or Known elements modified for the purposes of the exemplary embodiments.

100‧‧‧熵解碼器110‧‧‧剖析單元120‧‧‧參數轉換單元200‧‧‧視訊解碼器205‧‧‧逆量化單元210‧‧‧逆變換單元215‧‧‧加法器220‧‧‧運動補償單元225‧‧‧畫框內預測單元230‧‧‧模式選擇單元235‧‧‧解塊濾波器240‧‧‧樣本自適應性偏移濾波器245‧‧‧圖像緩衝器900‧‧‧感測器1000‧‧‧計算系統1010‧‧‧處理器1011‧‧‧視訊編解碼器1020‧‧‧記憶體元件1030‧‧‧儲存元件1040‧‧‧輸入/輸出元件1050‧‧‧電源供應器BDI‧‧‧位元深度BDO‧‧‧參考位元深度Iij‧‧‧第一變換係數Oij‧‧‧第二變換係數QPI‧‧‧第一量化參數QPO‧‧‧第二量化參數QSI、QSI0、QSI1、QSI10、QSI22、QSI50、QSI51、QSI62、QSI63‧‧‧第一量化步長QSO、QSO0、QSO1、QSO50、QSO51、QSO62、QSO63‧‧‧第二量化步長S100、S110、S120、S130、S140、S150、S160、S200、S210、S220、S230、S240‧‧‧操作SAO_OFFSETI‧‧‧第一偏移SAO_OFFSETO‧‧‧第二偏移100‧‧‧Entropy Decoder 110‧‧‧Analysis Unit 120‧‧‧Parameter Conversion Unit 200‧‧‧Video Decoder 205‧‧‧Inverse Quantization Unit 210‧‧‧Inverse Transform Unit 215‧‧‧Adder 220‧‧ ‧Motion Compensation Unit 225‧‧‧Intra-Frame Prediction Unit 230‧‧‧Mode Selection Unit 235‧‧‧Deblocking Filter 240‧‧‧Sample Adaptive Offset Filter 245‧‧‧Image Buffer 900‧ ‧‧Sensor 1000‧‧‧Computing System 1010‧‧‧Processor 1011‧‧‧Video Codec 1020‧‧‧Memory Component 1030‧‧‧Storage Component 1040‧‧‧Input/Output Component 1050‧‧‧ Power Supply BDI‧‧‧Bit Depth BDO‧‧‧Reference Bit Depth Iij‧‧‧First Transform Coefficient Oij‧‧‧Second Transform Coefficient QPI‧‧‧First Quantization Parameter QPO‧‧‧Second Quantization Parameter QSI, QSI0, QSI1, QSI10, QSI22, QSI50, QSI51, QSI62, QSI63‧‧‧First quantization step QSO, QSO0, QSO1, QSO50, QSO51, QSO62, QSO63‧‧‧Second quantization step S100, S110, S120, S130, S140, S150, S160, S200, S210, S220, S230, S240‧‧‧Operation SAO_OFFSETI‧‧‧First offset SAO_OFFSETO‧‧Second offset

