TWI765844B - Signal processing circuit and method for self-calibrating tdqsck - Google Patents

Signal processing circuit and method for self-calibrating tdqsck Download PDF

Info

Publication number
TWI765844B
TWI765844B TW110144195A TW110144195A TWI765844B TW I765844 B TWI765844 B TW I765844B TW 110144195 A TW110144195 A TW 110144195A TW 110144195 A TW110144195 A TW 110144195A TW I765844 B TWI765844 B TW I765844B
Authority
TW
Taiwan
Prior art keywords
signal
tdqsck
circuit
delay
write equalization
Prior art date
Application number
TW110144195A
Other languages
Chinese (zh)
Other versions
TW202322124A (en
Inventor
吳柏勳
許人壽
Original Assignee
晶豪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶豪科技股份有限公司 filed Critical 晶豪科技股份有限公司
Priority to TW110144195A priority Critical patent/TWI765844B/en
Application granted granted Critical
Publication of TWI765844B publication Critical patent/TWI765844B/en
Publication of TW202322124A publication Critical patent/TW202322124A/en

Links

Images

Abstract

A signal processing circuit includes a delay locked loop (DLL) circuit, a data output path circuit, and a first phase detector circuit. The DLL circuit is arranged to receive a memory clock signal, and generate a DLL output signal according to the memory clock signal and a DLL feedback signal. The data output path circuit is coupled to the DLL circuit, and is arranged to generate a DQS signal according to the DLL output signal. The first phase detector circuit is coupled to the data output path circuit, and is arranged to receive the memory clock signal and the DQS signal, and detect a phase difference between the memory clock signal and the DQS signal to generate a first phase detection result.

Description

訊號處理電路以及用以自校準tDQSCK的方法Signal processing circuit and method for self-calibrating tDQSCK

本發明係有關於動態隨機存取記憶體(dynamic random access memory, DRAM),尤指一種用以於讀取操作期間自校準(self-calibrate)一tDQSCK(其係一記憶體時脈訊號的一上升邊緣(rising edge)以及一資料選通(data strobe, DQS)訊號的一上升邊緣之間的一偏差(skew))的方法以及相關訊號處理電路。The present invention relates to dynamic random access memory (DRAM), and more particularly to a method for self-calibrating a tDQSCK (which is a memory clock signal) during a read operation. A method for a skew between a rising edge and a rising edge of a data strobe (DQS) signal and a related signal processing circuit.

在動態隨機存取記憶體的規格書中定義了tDQSCK,其限制了於讀取操作期間記憶體時脈訊號的上升邊緣以及資料選通訊號的上升邊緣之間的相對關係,也就是說,tDQSCK代表於讀取操作期間記憶體時脈訊號的上升邊緣以及資料選通訊號的上升邊緣之間的一偏差的最大容忍值以及最小容忍值。動態隨機存取記憶體的製造商會設置tDQSCK的設計目標以小於動態隨機存取記憶體的規格書中所定義的tDQSCK的大小,舉例來說,動態隨機存取記憶體的規格書中所定義的tDQSCK的大小係

Figure 02_image001
150皮秒(picosecond, ps),則動態隨機存取記憶體的製造商可使得動態隨機存取記憶體的tDQSCK小於
Figure 02_image001
150皮秒,理想上來說,動態隨機存取記憶體的tDQSCK應接近於0。 tDQSCK is defined in the DRAM specification, which limits the relative relationship between the rising edge of the memory clock signal and the rising edge of the data strobe signal during a read operation, that is, tDQSCK A maximum tolerance value and a minimum tolerance value representing a deviation between the rising edge of the memory clock signal and the rising edge of the data strobe signal during a read operation. DRAM manufacturers set the design target for tDQSCK to be smaller than the size of tDQSCK defined in the DRAM specification, for example, the DRAM specification The size of tDQSCK
Figure 02_image001
150 picoseconds (picosecond, ps), the manufacturer of DRAM can make the tDQSCK of DRAM less than
Figure 02_image001
150 picoseconds, ideally, the tDQSCK of DRAM should be close to 0.

實際上,動態隨機存取記憶體的製造商所製造的動態隨機存取記憶體的tDQSCK彼此之間可能會有些許不同,雖然可能皆會小於動態隨機存取記憶體的規格書中所定義的tDQSCK的大小,但tDQSCK的分布可能會相當不平均,舉例來說,假設一tDQSCK分布圖具有代表tDQSCK值的橫軸以及代表動態隨機存取記憶體之數量的縱軸,倘若對於每一個動態隨機存取記憶體來說,tDQSCK的設置皆相同的話,動態隨機存取記憶體之數量的分布可能無法集中在tDQSCK=0之處,而可能會相當分散,因此,極需一種用以針對每一個動態隨機存取記憶體來自校準tDQSCK的方法以及相關訊號處理電路。In fact, the tDQSCK of DRAMs manufactured by DRAM manufacturers may be slightly different from each other, although they may all be smaller than those defined in the DRAM specifications. The size of tDQSCK, but the distribution of tDQSCK can be quite uneven. For example, suppose a tDQSCK distribution graph has a horizontal axis representing the value of tDQSCK and a vertical axis representing the number of DRAMs. If for each DRAM For memory access, if the settings of tDQSCK are the same, the distribution of the number of DRAMs may not be concentrated at tDQSCK=0, and may be quite scattered. The dynamic random access memory is derived from the method of calibrating tDQSCK and the related signal processing circuit.

因此,本發明的目的之一在於提供一種自校準tDQSCK的方法以及相關訊號處理電路,以解決上述問題。Therefore, one of the objectives of the present invention is to provide a method for self-calibrating tDQSCK and a related signal processing circuit to solve the above problems.

根據本發明之一實施例,提供了一種訊號處理電路。該訊號處理電路可包含有一延遲鎖相迴路電路、一資料輸出路徑電路以及一第一相位偵測器電路。延遲鎖相迴路電路可用以接收一記憶體時脈訊號,並且根據記憶體時脈訊號以及一延遲鎖相迴路回授訊號來產生一延遲鎖相迴路輸出訊號,其中延遲鎖相迴路回授訊號係自延遲鎖相迴路輸出訊號取得。資料輸出路徑電路可耦接於延遲鎖相迴路電路,並且可用以根據延遲鎖相迴路輸出訊號來產生一資料選通訊號。第一相位偵測器電路可耦接於資料輸出路徑電路,並且可用以接收記憶體時脈訊號以及資料選通訊號,以及偵測記憶體時脈訊號以及資料選通訊號之間的一相位差,以產生一第一相位偵測結果,其中一第一延遲量被延遲鎖相迴路電路所使用,以及第一延遲量根據第一相位偵測結果而被調整。According to an embodiment of the present invention, a signal processing circuit is provided. The signal processing circuit may include a delay locked loop circuit, a data output path circuit and a first phase detector circuit. The delay locked loop circuit can receive a memory clock signal, and generate a delay locked loop output signal according to the memory clock signal and a delay locked loop feedback signal, wherein the delay locked loop feedback signal is Obtained from the output signal of the delay-locked loop. The data output path circuit can be coupled to the PLL circuit, and can be used for generating a data strobe signal according to the DLL output signal. The first phase detector circuit can be coupled to the data output path circuit, and can be used for receiving the memory clock signal and the data strobe signal, and detecting a phase difference between the memory clock signal and the data strobe signal , to generate a first phase detection result, wherein a first delay amount is used by the delay-locked loop circuit, and the first delay amount is adjusted according to the first phase detection result.

根據本發明之一實施例,提供了一種自校準一tDQSCK的方法。該方法可包含有:進入一多功能暫存器模式、一讀取前置訓練模式以及一寫入均衡模式,並且預設一tDQSCK設置;提供一讀取命令並且記錄一寫入均衡索引訊號的一寫入均衡狀態,其中寫入均衡索引訊號的寫入均衡狀態指示記憶體時脈訊號以及資料選通訊號的相位關係;判斷tDQSCK是否為tDQSCK的一最大設置,其中因應tDQSCK不是tDQSCK的最大設置,降低一延遲量的一數值以使資料選通訊號向前位移,再次提供讀取命令,以及再次記錄寫入均衡索引訊號的寫入均衡狀態;以及因應tDQSCK是tDQSCK的最大設置,再次預設tDQSCK設置;判斷tDQSCK是否為tDQSCK的一最小設置,其中因應tDQSCK不是tDQSCK的最小設置,增加延遲量的數值以使資料選通訊號向後位移,再次提供讀取命令,以及再次記錄寫入均衡索引訊號的寫入均衡狀態;以及因應tDQSCK是tDQSCK的最小設置,離開多功能暫存器模式、讀取前置訓練模式以及寫入均衡模式;更新一tDQSCK設置碼直到寫入均衡索引訊號發生轉態;以及記錄tDQSCK設置碼。According to an embodiment of the present invention, a method for self-calibrating a tDQSCK is provided. The method may include: entering a multi-function register mode, a read pre-training mode and a write equalization mode, and presetting a tDQSCK setting; providing a read command and recording a write equalization index signal a write equalization state, wherein the write equalization state of the write equalization index signal indicates the phase relationship between the memory clock signal and the data strobe signal; determine whether tDQSCK is a maximum setting of tDQSCK, wherein tDQSCK is not the maximum setting of tDQSCK , reduce a value of a delay amount to move the data strobe signal forward, provide the read command again, and record the write equalization state of the write equalization index signal again; and because tDQSCK is the maximum setting of tDQSCK, default again tDQSCK setting; judging whether tDQSCK is a minimum setting of tDQSCK, in which, since tDQSCK is not the minimum setting of tDQSCK, increase the value of the delay amount to shift the data strobe signal backward, provide the read command again, and record the write equalization index signal again and leave the multi-function register mode, read pre-training mode and write equalization mode because tDQSCK is the minimum setting of tDQSCK; update a tDQSCK setting code until the write equalization index signal changes state; And record the tDQSCK setup code.