結合附圖閱讀實施例的以下說明,該些及/或其他態樣將變得顯而易見且更易於理解,在附圖中: 圖1為根據示例性實施例的視訊解碼裝置的方塊圖。 圖2為示出根據示例性實施例的一種視訊解碼方法的流程圖。 圖3為圖1所示視訊解碼裝置中所包括的熵解碼器的方塊圖。 圖4示出根據示例性實施例的視訊解碼方法中所使用的量化參數及量化步長。 圖5為用於闡釋由根據示例性實施例的視訊解碼裝置執行的量化參數轉換的圖。 圖6為用於闡釋由根據示例性實施例的視訊解碼裝置執行的變換係數轉換的圖。 圖7為用於闡釋由根據示例性實施例的視訊解碼裝置執行的變換係數轉換及偏移轉換的圖。 圖8為示出根據示例性實施例的一種視訊解碼方法的流程圖。 圖9為用於闡釋由根據示例性實施例的視訊解碼裝置執行的量化參數轉換的圖。 圖10為用於闡釋由根據示例性實施例的視訊解碼裝置執行的變換係數轉換及偏移轉換的圖。 圖11為根據示例性實施例的包括視訊解碼裝置的計算系統的方塊圖。These and/or other aspects will become apparent and more easily understood by reading the following description of the embodiments in conjunction with the accompanying drawings, in which: FIG. 1 is a block diagram of a video decoding apparatus according to an exemplary embodiment. FIG. 2 is a flowchart illustrating a video decoding method according to an exemplary embodiment. FIG. 3 is a block diagram of an entropy decoder included in the video decoding apparatus shown in FIG. 1 . FIG. 4 illustrates quantization parameters and quantization step sizes used in a video decoding method according to an exemplary embodiment. FIG. 5 is a diagram for explaining quantization parameter conversion performed by a video decoding apparatus according to an exemplary embodiment. FIG. 6 is a diagram for explaining transform coefficient conversion performed by a video decoding apparatus according to an exemplary embodiment. FIG. 7 is a diagram for explaining transform coefficient conversion and offset conversion performed by a video decoding apparatus according to an exemplary embodiment. FIG. 8 is a flowchart illustrating a video decoding method according to an exemplary embodiment. FIG. 9 is a diagram for explaining quantization parameter conversion performed by a video decoding apparatus according to an exemplary embodiment. FIG. 10 is a diagram for explaining transform coefficient conversion and offset conversion performed by a video decoding apparatus according to an exemplary embodiment. 11 is a block diagram of a computing system including a video decoding device according to an exemplary embodiment.

100‧‧‧熵解碼器 100‧‧‧Entropy Decoder

200‧‧‧視訊解碼器 200‧‧‧Video Decoder

205‧‧‧逆量化單元 205‧‧‧Inverse Quantization Unit

210‧‧‧逆變換單元 210‧‧‧Inverse Transform Unit

215‧‧‧加法器 215‧‧‧Adder

220‧‧‧運動補償單元 220‧‧‧Motion Compensation Unit

225‧‧‧畫框內預測單元 225‧‧‧In-frame prediction unit

230‧‧‧模式選擇單元 230‧‧‧Mode selection unit

235‧‧‧解塊濾波器 235‧‧‧Deblocking Filter

240‧‧‧樣本自適應性偏移濾波器 240‧‧‧sample adaptive offset filter

245‧‧‧圖像緩衝器 245‧‧‧image buffer

Claims (17)

一種視訊解碼裝置,包括:熵解碼器,包括處理電路,其被配置成透過以下解碼位元深度的資料:自經編碼視訊的位元串流的標頭獲得所述位元串流的編碼資訊,所述位元串流的所述編碼資訊包括所述位元串流的所述位元深度,以及當所述位元串流的所述位元深度不同於參考位元深度時,基於所述位元串流的第一量化參數與第一量化步長之間的關係及所述參考位元深度與所述位元串流的所述位元深度之間的差將所述第一量化參數轉換成第二量化參數,使得在所述位元串流的所述位元深度為10位元且所述參考位元深度為8位元時所述第一量化參數與所述第一量化步長之間的所述關係為QSI=2QPI/6,其中QSI為所述第一量化步長且QPI為所述第一量化參數,所述第二量化參數具有與所述第一量化參數不同的值;以及視訊解碼器,包括處理電路,其被配置成透過以下解碼所述參考位元深度的資料:接收所述第二量化參數及所述位元串流,以及至少基於所述第二量化參數將具有所述位元深度的所述位元串流進行解碼。 A video decoding apparatus, comprising: an entropy decoder including a processing circuit configured to decode bit-depth data by obtaining encoding information of a bitstream of encoded video from a header of the bitstream , the encoding information of the bitstream includes the bit depth of the bitstream, and when the bit depth of the bitstream is different from a reference bit depth, based on the the relationship between the first quantization parameter of the bitstream and the first quantization step size and the difference between the reference bit depth and the bit depth of the bitstream to quantize the first parameters are converted into second quantization parameters such that the first quantization parameter is the same as the first quantization parameter when the bit depth of the bitstream is 10 bits and the reference bit depth is 8 bits The relationship between step sizes is QS I =2 QPI/6 , where QS I is the first quantization step size and QP I is the first quantization parameter, and the second quantization parameter has the same a different value for a quantization parameter; and a video decoder including a processing circuit configured to decode the reference bit depth data by receiving the second quantization parameter and the bitstream, and based at least on The second quantization parameter decodes the bitstream with the bit depth. 如申請專利範圍第1項所述的視訊解碼裝置,其中所述 視訊解碼器包括:加法器,包括處理電路,其被配置成基於殘餘資料產生空間域的資料,所述殘餘資料是利用所述第二量化參數以及自所述位元串流進行畫框內預測或畫框間預測得到的資料而自所述位元串流的第二變換係數恢復得到;以及樣本自適應性偏移(SAO)濾波器,被配置成藉由基於所述第二量化參數及第二偏移對所述空間域的所述資料執行樣本自適應性偏移濾波來產生視訊輸出。 The video decoding device as described in claim 1, wherein the The video decoder includes an adder including a processing circuit configured to generate spatial domain data based on residual data using the second quantization parameter and in-frame prediction from the bitstream or inter-frame predicted data recovered from second transform coefficients of the bitstream; and a sample adaptive offset (SAO) filter configured to perform a A second offset performs sample adaptive offset filtering on the data in the spatial domain to generate a video output. 如申請專利範圍第2項所述的視訊解碼裝置,其中所述熵解碼器被配置成當所述位元串流的所述位元深度不同於所述參考位元深度時,藉由使第一偏移進行位元移位達所述位元串流的所述位元深度與所述參考位元深度之間的所述差來產生所述第二偏移。 The video decoding apparatus of claim 2, wherein the entropy decoder is configured, when the bit depth of the bit stream is different from the reference bit depth, by making the first An offset is bit-shifted by the difference between the bit-depth of the bitstream and the reference bit-depth to generate the second offset. 如申請專利範圍第2項所述的視訊解碼裝置,其中所述熵解碼器被配置成當所述位元串流的所述位元深度不同於所述參考位元深度時,藉由使所述位元串流的第一變換係數進行位元移位達所述位元串流的所述位元深度與所述參考位元深度之間的所述差來產生所述第二變換係數。 