本發明的好處之一是,透過本發明之於讀取操作期間自校準tDQSCK的方法,對於一tDQSCK分布圖(其橫軸代表tDQSCK的不同數值以及縱軸代表晶片(例如動態隨機存取記憶體)的不同數量)來說,tDQSCK的分布可以更集中,此外,在每一個晶片的tDQSCK藉由本發明的方法而被自校準之後,可以為每一個晶片將一手動位移碼與tDQSCK設置碼相加,如此一來,在自校準之後的tDQSCK分布可以根據設計需求而向左或向右位移,大幅地增加了設計彈性。One of the advantages of the present invention is that, through the method of the present invention for self-calibrating tDQSCK during a read operation, for a tDQSCK distribution graph (the horizontal axis represents different values of tDQSCK and the vertical axis represents the chip (eg, dynamic random access memory) ), the distribution of tDQSCK can be more concentrated, and furthermore, after the tDQSCK of each wafer is self-calibrated by the method of the present invention, a manual shift code can be added to the tDQSCK setup code for each wafer , so that the distribution of tDQSCK after self-calibration can be shifted to the left or right according to the design requirements, which greatly increases the design flexibility.

第1圖為依據本發明一實施例之記憶體裝置100的方塊圖。記憶體裝置100,諸如動態隨機存取記憶體(dynamic random access memory, DRAM),可包含有一命令輸入介面10、一命令解碼器12、一記憶體單元(memory cell)電路14、一延遲鎖相迴路(delay locked loop, DLL)電路16、一資料先進先出(first input first output, FIFO)電路18以及一資料輸入/輸出(input/output, I/O)介面20。命令輸入介面10可用以接收複數個命令訊號COMMAND_SIGNAL,其中命令訊號COMMAND_SIGNAL可包含有一讀取命令RE、一差動對的記憶體時脈訊號(亦即一真實(true)時脈訊號CK_t以及一互補(complementary)時脈訊號CK_c)、一時脈致能(enable)訊號CKE、一晶片選擇訊號CS_n以及複數個位址訊號(例如BG0、BG1、BA0、BA1以及A0~A13)等等。命令解碼器12可耦接於命令輸入介面10,並且可用以接收以及解碼命令訊號COMMAND_SIGNAL,以產生一命令位址訊號CAIR以及一控制訊號CS,其中命令位址訊號CAIR對應於讀取命令RE,以及控制訊號CS係藉由複數個位址訊號來產生的。FIG. 1 is a block diagram of a memory device 100 according to an embodiment of the present invention. The memory device 100, such as dynamic random access memory (DRAM), may include a command input interface 10, a command decoder 12, a memory cell circuit 14, a delay-locked phase A delay locked loop (DLL) circuit 16 , a data first input first output (FIFO) circuit 18 and a data input/output (I/O) interface 20 are provided. The command input interface 10 can receive a plurality of command signals COMMAND_SIGNAL, wherein the command signal COMMAND_SIGNAL can include a read command RE, a differential pair of memory clock signals (ie a true (true) clock signal CK_t and a complementary (complementary) clock signal CK_c), a clock enable signal CKE, a chip selection signal CS_n and a plurality of address signals (eg BG0, BG1, BA0, BA1 and A0~A13) and so on. The command decoder 12 can be coupled to the command input interface 10, and can receive and decode the command signal COMMAND_SIGNAL to generate a command address signal CAIR and a control signal CS, wherein the command address signal CAIR corresponds to the read command RE, And the control signal CS is generated by a plurality of address signals.

記憶體單元電路14可耦接於命令解碼器12,並且可具有複數個記憶體庫(memory bank)BANK_0~BANK_N,其中記憶體單元電路14係被控制訊號CS所控制,控制訊號CS可用以決定記憶體庫BANK_0~BANK_N之一個記憶體庫中的一記憶體位址,以及對應於讀取命令RE的一讀取操作可在該記憶體位址上被操作,以自該記憶體位址讀取一讀取資料RDATA。延遲鎖相迴路電路16可用以接收命令位址訊號CAIR以及差動對的記憶體時脈訊號(亦即真實時脈訊號CK_t以及互補時脈訊號CK_c),並且根據記憶體時脈訊號(例如真實時脈訊號CK_t)來產生一延遲鎖相迴路輸出訊號DLL_OUT。資料先進先出電路18可耦接於記憶體單元電路14以及延遲鎖相迴路電路16,並且可用以接收讀取資料RDATA以及延遲鎖相迴路輸出訊號DLL_OUT。資料輸入/輸出介面20可耦接於資料先進先出電路18,並且可用以根據讀取資料RDATA以及延遲鎖相迴路輸出訊號DLL_OUT來產生複數個資料(data, DQ)訊號DQ0~DQ7、複數個資料訊號DQ8~DQ15、一差動對的上資料選通訊號(亦即一上真實資料選通訊號UDQS_t以及一上互補資料選通訊號UDQS_c)以及一差動對的下資料選通訊號(亦即一下真實資料選通訊號LDQS_t以及一下互補資料選通訊號LDQS_c),其中差動對的上資料選通訊號以及差動對的下資料選通訊號分別對應於資料訊號DQ8~DQ15以及資料訊號DQ0~DQ7,以及資料訊號DQ0~DQ7以及資料訊號DQ8~DQ15對應於讀取資料RDATA。The memory cell circuit 14 can be coupled to the command decoder 12, and can have a plurality of memory banks (BANK_0~BANK_N), wherein the memory cell circuit 14 is controlled by the control signal CS, and the control signal CS can be used to determine A memory address in one of the memory banks BANK_0~BANK_N, and a read operation corresponding to the read command RE can be operated on the memory address to read a read from the memory address Get data RDATA. The delay-locked loop circuit 16 can be used to receive the command address signal CAIR and the memory clock signal of the differential pair (ie the real clock signal CK_t and the complementary clock signal CK_c), and according to the memory clock signal (eg the real clock signal CK_t and the complementary clock signal CK_c) clock signal CK_t) to generate a delay-locked loop output signal DLL_OUT. The data FIFO circuit 18 can be coupled to the memory cell circuit 14 and the PLL circuit 16, and can be used for receiving the read data RDATA and the PLL output signal DLL_OUT. The data input/output interface 20 can be coupled to the data FIFO circuit 18, and can be used to generate a plurality of data (data, DQ) signals DQ0-DQ7, a plurality of The data signals DQ8~DQ15, the upper data strobe signal of a differential pair (that is, an upper real data strobe signal UDQS_t and an upper complementary data strobe signal UDQS_c) and a lower data strobe signal of a differential pair (also That is, the real data strobe signal LDQS_t and the complementary data strobe signal LDQS_c), wherein the upper data strobe signal of the differential pair and the lower data strobe signal of the differential pair correspond to the data signals DQ8~DQ15 and the data signal DQ0 respectively ~DQ7, and the data signals DQ0~DQ7 and the data signals DQ8~DQ15 correspond to the read data RDATA.

第2圖為依據本發明一實施例之訊號處理電路200的示意圖。訊號處理電路200可包含有一延遲鎖相迴路電路22、一資料輸出路徑電路24、一相位偵測器電路26以及一儲存裝置48,其中第1圖所示之延遲鎖相迴路電路16可以藉由第2圖所示之延遲鎖相迴路電路22來加以實現,以及第1圖所示之資料先進先出電路18以及資料輸入/輸出介面20可以藉由第2圖所示之資料輸出路徑電路24來加以實現,因此,第1圖所示之記憶體裝置100可被修改以包含相位偵測器電路26以及儲存裝置48,此外,由於在雙倍資料率(double data rate, DDR)3記憶體以及DDR4記憶體中具有寫入均衡(write leveling)功能(亦即DDR3記憶體以及DDR4記憶體均可包含有一寫入均衡電路),因此相位偵測器電路26可以藉由該寫入均衡電路的一相位偵測器電路來加以實現,但是本發明不限於此。FIG. 2 is a schematic diagram of a signal processing circuit 200 according to an embodiment of the present invention. The signal processing circuit 200 may include a delay locked loop circuit 22, a data output path circuit 24, a phase detector circuit 26, and a storage device 48, wherein the delay locked loop circuit 16 shown in FIG. The delay locked loop circuit 22 shown in FIG. 2 is implemented, and the data FIFO circuit 18 and the data input/output interface 20 shown in FIG. 1 can be implemented by the data output path circuit 24 shown in FIG. 2 To implement, therefore, the memory device 100 shown in FIG. 1 can be modified to include the phase detector circuit 26 and the storage device 48, in addition, since the double data rate (DDR) 3 memory And the DDR4 memory has a write leveling function (that is, both the DDR3 memory and the DDR4 memory can include a write leveling circuit), so the phase detector circuit 26 can use the write leveling circuit. A phase detector circuit is implemented, but the present invention is not limited to this.