The video decoding apparatus of claim 2, wherein the entropy decoder is configured to, when the bit depth of the bit stream is different from the reference bit depth, by making the The first transform coefficients of the bitstream are bit-shifted by the difference between the bit depth of the bitstream and the reference bit depth to generate the second transform coefficients. 如申請專利範圍第4項所述的視訊解碼裝置,其中所述視訊解碼器被配置成基於與所述第二量化參數對應的第二量化步長而自所述位元串流的所述第二變換係數恢復所述殘餘資料。 The video decoding device of claim 4, wherein the video decoder is configured to decode from the first quantization step of the bitstream based on a second quantization step size corresponding to the second quantization parameter. Two transform coefficients restore the residual data. 如申請專利範圍第1項所述的視訊解碼裝置,其中所述 熵解碼器被配置成基於以下來將所述第一量化參數轉換成所述第二量化參數:QPO=QPI+6×(BDO-BDI)(QPI+6×(BDO-BDI)
Figure 107137267-A0305-02-0034-1
0)=QPI(QPI+6×(BDO-BDI)<0),其中QPI及QPO分別為所述位元串流的所述第一量化參數及所述第二量化參數,且BDI及BDO分別為所述位元串流的所述位元深度及所述參考位元深度。
The video decoding apparatus of claim 1, wherein the entropy decoder is configured to convert the first quantization parameter to the second quantization parameter based on: QP O =QP I +6× (BD O -BD I )(QP I +6×(BD O -BD I )
Figure 107137267-A0305-02-0034-1
0)=QP I (QP I +6×(BD O -BD I )<0), where QP I and QP O are the first quantization parameter and the second quantization parameter of the bitstream, respectively , and BDI and BDO are the bit depth and the reference bit depth, respectively, of the bitstream.
如申請專利範圍第6項所述的視訊解碼裝置,其中所述熵解碼器被配置成將所述位元串流的第一變換係數轉換成第二變換係數,使得當(QPI+6 x (BDO-BDI))的值小於零時,所述第二量化參數與所述第一量化參數相同。 The video decoding apparatus of claim 6, wherein the entropy decoder is configured to convert the first transform coefficients of the bitstream into second transform coefficients such that when (QP I +6 x When the value of (BD O -BD I )) is less than zero, the second quantization parameter is the same as the first quantization parameter. 如申請專利範圍第4項所述的視訊解碼裝置,其中所述熵解碼器被配置成當所述位元串流的所述位元深度小於所述參考位元深度時,不對所述第一量化參數及所述第一變換係數進行轉換。 The video decoding device as claimed in claim 4, wherein the entropy decoder is configured to not perform the first decoding operation when the bit depth of the bit stream is less than the reference bit depth The quantization parameters and the first transform coefficients are converted. 一種視訊解碼裝置,包括:熵解碼器,包括處理電路,其被配置成透過以下解碼位元深度的資料:自經編碼視訊的位元串流的標頭獲得所述位元串流的編碼資訊,所述編碼資訊包括所述位元串流的所述位元深度,以及當所述位元串流的所述位元深度大於參考位元深度時,基 於所述位元串流的第一量化參數與第一量化步長之間的關係及所述參考位元深度與所述位元串流的所述位元深度之間的差將所述第一量化參數轉換成第二量化參數,使得在所述位元串流的所述位元深度為10位元且所述參考位元深度為8位元時所述第一量化參數與所述第一量化步長之間的所述關係為QSI=2QPI/6,其中QSI為所述第一量化步長且QPI為所述第一量化參數,所述第二量化參數具有與所述第一量化參數不同的值;加法器,包括處理電路,其被配置成基於殘餘資料產生空間域的資料,所述殘餘資料是利用第二量化步長以及自所述位元串流進行畫框內預測或畫框間預測得到的資料恢復得到,當所述位元串流的所述位元深度大於所述參考位元深度時,所述第二量化步長對應於所述第二量化參數;以及樣本自適應性偏移(SAO)濾波器,包括處理電路,其被配置成藉由基於所述第二量化參數及第二偏移對所述空間域的所述資料執行樣本自適應性偏移濾波來產生視訊輸出。 A video decoding apparatus, comprising: an entropy decoder including a processing circuit configured to decode bit-depth data by obtaining encoding information of a bitstream of encoded video from a header of the bitstream , the encoding information includes the bit depth of the bit stream, and when the bit depth of the bit stream is greater than a reference bit depth, based on the first bit depth of the bit stream the relationship between the quantization parameter and the first quantization step size and the difference between the reference bit depth and the bit depth