延遲鎖相迴路電路22可用以接收真實時脈訊號CK_t,並且根據真實時脈訊號CK_t以及一延遲鎖相迴路回授訊號DLL_FED來產生延遲鎖相迴路輸出訊號DLL_OUT,其中延遲鎖相迴路回授訊號DLL_FED係自延遲鎖相迴路輸出訊號DLL_OUT取得。資料輸出路徑電路24可耦接於延遲鎖相迴路電路22,並且可用以根據延遲鎖相迴路輸出訊號DLL_OUT來產生下真實資料選通訊號LDQS_t。相位偵測器電路26可耦接於資料輸出路徑電路24以及儲存裝置48,並且可用以接收真實時脈訊號CK_t以及下真實資料選通訊號LDQS_t,以及偵測真實時脈訊號CK_t以及下真實資料選通訊號LDQS_t之間的一相位差,以產生一第一相位偵測結果FP_DR,其中一第一延遲量FDA可以被延遲鎖相迴路電路22所使用,以及儲存裝置48可用以接收第一相位偵測結果FP_DR,以及根據第一相位偵測結果FP_DR來調整第一延遲量FDA。The delay locked loop circuit 22 can receive the real clock signal CK_t, and generate the delay locked loop output signal DLL_OUT according to the real clock signal CK_t and a delay locked loop feedback signal DLL_FED, wherein the delay locked loop feedback signal DLL_FED is obtained from the delay-locked loop output signal DLL_OUT. The data output path circuit 24 can be coupled to the delay-locked loop circuit 22 and can be used to generate the real data strobe signal LDQS_t according to the delay-locked loop output signal DLL_OUT. The phase detector circuit 26 can be coupled to the data output path circuit 24 and the storage device 48, and can be used to receive the real clock signal CK_t and the lower real data strobe signal LDQS_t, and to detect the real clock signal CK_t and the lower real data A phase difference between the strobe signals LDQS_t to generate a first phase detection result FP_DR, wherein a first delay amount FDA can be used by the delay locked loop circuit 22, and the storage device 48 can be used to receive the first phase The detection result FP_DR, and the first delay amount FDA is adjusted according to the first phase detection result FP_DR.

如第2圖所示,延遲鎖相迴路電路22可包含有一相位偵測器電路28、一延遲單元電路30、一延遲控制器32以及一追蹤延遲電路34。相位偵測器電路28可用以接收真實時脈訊號CK_t以及延遲鎖相迴路回授訊號DLL_FED,並且偵測真實時脈訊號CK_t以及延遲鎖相迴路回授訊號DLL_FED之間的一相位差,以產生一第二相位偵測結果SP_DR。延遲單元電路30可耦接於相位偵測器電路28以及資料輸出路徑電路24,並且可用以將一第二延遲量SDA施加至真實時脈訊號CK_t,以產生延遲鎖相迴路輸出訊號DLL_OUT。延遲控制器32可耦接於相位偵測器電路28以及延遲單元電路30,並且可用以根據第二相位偵測結果SP_DR來控制延遲單元電路30的第二延遲量SDA。追蹤延遲電路34可耦接於相位偵測器電路28以及延遲單元電路30,並且可用以將第一延遲量FDA施加至延遲鎖相迴路輸出訊號DLL_OUT,以產生延遲鎖相迴路回授訊號DLL_FED。As shown in FIG. 2 , the PLL circuit 22 may include a phase detector circuit 28 , a delay unit circuit 30 , a delay controller 32 and a tracking delay circuit 34 . The phase detector circuit 28 can receive the real clock signal CK_t and the delay-locked loop feedback signal DLL_FED, and detect a phase difference between the real clock signal CK_t and the delay-locked loop feedback signal DLL_FED to generate A second phase detection result SP_DR. The delay unit circuit 30 can be coupled to the phase detector circuit 28 and the data output path circuit 24, and can be used to apply a second delay amount SDA to the real clock signal CK_t to generate the delay locked loop output signal DLL_OUT. The delay controller 32 can be coupled to the phase detector circuit 28 and the delay unit circuit 30, and can be used to control the second delay amount SDA of the delay unit circuit 30 according to the second phase detection result SP_DR. The tracking delay circuit 34 can be coupled to the phase detector circuit 28 and the delay unit circuit 30 and can be used to apply the first delay amount FDA to the PLL output signal DLL_OUT to generate the PLL feedback signal DLL_FED.

此外,相位偵測器電路28可包含有一輸入緩衝器36、一輸入緩衝器38以及一相位偵測器40。輸入緩衝器36可耦接於延遲單元電路30,並且可用以接收以及緩衝真實時脈訊號CK_t。輸入緩衝器38可耦接於追蹤延遲電路34,並且可用以接收以及緩衝延遲鎖相迴路回授訊號DLL_FED。相位偵測器40可耦接於輸入緩衝器36、輸入緩衝器38以及延遲控制器32,並且可用以偵測自輸入緩衝器36輸出的真實時脈訊號CK_t以及自輸入緩衝器38輸出的延遲鎖相迴路回授訊號DLL_FED之間的相位差,以產生並且傳送第二相位偵測結果SP_DR延遲控制器32。相位偵測器電路26可包含有一輸入緩衝器42、一輸入緩衝器44以及一相位偵測器46。輸入緩衝器42可耦接於資料輸出路徑電路24,並且可用以接收以及緩衝下真實資料選通訊號LDQS_t。輸入緩衝器44可用以接收以及緩衝真實時脈訊號CK_t。相位偵測器46可耦接於輸入緩衝器42、輸入緩衝器44以及儲存裝置48,並且可用以偵測自輸入緩衝器42輸出的下真實資料選通訊號LDQS_t以及自輸入緩衝器44輸出的真實時脈訊號CK_t之間的相位差,以產生並且傳送第一相位偵測結果FP_DR至儲存裝置48。Additionally, the phase detector circuit 28 may include an input buffer 36 , an input buffer 38 and a phase detector 40 . The input buffer 36 can be coupled to the delay unit circuit 30 and can be used for receiving and buffering the real clock signal CK_t. The input buffer 38 can be coupled to the tracking delay circuit 34 and can be used for receiving and buffering the delay-locked loop feedback signal DLL_FED. The phase detector 40 can be coupled to the input buffer 36 , the input buffer 38 and the delay controller 32 , and can be used to detect the real clock signal CK_t output from the input buffer 36 and the delay output from the input buffer 38 The phase-locked loop feedbacks the phase difference between the signals DLL_FED to generate and transmit the second phase detection result SP_DR to the delay controller 32 . Phase detector circuit 26 may include an input buffer 42 , an input buffer 44 and a phase detector 46 . The input buffer 42 can be coupled to the data output path circuit 24 and can be used for receiving and buffering the real data strobe signal LDQS_t. The input buffer 44 can be used to receive and buffer the real clock signal CK_t. The phase detector 46 can be coupled to the input buffer 42 , the input buffer 44 and the storage device 48 , and can be used to detect the lower real data strobe signal LDQS_t output from the input buffer 42 and the lower real data strobe signal LDQS_t output from the input buffer 44 The phase difference between the real clock signals CK_t is used to generate and transmit the first phase detection result FP_DR to the storage device 48 .

應注意的是,記憶體裝置100(例如動態隨機存取記憶體),其包含有訊號處理電路200,係被操作在多功能暫存器(multi-purpose register, MPR)模式、讀取前置訓練(read preamble training)模式以及寫入均衡模式中。第一相位偵測結果FP_DR可用以作為一寫入均衡索引訊號WL_INDEX,以及寫入均衡索引訊號WL_INDEX的一寫入均衡狀態WS指示真實時脈訊號CK_t以及下真實資料選通訊號LDQS_t之間的相位關係,此外,儲存裝置48可另用以根據第一相位偵測結果FP_DR來產生並且傳送一第一延遲量調整訊號FDA_CODE至追蹤延遲電路34,以調整第一延遲量FDA,舉例來說,當寫入均衡索引訊號WL_INDEX的寫入均衡狀態WS係等於1(亦即寫入均衡索引訊號WL_INDEX具有高位準)時,下真實資料選通訊號LDQS_t落後(lag behind)真實時脈訊號CK_t,並且追蹤延遲電路34可根據第一延遲量調整訊號FDA_CODE來增加第一延遲量FDA的一數值,以使下真實資料選通訊號LDQS_t向後位移,又例如,當寫入均衡索引訊號WL_INDEX的寫入均衡狀態WS係等於0(亦即寫入均衡索引訊號WL_INDEX具有低位準)時,下真實資料選通訊號LDQS_t領先(lead)真實時脈訊號CK_t,並且追蹤延遲電路34可根據第一延遲量調整訊號FDA_CODE來降低第一延遲量FDA的數值,以使下真實資料選通訊號LDQS_t FDA_CODE向前位移。It should be noted that the memory device 100 (eg, dynamic random access memory), which includes the signal processing circuit 200, is operated in a multi-purpose register (MPR) mode with read pre- Training (read preamble training) mode and write in equalization mode. The first phase detection result FP_DR can be used as a write equalization index signal WL_INDEX, and a write equalization state WS of the write equalization index signal WL_INDEX indicates the phase between the real clock signal CK_t and the lower real data strobe signal LDQS_t In addition, the storage device 48 can be further used to generate and transmit a first delay adjustment signal FDA_CODE to the tracking delay circuit 34 according to the first phase detection result FP_DR to adjust the first delay FDA, for example, when When the write equalization state WS of the write equalization index signal WL_INDEX is equal to 1 (that is, the write equalization index signal WL_INDEX has a high level), the lower real data strobe signal LDQS_t lag behind the real clock signal CK_t, and tracks The delay circuit 34 can increase a value of the first delay amount FDA according to the first delay amount adjustment signal FDA_CODE, so as to shift the lower real data strobe signal LDQS_t backward. For another example, when the write equalization state of the equalization index signal WL_INDEX is written When WS is equal to 0 (that is, the write equalization index signal WL_INDEX has a low level), the lower real data strobe signal LDQS_t leads the real clock signal CK_t, and the tracking delay circuit 34 can adjust the signal FDA_CODE according to the first delay amount to reduce the value of the first delay amount FDA, so that the lower real data strobe signal LDQS_t FDA_CODE is shifted forward.

因此,儲存裝置48可為第一延遲量FDQ支援複數個候選值,並且因應寫入均衡索引訊號WL_INDEX的寫入均衡狀態WS,儲存裝置48可另用以藉由自複數個候選值中選擇出來的一候選值來更新第一延遲量FDA的數值(亦即第一延遲量FDA根據第一延遲量調整訊號FDA_CODE而被調整),其中該候選值的一tDQSCK設置碼可同時被更新。Therefore, the storage device 48 can support a plurality of candidate values for the first delay amount FDQ, and according to the write equalization state WS of the write equalization index signal WL_INDEX, the storage device 48 can also be used to select from the plurality of candidate values by The value of the first delay amount FDA is updated by a candidate value of the first delay amount FDA (that is, the first delay amount FDA is adjusted according to the first delay amount adjustment signal FDA_CODE), wherein a tDQSCK setting code of the candidate value can be updated at the same time.

在本實施例中,儲存裝置48可耦接於追蹤延遲電路34以及相位偵測器電路26(尤指相位偵測器46),並且可包含有(但不限於):複數個電子熔絲(electronic fuses, eFuse)50_1~50_N(N>1),其中電子熔絲50_1~50_N可具有2 N個狀態,以及2 N個狀態分別對應於供第一延遲量FDA使用的複數個候選值。儲存裝置48可另用以接收一控制訊號SET_FDA,以及當寫入均衡索引訊號WL_INDEX於第一延遲量FDA的數值被候選值更新後發生轉態(toggle)時,儲存裝置48可另用以記錄tDQSCK設置碼(其對應於第一延遲量FDA之目前的設置),其中控制訊號SET_FDA可控制儲存裝置48以將第一延遲量調整訊號FDA_CODE傳送至追蹤延遲電路34,以及電子熔絲50_1~50_N上可進行一編程操作,以儲存tDQSCK設置碼(其係一N位元碼)。在自校準的過程結束時對電子熔絲50_1~50_N進行編程操作之後,一tDQSCK設置碼(其指示第一延遲量FDA的一校準後設置)被記錄起來以供後續使用,也就是說,當記憶體裝置100操作在正常模式下時,儲存裝置48可參考該tDQSCK設置碼以控制第一延遲量FDA的設置。 In this embodiment, the storage device 48 can be coupled to the tracking delay circuit 34 and the phase detector circuit 26 (especially the phase detector 46 ), and can include (but not limited to): a plurality of electronic fuses ( electronic fuses, eFuse) 50_1~50_N (N>1), wherein the electronic fuses 50_1~50_N may have 2 N states, and the 2 N states respectively correspond to a plurality of candidate values for the first delay amount FDA. The storage device 48 can also be used for receiving a control signal SET_FDA, and when the write equalization index signal WL_INDEX toggles after the value of the first delay amount FDA is updated by the candidate value, the storage device 48 can also be used for recording tDQSCK setting code (which corresponds to the current setting of the first delay amount FDA), wherein the control signal SET_FDA can control the storage device 48 to transmit the first delay amount adjustment signal FDA_CODE to the tracking delay circuit 34, and the electronic fuses 50_1~50_N A programming operation can be performed above to store the tDQSCK setup code (which is an N-bit code). After the electronic fuses 50_1~50_N are programmed at the end of the self-calibration process, a tDQSCK setting code (which indicates a post-calibration setting of the first delay amount FDA) is recorded for subsequent use, that is, when When the memory device 100 operates in the normal mode, the storage device 48 can refer to the tDQSCK setting code to control the setting of the first delay amount FDA.

第3圖為依據本發明一實施例之藉由第2圖所示之訊號處理電路200所取得的時脈訊號、資料選通訊號以及寫入均衡索引訊號的時序圖。如第3圖所示,在時間點T0時下達了一讀取命令(標記為“READ”),諸如一多功能暫存器(MPR)讀取命令,並且一讀取延遲(read latency)係等於11(亦即在時間點T11時,讀取命令第一次被操作)。虛線L1上方所示之訊號(亦即真實時脈訊號CK_t以及下真實資料選通訊號LDQS_t)係為訊號處理電路200的外部訊號,以及虛線L1下方所示之訊號(亦即一時脈寫入均衡訊號CK_WL、資料選通寫入均衡訊號DQS_WL以及寫入均衡索引訊號WL_INDEX)係為訊號處理電路200的內部訊號,其中真實時脈訊號CK_t對應於時脈寫入均衡訊號CK_WL,以及下真實資料選通訊號LDQS_t對應於資料選通寫入均衡訊號DQS_WL。由於下真實資料選通訊號LDQS_t落後真實時脈訊號CK_t,因此包含有訊號處理電路200的記憶體裝置100(例如動態隨機存取記憶體)的tDQSCK係大於0,此外,接近時間點T11以及時間點T12之間的一中間時序時,當資料選通寫入均衡訊號DQS_WL選通(strobe)時脈寫入均衡訊號CK_WL之後,寫入均衡索引訊號WL_INDEX的寫入均衡狀態WS係等於1。FIG. 3 is a timing diagram of the clock signal, the data strobe signal and the write equalization index signal obtained by the signal processing circuit 200 shown in FIG. 2 according to an embodiment of the present invention. As shown in Figure 3, a read command (labeled "READ"), such as a multi-function register (MPR) read command, is issued at time T0, and a read latency is is equal to 11 (ie, at time point T11, the read command is operated for the first time). The signals shown above the dotted line L1 (ie the real clock signal CK_t and the lower real data strobe signal LDQS_t) are the external signals of the signal processing circuit 200, and the signals shown below the dotted line L1 (ie a clock write equalization The signal CK_WL, the data strobe write equalization signal DQS_WL and the write equalization index signal WL_INDEX) are the internal signals of the signal processing circuit 200, wherein the real clock signal CK_t corresponds to the clock write equalization signal CK_WL, and the real data selection The communication signal LDQS_t corresponds to the data strobe write equalization signal DQS_WL. Since the lower real data strobe signal LDQS_t lags behind the real clock signal CK_t, the tDQSCK of the memory device 100 (eg, the dynamic random access memory) including the signal processing circuit 200 is greater than 0. In addition, close to the time point T11 and the time At an intermediate timing between points T12, after the data strobe write equalization signal DQS_WL is strobe clocked into the equalization signal CK_WL, the write equalization state WS of the write equalization index signal WL_INDEX is equal to 1.

在本實施例中,由於包含有訊號處理電路200的記憶體裝置100的tDQSCK係大於0,因此訊號處理電路200的追蹤延遲電路34可增加第一延遲量FDA的數值,以使下真實資料選通訊號LDQS_t向後位移。在下真實資料選通訊號LDQS_t向後位移的過程中,以供第一延遲量FDA使用的複數個候選值可以被追蹤延遲電路34所支援,其中因應寫入均衡索引訊號WL_INDEX的寫入均衡狀態WS,第一延遲量FDA的數值被複數個候選值中所選擇出來的一候選值更新,此外,在下真實資料選通訊號LDQS_t向後位移的過程中,當下真實資料選通訊號LDQS_t的上升邊緣(rising edge)越過(cross)真實時脈訊號CK_t的上升邊緣時,資料選通寫入均衡訊號DQS_WL也會越過時脈寫入均衡訊號CK_WL的上升邊緣,因此,寫入均衡索引訊號WL_INDEX會發生轉態(亦即寫入均衡索引訊號WL_INDEX的寫入均衡狀態WS從1轉變成0),此時,記憶體裝置100的tDQSCK接近於0以及tDQSCK設置碼被儲存至儲存裝置48中。在進行自校準流程之後,可以對電子熔絲50_1~50_N進行一編程操作,以將候選值的tDQSCK設置碼儲存至電子熔絲50_1~50_N中。In this embodiment, since the tDQSCK of the memory device 100 including the signal processing circuit 200 is greater than 0, the tracking delay circuit 34 of the signal processing circuit 200 can increase the value of the first delay amount FDA, so that the real data can be selected The communication signal LDQS_t is shifted backward. During the backward shift of the lower real data strobe signal LDQS_t, a plurality of candidate values for the first delay amount FDA can be supported by the tracking delay circuit 34, wherein in response to the write equalization state WS of the write equalization index signal WL_INDEX, The value of the first delay amount FDA is updated by a candidate value selected from the plurality of candidate values. In addition, in the process of backward displacement of the lower real data strobe signal LDQS_t, the rising edge of the current real data strobe signal LDQS_t ) crosses (cross) the rising edge of the real clock signal CK_t, the data strobe write equalization signal DQS_WL will also cross the rising edge of the clock write equalization signal CK_WL, therefore, the write equalization index signal WL_INDEX will change state ( That is, the write equalization state WS of the write equalization index signal WL_INDEX changes from 1 to 0). At this time, the tDQSCK of the memory device 100 is close to 0 and the tDQSCK setting code is stored in the storage device 48 . After the self-calibration process is performed, a programming operation may be performed on the electronic fuses 50_1 to 50_N to store the tDQSCK setting codes of the candidate values in the electronic fuses 50_1 to 50_N.