of the bitstream to convert the first quantization parameter into a second quantization parameter, such that the relationship between the first quantization parameter and the first quantization step size when the bit depth of the bitstream is 10 bits and the reference bit depth is 8 bits is QS I =2 QPI/6 , where QS I is the first quantization step size and QP I is the first quantization parameter, the second quantization parameter has a different value from the first quantization parameter; addition a processor including processing circuitry configured to generate spatial domain data based on residual data obtained using a second quantization step size and intra-frame prediction or inter-frame prediction from the bitstream Data recovery obtains that when the bit depth of the bit stream is greater than the reference bit depth, the second quantization step size corresponds to the second quantization parameter; and a sample adaptive offset ( SAO) filter including processing circuitry configured to generate a video output by performing sample adaptive offset filtering on the data in the spatial domain based on the second quantization parameter and a second offset. 如申請專利範圍第9項所述的視訊解碼裝置,其中所述熵解碼器被配置成當所述位元串流的所述位元深度大於所述參考位元深度時,藉由使第一偏移進行位元左移位達所述位元串流的所述位元深度與所述參考位元深度之間的所述差來產生所述第二偏移。 The video decoding apparatus of claim 9, wherein the entropy decoder is configured to, when the bit depth of the bit stream is greater than the reference bit depth, by making the first The offset is bit-left shifted by the difference between the bit depth of the bitstream and the reference bit depth to generate the second offset. 如申請專利範圍第9項所述的視訊解碼裝置,其中所 述熵解碼器被配置成基於以下來將所述第一量化參數轉換成所述第二量化參數:QPO=QPI+6×(BDO-BDI)(QPI+6×(BDO-BDI)
Figure 107137267-A0305-02-0036-2
0)=QPI(QPI+6×(BDO-BDI)<0),其中QPI及QPO分別為所述位元串流的所述第一量化參數及所述第二量化參數,且BDI及BDO分別為所述位元串流的所述位元深度及所述參考位元深度。
The video decoding apparatus of claim 9, wherein the entropy decoder is configured to convert the first quantization parameter to the second quantization parameter based on: QP O =QP I +6× (BD O -BD I )(QP I +6×(BD O -BD I )
Figure 107137267-A0305-02-0036-2
0)=QP I (QP I +6×(BD O -BD I )<0), where QP I and QP O are the first quantization parameter and the second quantization parameter of the bitstream, respectively , and BDI and BDO are the bit depth and the reference bit depth, respectively, of the bitstream.
一種視訊解碼方法,包括:接收經編碼視訊的位元串流;自所述位元串流的標頭中所包括的編碼資訊獲得所述位元串流的位元深度;基於所述位元串流的第一量化參數與第一量化步長之間的關係及參考位元深度與所述位元串流的所述位元深度之間的差將所述第一量化參數轉換成第二量化參數,使得在所述位元串流的所述位元深度為10位元且所述參考位元深度為8位元時所述第一量化參數與所述第一量化步長之間的所述關係為QSI=2QPI/6,其中QSI為所述第一量化步長且QPI為所述第一量化參數,所述第二量化參數具有與所述第一量化參數不同的值;以及至少基於所述第二量化參數將具有所述位元深度的所述經編碼視訊的所述位元串流解碼。 A video decoding method, comprising: receiving a bitstream of encoded video; obtaining a bit depth of the bitstream from encoding information included in a header of the bitstream; The relationship between the first quantization parameter of the stream and the first quantization step size and the difference between the reference bit depth and the bit depth of the bit stream converts the first quantization parameter into a second a quantization parameter such that the difference between the first quantization parameter and the first quantization step size when the bit depth of the bitstream is 10 bits and the reference bit depth is 8 bits The relationship is QSI =2 QPI/6 , where QSI is the first quantization step size and QPI is the first quantization parameter, and the second quantization parameter has a different value from the first quantization parameter. value; and decoding the bitstream of the encoded video having the bit depth based on at least the second quantization parameter. 