第4圖為依據本發明另一實施例之藉由第2圖所示之訊號處理電路200所取得的時脈訊號、資料選通訊號以及寫入均衡索引訊號的時序圖。第3圖與第4圖的差別在於在第4圖中的下真實資料選通訊號LDQS_t領先真實時脈訊號CK_t,並且包含有訊號處理電路200的記憶體裝置100的tDQSCK係小於0,此外,接近時間點T11時,當資料選通寫入均衡訊號DQS_WL選通時脈寫入均衡訊號CK_WL之後,寫入均衡索引訊號WL_INDEX的寫入均衡狀態WS係等於0,為了簡潔起見,在此不再重複描述類似內容。FIG. 4 is a timing diagram of a clock signal, a data strobe signal and a write equalization index signal obtained by the signal processing circuit 200 shown in FIG. 2 according to another embodiment of the present invention. The difference between FIG. 3 and FIG. 4 is that the lower real data strobe signal LDQS_t in FIG. 4 leads the real clock signal CK_t, and the tDQSCK of the memory device 100 including the signal processing circuit 200 is less than 0. In addition, Near the time point T11, after the data strobe write equalization signal DQS_WL strobe clock is written into the equalization signal CK_WL, the write equalization state WS of the write equalization index signal WL_INDEX is equal to 0. Similar descriptions are repeated.

在本實施例中,由於包含有訊號處理電路200的記憶體裝置100的tDQSCK係小於0,因此訊號處理電路200的追蹤延遲電路34可降低第一延遲量FDA的數值,以使下真實資料選通訊號LDQS_t向前位移。在下真實資料選通訊號LDQS_t向前位移的過程中,以供第一延遲量FDA使用的複數個候選值可以被追蹤延遲電路34所支援,其中因應寫入均衡索引訊號WL_INDEX的寫入均衡狀態WS,第一延遲量FDA的數值被複數個候選值中所選擇出來的一候選值更新,此外,在下真實資料選通訊號LDQS_t向前位移的過程中,當下真實資料選通訊號LDQS_t的上升邊緣越過真實時脈訊號CK_t的上升邊緣時,資料選通寫入均衡訊號DQS_WL也會越過時脈寫入均衡訊號CK_WL的上升邊緣,因此,寫入均衡索引訊號WL_INDEX會發生轉態(亦即寫入均衡索引訊號WL_INDEX的寫入均衡狀態WS從0轉變成1),此時,記憶體裝置100的tDQSCK接近於0以及tDQSCK設置碼被儲存至儲存裝置48中。在進行自校準流程之後,可以對電子熔絲50_1~50_N進行一編程操作,以將候選值的tDQSCK設置碼儲存至電子熔絲50_1~50_N中。In this embodiment, since the tDQSCK of the memory device 100 including the signal processing circuit 200 is less than 0, the tracking delay circuit 34 of the signal processing circuit 200 can reduce the value of the first delay amount FDA, so that the real data can be selected The communication signal LDQS_t is shifted forward. During the forward shift of the lower real data strobe signal LDQS_t, a plurality of candidate values for the first delay amount FDA can be supported by the tracking delay circuit 34, which corresponds to the write equalization state WS of the write equalization index signal WL_INDEX , the value of the first delay amount FDA is updated by a candidate value selected from the plurality of candidate values. In addition, in the process of moving forward the lower real data strobe signal LDQS_t, the rising edge of the current real data strobe signal LDQS_t crosses the When the real clock signal CK_t is on the rising edge, the data strobe write equalization signal DQS_WL will also cross the rising edge of the clock write equalization signal CK_WL. Therefore, the write equalization index signal WL_INDEX will change state (that is, the write equalization signal The write equalization state WS of the index signal WL_INDEX changes from 0 to 1). At this time, the tDQSCK of the memory device 100 is close to 0 and the tDQSCK setting code is stored in the storage device 48 . After the self-calibration process is performed, a programming operation may be performed on the electronic fuses 50_1 to 50_N to store the tDQSCK setting codes of the candidate values in the electronic fuses 50_1 to 50_N.

第5圖為依據本發明一實施例之用以自校準tDQSCK的方法流程圖。假若可以得到相同的結果,則步驟不一定要完全遵照第5圖所示的流程來依序執行,舉例來說,第5圖所示之方法可由訊號處理電路200(其可以是記憶體裝置100的一部分)來加以實現。FIG. 5 is a flowchart of a method for self-calibrating tDQSCK according to an embodiment of the present invention. If the same result can be obtained, the steps do not have to be performed in sequence according to the process shown in FIG. 5. For example, the method shown in FIG. 5 can be performed by the signal processing circuit 200 (which can be the memory device 100). part) to be implemented.

在步驟S500中,包含有訊號處理電路200的記憶體裝置100(例如動態隨機存取記憶體)進入多功能暫存器(MPR)模式、讀取前置訓練模式以及寫入均衡模式,並且預設記憶體裝置100的tDQSCK設置。In step S500, the memory device 100 including the signal processing circuit 200 (eg, dynamic random access memory) enters the multi-function register (MPR) mode, the read pre-training mode and the write equalization mode, and pre- Let tDQSCK of memory device 100 be set.

在步驟S502中,提供讀取命令(例如多功能暫存器(MPR)讀取命令)給訊號處理電路200,以及記錄寫入均衡索引訊號WL_INDEX的寫入均衡狀態WS。In step S502, a read command (eg, a multi-function register (MPR) read command) is provided to the signal processing circuit 200, and the write equalization state WS of the write equalization index signal WL_INDEX is recorded.

在步驟S504中,判斷tDQSCK是否等於記憶體裝置100的tDQSCK之一最大設置,如果是,進入步驟S508;如果否,則進入步驟S506。In step S504, it is determined whether tDQSCK is equal to one of the maximum settings of tDQSCK of the memory device 100, if yes, go to step S508; if not, go to step S506.

在步驟S506中,因應tDQSCK不是記憶體裝置100的tDQSCK之最大設置,降低第一延遲量FDA的數值以使下真實資料選通訊號LDQS_t向前位移,並且回到步驟S502。In step S506, since tDQSCK is not the maximum setting of tDQSCK of the memory device 100, the value of the first delay amount FDA is decreased to shift the lower real data strobe signal LDQS_t forward, and the process returns to step S502.

在步驟S508中,因應tDQSCK是記憶體裝置100的tDQSCK之最大設置,再次預設記憶體裝置100的tDQSCK設置。In step S508, since tDQSCK is the maximum setting of tDQSCK of the memory device 100, the tDQSCK setting of the memory device 100 is again preset.

在步驟S510中,再次提供讀取命令(例如多功能暫存器(MPR)讀取命令)給訊號處理電路200,以及再次記錄寫入均衡索引訊號WL_INDEX的寫入均衡狀態WS。In step S510, a read command (eg, a multi-function register (MPR) read command) is provided to the signal processing circuit 200 again, and the write equalization state WS of the write equalization index signal WL_INDEX is recorded again.

在步驟S512中,判斷tDQSCK是否等於記憶體裝置100的tDQSCK之一最小設置,如果是,進入步驟S516;如果否,則進入步驟S514。In step S512, it is determined whether tDQSCK is equal to one of the minimum settings of tDQSCK of the memory device 100, if yes, go to step S516; if not, go to step S514.

在步驟S514中,因應tDQSCK不是記憶體裝置100的tDQSCK之最小設置,增加第一延遲量FDA的數值以使下真實資料選通訊號LDQS_t向後位移,並且回到步驟S510。In step S514, since tDQSCK is not the minimum setting of tDQSCK of the memory device 100, the value of the first delay FDA is increased to shift the lower real data strobe signal LDQS_t backward, and the process returns to step S510.

在步驟S516中,因應tDQSCK是記憶體裝置100的tDQSCK之最小設置,記憶體裝置100離開多功能暫存器(MPR)模式、讀取前置訓練模式以及寫入均衡模式。In step S516, since tDQSCK is the minimum setting of tDQSCK of the memory device 100, the memory device 100 leaves the multi-function register (MPR) mode, the read pretraining mode and the write equalization mode.

在步驟S518中,根據自步驟S506或步驟S514中選擇的最新tDQSCK設置碼來更新tDQSCK設置碼。In step S518, the tDQSCK setting code is updated according to the latest tDQSCK setting code selected from step S506 or step S514.

在步驟S520中,判斷寫入均衡索引訊號WL_INDEX是否發生轉態,如果是,進入步驟S522;如果否,則回到步驟S518。In step S520, it is determined whether the write equalization index signal WL_INDEX has changed state, if yes, go to step S522; if not, go back to step S518.

在步驟S522中,在進行自校準流程之後,記錄tDQSCK設置碼並且藉由對電子熔絲50_1~50_N進行編程操作來將tDQSCK設置碼儲存至電子熔絲50_1~50_N中。In step S522, after the self-calibration process is performed, the tDQSCK setting code is recorded and the tDQSCK setting code is stored in the electronic fuses 50_1 ˜ 50_N by performing a programming operation on the electronic fuses 50_1 ˜ 50_N.

由於熟習技藝者可透過有關第2圖所示之訊號處理電路200的說明書內容而輕易瞭解第5圖所示各步驟的操作,為了簡明起見,於本實施例中類似的內容在此不重複贅述。Since those skilled in the art can easily understand the operation of each step shown in FIG. 5 through the description of the signal processing circuit 200 shown in FIG. 2, for the sake of brevity, similar content in this embodiment is not repeated here. Repeat.

第6圖為依據本發明一實施例之在自校準之後的tDQSCK分布的示意圖,其中示意圖的橫軸代表tDQSCK的不同數值(其以奈秒(nanosecond, ns)為單位),以及示意圖的縱軸代表晶片(例如動態隨機存取記憶體)的不同數量。如第6圖所示,以虛線呈現的一曲線A係一原始tDQSCK分布,以及曲線A中的所有晶片皆具有相同的tDQSCK設置碼,然而,在一曲線B中,每一個晶片的tDQSCK藉由本發明的方法而被自校準,因此,在曲線B中的每一個晶片具有一各自的tDQSCK設置碼(其分別適合每一個晶片),並且曲線B的tDQSCK分布可以更集中。FIG. 6 is a schematic diagram of the distribution of tDQSCK after self-calibration according to an embodiment of the present invention, wherein the horizontal axis of the schematic diagram represents different values of tDQSCK (in nanoseconds (ns)), and the vertical axis of the schematic diagram Represents different numbers of chips (eg dynamic random access memory). As shown in Figure 6, a curve A represented by a dashed line is an original tDQSCK distribution, and all wafers in curve A have the same tDQSCK setting code, however, in a curve B, the tDQSCK of each wafer is determined by this The inventive method is self-calibrated so that each wafer in curve B has a respective tDQSCK setting code (which is appropriate for each wafer), and the tDQSCK distribution of curve B can be more concentrated.

第7圖為依據本發明一實施例之第6圖所示之在自校準之後的tDQSCK分布之位移的示意圖。在每一個晶片的tDQSCK藉由本發明的方法而被自校準之後,可以為每一個晶片將一手動位移碼(manual shift code)與tDQSCK設置碼相加,舉例來說,手動位移碼係用以將每一個晶片的tDQSCK向左位移0.01,並且一加法器702係用以將手動位移碼與tDQSCK設置碼相加,以為每一個晶片產生一最佳化(optimized)tDQSCK設置碼,藉由將各自的最佳化tDQSCK設置碼應用至每一個晶片,第6圖所示之在自校準之後的tDQSCK分布向左位移0.01。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 FIG. 7 is a schematic diagram of the displacement of the tDQSCK distribution shown in FIG. 6 after self-calibration according to an embodiment of the present invention. After the tDQSCK of each wafer is self-calibrated by the method of the present invention, a manual shift code can be added to the tDQSCK setup code for each wafer, for example, the manual shift code is used to The tDQSCK for each wafer is shifted to the left by 0.01, and an adder 702 is used to add the manual shift code to the tDQSCK setup code to generate an optimized tDQSCK setup code for each wafer by adding the respective An optimized tDQSCK setup code is applied to each wafer, and the tDQSCK distribution shown in Figure 6 after self-calibration is shifted to the left by 0.01. The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:記憶體裝置 10:命令輸入介面 12:命令解碼器 14:記憶體單元電路 16,22:延遲鎖相迴路電路 18:資料先進先出電路 20:資料輸入/輸出介面 COMMAND_SIGNAL:命令訊號 CS,SET_FDA:控制訊號 CAIR:命令位址訊號 CK_t:真實時脈訊號 CK_c:互補時脈訊號 BANK_0~BANK_N:記憶體庫 RDATA:讀取資料 DLL_OUT:延遲鎖相迴路輸出訊號 DQ0~DQ7,DQ8~DQ15:資料訊號 LDQS_t:下真實資料選通訊號 LDQS_c:下互補資料選通訊號 UDQS_t:上真實資料選通訊號 UDQS_c:上互補資料選通訊號 200:資料處理電路 24:資料輸出路徑電路 26,28:相位偵測器電路 30:延遲單元電路 32:延遲控制器 34:追蹤延遲電路 36,38,42,44:輸入緩衝器 40,46:相位偵測器 48:儲存裝置 50_1~50_N:電子熔絲 FDA:第一延遲量 SDA:第二延遲量 DLL_FED:延遲鎖相迴路回授訊號 FP_DR:第一相位偵測結果 SP_DR:第二相位偵測結果 FDA_CODE:第一延遲量調整訊號 CK_WL:時脈寫入均衡訊號 DQS_WL:資料選通寫入均衡訊號 WL_INDEX:寫入均衡索引訊號 S500~S522:步驟 702:加法器100: Memory device 10: Command input interface 12: Command Decoder 14: Memory cell circuit 16,22: Delay Locked Loop Circuit 18: Data FIFO circuit 20: Data input/output interface COMMAND_SIGNAL: command signal CS,SET_FDA: Control signal CAIR: command address signal CK_t: real clock signal CK_c: Complementary clock signal BANK_0~BANK_N: memory bank RDATA: read data DLL_OUT: Delay locked loop output signal DQ0~DQ7, DQ8~DQ15: Data signal LDQS_t: the real data strobe number LDQS_c: Lower complementary data strobe signal UDQS_t: Real data strobe number UDQS_c: Up complementary data strobe signal 200: Data processing circuit 24: Data output path circuit 26, 28: Phase Detector Circuit 30: Delay unit circuit 32: Delay Controller 34: Tracking delay circuit 36, 38, 42, 44: Input buffers 40, 46: Phase Detector 48: Storage device 50_1~50_N: Electronic fuse FDA: First Delay Quantity SDA: Second delay amount DLL_FED: Delay-locked loop feedback signal FP_DR: The first phase detection result SP_DR: The second phase detection result FDA_CODE: The first delay adjustment signal CK_WL: Clock write equalization signal DQS_WL: data strobe write equalization signal WL_INDEX: write equalization index signal S500~S522: Steps 702: Adder

第1圖為依據本發明一實施例之記憶體裝置的方塊圖。 第2圖為依據本發明一實施例之訊號處理電路的示意圖。 第3圖為依據本發明一實施例之藉由第2圖所示之訊號處理電路所取得的時脈訊號、資料選通訊號以及寫入均衡索引訊號的時序圖。 第4圖為依據本發明另一實施例之藉由第2圖所示之訊號處理電路所取得的時脈訊號、資料選通訊號以及寫入均衡索引訊號的時序圖。 第5圖為依據本發明一實施例之用以自校準tDQSCK的方法流程圖。 第6圖為依據本發明一實施例之在自校準之後的tDQSCK分布的示意圖。 第7圖為依據本發明一實施例之第6圖所示之在自校準之後的tDQSCK分布之位移的示意圖。 FIG. 1 is a block diagram of a memory device according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a signal processing circuit according to an embodiment of the present invention. FIG. 3 is a timing diagram of a clock signal, a data strobe signal and a write equalization index signal obtained by the signal processing circuit shown in FIG. 2 according to an embodiment of the present invention. FIG. 4 is a timing diagram of a clock signal, a data strobe signal and a write equalization index signal obtained by the signal processing circuit shown in FIG. 2 according to another embodiment of the present invention. FIG. 5 is a flowchart of a method for self-calibrating tDQSCK according to an embodiment of the present invention. FIG. 6 is a schematic diagram of tDQSCK distribution after self-calibration according to an embodiment of the present invention. FIG. 7 is a schematic diagram of the displacement of the tDQSCK distribution shown in FIG. 6 after self-calibration according to an embodiment of the present invention.