如申請專利範圍第12項所述的方法,更包括:藉由基於殘餘資料產生空間域的資料,所述殘餘資料是利用 所述第二量化參數以及自所述位元串流進行畫框內預測或畫框間預測得到的資料而自所述位元串流的第二變換係數恢復得到;以及藉由利用所述第二量化參數及第二偏移對所述空間域的所述資料執行樣本自適應性偏移濾波來產生視訊輸出。 The method of claim 12, further comprising: generating spatial domain data based on residual data, the residual data using the second quantization parameter and data obtained from intra-frame prediction or inter-frame prediction from the bitstream are recovered from second transform coefficients of the bitstream; and by utilizing the first A quantization parameter and a second offset perform sample adaptive offset filtering on the data in the spatial domain to generate a video output. 如申請專利範圍第13項所述的方法,更包括:因應於所述位元串流的所述位元深度不同於所述參考位元深度,藉由使第一偏移進行位元移位達所述位元串流的所述位元深度與所述參考位元深度之間的所述差來產生所述第二偏移。 The method of claim 13, further comprising: in response to the bit depth of the bit stream being different from the reference bit depth, bit shifting by making a first offset The second offset is generated by the difference between the bit depth of the bitstream and the reference bit depth. 如申請專利範圍第13項所述的方法,更包括:因應於所述位元串流的所述位元深度不同於所述參考位元深度,藉由使所述位元串流的第一變換係數進行位元移位達所述位元串流的所述位元深度與所述參考位元深度之間的所述差來產生所述第二變換係數。 The method of claim 13, further comprising: in response to the bit depth of the bit stream being different from the reference bit depth, by making the first Transform coefficients are bit-shifted by the difference between the bit depth of the bitstream and the reference bit depth to generate the second transform coefficients. 如申請專利範圍第15項所述的方法,更包括:基於與所述第二量化參數對應的第二量化步長而自所述位元串流的所述第二變換係數恢復所述殘餘資料。 The method of claim 15, further comprising: restoring the residual data from the second transform coefficients of the bitstream based on a second quantization step size corresponding to the second quantization parameter . 如申請專利範圍第12項所述的方法,其中所述轉換包括:基於以下來將所述第一量化參數轉換成所述第二量化參數:QPO=QPI+6×(BDO-BDI)(QPI+6×(BDO-BDI)
Figure 107137267-A0305-02-0037-3
0)=QPI(QPI+6×(BDO-BDI)<0), 其中QPI及QPO分別為所述位元串流的所述第一量化參數及所述第二量化參數,且BDI及BDO分別為所述位元串流的所述位元深度及所述參考位元深度。
The method of claim 12, wherein the converting comprises converting the first quantization parameter to the second quantization parameter based on: QP O =QP I +6×(BD O -BD I )(QP I +6×(BD O -BD I )
Figure 107137267-A0305-02-0037-3
0)=QP I (QP I +6×(BD O -BD I )<0), where QP I and QP O are the first quantization parameter and the second quantization parameter of the bitstream, respectively , and BDI and BDO are the bit depth and the reference bit depth, respectively, of the bitstream.
TW107137267A 2017-11-22 2018-10-23 Video decoding apparatus and video decoding method TWI766118B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
??10-2017-0156643 2017-11-22
KR1020170156643A KR102432486B1 (en) 2017-11-22 2017-11-22 Apparatus for video decoding, computing system comprising the same and method for video decoding
KR10-2017-0156643 2017-11-22