200:資料處理電路 200: Data processing circuit

22:延遲鎖相迴路電路 22: Delay-locked loop circuit

24:資料輸出路徑電路 24: Data output path circuit

26,28:相位偵測器電路 26, 28: Phase Detector Circuit

30:延遲單元電路 30: Delay unit circuit

32:延遲控制器 32: Delay Controller

34:追蹤延遲電路 34: Tracking delay circuit

36,38,42,44:輸入緩衝器 36, 38, 42, 44: Input buffers

40,46:相位偵測器 40, 46: Phase Detector

48:儲存裝置 48: Storage device

50_1~50_N:電子熔絲 50_1~50_N: Electronic fuse

CK_t:真實時脈訊號 CK_t: real clock signal

LDQS_t:下真實資料選通訊號 LDQS_t: the real data strobe number

FDA:第一延遲量 FDA: First Delay Quantity

SDA:第二延遲量 SDA: Second delay amount

DLL_OUT:延遲鎖相迴路輸出訊號 DLL_OUT: Delay locked loop output signal

DLL_FED:延遲鎖相迴路回授訊號 DLL_FED: Delay-locked loop feedback signal

FP_DR:第一相位偵測結果 FP_DR: The first phase detection result

SP_DR:第二相位偵測結果 SP_DR: The second phase detection result

FDA_CODE:第一延遲量調整訊號 FDA_CODE: The first delay adjustment signal

SET_FDA:控制訊號 SET_FDA: Control signal

Claims (16)

一種訊號處理電路,包含有: 一延遲鎖相迴路電路,用以接收一記憶體時脈訊號,並且根據該記憶體時脈訊號以及一延遲鎖相迴路回授訊號來產生一延遲鎖相迴路輸出訊號,其中該延遲鎖相迴路回授訊號係自該延遲鎖相迴路輸出訊號取得; 一資料輸出路徑電路,耦接於該延遲鎖相迴路電路,並且用以根據該延遲鎖相迴路輸出訊號來產生一資料選通訊號;以及 一第一相位偵測器電路,耦接於該資料輸出路徑電路,並且用以接收該記憶體時脈訊號以及該資料選通訊號,以及偵測該記憶體時脈訊號以及該資料選通訊號之間的一相位差,以產生一第一相位偵測結果; 其中一第一延遲量被該延遲鎖相迴路電路所使用,以及該第一延遲量根據該第一相位偵測結果而被調整。 A signal processing circuit, comprising: a delay locked loop circuit for receiving a memory clock signal and generating a delay locked loop output signal according to the memory clock signal and a delay locked loop feedback signal, wherein the delay locked loop The feedback signal is obtained from the output signal of the delay-locked loop; a data output path circuit, coupled to the DLL circuit, and used for generating a data strobe signal according to the DLL output signal; and a first phase detector circuit, coupled to the data output path circuit, and used for receiving the memory clock signal and the data strobe signal, and detecting the memory clock signal and the data strobe signal a phase difference between them to generate a first phase detection result; A first delay amount is used by the delay-locked loop circuit, and the first delay amount is adjusted according to the first phase detection result. 如申請專利範圍第1項所述之訊號處理電路,其中該訊號處理電路自校準一tDQSCK,其係該記憶體時脈訊號的一上升邊緣以及該資料選通訊號的一上升邊緣之間的一偏差。The signal processing circuit of claim 1, wherein the signal processing circuit self-calibrates a tDQSCK which is a rising edge between a rising edge of the memory clock signal and a rising edge of the data strobe signal deviation. 如申請專利範圍第1項所述之訊號處理電路,其中該延遲鎖相迴路電路包含有: 一第二相位偵測器電路,用以接收該記憶體時脈訊號以及該延遲鎖相迴路回授訊號,並且偵測該記憶體時脈訊號以及該延遲鎖相迴路回授訊號之間的一相位差,以產生一第二相位偵測結果; 一延遲單元電路,耦接於該第二相位偵測器電路以及該資料輸出路徑電路,並且用以將一第二延遲量施加至該記憶體時脈訊號,以產生該延遲鎖相迴路輸出訊號; 一延遲控制器,耦接於該第二相位偵測器電路以及該延遲單元電路,並且用以根據該第二相位偵測結果來控制該第二延遲量;以及 一追蹤延遲電路,耦接於該延遲單元電路以及該第二相位偵測器電路,並且用以將該第一延遲量施加至該延遲鎖相迴路輸出訊號,以產生該延遲鎖相迴路回授訊號。 The signal processing circuit as described in claim 1, wherein the delay-locked loop circuit comprises: a second phase detector circuit for receiving the memory clock signal and the PLL feedback signal, and detecting a difference between the memory clock signal and the PLL feedback signal phase difference to generate a second phase detection result; a delay unit circuit, coupled to the second phase detector circuit and the data output path circuit, and used for applying a second delay amount to the memory clock signal to generate the delay locked loop output signal ; a delay controller, coupled to the second phase detector circuit and the delay unit circuit, and used for controlling the second delay amount according to the second phase detection result; and a tracking delay circuit, coupled to the delay unit circuit and the second phase detector circuit, and used for applying the first delay amount to the PLL output signal to generate the PLL feedback signal. 如申請專利範圍第3項所述之訊號處理電路,其中該第二相位偵測器電路包含有: 一第一輸入緩衝器,耦接於該延遲單元電路,並且用以接收以及緩衝該記憶體時脈訊號; 一第二輸入緩衝器,耦接於該追蹤延遲電路,並且用以接收以及緩衝該延遲鎖相迴路回授訊號;以及 一相位偵測器,耦接於該第一輸入緩衝器、該第二輸入緩衝器以及該延遲控制器,並且用以偵測自該第一輸入緩衝器輸出的該記憶體時脈訊號以及自該第二輸入緩衝器輸出的該延遲鎖相迴路回授訊號之間的該相位差,以產生該第二相位偵測結果。 The signal processing circuit as described in claim 3, wherein the second phase detector circuit comprises: a first input buffer, coupled to the delay unit circuit, and used for receiving and buffering the memory clock signal; a second input buffer coupled to the tracking delay circuit and used for receiving and buffering the PLL feedback signal; and a phase detector, coupled to the first input buffer, the second input buffer and the delay controller, and used for detecting the memory clock signal output from the first input buffer and the automatic The phase difference between the PLL feedback signals output by the second input buffer is used to generate the second phase detection result. 如申請專利範圍第3項所述之訊號處理電路,其中該第一相位偵測器電路包含有: 一第一輸入緩衝器,用以接收以及緩衝該記憶體時脈訊號; 一第二輸入緩衝器,耦接於該資料輸出路徑電路,並且用以接收以及緩衝該資料選通訊號;以及 一相位偵測器,耦接於該第一輸入緩衝器以及該第二輸入緩衝器,並且用以偵測自該第一輸入緩衝器輸出的該記憶體時脈訊號以及自該第二輸入緩衝器輸出的該資料選通訊號之間的該相位差,以產生該第一相位偵測結果。 The signal processing circuit as described in claim 3, wherein the first phase detector circuit comprises: a first input buffer for receiving and buffering the memory clock signal; a second input buffer coupled to the data output path circuit and used for receiving and buffering the data strobe signal; and a phase detector, coupled to the first input buffer and the second input buffer, and used for detecting the memory clock signal output from the first input buffer and from the second input buffer The phase difference between the data strobe signals output by the device is determined to generate the first phase detection result. 如申請專利範圍第3項所述之訊號處理電路,其中該第一相位偵測結果係用以作為一寫入均衡索引訊號,並且該寫入均衡索引訊號的一寫入均衡狀態指示該記憶體時脈訊號以及該資料選通訊號之間的相位關係。The signal processing circuit as described in claim 3, wherein the first phase detection result is used as a write equalization index signal, and a write equalization state of the write equalization index signal indicates the memory The phase relationship between the clock signal and the data strobe signal. 如申請專利範圍第6項所述之訊號處理電路,其中當該寫入均衡索引訊號的該寫入均衡狀態係等於一第一邏輯值時,該追蹤延遲電路增加該第一延遲量的一數值,以使該資料選通訊號向後位移;以及當該寫入均衡索引訊號的該寫入均衡狀態係等於一第二邏輯值時,該追蹤延遲電路降低該第一延遲量的該數值,以使該資料選通訊號向前移。The signal processing circuit of claim 6, wherein when the write equalization state of the write equalization index signal is equal to a first logic value, the tracking delay circuit increases a value of the first delay amount , so that the data strobe signal is shifted backward; and when the write equalization state of the write equalization index signal is equal to a second logic value, the tracking delay circuit reduces the value of the first delay amount to make The data strobe signal is moved forward. 如申請專利範圍第7項所述之訊號處理電路,另包含有: 一儲存裝置,耦接於該第一相位偵測器電路以及該追蹤延遲電路,為該第一延遲量支援複數個候選值,並且用以根據該第一相位偵測結果來產生以及輸出一第一延遲量調整訊號至該追蹤延遲電路,以因應該寫入均衡索引訊號的該寫入均衡狀態來藉由自該複數個候選值中選擇出來的一候選值更新該第一延遲量的該數值,其中該第一延遲量係根據該第一延遲量調整訊號來被調整。 The signal processing circuit described in item 7 of the scope of the application further includes: A storage device, coupled to the first phase detector circuit and the tracking delay circuit, supports a plurality of candidate values for the first delay amount, and is used for generating and outputting a first phase detection result according to the first phase detection result A delay adjustment signal is applied to the tracking delay circuit to update the value of the first delay amount by a candidate value selected from the plurality of candidate values in response to the write equalization state of the write equalization index signal , wherein the first delay amount is adjusted according to the first delay amount adjustment signal. 如申請專利範圍第8項所述之訊號處理電路,其中該儲存裝置另用以接收一控制訊號,以及當該寫入均衡索引訊號在該第一延遲量的該數值被該候選值更新後發生轉態時,該儲存裝置另用以記錄該候選值的一設置碼,其中該控制訊號控制該儲存裝置,以將該第一延遲量調整訊號傳送至該追蹤延遲電路。The signal processing circuit as described in claim 8, wherein the storage device is further configured to receive a control signal, and when the write equalization index signal occurs after the value of the first delay amount is updated by the candidate value During state transition, the storage device is further used for recording a setting code of the candidate value, wherein the control signal controls the storage device to transmit the first delay amount adjustment signal to the tracking delay circuit. 如申請專利範圍第9項所述之訊號處理電路,其中該儲存裝置包含有複數個電子熔絲。The signal processing circuit of claim 9, wherein the storage device includes a plurality of electronic fuses. 一種用以自校準一tDQSCK的方法,其中該tDQSCK係一記憶體時脈訊號的一上升邊緣以及一資料選通訊號的一上升邊緣之間的一偏差,以及該方法包含有: 進入一多功能暫存器模式、一讀取前置訓練模式以及一寫入均衡模式,並且預設一tDQSCK設置; 提供一讀取命令並且記錄一寫入均衡索引訊號的一寫入均衡狀態,其中該寫入均衡索引訊號的該寫入均衡狀態指示該記憶體時脈訊號以及該資料選通訊號的相位關係; 判斷該tDQSCK是否為該tDQSCK的一最大設置,其中因應該tDQSCK不是該tDQSCK的該最大設置,降低一延遲量的一數值以使該資料選通訊號向前位移,再次提供該讀取命令,以及再次記錄該寫入均衡索引訊號的該寫入均衡狀態;以及因應該tDQSCK是該tDQSCK的該最大設置,再次預設該tDQSCK設置; 判斷該tDQSCK是否為該tDQSCK的一最小設置,其中因應該tDQSCK不是該tDQSCK的該最小設置,增加該延遲量的該數值以使該資料選通訊號向後位移,再次提供該讀取命令,以及再次記錄該寫入均衡索引訊號的該寫入均衡狀態;以及因應該tDQSCK是該tDQSCK的該最小設置,離開該多功能暫存器模式、該讀取前置訓練模式以及該寫入均衡模式; 更新一tDQSCK設置碼直到該寫入均衡索引訊號發生轉態;以及 記錄該tDQSCK設置碼。 A method for self-calibrating a tDQSCK, wherein the tDQSCK is a deviation between a rising edge of a memory clock signal and a rising edge of a data strobe signal, and the method comprising: Enter a multi-function register mode, a read pre-training mode and a write equalization mode, and preset a tDQSCK setting; providing a read command and recording a write equalization state of a write equalization index signal, wherein the write equalization state of the write equalization index signal indicates the phase relationship between the memory clock signal and the data strobe signal; determining whether the tDQSCK is a maximum setting of the tDQSCK, wherein since the tDQSCK is not the maximum setting of the tDQSCK, reducing a value of a delay amount to shift the data strobe signal forward, providing the read command again, and recording the write equalization state of the write equalization index signal again; and presetting the tDQSCK setting again because the tDQSCK is the maximum setting of the tDQSCK; Determine whether the tDQSCK is a minimum setting of the tDQSCK, wherein since the tDQSCK is not the minimum setting of the tDQSCK, increase the value of the delay amount to shift the data strobe signal backward, provide the read command again, and again recording the write equalization state of the write equalization index signal; and leaving the multi-function register mode, the read pre-training mode, and the write equalization mode because the tDQSCK is the minimum setting of the tDQSCK; updating a tDQSCK setup code until the write equalization index signal transitions; and Record the tDQSCK setup code. 如申請專利範圍第11項所述之方法,其中該讀取命令係一多功能暫存器寫入命令。The method of claim 11, wherein the read command is a multi-function register write command. 如申請專利範圍第11項所述之方法,該延遲量具有複數個候選值,以及更新該tDQSCK設置碼直到該寫入均衡索引訊號發生轉態的步驟另包含有: 藉由自該複數個候選值中選擇出來的一候選值來更新該延遲量的該數值,直到該寫入均衡索引訊號發生轉態。 According to the method described in claim 11, the delay amount has a plurality of candidate values, and the step of updating the tDQSCK setting code until the write equalization index signal transitions further comprises: The value of the delay amount is updated by a candidate value selected from the plurality of candidate values until the write equalization index signal transitions. 如申請專利範圍第13項所述之方法,其中記錄該tDQSCK設置碼包含有: 記錄對應於使得該寫入均衡索引訊號發生轉態之該候選值的該tDQSCK設置碼。 The method described in item 13 of the claimed scope, wherein recording the tDQSCK setting code includes: The tDQSCK setting code corresponding to the candidate value causing the write equalization index signal to transition is recorded. 如申請專利範圍第11項所述之方法,其中因應該寫入均衡索引訊號的轉態,該tDQSCK係接近於0。The method of claim 11, wherein the tDQSCK is close to 0 due to the transition of the write equalization index signal. 如申請專利範圍第11項所述之方法,其中記錄該tDQSCK設置碼另包含有: 對複數個電子熔絲進行一編程操作,以將該tDQSCK設置碼儲存至該複數個電子熔絲中。 The method as described in item 11 of the claimed scope, wherein recording the tDQSCK setting code further comprises: A programming operation is performed on the plurality of electronic fuses to store the tDQSCK setting code in the plurality of electronic fuses.
TW110144195A 2021-11-26 2021-11-26 Signal processing circuit and method for self-calibrating tdqsck TWI765844B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110144195A TWI765844B (en) 2021-11-26 2021-11-26 Signal processing circuit and method for self-calibrating tdqsck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110144195A TWI765844B (en) 2021-11-26 2021-11-26 Signal processing circuit and method for self-calibrating tdqsck

Publications (2)

Publication Number Publication Date
TWI765844B true TWI765844B (en) 2022-05-21
TW202322124A TW202322124A (en) 2023-06-01

Family

ID=82594557

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110144195A TWI765844B (en) 2021-11-26 2021-11-26 Signal processing circuit and method for self-calibrating tdqsck

Country Status (1)

Country Link
TW (1) TWI765844B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704881B1 (en) * 2000-08-31 2004-03-09 Micron Technology, Inc. Method and apparatus for providing symmetrical output data for a double data rate DRAM
US7542358B2 (en) * 2006-05-15 2009-06-02 Hynix Semiconductor Inc. DLL with reduced size and semiconductor memory device including DLL and locking operation method of the same
US10320398B2 (en) * 2016-10-27 2019-06-11 Samsung Electronics Co., Ltd. Delay locked loop to cancel offset and memory device including the same
US20210335403A1 (en) * 2020-04-22 2021-10-28 Samsung Electronics Co., Ltd. Delayed locked loop circuit and semiconductor memory device having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704881B1 (en) * 2000-08-31 2004-03-09 Micron Technology, Inc. Method and apparatus for providing symmetrical output data for a double data rate DRAM
US20040148538A1 (en) * 2000-08-31 2004-07-29 Wen Li Method and apparatus for providing symmetrical output data for a double data rate DRAM
US7542358B2 (en) * 2006-05-15 2009-06-02 Hynix Semiconductor Inc. DLL with reduced size and semiconductor memory device including DLL and locking operation method of the same
US10320398B2 (en) * 2016-10-27 2019-06-11 Samsung Electronics Co., Ltd. Delay locked loop to cancel offset and memory device including the same
US20210335403A1 (en) * 2020-04-22 2021-10-28 Samsung Electronics Co., Ltd. Delayed locked loop circuit and semiconductor memory device having the same

Also Published As

Publication number Publication date
TW202322124A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
US10530371B2 (en) Delay locked loop to cancel offset and memory device including the same
US11200931B2 (en) Apparatuses and methods for setting a duty cycle adjuster for improving clock duty cycle
US9472255B2 (en) Semiconductor device including a clock generating circuit for generating an internal signal having a coarse delay line, a fine delay line and a selector circuit
US9590606B2 (en) Semiconductor device having duty correction circuit
US8867301B2 (en) Semiconductor device having latency counter to control output timing of data and data processing system including the same
US8509005B2 (en) Data strobe signal generating device and a semiconductor memory apparatus using the same
US6717887B1 (en) Semiconductor memory device having configuration for selecting desired delay locked loop clock
US8824223B2 (en) Semiconductor memory apparatus with clock and data strobe phase detection
US7715245B2 (en) Pipe latch device of semiconductor memory device
US6760263B2 (en) Method and device for controlling data latch time
US7994833B2 (en) Delay locked loop for high speed semiconductor memory device
US9117509B2 (en) Electronic apparatus, DRAM controller, and DRAM
CN111149163B (en) Apparatus and method for data transmission offset value in burst transmission
US7405996B2 (en) System and method to synchronize signals in individual integrated circuit components
US9065455B2 (en) Delay locked loop circuit and semiconductor memory device including the same
US8923077B2 (en) Semiconductor device operates on external and internal power supply voltages and data processing system including the same
TWI765844B (en) Signal processing circuit and method for self-calibrating tdqsck
US8436657B2 (en) Semiconductor device having output driver
US11727968B2 (en) Method for self-calibrating tDQSCK that is skew between rising edge of memory clock signal and rising edge of DQS signal during read operation and associated signal processing circuit
CN116486878A (en) Signal processing circuit and method for self-calibrating tDQSCK
WO2014203775A1 (en) Semiconductor device
US11888489B2 (en) Delay locked loop including replica fine delay circuit and memory device including the same
JP2015159407A (en) semiconductor device