Publications (2)

Publication Number Publication Date
TW201926993A TW201926993A (en) 2019-07-01
TWI766118B true TWI766118B (en) 2022-06-01

Family

ID=66533547

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107137267A TWI766118B (en) 2017-11-22 2018-10-23 Video decoding apparatus and video decoding method

Country Status (4)

Country Link
US (1) US10863177B2 (en)
KR (1) KR102432486B1 (en)
CN (1) CN109819248B (en)
TW (1) TWI766118B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3554074A1 (en) * 2018-04-13 2019-10-16 Thomson Licensing Methods and apparatus for depth encoding and decoding
WO2021121419A1 (en) 2019-12-19 2021-06-24 Beijing Bytedance Network Technology Co., Ltd. Interaction between adaptive color transform and quantization parameters
KR20220115965A (en) 2020-01-05 2022-08-19 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 General constraint information for video coding
CN115176470A (en) * 2020-01-18 2022-10-11 抖音视界有限公司 Adaptive color transformation in image/video codecs
WO2024174086A1 (en) * 2023-02-21 2024-08-29 Oppo广东移动通信有限公司 Decoding method, encoding method, decoders and encoders

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060227866A1 (en) * 2005-04-12 2006-10-12 Lsi Logic Corporation Method for specification of quantized coefficient limit
US20140086312A1 (en) * 2004-05-19 2014-03-27 Dolby Laboratories Licensing Corporation Quantization Control for Variable Bit Depth
US20140301438A1 (en) * 2013-04-08 2014-10-09 Qualcomm Incorporated Sample adaptive offset scaling based on bit-depth
US20160029021A1 (en) * 2014-07-22 2016-01-28 Renesas Electronics Corporation Image receiving device, image transmission system, and image receiving method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882685B2 (en) * 2001-09-18 2005-04-19 Microsoft Corporation Block transform and quantization for image and video coding
US7660355B2 (en) 2003-12-18 2010-02-09 Lsi Corporation Low complexity transcoding between video streams using different entropy coding
US7949044B2 (en) * 2005-04-12 2011-05-24 Lsi Corporation Method for coefficient bitdepth limitation, encoder and bitstream generation apparatus
KR101336475B1 (en) 2005-09-26 2013-12-04 미쓰비시덴키 가부시키가이샤 Dynamic image encoding device and dynamic image decoding device
US8212828B2 (en) 2006-01-04 2012-07-03 Lsi Corporation Hybrid multiple bit-depth video processing architecture
KR101366249B1 (en) * 2007-06-28 2014-02-21 삼성전자주식회사 Scalable video encoding apparatus and method and scalable video decoding apparatus and method
US20110274162A1 (en) * 2010-05-04 2011-11-10 Minhua Zhou Coding Unit Quantization Parameters in Video Coding
US20130003858A1 (en) 2011-06-30 2013-01-03 Vivienne Sze Simplified Context Selection For Entropy Coding of Transform Coefficient Syntax Elements
KR20130068823A (en) * 2011-12-16 2013-06-26 삼성전자주식회사 Method and apparatus for image signal processing
JP2014116733A (en) * 2012-12-07 2014-06-26 Canon Inc Image encoding device, image encoding method and program, image decoding device and image decoding method and program
KR102636099B1 (en) * 2016-12-22 2024-02-13 삼성전자주식회사 Apparatus and method for encoding video adjusting quantization parameter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140086312A1 (en) * 2004-05-19 2014-03-27 Dolby Laboratories Licensing Corporation Quantization Control for Variable Bit Depth
US20060227866A1 (en) * 2005-04-12 2006-10-12 Lsi Logic Corporation Method for specification of quantized coefficient limit
US20140301438A1 (en) * 2013-04-08 2014-10-09 Qualcomm Incorporated Sample adaptive offset scaling based on bit-depth
US20160029021A1 (en) * 2014-07-22 2016-01-28 Renesas Electronics Corporation Image receiving device, image transmission system, and image receiving method

Also Published As

Publication number Publication date
CN109819248B (en) 2024-02-09
US20190158831A1 (en) 2019-05-23
KR20190059071A (en) 2019-05-30
TW201926993A (en) 2019-07-01
CN109819248A (en) 2019-05-28
US10863177B2 (en) 2020-12-08
KR102432486B1 (en) 2022-08-12

Similar Documents

Publication Publication Date Title
TWI766118B (en) Video decoding apparatus and video decoding method
US20210377555A1 (en) Image coding apparatus, image coding method, and program, and image decoding apparatus, image decoding method and program
JP5828361B2 (en) Color difference quantization parameter expansion
WO2013069216A1 (en) Image coding apparatus, image coding method, image decoding apparatus, image decoding method, and storage medium
US10645386B1 (en) Embedded codec circuitry for multiple reconstruction points based quantization
KR102365685B1 (en) Method for operating of encoder, and devices having the encoder
CN109672890B (en) Video encoding device and encoder
WO2017063168A1 (en) Image coding method and apparatus, and image processing device
TW201923585A (en) Data processing device and data processing method
US20170099487A1 (en) Encoder for determining quantization parameter adaptively and application processor having the same
KR102423880B1 (en) Method for operating of encoder, and method for operating system on chip including encoder
US10412386B2 (en) System on chip and data processing system including the same
CA2774940C (en) Joint scalar embedded graphics coding for color images
US10097830B2 (en) Encoding device with flicker reduction
JP6469277B2 (en) Image encoding device, image encoding method and program, image decoding device, image decoding method and program
US20200162758A1 (en) Embedded codec circuitry for sub-block based encoding of quantized prediction residual levels
WO2022217442A1 (en) Coefficient encoding/decoding method, encoder, decoder, and computer storage medium
EP4329300A1 (en) Image processing device and operating method of the image processing device
WO2018068263A1 (en) Image coding method and device, and image processing apparatus
JP2006165699A (en) Image encoder and image encoding method
US20160150244A1 (en) Decoder, decoding system including the decoder and method of operating the decoder
US10652543B2 (en) Embedded codec circuitry and method for frequency-dependent coding of transform coefficients
JP2007295333A (en) Image decoding processing circuit, method, and program, and semiconductor integrated circuit